Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/crypto/x509/v3_addr.c
Line
Count
Source
1
/*
2
 * Copyright 2006-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Implementation of RFC 3779 section 2.2.
12
 */
13
14
#include <stdio.h>
15
#include <stdlib.h>
16
#include <assert.h>
17
#include <string.h>
18
19
#include "internal/cryptlib.h"
20
#include <openssl/conf.h>
21
#include <openssl/asn1.h>
22
#include <openssl/asn1t.h>
23
#include <openssl/buffer.h>
24
#include <openssl/x509v3.h>
25
#include "crypto/x509.h"
26
#include "ext_dat.h"
27
#include "x509_local.h"
28
29
#ifndef OPENSSL_NO_RFC3779
30
31
/*
32
 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
33
 */
34
35
ASN1_SEQUENCE(IPAddressRange) = {
36
    ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
37
    ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
38
295k
} ASN1_SEQUENCE_END(IPAddressRange)
39
295k
40
295k
ASN1_CHOICE(IPAddressOrRange) = {
41
295k
    ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
42
295k
    ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
43
1.00M
} ASN1_CHOICE_END(IPAddressOrRange)
44
1.00M
45
1.00M
ASN1_CHOICE(IPAddressChoice) = {
46
1.00M
    ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
47
1.00M
    ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
48
1.00M
} ASN1_CHOICE_END(IPAddressChoice)
49
887k
50
887k
ASN1_SEQUENCE(IPAddressFamily) = {
51
887k
    ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
52
887k
    ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
53
887k
} ASN1_SEQUENCE_END(IPAddressFamily)
54
248k
55
248k
ASN1_ITEM_TEMPLATE(IPAddrBlocks) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
56
248k
    IPAddrBlocks, IPAddressFamily)
57
248k
static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
58
59
    IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
60
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
61
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
62
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
63
64
/*
65
 * How much buffer space do we need for a raw address?
66
 */
67
#define ADDR_RAW_BUF_LEN 16
68
69
/*
70
 * What's the address length associated with this AFI?
71
 */
72
static int length_from_afi(const unsigned afi)
73
690
{
74
690
    switch (afi) {
75
175
    case IANA_AFI_IPV4:
76
175
        return 4;
77
220
    case IANA_AFI_IPV6:
78
220
        return 16;
79
295
    default:
80
295
        return 0;
81
690
    }
82
690
}
83
84
/*
85
 * Extract the AFI from an IPAddressFamily.
86
 */
87
unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
88
55.4k
{
89
55.4k
    if (f == NULL
90
55.4k
        || f->addressFamily == NULL
91
55.4k
        || f->addressFamily->data == NULL
92
55.4k
        || f->addressFamily->length < 2)
93
5.64k
        return 0;
94
49.7k
    return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
95
55.4k
}
96
97
/*
98
 * Expand the bitstring form of an address into a raw byte array.
99
 * At the moment this is coded for simplicity, not speed.
100
 */
101
static int addr_expand(unsigned char *addr,
102
    const ASN1_BIT_STRING *bs,
103
    const int length, const unsigned char fill)
104
76.7k
{
105
76.7k
    if (bs->length < 0 || bs->length > length)
106
6.03k
        return 0;
107
70.7k
    if (bs->length > 0) {
108
65.9k
        memcpy(addr, bs->data, bs->length);
109
65.9k
        if ((bs->flags & 7) != 0) {
110
40.9k
            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
111
40.9k
            if (fill == 0)
112
35.3k
                addr[bs->length - 1] &= ~mask;
113
5.57k
            else
114
5.57k
                addr[bs->length - 1] |= mask;
115
40.9k
        }
116
65.9k
    }
117
70.7k
    memset(addr + bs->length, fill, length - bs->length);
118
70.7k
    return 1;
119
76.7k
}
120
121
/*
122
 * Extract the prefix length from a bitstring.
123
 */
124
92.3k
#define addr_prefixlen(bs) ((int)((bs)->length * 8 - ((bs)->flags & 7)))
125
126
/*
127
 * i2r handler for one address bitstring.
128
 */
129
static int i2r_address(BIO *out,
130
    const unsigned afi,
131
    const unsigned char fill, const ASN1_BIT_STRING *bs)
132
111k
{
133
111k
    unsigned char addr[ADDR_RAW_BUF_LEN];
134
111k
    int i, n;
135
136
111k
    if (bs->length < 0)
137
0
        return 0;
138
111k
    switch (afi) {
139
27.4k
    case IANA_AFI_IPV4:
140
27.4k
        if (!addr_expand(addr, bs, 4, fill))
141
4.10k
            return 0;
142
23.3k
        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
143
23.3k
        break;
144
48.3k
    case IANA_AFI_IPV6:
145
48.3k
        if (!addr_expand(addr, bs, 16, fill))
146
1.81k
            return 0;
147
261k
        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
148
215k
            n -= 2)
149
215k
            ;
150
203k
        for (i = 0; i < n; i += 2)
151
156k
            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
152
156k
                (i < 14 ? ":" : ""));
153
46.4k
        if (i < 16)
154
41.0k
            BIO_puts(out, ":");
155
46.4k
        if (i == 0)
156
4.36k
            BIO_puts(out, ":");
157
46.4k
        break;
158
35.8k
    default:
159
301k
        for (i = 0; i < bs->length; i++)
160
265k
            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
161
35.8k
        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
162
35.8k
        break;
163
111k
    }
164
105k
    return 1;
165
111k
}
166
167
/*
168
 * i2r handler for a sequence of addresses and ranges.
169
 */
170
static int i2r_IPAddressOrRanges(BIO *out,
171
    const int indent,
172
    const IPAddressOrRanges *aors,
173
    const unsigned afi)
174
52.2k
{
175
52.2k
    int i;
176
151k
    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
177
104k
        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
178
104k
        BIO_printf(out, "%*s", indent, "");
179
104k
        switch (aor->type) {
180
97.5k
        case IPAddressOrRange_addressPrefix:
181
97.5k
            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
182
5.13k
                return 0;
183
92.3k
            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
184
92.3k
            continue;
185
7.36k
        case IPAddressOrRange_addressRange:
186
7.36k
            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
187
574
                return 0;
188
6.79k
            BIO_puts(out, "-");
189
6.79k
            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
190
212
                return 0;
191
6.58k
            BIO_puts(out, "\n");
192
6.58k
            continue;
193
104k
        }
194
104k
    }
195
46.3k
    return 1;
196
52.2k
}
197
198
/*
199
 * i2r handler for an IPAddrBlocks extension.
200
 */
201
static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
202
    void *ext, BIO *out, int indent)
203
30.1k
{
204
30.1k
    const IPAddrBlocks *addr = ext;
205
30.1k
    int i;
206
78.9k
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
207
54.7k
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
208
54.7k
        const unsigned int afi = X509v3_addr_get_afi(f);
209
54.7k
        switch (afi) {
210
7.05k
        case IANA_AFI_IPV4:
211
7.05k
            BIO_printf(out, "%*sIPv4", indent, "");
212
7.05k
            break;
213
20.5k
        case IANA_AFI_IPV6:
214
20.5k
            BIO_printf(out, "%*sIPv6", indent, "");
215
20.5k
            break;
216
27.1k
        default:
217
27.1k
            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
218
27.1k
            break;
219
54.7k
        }
220
54.7k
        if (f->addressFamily->length > 2) {
221
32.8k
            switch (f->addressFamily->data[2]) {
222
3.94k
            case 1:
223
3.94k
                BIO_puts(out, " (Unicast)");
224
3.94k
                break;
225
2.77k
            case 2:
226
2.77k
                BIO_puts(out, " (Multicast)");
227
2.77k
                break;
228
4.25k
            case 3:
229
4.25k
                BIO_puts(out, " (Unicast/Multicast)");
230
4.25k
                break;
231
3.96k
            case 4:
232
3.96k
                BIO_puts(out, " (MPLS)");
233
3.96k
                break;
234
1.53k
            case 64:
235
1.53k
                BIO_puts(out, " (Tunnel)");
236
1.53k
                break;
237
2.83k
            case 65:
238
2.83k
                BIO_puts(out, " (VPLS)");
239
2.83k
                break;
240
1.48k
            case 66:
241
1.48k
                BIO_puts(out, " (BGP MDT)");
242
1.48k
                break;
243
662
            case 128:
244
662
                BIO_puts(out, " (MPLS-labeled VPN)");
245
662
                break;
246
11.3k
            default:
247
11.3k
                BIO_printf(out, " (Unknown SAFI %u)",
248
11.3k
                    (unsigned)f->addressFamily->data[2]);
249
11.3k
                break;
250
32.8k
            }
251
32.8k
        }
252
54.7k
        switch (f->ipAddressChoice->type) {
253
2.43k
        case IPAddressChoice_inherit:
254
2.43k
            BIO_puts(out, ": inherit\n");
255
2.43k
            break;
256
52.2k
        case IPAddressChoice_addressesOrRanges:
257
52.2k
            BIO_puts(out, ":\n");
258
52.2k
            if (!i2r_IPAddressOrRanges(out,
259
52.2k
                    indent + 2,
260
52.2k
                    f->ipAddressChoice->u.addressesOrRanges, afi))
261
5.91k
                return 0;
262
46.3k
            break;
263
54.7k
        }
264
54.7k
    }
265
24.2k
    return 1;
266
30.1k
}
267
268
/*
269
 * Sort comparison function for a sequence of IPAddressOrRange
270
 * elements.
271
 *
272
 * There's no sane answer we can give if addr_expand() fails, and an
273
 * assertion failure on externally supplied data is seriously uncool,
274
 * so we just arbitrarily declare that if given invalid inputs this
275
 * function returns -1.  If this messes up your preferred sort order
276
 * for garbage input, tough noogies.
277
 */
278
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
279
    const IPAddressOrRange *b, const int length)
280
0
{
281
0
    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
282
0
    int prefixlen_a = 0, prefixlen_b = 0;
283
0
    int r;
284
285
0
    switch (a->type) {
286
0
    case IPAddressOrRange_addressPrefix:
287
0
        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
288
0
            return -1;
289
0
        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
290
0
        break;
291
0
    case IPAddressOrRange_addressRange:
292
0
        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
293
0
            return -1;
294
0
        prefixlen_a = length * 8;
295
0
        break;
296
0
    }
297
298
0
    switch (b->type) {
299
0
    case IPAddressOrRange_addressPrefix:
300
0
        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
301
0
            return -1;
302
0
        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
303
0
        break;
304
0
    case IPAddressOrRange_addressRange:
305
0
        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
306
0
            return -1;
307
0
        prefixlen_b = length * 8;
308
0
        break;
309
0
    }
310
311
0
    if ((r = memcmp(addr_a, addr_b, length)) != 0)
312
0
        return r;
313
0
    else
314
0
        return prefixlen_a - prefixlen_b;
315
0
}
316
317
/*
318
 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
319
 * comparison routines are only allowed two arguments.
320
 */
321
static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
322
    const IPAddressOrRange *const *b)
323
0
{
324
0
    return IPAddressOrRange_cmp(*a, *b, 4);
325
0
}
326
327
/*
328
 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
329
 * comparison routines are only allowed two arguments.
330
 */
331
static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
332
    const IPAddressOrRange *const *b)
333
0
{
334
0
    return IPAddressOrRange_cmp(*a, *b, 16);
335
0
}
336
337
/*
338
 * Calculate whether a range collapses to a prefix.
339
 * See last paragraph of RFC 3779 2.2.3.7.
340
 */
341
static int range_should_be_prefix(const unsigned char *min,
342
    const unsigned char *max, const int length)
343
185
{
344
185
    unsigned char mask;
345
185
    int i, j;
346
347
    /*
348
     * It is the responsibility of the caller to confirm min <= max. We don't
349
     * use ossl_assert() here since we have no way of signalling an error from
350
     * this function - so we just use a plain assert instead.
351
     */
352
185
    assert(memcmp(min, max, length) <= 0);
353
354
879
    for (i = 0; i < length && min[i] == max[i]; i++)
355
694
        ;
356
590
    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
357
405
        ;
358
185
    if (i < j)
359
97
        return -1;
360
88
    if (i > j)
361
17
        return i * 8;
362
71
    mask = min[i] ^ max[i];
363
71
    switch (mask) {
364
9
    case 0x01:
365
9
        j = 7;
366
9
        break;
367
7
    case 0x03:
368
7
        j = 6;
369
7
        break;
370
8
    case 0x07:
371
8
        j = 5;
372
8
        break;
373
6
    case 0x0F:
374
6
        j = 4;
375
6
        break;
376
7
    case 0x1F:
377
7
        j = 3;
378
7
        break;
379
6
    case 0x3F:
380
6
        j = 2;
381
6
        break;
382
6
    case 0x7F:
383
6
        j = 1;
384
6
        break;
385
22
    default:
386
22
        return -1;
387
71
    }
388
49
    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
389
6
        return -1;
390
43
    else
391
43
        return i * 8 + j;
392
49
}
393
394
/*
395
 * Construct a prefix.
396
 */
397
static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
398
    const int prefixlen, const int afilen)
399
0
{
400
0
    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
401
0
    IPAddressOrRange *aor;
402
403
0
    if (prefixlen < 0 || prefixlen > (afilen * 8))
404
0
        return 0;
405
0
    if ((aor = IPAddressOrRange_new()) == NULL)
406
0
        return 0;
407
0
    aor->type = IPAddressOrRange_addressPrefix;
408
0
    if (aor->u.addressPrefix == NULL && (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
409
0
        goto err;
410
0
    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
411
0
        goto err;
412
0
    aor->u.addressPrefix->flags &= ~7;
413
0
    aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
414
0
    if (bitlen > 0) {
415
0
        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
416
0
        aor->u.addressPrefix->flags |= 8 - bitlen;
417
0
    }
418
419
0
    *result = aor;
420
0
    return 1;
421
422
0
err:
423
0
    IPAddressOrRange_free(aor);
424
0
    return 0;
425
0
}
426
427
/*
428
 * Construct a range.  If it can be expressed as a prefix,
429
 * return a prefix instead.  Doing this here simplifies
430
 * the rest of the code considerably.
431
 */
432
static int make_addressRange(IPAddressOrRange **result,
433
    unsigned char *min,
434
    unsigned char *max, const int length)
435
0
{
436
0
    IPAddressOrRange *aor;
437
0
    int i, prefixlen;
438
439
0
    if (memcmp(min, max, length) > 0)
440
0
        return 0;
441
442
0
    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
443
0
        return make_addressPrefix(result, min, prefixlen, length);
444
445
0
    if ((aor = IPAddressOrRange_new()) == NULL)
446
0
        return 0;
447
0
    aor->type = IPAddressOrRange_addressRange;
448
0
    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
449
0
        goto err;
450
0
    if (aor->u.addressRange->min == NULL && (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
451
0
        goto err;
452
0
    if (aor->u.addressRange->max == NULL && (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
453
0
        goto err;
454
455
0
    for (i = length; i > 0 && min[i - 1] == 0x00; --i)
456
0
        ;
457
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
458
0
        goto err;
459
0
    aor->u.addressRange->min->flags &= ~7;
460
0
    aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
461
0
    if (i > 0) {
462
0
        unsigned char b = min[i - 1];
463
0
        int j = 1;
464
0
        while ((b & (0xFFU >> j)) != 0)
465
0
            ++j;
466
0
        aor->u.addressRange->min->flags |= 8 - j;
467
0
    }
468
469
0
    for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
470
0
        ;
471
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
472
0
        goto err;
473
0
    aor->u.addressRange->max->flags &= ~7;
474
0
    aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
475
0
    if (i > 0) {
476
0
        unsigned char b = max[i - 1];
477
0
        int j = 1;
478
0
        while ((b & (0xFFU >> j)) != (0xFFU >> j))
479
0
            ++j;
480
0
        aor->u.addressRange->max->flags |= 8 - j;
481
0
    }
482
483
0
    *result = aor;
484
0
    return 1;
485
486
0
err:
487
0
    IPAddressOrRange_free(aor);
488
0
    return 0;
489
0
}
490
491
/*
492
 * Construct a new address family or find an existing one.
493
 */
494
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
495
    const unsigned afi,
496
    const unsigned *safi)
497
0
{
498
0
    IPAddressFamily *f;
499
0
    unsigned char key[3];
500
0
    int keylen;
501
0
    int i;
502
503
0
    key[0] = (afi >> 8) & 0xFF;
504
0
    key[1] = afi & 0xFF;
505
0
    if (safi != NULL) {
506
0
        key[2] = *safi & 0xFF;
507
0
        keylen = 3;
508
0
    } else {
509
0
        keylen = 2;
510
0
    }
511
512
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
513
0
        f = sk_IPAddressFamily_value(addr, i);
514
0
        if (f->addressFamily->length == keylen && !memcmp(f->addressFamily->data, key, keylen))
515
0
            return f;
516
0
    }
517
518
0
    if ((f = IPAddressFamily_new()) == NULL)
519
0
        goto err;
520
0
    if (f->ipAddressChoice == NULL && (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
521
0
        goto err;
522
0
    if (f->addressFamily == NULL && (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
523
0
        goto err;
524
0
    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
525
0
        goto err;
526
0
    if (!sk_IPAddressFamily_push(addr, f))
527
0
        goto err;
528
529
0
    return f;
530
531
0
err:
532
0
    IPAddressFamily_free(f);
533
0
    return NULL;
534
0
}
535
536
/*
537
 * Add an inheritance element.
538
 */
539
int X509v3_addr_add_inherit(IPAddrBlocks *addr,
540
    const unsigned afi, const unsigned *safi)
541
0
{
542
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
543
0
    if (f == NULL || f->ipAddressChoice == NULL || (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && f->ipAddressChoice->u.addressesOrRanges != NULL))
544
0
        return 0;
545
0
    if (f->ipAddressChoice->type == IPAddressChoice_inherit && f->ipAddressChoice->u.inherit != NULL)
546
0
        return 1;
547
0
    if (f->ipAddressChoice->u.inherit == NULL && (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
548
0
        return 0;
549
0
    f->ipAddressChoice->type = IPAddressChoice_inherit;
550
0
    return 1;
551
0
}
552
553
/*
554
 * Construct an IPAddressOrRange sequence, or return an existing one.
555
 */
556
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
557
    const unsigned afi,
558
    const unsigned *safi)
559
0
{
560
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
561
0
    IPAddressOrRanges *aors = NULL;
562
563
0
    if (f == NULL || f->ipAddressChoice == NULL || (f->ipAddressChoice->type == IPAddressChoice_inherit && f->ipAddressChoice->u.inherit != NULL))
564
0
        return NULL;
565
0
    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
566
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
567
0
    if (aors != NULL)
568
0
        return aors;
569
0
    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
570
0
        return NULL;
571
0
    switch (afi) {
572
0
    case IANA_AFI_IPV4:
573
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
574
0
        break;
575
0
    case IANA_AFI_IPV6:
576
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
577
0
        break;
578
0
    }
579
0
    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
580
0
    f->ipAddressChoice->u.addressesOrRanges = aors;
581
0
    return aors;
582
0
}
583
584
/*
585
 * Add a prefix.
586
 */
587
int X509v3_addr_add_prefix(IPAddrBlocks *addr,
588
    const unsigned afi,
589
    const unsigned *safi,
590
    unsigned char *a, const int prefixlen)
591
0
{
592
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
593
0
    IPAddressOrRange *aor;
594
595
0
    if (aors == NULL
596
0
        || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
597
0
        return 0;
598
0
    if (sk_IPAddressOrRange_push(aors, aor))
599
0
        return 1;
600
0
    IPAddressOrRange_free(aor);
601
0
    return 0;
602
0
}
603
604
/*
605
 * Add a range.
606
 */
607
int X509v3_addr_add_range(IPAddrBlocks *addr,
608
    const unsigned afi,
609
    const unsigned *safi,
610
    unsigned char *min, unsigned char *max)
611
0
{
612
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
613
0
    IPAddressOrRange *aor;
614
0
    int length = length_from_afi(afi);
615
0
    if (aors == NULL)
616
0
        return 0;
617
0
    if (!make_addressRange(&aor, min, max, length))
618
0
        return 0;
619
0
    if (sk_IPAddressOrRange_push(aors, aor))
620
0
        return 1;
621
0
    IPAddressOrRange_free(aor);
622
0
    return 0;
623
0
}
624
625
/*
626
 * Extract min and max values from an IPAddressOrRange.
627
 */
628
static int extract_min_max(IPAddressOrRange *aor,
629
    unsigned char *min, unsigned char *max, int length)
630
531
{
631
531
    if (aor == NULL || min == NULL || max == NULL)
632
0
        return 0;
633
531
    switch (aor->type) {
634
250
    case IPAddressOrRange_addressPrefix:
635
250
        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && addr_expand(max, aor->u.addressPrefix, length, 0xFF));
636
281
    case IPAddressOrRange_addressRange:
637
281
        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && addr_expand(max, aor->u.addressRange->max, length, 0xFF));
638
531
    }
639
0
    return 0;
640
531
}
641
642
/*
643
 * Public wrapper for extract_min_max().
644
 */
645
int X509v3_addr_get_range(IPAddressOrRange *aor,
646
    const unsigned afi,
647
    unsigned char *min,
648
    unsigned char *max, const int length)
649
0
{
650
0
    int afi_length = length_from_afi(afi);
651
0
    if (aor == NULL || min == NULL || max == NULL || afi_length == 0 || length < afi_length || (aor->type != IPAddressOrRange_addressPrefix && aor->type != IPAddressOrRange_addressRange) || !extract_min_max(aor, min, max, afi_length))
652
0
        return 0;
653
654
0
    return afi_length;
655
0
}
656
657
/*
658
 * Sort comparison function for a sequence of IPAddressFamily.
659
 *
660
 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
661
 * the ordering: I can read it as meaning that IPv6 without a SAFI
662
 * comes before IPv4 with a SAFI, which seems pretty weird.  The
663
 * examples in appendix B suggest that the author intended the
664
 * null-SAFI rule to apply only within a single AFI, which is what I
665
 * would have expected and is what the following code implements.
666
 */
667
static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
668
    const IPAddressFamily *const *b_)
669
776
{
670
776
    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
671
776
    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
672
776
    int len = ((a->length <= b->length) ? a->length : b->length);
673
776
    int cmp = memcmp(a->data, b->data, len);
674
776
    return cmp ? cmp : a->length - b->length;
675
776
}
676
677
static int IPAddressFamily_check_len(const IPAddressFamily *f)
678
2.44k
{
679
2.44k
    if (f->addressFamily->length < 2 || f->addressFamily->length > 3)
680
73
        return 0;
681
2.37k
    else
682
2.37k
        return 1;
683
2.44k
}
684
685
/*
686
 * Check whether an IPAddrBLocks is in canonical form.
687
 */
688
int X509v3_addr_is_canonical(IPAddrBlocks *addr)
689
482
{
690
482
    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
691
482
    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
692
482
    IPAddressOrRanges *aors;
693
482
    int i, j, k;
694
695
    /*
696
     * Empty extension is canonical.
697
     */
698
482
    if (addr == NULL)
699
10
        return 1;
700
701
    /*
702
     * Check whether the top-level list is in order.
703
     */
704
836
    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
705
443
        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
706
443
        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
707
708
443
        if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b))
709
26
            return 0;
710
711
417
        if (IPAddressFamily_cmp(&a, &b) >= 0)
712
53
            return 0;
713
417
    }
714
715
    /*
716
     * Top level's ok, now check each address family.
717
     */
718
835
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
719
690
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
720
690
        int length = length_from_afi(X509v3_addr_get_afi(f));
721
722
        /*
723
         * Inheritance is canonical.  Anything other than inheritance or
724
         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
725
         */
726
690
        if (f == NULL || f->ipAddressChoice == NULL)
727
0
            return 0;
728
690
        switch (f->ipAddressChoice->type) {
729
1
        case IPAddressChoice_inherit:
730
1
            continue;
731
689
        case IPAddressChoice_addressesOrRanges:
732
689
            break;
733
0
        default:
734
0
            return 0;
735
690
        }
736
737
689
        if (!IPAddressFamily_check_len(f))
738
10
            return 0;
739
740
        /*
741
         * It's an IPAddressOrRanges sequence, check it.
742
         */
743
679
        aors = f->ipAddressChoice->u.addressesOrRanges;
744
679
        if (sk_IPAddressOrRange_num(aors) == 0)
745
0
            return 0;
746
738
        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
747
141
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
748
141
            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
749
750
141
            if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length))
751
32
                return 0;
752
753
            /*
754
             * Punt misordered list, overlapping start, or inverted range.
755
             */
756
109
            if (memcmp(a_min, b_min, length) >= 0 || memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0)
757
43
                return 0;
758
759
            /*
760
             * Punt if adjacent or overlapping.  Check for adjacency by
761
             * subtracting one from b_min first.
762
             */
763
277
            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
764
211
                ;
765
66
            if (memcmp(a_max, b_min, length) >= 0)
766
7
                return 0;
767
768
            /*
769
             * Check for range that should be expressed as a prefix.
770
             */
771
59
            if (a->type == IPAddressOrRange_addressRange && range_should_be_prefix(a_min, a_max, length) >= 0)
772
0
                return 0;
773
59
        }
774
775
        /*
776
         * Check range to see if it's inverted or should be a
777
         * prefix.
778
         */
779
597
        j = sk_IPAddressOrRange_num(aors) - 1;
780
597
        {
781
597
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
782
597
            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
783
281
                if (!extract_min_max(a, a_min, a_max, length))
784
84
                    return 0;
785
197
                if (memcmp(a_min, a_max, length) > 0 || range_should_be_prefix(a_min, a_max, length) >= 0)
786
72
                    return 0;
787
197
            }
788
597
        }
789
597
    }
790
791
    /*
792
     * If we made it through all that, we're happy.
793
     */
794
145
    return 1;
795
393
}
796
797
/*
798
 * Whack an IPAddressOrRanges into canonical form.
799
 */
800
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
801
    const unsigned afi)
802
0
{
803
0
    int i, j, length = length_from_afi(afi);
804
805
    /*
806
     * Sort the IPAddressOrRanges sequence.
807
     */
808
0
    sk_IPAddressOrRange_sort(aors);
809
810
    /*
811
     * Clean up representation issues, punt on duplicates or overlaps.
812
     */
813
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
814
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
815
0
        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
816
0
        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
817
0
        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
818
819
0
        if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length))
820
0
            return 0;
821
822
        /*
823
         * Punt inverted ranges.
824
         */
825
0
        if (memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0)
826
0
            return 0;
827
828
        /*
829
         * Punt overlaps.
830
         */
831
0
        if (memcmp(a_max, b_min, length) >= 0)
832
0
            return 0;
833
834
        /*
835
         * Merge if a and b are adjacent.  We check for
836
         * adjacency by subtracting one from b_min first.
837
         */
838
0
        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
839
0
            ;
840
0
        if (memcmp(a_max, b_min, length) == 0) {
841
0
            IPAddressOrRange *merged;
842
0
            if (!make_addressRange(&merged, a_min, b_max, length))
843
0
                return 0;
844
0
            (void)sk_IPAddressOrRange_set(aors, i, merged);
845
0
            (void)sk_IPAddressOrRange_delete(aors, i + 1);
846
0
            IPAddressOrRange_free(a);
847
0
            IPAddressOrRange_free(b);
848
0
            --i;
849
0
            continue;
850
0
        }
851
0
    }
852
853
    /*
854
     * Check for inverted final range.
855
     */
856
0
    j = sk_IPAddressOrRange_num(aors) - 1;
857
0
    {
858
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
859
0
        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
860
0
            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
861
0
            if (!extract_min_max(a, a_min, a_max, length))
862
0
                return 0;
863
0
            if (memcmp(a_min, a_max, length) > 0)
864
0
                return 0;
865
0
        }
866
0
    }
867
868
0
    return 1;
869
0
}
870
871
/*
872
 * Whack an IPAddrBlocks extension into canonical form.
873
 */
874
int X509v3_addr_canonize(IPAddrBlocks *addr)
875
0
{
876
0
    int i;
877
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
878
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
879
880
0
        if (!IPAddressFamily_check_len(f))
881
0
            return 0;
882
883
0
        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges, X509v3_addr_get_afi(f)))
884
0
            return 0;
885
0
    }
886
0
    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
887
0
    sk_IPAddressFamily_sort(addr);
888
0
    if (!ossl_assert(X509v3_addr_is_canonical(addr)))
889
0
        return 0;
890
0
    return 1;
891
0
}
892
893
/*
894
 * v2i handler for the IPAddrBlocks extension.
895
 */
896
static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
897
    struct v3_ext_ctx *ctx,
898
    STACK_OF(CONF_VALUE) *values)
899
0
{
900
0
    static const char v4addr_chars[] = "0123456789.";
901
0
    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
902
0
    IPAddrBlocks *addr = NULL;
903
0
    char *s = NULL, *t;
904
0
    int i;
905
906
0
    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
907
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
908
0
        return NULL;
909
0
    }
910
911
0
    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
912
0
        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
913
0
        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
914
0
        unsigned afi, *safi = NULL, safi_;
915
0
        const char *addr_chars = NULL;
916
0
        int prefixlen, i1, i2, delim, length;
917
918
0
        if (!ossl_v3_name_cmp(val->name, "IPv4")) {
919
0
            afi = IANA_AFI_IPV4;
920
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
921
0
            afi = IANA_AFI_IPV6;
922
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
923
0
            afi = IANA_AFI_IPV4;
924
0
            safi = &safi_;
925
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
926
0
            afi = IANA_AFI_IPV6;
927
0
            safi = &safi_;
928
0
        } else {
929
0
            ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
930
0
                "%s", val->name);
931
0
            goto err;
932
0
        }
933
934
0
        switch (afi) {
935
0
        case IANA_AFI_IPV4:
936
0
            addr_chars = v4addr_chars;
937
0
            break;
938
0
        case IANA_AFI_IPV6:
939
0
            addr_chars = v6addr_chars;
940
0
            break;
941
0
        }
942
943
0
        length = length_from_afi(afi);
944
945
        /*
946
         * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
947
         * the other input values.
948
         */
949
0
        if (safi != NULL) {
950
0
            if (val->value == NULL) {
951
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_MISSING_VALUE);
952
0
                goto err;
953
0
            }
954
0
            *safi = strtoul(val->value, &t, 0);
955
0
            t += strspn(t, " \t");
956
0
            if (*safi > 0xFF || *t++ != ':') {
957
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
958
0
                X509V3_conf_add_error_name_value(val);
959
0
                goto err;
960
0
            }
961
0
            t += strspn(t, " \t");
962
0
            s = OPENSSL_strdup(t);
963
0
        } else {
964
0
            s = OPENSSL_strdup(val->value);
965
0
        }
966
0
        if (s == NULL) {
967
0
            ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
968
0
            goto err;
969
0
        }
970
971
        /*
972
         * Check for inheritance.  Not worth additional complexity to
973
         * optimize this (seldom-used) case.
974
         */
975
0
        if (strcmp(s, "inherit") == 0) {
976
0
            if (!X509v3_addr_add_inherit(addr, afi, safi)) {
977
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
978
0
                X509V3_conf_add_error_name_value(val);
979
0
                goto err;
980
0
            }
981
0
            OPENSSL_free(s);
982
0
            s = NULL;
983
0
            continue;
984
0
        }
985
986
0
        i1 = strspn(s, addr_chars);
987
0
        i2 = i1 + strspn(s + i1, " \t");
988
0
        delim = s[i2++];
989
0
        s[i1] = '\0';
990
991
0
        if (ossl_a2i_ipadd(min, s) != length) {
992
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
993
0
            X509V3_conf_add_error_name_value(val);
994
0
            goto err;
995
0
        }
996
997
0
        switch (delim) {
998
0
        case '/':
999
0
            prefixlen = (int)strtoul(s + i2, &t, 10);
1000
0
            if (t == s + i2
1001
0
                || *t != '\0'
1002
0
                || prefixlen > (length * 8)
1003
0
                || prefixlen < 0) {
1004
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1005
0
                X509V3_conf_add_error_name_value(val);
1006
0
                goto err;
1007
0
            }
1008
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1009
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1010
0
                goto err;
1011
0
            }
1012
0
            break;
1013
0
        case '-':
1014
0
            i1 = i2 + strspn(s + i2, " \t");
1015
0
            i2 = i1 + strspn(s + i1, addr_chars);
1016
0
            if (i1 == i2 || s[i2] != '\0') {
1017
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1018
0
                X509V3_conf_add_error_name_value(val);
1019
0
                goto err;
1020
0
            }
1021
0
            if (ossl_a2i_ipadd(max, s + i1) != length) {
1022
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1023
0
                X509V3_conf_add_error_name_value(val);
1024
0
                goto err;
1025
0
            }
1026
0
            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1027
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1028
0
                X509V3_conf_add_error_name_value(val);
1029
0
                goto err;
1030
0
            }
1031
0
            if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1032
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1033
0
                goto err;
1034
0
            }
1035
0
            break;
1036
0
        case '\0':
1037
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1038
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1039
0
                goto err;
1040
0
            }
1041
0
            break;
1042
0
        default:
1043
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1044
0
            X509V3_conf_add_error_name_value(val);
1045
0
            goto err;
1046
0
        }
1047
1048
0
        OPENSSL_free(s);
1049
0
        s = NULL;
1050
0
    }
1051
1052
    /*
1053
     * Canonize the result, then we're done.
1054
     */
1055
0
    if (!X509v3_addr_canonize(addr))
1056
0
        goto err;
1057
0
    return addr;
1058
1059
0
err:
1060
0
    OPENSSL_free(s);
1061
0
    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1062
0
    return NULL;
1063
0
}
1064
1065
/*
1066
 * OpenSSL dispatch
1067
 */
1068
const X509V3_EXT_METHOD ossl_v3_addr = {
1069
    NID_sbgp_ipAddrBlock, /* nid */
1070
    0, /* flags */
1071
    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1072
    0, 0, 0, 0, /* old functions, ignored */
1073
    0, /* i2s */
1074
    0, /* s2i */
1075
    0, /* i2v */
1076
    v2i_IPAddrBlocks, /* v2i */
1077
    i2r_IPAddrBlocks, /* i2r */
1078
    0, /* r2i */
1079
    NULL /* extension-specific data */
1080
};
1081
1082
/*
1083
 * Figure out whether extension sues inheritance.
1084
 */
1085
int X509v3_addr_inherits(IPAddrBlocks *addr)
1086
0
{
1087
0
    int i;
1088
0
    if (addr == NULL)
1089
0
        return 0;
1090
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1091
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1092
0
        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1093
0
            return 1;
1094
0
    }
1095
0
    return 0;
1096
0
}
1097
1098
/*
1099
 * Figure out whether parent contains child.
1100
 */
1101
static int addr_contains(IPAddressOrRanges *parent,
1102
    IPAddressOrRanges *child, int length)
1103
0
{
1104
0
    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1105
0
    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1106
0
    int p, c;
1107
1108
0
    if (child == NULL || parent == child)
1109
0
        return 1;
1110
0
    if (parent == NULL)
1111
0
        return 0;
1112
1113
0
    p = 0;
1114
0
    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1115
0
        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1116
0
                c_min, c_max, length))
1117
0
            return 0;
1118
0
        for (;; p++) {
1119
0
            if (p >= sk_IPAddressOrRange_num(parent))
1120
0
                return 0;
1121
0
            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1122
0
                    p_min, p_max, length))
1123
0
                return 0;
1124
0
            if (memcmp(p_max, c_max, length) < 0)
1125
0
                continue;
1126
0
            if (memcmp(p_min, c_min, length) > 0)
1127
0
                return 0;
1128
0
            break;
1129
0
        }
1130
0
    }
1131
1132
0
    return 1;
1133
0
}
1134
1135
/*
1136
 * Test whether a is a subset of b.
1137
 */
1138
int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1139
0
{
1140
0
    int i;
1141
0
    if (a == NULL || a == b)
1142
0
        return 1;
1143
0
    if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1144
0
        return 0;
1145
0
    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1146
0
    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1147
0
        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1148
0
        int j = sk_IPAddressFamily_find(b, fa);
1149
0
        IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
1150
1151
0
        if (fb == NULL)
1152
0
            return 0;
1153
0
        if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb))
1154
0
            return 0;
1155
0
        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1156
0
                fa->ipAddressChoice->u.addressesOrRanges,
1157
0
                length_from_afi(X509v3_addr_get_afi(fb))))
1158
0
            return 0;
1159
0
    }
1160
0
    return 1;
1161
0
}
1162
1163
/*
1164
 * Validation error handling via callback.
1165
 */
1166
#define validation_err(_err_)            \
1167
327
    do {                                 \
1168
327
        if (ctx != NULL) {               \
1169
327
            ctx->error = _err_;          \
1170
327
            ctx->error_depth = i;        \
1171
327
            ctx->current_cert = x;       \
1172
327
            rv = ctx->verify_cb(0, ctx); \
1173
327
        } else {                         \
1174
0
            rv = 0;                      \
1175
0
        }                                \
1176
327
        if (rv == 0)                     \
1177
327
            goto done;                   \
1178
327
    } while (0)
1179
1180
/*
1181
 * Core code for RFC 3779 2.3 path validation.
1182
 *
1183
 * Returns 1 for success, 0 on error.
1184
 *
1185
 * When returning 0, ctx->error MUST be set to an appropriate value other than
1186
 * X509_V_OK.
1187
 */
1188
static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1189
    STACK_OF(X509) *chain,
1190
    IPAddrBlocks *ext)
1191
6.83k
{
1192
6.83k
    IPAddrBlocks *child = NULL;
1193
6.83k
    int i, j, ret = 0, rv;
1194
6.83k
    X509 *x;
1195
1196
6.83k
    if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1197
6.83k
        || !ossl_assert(ctx != NULL || ext != NULL)
1198
6.83k
        || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1199
0
        if (ctx != NULL)
1200
0
            ctx->error = X509_V_ERR_UNSPECIFIED;
1201
0
        return 0;
1202
0
    }
1203
1204
    /*
1205
     * Figure out where to start.  If we don't have an extension to
1206
     * check, we're done.  Otherwise, check canonical form and
1207
     * set up for walking up the chain.
1208
     */
1209
6.83k
    if (ext != NULL) {
1210
0
        i = -1;
1211
0
        x = NULL;
1212
6.83k
    } else {
1213
6.83k
        i = 0;
1214
6.83k
        x = sk_X509_value(chain, i);
1215
6.83k
        if ((ext = x->rfc3779_addr) == NULL)
1216
6.35k
            return 1; /* Return success */
1217
6.83k
    }
1218
472
    if (!X509v3_addr_is_canonical(ext))
1219
327
        validation_err(X509_V_ERR_INVALID_EXTENSION);
1220
472
    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1221
472
    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1222
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1223
0
        if (ctx != NULL)
1224
0
            ctx->error = X509_V_ERR_OUT_OF_MEM;
1225
0
        goto done;
1226
0
    }
1227
1228
    /*
1229
     * Now walk up the chain.  No cert may list resources that its
1230
     * parent doesn't list.
1231
     */
1232
482
    for (i++; i < sk_X509_num(chain); i++) {
1233
10
        x = sk_X509_value(chain, i);
1234
10
        if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1235
0
            validation_err(X509_V_ERR_INVALID_EXTENSION);
1236
10
        if (x->rfc3779_addr == NULL) {
1237
10
            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1238
0
                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1239
1240
0
                if (!IPAddressFamily_check_len(fc))
1241
0
                    goto done;
1242
1243
0
                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1244
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1245
0
                    break;
1246
0
                }
1247
0
            }
1248
10
            continue;
1249
10
        }
1250
0
        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1251
0
            IPAddressFamily_cmp);
1252
0
        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1253
0
            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1254
0
            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1255
0
            IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1256
1257
0
            if (fp == NULL) {
1258
0
                if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1259
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1260
0
                    break;
1261
0
                }
1262
0
                continue;
1263
0
            }
1264
1265
0
            if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp))
1266
0
                goto done;
1267
1268
0
            if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1269
0
                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1270
0
                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1271
0
                        fc->ipAddressChoice->u.addressesOrRanges,
1272
0
                        length_from_afi(X509v3_addr_get_afi(fc))))
1273
0
                    (void)sk_IPAddressFamily_set(child, j, fp);
1274
0
                else
1275
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1276
0
            }
1277
0
        }
1278
0
    }
1279
1280
    /*
1281
     * Trust anchor can't inherit.
1282
     */
1283
472
    if (x->rfc3779_addr != NULL) {
1284
1.30k
        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1285
884
            IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1286
1287
884
            if (!IPAddressFamily_check_len(fp))
1288
37
                goto done;
1289
1290
847
            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1291
0
                && sk_IPAddressFamily_find(child, fp) >= 0)
1292
0
                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1293
847
        }
1294
462
    }
1295
435
    ret = 1;
1296
472
done:
1297
472
    sk_IPAddressFamily_free(child);
1298
472
    return ret;
1299
435
}
1300
1301
#undef validation_err
1302
1303
/*
1304
 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1305
 */
1306
int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1307
6.83k
{
1308
6.83k
    if (ctx->chain == NULL
1309
6.83k
        || sk_X509_num(ctx->chain) == 0
1310
6.83k
        || ctx->verify_cb == NULL) {
1311
0
        ctx->error = X509_V_ERR_UNSPECIFIED;
1312
0
        return 0;
1313
0
    }
1314
6.83k
    return addr_validate_path_internal(ctx, ctx->chain, NULL);
1315
6.83k
}
1316
1317
/*
1318
 * RFC 3779 2.3 path validation of an extension.
1319
 * Test whether chain covers extension.
1320
 */
1321
int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1322
    IPAddrBlocks *ext, int allow_inheritance)
1323
0
{
1324
0
    if (ext == NULL)
1325
0
        return 1;
1326
0
    if (chain == NULL || sk_X509_num(chain) == 0)
1327
0
        return 0;
1328
0
    if (!allow_inheritance && X509v3_addr_inherits(ext))
1329
0
        return 0;
1330
0
    return addr_validate_path_internal(NULL, chain, ext);
1331
0
}
1332
1333
#endif /* OPENSSL_NO_RFC3779 */