/src/openssl30/crypto/stack/stack.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include "internal/cryptlib.h" |
12 | | #include "internal/numbers.h" |
13 | | #include <openssl/stack.h> |
14 | | #include <errno.h> |
15 | | #include <openssl/e_os2.h> /* For ossl_inline */ |
16 | | |
17 | | /* |
18 | | * The initial number of nodes in the array. |
19 | | */ |
20 | | static const int min_nodes = 4; |
21 | | static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX |
22 | | ? (int)(SIZE_MAX / sizeof(void *)) |
23 | | : INT_MAX; |
24 | | |
25 | | struct stack_st { |
26 | | int num; |
27 | | const void **data; |
28 | | int sorted; |
29 | | int num_alloc; |
30 | | OPENSSL_sk_compfunc comp; |
31 | | }; |
32 | | |
33 | | OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, |
34 | | OPENSSL_sk_compfunc c) |
35 | 255k | { |
36 | 255k | OPENSSL_sk_compfunc old = sk->comp; |
37 | | |
38 | 255k | if (sk->comp != c) |
39 | 255k | sk->sorted = 0; |
40 | 255k | sk->comp = c; |
41 | | |
42 | 255k | return old; |
43 | 255k | } |
44 | | |
45 | | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) |
46 | 40.6M | { |
47 | 40.6M | OPENSSL_STACK *ret; |
48 | | |
49 | 40.6M | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
50 | 0 | goto err; |
51 | | |
52 | 40.6M | if (sk == NULL) { |
53 | 196 | ret->num = 0; |
54 | 196 | ret->sorted = 0; |
55 | 196 | ret->comp = NULL; |
56 | 40.6M | } else { |
57 | | /* direct structure assignment */ |
58 | 40.6M | *ret = *sk; |
59 | 40.6M | } |
60 | | |
61 | 40.6M | if (sk == NULL || sk->num == 0) { |
62 | | /* postpone |ret->data| allocation */ |
63 | 211 | ret->data = NULL; |
64 | 211 | ret->num_alloc = 0; |
65 | 211 | return ret; |
66 | 211 | } |
67 | | |
68 | | /* duplicate |sk->data| content */ |
69 | 40.6M | ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc); |
70 | 40.6M | if (ret->data == NULL) |
71 | 0 | goto err; |
72 | 40.6M | memcpy(ret->data, sk->data, sizeof(void *) * sk->num); |
73 | 40.6M | return ret; |
74 | | |
75 | 0 | err: |
76 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
77 | 0 | OPENSSL_sk_free(ret); |
78 | 0 | return NULL; |
79 | 40.6M | } |
80 | | |
81 | | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, |
82 | | OPENSSL_sk_copyfunc copy_func, |
83 | | OPENSSL_sk_freefunc free_func) |
84 | 1.53M | { |
85 | 1.53M | OPENSSL_STACK *ret; |
86 | 1.53M | int i; |
87 | | |
88 | 1.53M | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
89 | 0 | goto err; |
90 | | |
91 | 1.53M | if (sk == NULL) { |
92 | 188 | ret->num = 0; |
93 | 188 | ret->sorted = 0; |
94 | 188 | ret->comp = NULL; |
95 | 1.53M | } else { |
96 | | /* direct structure assignment */ |
97 | 1.53M | *ret = *sk; |
98 | 1.53M | } |
99 | | |
100 | 1.53M | if (sk == NULL || sk->num == 0) { |
101 | | /* postpone |ret| data allocation */ |
102 | 188 | ret->data = NULL; |
103 | 188 | ret->num_alloc = 0; |
104 | 188 | return ret; |
105 | 188 | } |
106 | | |
107 | 1.53M | ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes; |
108 | 1.53M | ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc); |
109 | 1.53M | if (ret->data == NULL) |
110 | 0 | goto err; |
111 | | |
112 | 16.6M | for (i = 0; i < ret->num; ++i) { |
113 | 15.0M | if (sk->data[i] == NULL) |
114 | 0 | continue; |
115 | 15.0M | if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { |
116 | 0 | while (--i >= 0) |
117 | 0 | if (ret->data[i] != NULL) |
118 | 0 | free_func((void *)ret->data[i]); |
119 | 0 | goto err; |
120 | 0 | } |
121 | 15.0M | } |
122 | 1.53M | return ret; |
123 | | |
124 | 0 | err: |
125 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
126 | 0 | OPENSSL_sk_free(ret); |
127 | 0 | return NULL; |
128 | 1.53M | } |
129 | | |
130 | | OPENSSL_STACK *OPENSSL_sk_new_null(void) |
131 | 164M | { |
132 | 164M | return OPENSSL_sk_new_reserve(NULL, 0); |
133 | 164M | } |
134 | | |
135 | | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c) |
136 | 23.1M | { |
137 | 23.1M | return OPENSSL_sk_new_reserve(c, 0); |
138 | 23.1M | } |
139 | | |
140 | | /* |
141 | | * Calculate the array growth based on the target size. |
142 | | * |
143 | | * The growth fraction is a rational number and is defined by a numerator |
144 | | * and a denominator. According to Andrew Koenig in his paper "Why Are |
145 | | * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less |
146 | | * than the golden ratio (1.618...). |
147 | | * |
148 | | * We use 3/2 = 1.5 for simplicity of calculation and overflow checking. |
149 | | * Another option 8/5 = 1.6 allows for slightly faster growth, although safe |
150 | | * computation is more difficult. |
151 | | * |
152 | | * The limit to avoid overflow is spot on. The modulo three correction term |
153 | | * ensures that the limit is the largest number than can be expanded by the |
154 | | * growth factor without exceeding the hard limit. |
155 | | * |
156 | | * Do not call it with |current| lower than 2, or it will infinitely loop. |
157 | | */ |
158 | | static ossl_inline int compute_growth(int target, int current) |
159 | 4.09M | { |
160 | 4.09M | const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0); |
161 | | |
162 | 8.19M | while (current < target) { |
163 | | /* Check to see if we're at the hard limit */ |
164 | 4.09M | if (current >= max_nodes) |
165 | 0 | return 0; |
166 | | |
167 | | /* Expand the size by a factor of 3/2 if it is within range */ |
168 | 4.09M | current = current < limit ? current + current / 2 : max_nodes; |
169 | 4.09M | } |
170 | 4.09M | return current; |
171 | 4.09M | } |
172 | | |
173 | | /* internal STACK storage allocation */ |
174 | | static int sk_reserve(OPENSSL_STACK *st, int n, int exact) |
175 | 407M | { |
176 | 407M | const void **tmpdata; |
177 | 407M | int num_alloc; |
178 | | |
179 | | /* Check to see the reservation isn't exceeding the hard limit */ |
180 | 407M | if (n > max_nodes - st->num) { |
181 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
182 | 0 | return 0; |
183 | 0 | } |
184 | | |
185 | | /* Figure out the new size */ |
186 | 407M | num_alloc = st->num + n; |
187 | 407M | if (num_alloc < min_nodes) |
188 | 38.5M | num_alloc = min_nodes; |
189 | | |
190 | | /* If |st->data| allocation was postponed */ |
191 | 407M | if (st->data == NULL) { |
192 | | /* |
193 | | * At this point, |st->num_alloc| and |st->num| are 0; |
194 | | * so |num_alloc| value is |n| or |min_nodes| if greater than |n|. |
195 | | */ |
196 | 27.0M | if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) { |
197 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
198 | 0 | return 0; |
199 | 0 | } |
200 | 27.0M | st->num_alloc = num_alloc; |
201 | 27.0M | return 1; |
202 | 27.0M | } |
203 | | |
204 | 380M | if (!exact) { |
205 | 380M | if (num_alloc <= st->num_alloc) |
206 | 370M | return 1; |
207 | 9.14M | num_alloc = compute_growth(num_alloc, st->num_alloc); |
208 | 9.14M | if (num_alloc == 0) { |
209 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
210 | 0 | return 0; |
211 | 0 | } |
212 | 9.14M | } else if (num_alloc == st->num_alloc) { |
213 | 0 | return 1; |
214 | 0 | } |
215 | | |
216 | 9.14M | tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc); |
217 | 9.14M | if (tmpdata == NULL) { |
218 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
219 | 0 | return 0; |
220 | 0 | } |
221 | | |
222 | 9.14M | st->data = tmpdata; |
223 | 9.14M | st->num_alloc = num_alloc; |
224 | 9.14M | return 1; |
225 | 9.14M | } |
226 | | |
227 | | OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n) |
228 | 188M | { |
229 | 188M | OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); |
230 | | |
231 | 188M | if (st == NULL) { |
232 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
233 | 0 | return NULL; |
234 | 0 | } |
235 | | |
236 | 188M | st->comp = c; |
237 | | |
238 | 188M | if (n <= 0) |
239 | 187M | return st; |
240 | | |
241 | 1.09M | if (!sk_reserve(st, n, 1)) { |
242 | 0 | OPENSSL_sk_free(st); |
243 | 0 | return NULL; |
244 | 0 | } |
245 | | |
246 | 1.09M | return st; |
247 | 1.09M | } |
248 | | |
249 | | int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n) |
250 | 0 | { |
251 | 0 | if (st == NULL) { |
252 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
253 | 0 | return 0; |
254 | 0 | } |
255 | | |
256 | 0 | if (n < 0) |
257 | 0 | return 1; |
258 | 0 | return sk_reserve(st, n, 1); |
259 | 0 | } |
260 | | |
261 | | int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc) |
262 | 320M | { |
263 | 320M | if (st == NULL) { |
264 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
265 | 0 | return 0; |
266 | 0 | } |
267 | 320M | if (st->num == max_nodes) { |
268 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
269 | 0 | return 0; |
270 | 0 | } |
271 | | |
272 | 320M | if (!sk_reserve(st, 1, 0)) |
273 | 0 | return 0; |
274 | | |
275 | 320M | if ((loc >= st->num) || (loc < 0)) { |
276 | 320M | st->data[st->num] = data; |
277 | 320M | } else { |
278 | 5.62k | memmove(&st->data[loc + 1], &st->data[loc], |
279 | 5.62k | sizeof(st->data[0]) * (st->num - loc)); |
280 | 5.62k | st->data[loc] = data; |
281 | 5.62k | } |
282 | 320M | st->num++; |
283 | 320M | st->sorted = 0; |
284 | 320M | return st->num; |
285 | 320M | } |
286 | | |
287 | | static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc) |
288 | 2.29M | { |
289 | 2.29M | const void *ret = st->data[loc]; |
290 | | |
291 | 2.29M | if (loc != st->num - 1) |
292 | 236k | memmove(&st->data[loc], &st->data[loc + 1], |
293 | 236k | sizeof(st->data[0]) * (st->num - loc - 1)); |
294 | 2.29M | st->num--; |
295 | | |
296 | 2.29M | return (void *)ret; |
297 | 2.29M | } |
298 | | |
299 | | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p) |
300 | 148k | { |
301 | 148k | int i; |
302 | | |
303 | 148k | if (st == NULL) |
304 | 0 | return NULL; |
305 | | |
306 | 452k | for (i = 0; i < st->num; i++) |
307 | 452k | if (st->data[i] == p) |
308 | 148k | return internal_delete(st, i); |
309 | 0 | return NULL; |
310 | 148k | } |
311 | | |
312 | | void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc) |
313 | 341k | { |
314 | 341k | if (st == NULL || loc < 0 || loc >= st->num) |
315 | 0 | return NULL; |
316 | | |
317 | 341k | return internal_delete(st, loc); |
318 | 341k | } |
319 | | |
320 | | static int internal_find(OPENSSL_STACK *st, const void *data, |
321 | | int ret_val_options, int *pnum) |
322 | 24.1k | { |
323 | 24.1k | const void *r; |
324 | 24.1k | int i; |
325 | | |
326 | 24.1k | if (st == NULL || st->num == 0) |
327 | 9.66k | return -1; |
328 | | |
329 | 14.4k | if (st->comp == NULL) { |
330 | 265k | for (i = 0; i < st->num; i++) |
331 | 265k | if (st->data[i] == data) { |
332 | 3.12k | if (pnum != NULL) |
333 | 0 | *pnum = 1; |
334 | 3.12k | return i; |
335 | 3.12k | } |
336 | 277 | if (pnum != NULL) |
337 | 0 | *pnum = 0; |
338 | 277 | return -1; |
339 | 3.39k | } |
340 | | |
341 | 11.1k | if (!st->sorted) { |
342 | 1.82k | if (st->num > 1) |
343 | 0 | qsort(st->data, st->num, sizeof(void *), st->comp); |
344 | 1.82k | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
345 | 1.82k | } |
346 | 11.1k | if (data == NULL) |
347 | 0 | return -1; |
348 | 11.1k | if (pnum != NULL) |
349 | 2.38k | ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH; |
350 | 11.1k | r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp, |
351 | 11.1k | ret_val_options); |
352 | | |
353 | 11.1k | if (pnum != NULL) { |
354 | 2.38k | *pnum = 0; |
355 | 2.38k | if (r != NULL) { |
356 | 1.83k | const void **p = (const void **)r; |
357 | | |
358 | 3.67k | while (p < st->data + st->num) { |
359 | 1.83k | if (st->comp(&data, p) != 0) |
360 | 0 | break; |
361 | 1.83k | ++*pnum; |
362 | 1.83k | ++p; |
363 | 1.83k | } |
364 | 1.83k | } |
365 | 2.38k | } |
366 | | |
367 | 11.1k | return r == NULL ? -1 : (int)((const void **)r - st->data); |
368 | 11.1k | } |
369 | | |
370 | | int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data) |
371 | 171k | { |
372 | 171k | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL); |
373 | 171k | } |
374 | | |
375 | | int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data) |
376 | 0 | { |
377 | 0 | return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL); |
378 | 0 | } |
379 | | |
380 | | int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum) |
381 | 101k | { |
382 | 101k | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum); |
383 | 101k | } |
384 | | |
385 | | int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data) |
386 | 405M | { |
387 | 405M | if (st == NULL) |
388 | 0 | return -1; |
389 | 405M | return OPENSSL_sk_insert(st, data, st->num); |
390 | 405M | } |
391 | | |
392 | | int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data) |
393 | 0 | { |
394 | 0 | return OPENSSL_sk_insert(st, data, 0); |
395 | 0 | } |
396 | | |
397 | | void *OPENSSL_sk_shift(OPENSSL_STACK *st) |
398 | 0 | { |
399 | 0 | if (st == NULL || st->num == 0) |
400 | 0 | return NULL; |
401 | 0 | return internal_delete(st, 0); |
402 | 0 | } |
403 | | |
404 | | void *OPENSSL_sk_pop(OPENSSL_STACK *st) |
405 | 2.38M | { |
406 | 2.38M | if (st == NULL || st->num == 0) |
407 | 10.0k | return NULL; |
408 | 2.37M | return internal_delete(st, st->num - 1); |
409 | 2.38M | } |
410 | | |
411 | | void OPENSSL_sk_zero(OPENSSL_STACK *st) |
412 | 0 | { |
413 | 0 | if (st == NULL || st->num == 0) |
414 | 0 | return; |
415 | 0 | memset(st->data, 0, sizeof(*st->data) * st->num); |
416 | 0 | st->num = 0; |
417 | 0 | } |
418 | | |
419 | | void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func) |
420 | 49.0M | { |
421 | 49.0M | int i; |
422 | | |
423 | 49.0M | if (st == NULL) |
424 | 11.0M | return; |
425 | 212M | for (i = 0; i < st->num; i++) |
426 | 174M | if (st->data[i] != NULL) |
427 | 174M | func((char *)st->data[i]); |
428 | 38.0M | OPENSSL_sk_free(st); |
429 | 38.0M | } |
430 | | |
431 | | void OPENSSL_sk_free(OPENSSL_STACK *st) |
432 | 283M | { |
433 | 283M | if (st == NULL) |
434 | 53.0M | return; |
435 | 230M | OPENSSL_free(st->data); |
436 | 230M | OPENSSL_free(st); |
437 | 230M | } |
438 | | |
439 | | int OPENSSL_sk_num(const OPENSSL_STACK *st) |
440 | 1.25G | { |
441 | 1.25G | return st == NULL ? -1 : st->num; |
442 | 1.25G | } |
443 | | |
444 | | void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i) |
445 | 1.40G | { |
446 | 1.40G | if (st == NULL || i < 0 || i >= st->num) |
447 | 4.88k | return NULL; |
448 | 1.40G | return (void *)st->data[i]; |
449 | 1.40G | } |
450 | | |
451 | | void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data) |
452 | 12.9M | { |
453 | 12.9M | if (st == NULL) { |
454 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
455 | 0 | return NULL; |
456 | 0 | } |
457 | 12.9M | if (i < 0 || i >= st->num) { |
458 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT, |
459 | 0 | "i=%d", i); |
460 | 0 | return NULL; |
461 | 0 | } |
462 | 12.9M | st->data[i] = data; |
463 | 12.9M | st->sorted = 0; |
464 | 12.9M | return (void *)st->data[i]; |
465 | 12.9M | } |
466 | | |
467 | | void OPENSSL_sk_sort(OPENSSL_STACK *st) |
468 | 23.3M | { |
469 | 23.3M | if (st != NULL && !st->sorted && st->comp != NULL) { |
470 | 18.9M | if (st->num > 1) |
471 | 298k | qsort(st->data, st->num, sizeof(void *), st->comp); |
472 | 18.9M | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
473 | 18.9M | } |
474 | 23.3M | } |
475 | | |
476 | | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st) |
477 | 81.1k | { |
478 | 81.1k | return st == NULL ? 1 : st->sorted; |
479 | 81.1k | } |