Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/include/crypto/md32_common.h
Line
Count
Source
1
/*
2
 * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*-
11
 * This is a generic 32 bit "collector" for message digest algorithms.
12
 * Whenever needed it collects input character stream into chunks of
13
 * 32 bit values and invokes a block function that performs actual hash
14
 * calculations.
15
 *
16
 * Porting guide.
17
 *
18
 * Obligatory macros:
19
 *
20
 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
21
 *      this macro defines byte order of input stream.
22
 * HASH_CBLOCK
23
 *      size of a unit chunk HASH_BLOCK operates on.
24
 * HASH_LONG
25
 *      has to be at least 32 bit wide.
26
 * HASH_CTX
27
 *      context structure that at least contains following
28
 *      members:
29
 *              typedef struct {
30
 *                      ...
31
 *                      HASH_LONG       Nl,Nh;
32
 *                      either {
33
 *                      HASH_LONG       data[HASH_LBLOCK];
34
 *                      unsigned char   data[HASH_CBLOCK];
35
 *                      };
36
 *                      unsigned int    num;
37
 *                      ...
38
 *                      } HASH_CTX;
39
 *      data[] vector is expected to be zeroed upon first call to
40
 *      HASH_UPDATE.
41
 * HASH_UPDATE
42
 *      name of "Update" function, implemented here.
43
 * HASH_TRANSFORM
44
 *      name of "Transform" function, implemented here.
45
 * HASH_FINAL
46
 *      name of "Final" function, implemented here.
47
 * HASH_BLOCK_DATA_ORDER
48
 *      name of "block" function capable of treating *unaligned* input
49
 *      message in original (data) byte order, implemented externally.
50
 * HASH_MAKE_STRING
51
 *      macro converting context variables to an ASCII hash string.
52
 *
53
 * MD5 example:
54
 *
55
 *      #define DATA_ORDER_IS_LITTLE_ENDIAN
56
 *
57
 *      #define HASH_LONG               MD5_LONG
58
 *      #define HASH_CTX                MD5_CTX
59
 *      #define HASH_CBLOCK             MD5_CBLOCK
60
 *      #define HASH_UPDATE             MD5_Update
61
 *      #define HASH_TRANSFORM          MD5_Transform
62
 *      #define HASH_FINAL              MD5_Final
63
 *      #define HASH_BLOCK_DATA_ORDER   md5_block_data_order
64
 */
65
66
#include <openssl/crypto.h>
67
68
#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
69
#error "DATA_ORDER must be defined!"
70
#endif
71
72
#ifndef HASH_CBLOCK
73
#error "HASH_CBLOCK must be defined!"
74
#endif
75
#ifndef HASH_LONG
76
#error "HASH_LONG must be defined!"
77
#endif
78
#ifndef HASH_CTX
79
#error "HASH_CTX must be defined!"
80
#endif
81
82
#ifndef HASH_UPDATE
83
#error "HASH_UPDATE must be defined!"
84
#endif
85
#ifndef HASH_TRANSFORM
86
#error "HASH_TRANSFORM must be defined!"
87
#endif
88
#ifndef HASH_FINAL
89
#error "HASH_FINAL must be defined!"
90
#endif
91
92
#ifndef HASH_BLOCK_DATA_ORDER
93
#error "HASH_BLOCK_DATA_ORDER must be defined!"
94
#endif
95
96
972M
#define ROTATE(a, n) (((a) << (n)) | (((a) & 0xffffffff) >> (32 - (n))))
97
98
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
99
100
8.35M
#define HOST_c2l(c, l) (l = (((unsigned long)(*((c)++))) << 24), \
101
8.35M
    l |= (((unsigned long)(*((c)++))) << 16),                    \
102
8.35M
    l |= (((unsigned long)(*((c)++))) << 8),                     \
103
8.35M
    l |= (((unsigned long)(*((c)++)))))
104
13.3M
#define HOST_l2c(l, c) (*((c)++) = (unsigned char)(((l) >> 24) & 0xff), \
105
13.3M
    *((c)++) = (unsigned char)(((l) >> 16) & 0xff),                     \
106
13.3M
    *((c)++) = (unsigned char)(((l) >> 8) & 0xff),                      \
107
13.3M
    *((c)++) = (unsigned char)(((l)) & 0xff),                           \
108
13.3M
    l)
109
110
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
111
112
34.5M
#define HOST_c2l(c, l) (l = (((unsigned long)(*((c)++)))), \
113
34.5M
    l |= (((unsigned long)(*((c)++))) << 8),               \
114
34.5M
    l |= (((unsigned long)(*((c)++))) << 16),              \
115
34.5M
    l |= (((unsigned long)(*((c)++))) << 24))
116
17.7M
#define HOST_l2c(l, c) (*((c)++) = (unsigned char)(((l)) & 0xff), \
117
17.7M
    *((c)++) = (unsigned char)(((l) >> 8) & 0xff),                \
118
17.7M
    *((c)++) = (unsigned char)(((l) >> 16) & 0xff),               \
119
17.7M
    *((c)++) = (unsigned char)(((l) >> 24) & 0xff),               \
120
17.7M
    l)
121
122
#endif
123
124
/*
125
 * Time for some action :-)
126
 */
127
128
int HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len)
129
1.06G
{
130
1.06G
    const unsigned char *data = data_;
131
1.06G
    unsigned char *p;
132
1.06G
    HASH_LONG l;
133
1.06G
    size_t n;
134
135
1.06G
    if (len == 0)
136
0
        return 1;
137
138
1.06G
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
1.06G
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
1.06G
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
1.06G
    c->Nl = l;
144
145
1.06G
    n = c->num;
146
1.06G
    if (n != 0) {
147
531M
        p = (unsigned char *)c->data;
148
149
531M
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
265M
            memcpy(p + n, data, HASH_CBLOCK - n);
151
265M
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
265M
            n = HASH_CBLOCK - n;
153
265M
            data += n;
154
265M
            len -= n;
155
265M
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
265M
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
265M
        } else {
164
265M
            memcpy(p + n, data, len);
165
265M
            c->num += (unsigned int)len;
166
265M
            return 1;
167
265M
        }
168
531M
    }
169
170
802M
    n = len / HASH_CBLOCK;
171
802M
    if (n > 0) {
172
1.54M
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
1.54M
        n *= HASH_CBLOCK;
174
1.54M
        data += n;
175
1.54M
        len -= n;
176
1.54M
    }
177
178
802M
    if (len != 0) {
179
535M
        p = (unsigned char *)c->data;
180
535M
        c->num = (unsigned int)len;
181
535M
        memcpy(p, data, len);
182
535M
    }
183
802M
    return 1;
184
1.06G
}
Unexecuted instantiation: MD4_Update
MD5_Update
Line
Count
Source
129
523k
{
130
523k
    const unsigned char *data = data_;
131
523k
    unsigned char *p;
132
523k
    HASH_LONG l;
133
523k
    size_t n;
134
135
523k
    if (len == 0)
136
0
        return 1;
137
138
523k
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
523k
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
523k
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
523k
    c->Nl = l;
144
145
523k
    n = c->num;
146
523k
    if (n != 0) {
147
140k
        p = (unsigned char *)c->data;
148
149
140k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
74.1k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
74.1k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
74.1k
            n = HASH_CBLOCK - n;
153
74.1k
            data += n;
154
74.1k
            len -= n;
155
74.1k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
74.1k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
74.1k
        } else {
164
66.3k
            memcpy(p + n, data, len);
165
66.3k
            c->num += (unsigned int)len;
166
66.3k
            return 1;
167
66.3k
        }
168
140k
    }
169
170
456k
    n = len / HASH_CBLOCK;
171
456k
    if (n > 0) {
172
69.2k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
69.2k
        n *= HASH_CBLOCK;
174
69.2k
        data += n;
175
69.2k
        len -= n;
176
69.2k
    }
177
178
456k
    if (len != 0) {
179
417k
        p = (unsigned char *)c->data;
180
417k
        c->num = (unsigned int)len;
181
417k
        memcpy(p, data, len);
182
417k
    }
183
456k
    return 1;
184
523k
}
RIPEMD160_Update
Line
Count
Source
129
1.62M
{
130
1.62M
    const unsigned char *data = data_;
131
1.62M
    unsigned char *p;
132
1.62M
    HASH_LONG l;
133
1.62M
    size_t n;
134
135
1.62M
    if (len == 0)
136
0
        return 1;
137
138
1.62M
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
1.62M
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
1.62M
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
1.62M
    c->Nl = l;
144
145
1.62M
    n = c->num;
146
1.62M
    if (n != 0) {
147
532
        p = (unsigned char *)c->data;
148
149
532
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
185
            memcpy(p + n, data, HASH_CBLOCK - n);
151
185
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
185
            n = HASH_CBLOCK - n;
153
185
            data += n;
154
185
            len -= n;
155
185
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
185
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
347
        } else {
164
347
            memcpy(p + n, data, len);
165
347
            c->num += (unsigned int)len;
166
347
            return 1;
167
347
        }
168
532
    }
169
170
1.62M
    n = len / HASH_CBLOCK;
171
1.62M
    if (n > 0) {
172
1.91k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
1.91k
        n *= HASH_CBLOCK;
174
1.91k
        data += n;
175
1.91k
        len -= n;
176
1.91k
    }
177
178
1.62M
    if (len != 0) {
179
1.62M
        p = (unsigned char *)c->data;
180
1.62M
        c->num = (unsigned int)len;
181
1.62M
        memcpy(p, data, len);
182
1.62M
    }
183
1.62M
    return 1;
184
1.62M
}
SHA1_Update
Line
Count
Source
129
1.25M
{
130
1.25M
    const unsigned char *data = data_;
131
1.25M
    unsigned char *p;
132
1.25M
    HASH_LONG l;
133
1.25M
    size_t n;
134
135
1.25M
    if (len == 0)
136
0
        return 1;
137
138
1.25M
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
1.25M
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
1.25M
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
1.25M
    c->Nl = l;
144
145
1.25M
    n = c->num;
146
1.25M
    if (n != 0) {
147
124k
        p = (unsigned char *)c->data;
148
149
124k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
64.9k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
64.9k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
64.9k
            n = HASH_CBLOCK - n;
153
64.9k
            data += n;
154
64.9k
            len -= n;
155
64.9k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
64.9k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
64.9k
        } else {
164
59.7k
            memcpy(p + n, data, len);
165
59.7k
            c->num += (unsigned int)len;
166
59.7k
            return 1;
167
59.7k
        }
168
124k
    }
169
170
1.19M
    n = len / HASH_CBLOCK;
171
1.19M
    if (n > 0) {
172
405k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
405k
        n *= HASH_CBLOCK;
174
405k
        data += n;
175
405k
        len -= n;
176
405k
    }
177
178
1.19M
    if (len != 0) {
179
1.06M
        p = (unsigned char *)c->data;
180
1.06M
        c->num = (unsigned int)len;
181
1.06M
        memcpy(p, data, len);
182
1.06M
    }
183
1.19M
    return 1;
184
1.25M
}
SHA256_Update
Line
Count
Source
129
1.06G
{
130
1.06G
    const unsigned char *data = data_;
131
1.06G
    unsigned char *p;
132
1.06G
    HASH_LONG l;
133
1.06G
    size_t n;
134
135
1.06G
    if (len == 0)
136
0
        return 1;
137
138
1.06G
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
1.06G
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
1.06G
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
1.06G
    c->Nl = l;
144
145
1.06G
    n = c->num;
146
1.06G
    if (n != 0) {
147
531M
        p = (unsigned char *)c->data;
148
149
531M
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
265M
            memcpy(p + n, data, HASH_CBLOCK - n);
151
265M
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
265M
            n = HASH_CBLOCK - n;
153
265M
            data += n;
154
265M
            len -= n;
155
265M
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
265M
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
265M
        } else {
164
265M
            memcpy(p + n, data, len);
165
265M
            c->num += (unsigned int)len;
166
265M
            return 1;
167
265M
        }
168
531M
    }
169
170
798M
    n = len / HASH_CBLOCK;
171
798M
    if (n > 0) {
172
1.06M
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
1.06M
        n *= HASH_CBLOCK;
174
1.06M
        data += n;
175
1.06M
        len -= n;
176
1.06M
    }
177
178
798M
    if (len != 0) {
179
532M
        p = (unsigned char *)c->data;
180
532M
        c->num = (unsigned int)len;
181
532M
        memcpy(p, data, len);
182
532M
    }
183
798M
    return 1;
184
1.06G
}
ossl_sm3_update
Line
Count
Source
129
4.58k
{
130
4.58k
    const unsigned char *data = data_;
131
4.58k
    unsigned char *p;
132
4.58k
    HASH_LONG l;
133
4.58k
    size_t n;
134
135
4.58k
    if (len == 0)
136
0
        return 1;
137
138
4.58k
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
4.58k
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
4.58k
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
4.58k
    c->Nl = l;
144
145
4.58k
    n = c->num;
146
4.58k
    if (n != 0) {
147
414
        p = (unsigned char *)c->data;
148
149
414
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
164
            memcpy(p + n, data, HASH_CBLOCK - n);
151
164
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
164
            n = HASH_CBLOCK - n;
153
164
            data += n;
154
164
            len -= n;
155
164
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
164
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
250
        } else {
164
250
            memcpy(p + n, data, len);
165
250
            c->num += (unsigned int)len;
166
250
            return 1;
167
250
        }
168
414
    }
169
170
4.33k
    n = len / HASH_CBLOCK;
171
4.33k
    if (n > 0) {
172
2.08k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
2.08k
        n *= HASH_CBLOCK;
174
2.08k
        data += n;
175
2.08k
        len -= n;
176
2.08k
    }
177
178
4.33k
    if (len != 0) {
179
2.37k
        p = (unsigned char *)c->data;
180
2.37k
        c->num = (unsigned int)len;
181
2.37k
        memcpy(p, data, len);
182
2.37k
    }
183
4.33k
    return 1;
184
4.58k
}
185
186
void HASH_TRANSFORM(HASH_CTX *c, const unsigned char *data)
187
1.24M
{
188
1.24M
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
1.24M
}
Unexecuted instantiation: MD4_Transform
Unexecuted instantiation: MD5_Transform
Unexecuted instantiation: RIPEMD160_Transform
SHA1_Transform
Line
Count
Source
187
1.06M
{
188
1.06M
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
1.06M
}
SHA256_Transform
Line
Count
Source
187
184k
{
188
184k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
184k
}
Unexecuted instantiation: ossl_sm3_transform
190
191
int HASH_FINAL(unsigned char *md, HASH_CTX *c)
192
4.46M
{
193
4.46M
    unsigned char *p = (unsigned char *)c->data;
194
4.46M
    size_t n = c->num;
195
196
4.46M
    p[n] = 0x80; /* there is always room for one */
197
4.46M
    n++;
198
199
4.46M
    if (n > (HASH_CBLOCK - 8)) {
200
88.1k
        memset(p + n, 0, HASH_CBLOCK - n);
201
88.1k
        n = 0;
202
88.1k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
88.1k
    }
204
4.46M
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
4.46M
    p += HASH_CBLOCK - 8;
207
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
1.84M
    (void)HOST_l2c(c->Nh, p);
209
1.84M
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
2.62M
    (void)HOST_l2c(c->Nl, p);
212
2.62M
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
4.46M
    p -= HASH_CBLOCK;
215
4.46M
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
4.46M
    c->num = 0;
217
4.46M
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
4.46M
    HASH_MAKE_STRING(c, md);
223
149k
#endif
224
225
149k
    return 1;
226
4.46M
}
Unexecuted instantiation: MD4_Final
MD5_Final
Line
Count
Source
192
627k
{
193
627k
    unsigned char *p = (unsigned char *)c->data;
194
627k
    size_t n = c->num;
195
196
627k
    p[n] = 0x80; /* there is always room for one */
197
627k
    n++;
198
199
627k
    if (n > (HASH_CBLOCK - 8)) {
200
9.79k
        memset(p + n, 0, HASH_CBLOCK - n);
201
9.79k
        n = 0;
202
9.79k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
9.79k
    }
204
627k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
627k
    p += HASH_CBLOCK - 8;
207
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
627k
    (void)HOST_l2c(c->Nl, p);
212
627k
    (void)HOST_l2c(c->Nh, p);
213
627k
#endif
214
627k
    p -= HASH_CBLOCK;
215
627k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
627k
    c->num = 0;
217
627k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
627k
    HASH_MAKE_STRING(c, md);
223
627k
#endif
224
225
627k
    return 1;
226
627k
}
RIPEMD160_Final
Line
Count
Source
192
1.99M
{
193
1.99M
    unsigned char *p = (unsigned char *)c->data;
194
1.99M
    size_t n = c->num;
195
196
1.99M
    p[n] = 0x80; /* there is always room for one */
197
1.99M
    n++;
198
199
1.99M
    if (n > (HASH_CBLOCK - 8)) {
200
261
        memset(p + n, 0, HASH_CBLOCK - n);
201
261
        n = 0;
202
261
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
261
    }
204
1.99M
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
1.99M
    p += HASH_CBLOCK - 8;
207
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
1.99M
    (void)HOST_l2c(c->Nl, p);
212
1.99M
    (void)HOST_l2c(c->Nh, p);
213
1.99M
#endif
214
1.99M
    p -= HASH_CBLOCK;
215
1.99M
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
1.99M
    c->num = 0;
217
1.99M
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
1.99M
    HASH_MAKE_STRING(c, md);
223
1.99M
#endif
224
225
1.99M
    return 1;
226
1.99M
}
SHA1_Final
Line
Count
Source
192
1.69M
{
193
1.69M
    unsigned char *p = (unsigned char *)c->data;
194
1.69M
    size_t n = c->num;
195
196
1.69M
    p[n] = 0x80; /* there is always room for one */
197
1.69M
    n++;
198
199
1.69M
    if (n > (HASH_CBLOCK - 8)) {
200
77.4k
        memset(p + n, 0, HASH_CBLOCK - n);
201
77.4k
        n = 0;
202
77.4k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
77.4k
    }
204
1.69M
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
1.69M
    p += HASH_CBLOCK - 8;
207
1.69M
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
1.69M
    (void)HOST_l2c(c->Nh, p);
209
1.69M
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
1.69M
    p -= HASH_CBLOCK;
215
1.69M
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
1.69M
    c->num = 0;
217
1.69M
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
1.69M
    HASH_MAKE_STRING(c, md);
223
1.69M
#endif
224
225
1.69M
    return 1;
226
1.69M
}
SHA256_Final
Line
Count
Source
192
149k
{
193
149k
    unsigned char *p = (unsigned char *)c->data;
194
149k
    size_t n = c->num;
195
196
149k
    p[n] = 0x80; /* there is always room for one */
197
149k
    n++;
198
199
149k
    if (n > (HASH_CBLOCK - 8)) {
200
555
        memset(p + n, 0, HASH_CBLOCK - n);
201
555
        n = 0;
202
555
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
555
    }
204
149k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
149k
    p += HASH_CBLOCK - 8;
207
149k
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
149k
    (void)HOST_l2c(c->Nh, p);
209
149k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
149k
    p -= HASH_CBLOCK;
215
149k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
149k
    c->num = 0;
217
149k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
149k
    HASH_MAKE_STRING(c, md);
223
149k
#endif
224
225
149k
    return 1;
226
149k
}
ossl_sm3_final
Line
Count
Source
192
2.24k
{
193
2.24k
    unsigned char *p = (unsigned char *)c->data;
194
2.24k
    size_t n = c->num;
195
196
2.24k
    p[n] = 0x80; /* there is always room for one */
197
2.24k
    n++;
198
199
2.24k
    if (n > (HASH_CBLOCK - 8)) {
200
55
        memset(p + n, 0, HASH_CBLOCK - n);
201
55
        n = 0;
202
55
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
55
    }
204
2.24k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
2.24k
    p += HASH_CBLOCK - 8;
207
2.24k
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
2.24k
    (void)HOST_l2c(c->Nh, p);
209
2.24k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
2.24k
    p -= HASH_CBLOCK;
215
2.24k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
2.24k
    c->num = 0;
217
2.24k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
2.24k
    HASH_MAKE_STRING(c, md);
223
2.24k
#endif
224
225
2.24k
    return 1;
226
2.24k
}
227
228
#ifndef MD32_REG_T
229
#if defined(__alpha) || defined(__sparcv9) || defined(__mips)
230
#define MD32_REG_T long
231
/*
232
 * This comment was originally written for MD5, which is why it
233
 * discusses A-D. But it basically applies to all 32-bit digests,
234
 * which is why it was moved to common header file.
235
 *
236
 * In case you wonder why A-D are declared as long and not
237
 * as MD5_LONG. Doing so results in slight performance
238
 * boost on LP64 architectures. The catch is we don't
239
 * really care if 32 MSBs of a 64-bit register get polluted
240
 * with eventual overflows as we *save* only 32 LSBs in
241
 * *either* case. Now declaring 'em long excuses the compiler
242
 * from keeping 32 MSBs zeroed resulting in 13% performance
243
 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
244
 * Well, to be honest it should say that this *prevents*
245
 * performance degradation.
246
 */
247
#else
248
/*
249
 * Above is not absolute and there are LP64 compilers that
250
 * generate better code if MD32_REG_T is defined int. The above
251
 * pre-processor condition reflects the circumstances under which
252
 * the conclusion was made and is subject to further extension.
253
 */
254
#define MD32_REG_T int
255
#endif
256
#endif