/src/openssl30/ssl/s3_cbc.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2012-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * This file has no dependencies on the rest of libssl because it is shared |
12 | | * with the providers. It contains functions for low level MAC calculations. |
13 | | * Responsibility for this lies with the HMAC implementation in the |
14 | | * providers. However there are legacy code paths in libssl which also need to |
15 | | * do this. In time those legacy code paths can be removed and this file can be |
16 | | * moved out of libssl. |
17 | | */ |
18 | | |
19 | | /* |
20 | | * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for |
21 | | * internal use. |
22 | | */ |
23 | | #include "internal/deprecated.h" |
24 | | |
25 | | #include "internal/constant_time.h" |
26 | | #include "internal/cryptlib.h" |
27 | | |
28 | | #include <openssl/evp.h> |
29 | | #ifndef FIPS_MODULE |
30 | | #include <openssl/md5.h> |
31 | | #endif |
32 | | #include <openssl/sha.h> |
33 | | |
34 | | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx); |
35 | | int ssl3_cbc_digest_record(const EVP_MD *md, |
36 | | unsigned char *md_out, |
37 | | size_t *md_out_size, |
38 | | const unsigned char *header, |
39 | | const unsigned char *data, |
40 | | size_t data_size, |
41 | | size_t data_plus_mac_plus_padding_size, |
42 | | const unsigned char *mac_secret, |
43 | | size_t mac_secret_length, char is_sslv3); |
44 | | |
45 | 6.28k | #define l2n(l, c) (*((c)++) = (unsigned char)(((l) >> 24) & 0xff), \ |
46 | 6.28k | *((c)++) = (unsigned char)(((l) >> 16) & 0xff), \ |
47 | 6.28k | *((c)++) = (unsigned char)(((l) >> 8) & 0xff), \ |
48 | 6.28k | *((c)++) = (unsigned char)(((l)) & 0xff)) |
49 | | |
50 | | #define l2n6(l, c) (*((c)++) = (unsigned char)(((l) >> 40) & 0xff), \ |
51 | | *((c)++) = (unsigned char)(((l) >> 32) & 0xff), \ |
52 | | *((c)++) = (unsigned char)(((l) >> 24) & 0xff), \ |
53 | | *((c)++) = (unsigned char)(((l) >> 16) & 0xff), \ |
54 | | *((c)++) = (unsigned char)(((l) >> 8) & 0xff), \ |
55 | | *((c)++) = (unsigned char)(((l)) & 0xff)) |
56 | | |
57 | 600 | #define l2n8(l, c) (*((c)++) = (unsigned char)(((l) >> 56) & 0xff), \ |
58 | 600 | *((c)++) = (unsigned char)(((l) >> 48) & 0xff), \ |
59 | 600 | *((c)++) = (unsigned char)(((l) >> 40) & 0xff), \ |
60 | 600 | *((c)++) = (unsigned char)(((l) >> 32) & 0xff), \ |
61 | 600 | *((c)++) = (unsigned char)(((l) >> 24) & 0xff), \ |
62 | 600 | *((c)++) = (unsigned char)(((l) >> 16) & 0xff), \ |
63 | 600 | *((c)++) = (unsigned char)(((l) >> 8) & 0xff), \ |
64 | 600 | *((c)++) = (unsigned char)(((l)) & 0xff)) |
65 | | |
66 | | /* |
67 | | * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's |
68 | | * length field. (SHA-384/512 have 128-bit length.) |
69 | | */ |
70 | | #define MAX_HASH_BIT_COUNT_BYTES 16 |
71 | | |
72 | | /* |
73 | | * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. |
74 | | * Currently SHA-384/512 has a 128-byte block size and that's the largest |
75 | | * supported by TLS.) |
76 | | */ |
77 | | #define MAX_HASH_BLOCK_SIZE 128 |
78 | | |
79 | | #ifndef FIPS_MODULE |
80 | | /* |
81 | | * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in |
82 | | * little-endian order. The value of p is advanced by four. |
83 | | */ |
84 | | #define u32toLE(n, p) \ |
85 | 0 | (*((p)++) = (unsigned char)(n), \ |
86 | 0 | *((p)++) = (unsigned char)(n >> 8), \ |
87 | 0 | *((p)++) = (unsigned char)(n >> 16), \ |
88 | 0 | *((p)++) = (unsigned char)(n >> 24)) |
89 | | |
90 | | /* |
91 | | * These functions serialize the state of a hash and thus perform the |
92 | | * standard "final" operation without adding the padding and length that such |
93 | | * a function typically does. |
94 | | */ |
95 | | static void tls1_md5_final_raw(void *ctx, unsigned char *md_out) |
96 | 0 | { |
97 | 0 | MD5_CTX *md5 = ctx; |
98 | 0 | u32toLE(md5->A, md_out); |
99 | 0 | u32toLE(md5->B, md_out); |
100 | 0 | u32toLE(md5->C, md_out); |
101 | 0 | u32toLE(md5->D, md_out); |
102 | 0 | } |
103 | | #endif /* FIPS_MODULE */ |
104 | | |
105 | | static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out) |
106 | 966 | { |
107 | 966 | SHA_CTX *sha1 = ctx; |
108 | 966 | l2n(sha1->h0, md_out); |
109 | 966 | l2n(sha1->h1, md_out); |
110 | 966 | l2n(sha1->h2, md_out); |
111 | 966 | l2n(sha1->h3, md_out); |
112 | 966 | l2n(sha1->h4, md_out); |
113 | 966 | } |
114 | | |
115 | | static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out) |
116 | 182 | { |
117 | 182 | SHA256_CTX *sha256 = ctx; |
118 | 182 | unsigned i; |
119 | | |
120 | 1.63k | for (i = 0; i < 8; i++) { |
121 | 1.45k | l2n(sha256->h[i], md_out); |
122 | 1.45k | } |
123 | 182 | } |
124 | | |
125 | | static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out) |
126 | 75 | { |
127 | 75 | SHA512_CTX *sha512 = ctx; |
128 | 75 | unsigned i; |
129 | | |
130 | 675 | for (i = 0; i < 8; i++) { |
131 | 600 | l2n8(sha512->h[i], md_out); |
132 | 600 | } |
133 | 75 | } |
134 | | |
135 | | #undef LARGEST_DIGEST_CTX |
136 | | #define LARGEST_DIGEST_CTX SHA512_CTX |
137 | | |
138 | | /*- |
139 | | * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS |
140 | | * record. |
141 | | * |
142 | | * ctx: the EVP_MD_CTX from which we take the hash function. |
143 | | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. |
144 | | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. |
145 | | * md_out_size: if non-NULL, the number of output bytes is written here. |
146 | | * header: the 13-byte, TLS record header. |
147 | | * data: the record data itself, less any preceding explicit IV. |
148 | | * data_size: the secret, reported length of the data once the MAC and padding |
149 | | * has been removed. |
150 | | * data_plus_mac_plus_padding_size: the public length of the whole |
151 | | * record, including MAC and padding. |
152 | | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. |
153 | | * |
154 | | * On entry: we know that data is data_plus_mac_plus_padding_size in length |
155 | | * Returns 1 on success or 0 on error |
156 | | */ |
157 | | int ssl3_cbc_digest_record(const EVP_MD *md, |
158 | | unsigned char *md_out, |
159 | | size_t *md_out_size, |
160 | | const unsigned char *header, |
161 | | const unsigned char *data, |
162 | | size_t data_size, |
163 | | size_t data_plus_mac_plus_padding_size, |
164 | | const unsigned char *mac_secret, |
165 | | size_t mac_secret_length, char is_sslv3) |
166 | 163k | { |
167 | 163k | union { |
168 | 163k | OSSL_UNION_ALIGN; |
169 | 163k | unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; |
170 | 163k | } md_state; |
171 | 163k | void (*md_final_raw)(void *ctx, unsigned char *md_out); |
172 | 163k | void (*md_transform)(void *ctx, const unsigned char *block); |
173 | 163k | size_t md_size, md_block_size = 64; |
174 | 163k | size_t sslv3_pad_length = 40, header_length, variance_blocks, |
175 | 163k | len, max_mac_bytes, num_blocks, |
176 | 163k | num_starting_blocks, k, mac_end_offset, c, index_a, index_b; |
177 | 163k | size_t bits; /* at most 18 bits */ |
178 | 163k | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; |
179 | | /* hmac_pad is the masked HMAC key. */ |
180 | 163k | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; |
181 | 163k | unsigned char first_block[MAX_HASH_BLOCK_SIZE]; |
182 | 163k | unsigned char mac_out[EVP_MAX_MD_SIZE]; |
183 | 163k | size_t i, j; |
184 | 163k | unsigned md_out_size_u; |
185 | 163k | EVP_MD_CTX *md_ctx = NULL; |
186 | | /* |
187 | | * mdLengthSize is the number of bytes in the length field that |
188 | | * terminates * the hash. |
189 | | */ |
190 | 163k | size_t md_length_size = 8; |
191 | 163k | char length_is_big_endian = 1; |
192 | 163k | int ret = 0; |
193 | | |
194 | | /* |
195 | | * This is a, hopefully redundant, check that allows us to forget about |
196 | | * many possible overflows later in this function. |
197 | | */ |
198 | 163k | if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024)) |
199 | 0 | return 0; |
200 | | |
201 | 163k | if (EVP_MD_is_a(md, "MD5")) { |
202 | | #ifdef FIPS_MODULE |
203 | | return 0; |
204 | | #else |
205 | 0 | if (MD5_Init((MD5_CTX *)md_state.c) <= 0) |
206 | 0 | return 0; |
207 | 0 | md_final_raw = tls1_md5_final_raw; |
208 | 0 | md_transform = (void (*)(void *ctx, const unsigned char *block))MD5_Transform; |
209 | 0 | md_size = 16; |
210 | 0 | sslv3_pad_length = 48; |
211 | 0 | length_is_big_endian = 0; |
212 | 0 | #endif |
213 | 163k | } else if (EVP_MD_is_a(md, "SHA1")) { |
214 | 127k | if (SHA1_Init((SHA_CTX *)md_state.c) <= 0) |
215 | 0 | return 0; |
216 | 127k | md_final_raw = tls1_sha1_final_raw; |
217 | 127k | md_transform = (void (*)(void *ctx, const unsigned char *block))SHA1_Transform; |
218 | 127k | md_size = 20; |
219 | 127k | } else if (EVP_MD_is_a(md, "SHA2-224")) { |
220 | 0 | if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0) |
221 | 0 | return 0; |
222 | 0 | md_final_raw = tls1_sha256_final_raw; |
223 | 0 | md_transform = (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; |
224 | 0 | md_size = 224 / 8; |
225 | 35.8k | } else if (EVP_MD_is_a(md, "SHA2-256")) { |
226 | 20.8k | if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0) |
227 | 0 | return 0; |
228 | 20.8k | md_final_raw = tls1_sha256_final_raw; |
229 | 20.8k | md_transform = (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; |
230 | 20.8k | md_size = 32; |
231 | 20.8k | } else if (EVP_MD_is_a(md, "SHA2-384")) { |
232 | 15.0k | if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0) |
233 | 0 | return 0; |
234 | 15.0k | md_final_raw = tls1_sha512_final_raw; |
235 | 15.0k | md_transform = (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; |
236 | 15.0k | md_size = 384 / 8; |
237 | 15.0k | md_block_size = 128; |
238 | 15.0k | md_length_size = 16; |
239 | 15.0k | } else if (EVP_MD_is_a(md, "SHA2-512")) { |
240 | 0 | if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0) |
241 | 0 | return 0; |
242 | 0 | md_final_raw = tls1_sha512_final_raw; |
243 | 0 | md_transform = (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; |
244 | 0 | md_size = 64; |
245 | 0 | md_block_size = 128; |
246 | 0 | md_length_size = 16; |
247 | 0 | } else { |
248 | | /* |
249 | | * ssl3_cbc_record_digest_supported should have been called first to |
250 | | * check that the hash function is supported. |
251 | | */ |
252 | 0 | if (md_out_size != NULL) |
253 | 0 | *md_out_size = 0; |
254 | 0 | return ossl_assert(0); |
255 | 0 | } |
256 | | |
257 | 163k | if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES) |
258 | 163k | || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE) |
259 | 163k | || !ossl_assert(md_size <= EVP_MAX_MD_SIZE)) |
260 | 0 | return 0; |
261 | | |
262 | 163k | header_length = 13; |
263 | 163k | if (is_sslv3) { |
264 | 0 | header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence |
265 | | * number */ |
266 | 0 | + 1 /* record type */ + 2 /* record length */; |
267 | 0 | } |
268 | | |
269 | | /* |
270 | | * variance_blocks is the number of blocks of the hash that we have to |
271 | | * calculate in constant time because they could be altered by the |
272 | | * padding value. In SSLv3, the padding must be minimal so the end of |
273 | | * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively |
274 | | * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes |
275 | | * of hash termination (0x80 + 64-bit length) don't fit in the final |
276 | | * block, we say that the final two blocks can vary based on the padding. |
277 | | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not |
278 | | * required to be minimal. Therefore we say that the final |variance_blocks| |
279 | | * blocks can |
280 | | * vary based on the padding. Later in the function, if the message is |
281 | | * short and there obviously cannot be this many blocks then |
282 | | * variance_blocks can be reduced. |
283 | | */ |
284 | 163k | variance_blocks = is_sslv3 ? 2 : (((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1); |
285 | | /* |
286 | | * From now on we're dealing with the MAC, which conceptually has 13 |
287 | | * bytes of `header' before the start of the data (TLS) or 71/75 bytes |
288 | | * (SSLv3) |
289 | | */ |
290 | 163k | len = data_plus_mac_plus_padding_size + header_length; |
291 | | /* |
292 | | * max_mac_bytes contains the maximum bytes of bytes in the MAC, |
293 | | * including * |header|, assuming that there's no padding. |
294 | | */ |
295 | 163k | max_mac_bytes = len - md_size - 1; |
296 | | /* num_blocks is the maximum number of hash blocks. */ |
297 | 163k | num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size; |
298 | | /* |
299 | | * In order to calculate the MAC in constant time we have to handle the |
300 | | * final blocks specially because the padding value could cause the end |
301 | | * to appear somewhere in the final |variance_blocks| blocks and we can't |
302 | | * leak where. However, |num_starting_blocks| worth of data can be hashed |
303 | | * right away because no padding value can affect whether they are |
304 | | * plaintext. |
305 | | */ |
306 | 163k | num_starting_blocks = 0; |
307 | | /* |
308 | | * k is the starting byte offset into the conceptual header||data where |
309 | | * we start processing. |
310 | | */ |
311 | 163k | k = 0; |
312 | | /* |
313 | | * mac_end_offset is the index just past the end of the data to be MACed. |
314 | | */ |
315 | 163k | mac_end_offset = data_size + header_length; |
316 | | /* |
317 | | * c is the index of the 0x80 byte in the final hash block that contains |
318 | | * application data. |
319 | | */ |
320 | 163k | c = mac_end_offset % md_block_size; |
321 | | /* |
322 | | * index_a is the hash block number that contains the 0x80 terminating |
323 | | * value. |
324 | | */ |
325 | 163k | index_a = mac_end_offset / md_block_size; |
326 | | /* |
327 | | * index_b is the hash block number that contains the 64-bit hash length, |
328 | | * in bits. |
329 | | */ |
330 | 163k | index_b = (mac_end_offset + md_length_size) / md_block_size; |
331 | | /* |
332 | | * bits is the hash-length in bits. It includes the additional hash block |
333 | | * for the masked HMAC key, or whole of |header| in the case of SSLv3. |
334 | | */ |
335 | | |
336 | | /* |
337 | | * For SSLv3, if we're going to have any starting blocks then we need at |
338 | | * least two because the header is larger than a single block. |
339 | | */ |
340 | 163k | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) { |
341 | 3.73k | num_starting_blocks = num_blocks - variance_blocks; |
342 | 3.73k | k = md_block_size * num_starting_blocks; |
343 | 3.73k | } |
344 | | |
345 | 163k | bits = 8 * mac_end_offset; |
346 | 163k | if (!is_sslv3) { |
347 | | /* |
348 | | * Compute the initial HMAC block. For SSLv3, the padding and secret |
349 | | * bytes are included in |header| because they take more than a |
350 | | * single block. |
351 | | */ |
352 | 163k | bits += 8 * md_block_size; |
353 | 163k | memset(hmac_pad, 0, md_block_size); |
354 | 163k | if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad))) |
355 | 0 | return 0; |
356 | 163k | memcpy(hmac_pad, mac_secret, mac_secret_length); |
357 | 11.6M | for (i = 0; i < md_block_size; i++) |
358 | 11.4M | hmac_pad[i] ^= 0x36; |
359 | | |
360 | 163k | md_transform(md_state.c, hmac_pad); |
361 | 163k | } |
362 | | |
363 | 163k | if (length_is_big_endian) { |
364 | 163k | memset(length_bytes, 0, md_length_size - 4); |
365 | 163k | length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24); |
366 | 163k | length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16); |
367 | 163k | length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8); |
368 | 163k | length_bytes[md_length_size - 1] = (unsigned char)bits; |
369 | 163k | } else { |
370 | 0 | memset(length_bytes, 0, md_length_size); |
371 | 0 | length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24); |
372 | 0 | length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16); |
373 | 0 | length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8); |
374 | 0 | length_bytes[md_length_size - 8] = (unsigned char)bits; |
375 | 0 | } |
376 | | |
377 | 163k | if (k > 0) { |
378 | 3.73k | if (is_sslv3) { |
379 | 0 | size_t overhang; |
380 | | |
381 | | /* |
382 | | * The SSLv3 header is larger than a single block. overhang is |
383 | | * the number of bytes beyond a single block that the header |
384 | | * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no |
385 | | * ciphersuites in SSLv3 that are not SHA1 or MD5 based and |
386 | | * therefore we can be confident that the header_length will be |
387 | | * greater than |md_block_size|. However we add a sanity check just |
388 | | * in case |
389 | | */ |
390 | 0 | if (header_length <= md_block_size) { |
391 | | /* Should never happen */ |
392 | 0 | return 0; |
393 | 0 | } |
394 | 0 | overhang = header_length - md_block_size; |
395 | 0 | md_transform(md_state.c, header); |
396 | 0 | memcpy(first_block, header + md_block_size, overhang); |
397 | 0 | memcpy(first_block + overhang, data, md_block_size - overhang); |
398 | 0 | md_transform(md_state.c, first_block); |
399 | 0 | for (i = 1; i < k / md_block_size - 1; i++) |
400 | 0 | md_transform(md_state.c, data + md_block_size * i - overhang); |
401 | 3.73k | } else { |
402 | | /* k is a multiple of md_block_size. */ |
403 | 3.73k | memcpy(first_block, header, 13); |
404 | 3.73k | memcpy(first_block + 13, data, md_block_size - 13); |
405 | 3.73k | md_transform(md_state.c, first_block); |
406 | 61.0k | for (i = 1; i < k / md_block_size; i++) |
407 | 57.2k | md_transform(md_state.c, data + md_block_size * i - 13); |
408 | 3.73k | } |
409 | 3.73k | } |
410 | | |
411 | 163k | memset(mac_out, 0, sizeof(mac_out)); |
412 | | |
413 | | /* |
414 | | * We now process the final hash blocks. For each block, we construct it |
415 | | * in constant time. If the |i==index_a| then we'll include the 0x80 |
416 | | * bytes and zero pad etc. For each block we selectively copy it, in |
417 | | * constant time, to |mac_out|. |
418 | | */ |
419 | 1.27M | for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; |
420 | 1.11M | i++) { |
421 | 1.11M | unsigned char block[MAX_HASH_BLOCK_SIZE]; |
422 | 1.11M | unsigned char is_block_a = constant_time_eq_8_s(i, index_a); |
423 | 1.11M | unsigned char is_block_b = constant_time_eq_8_s(i, index_b); |
424 | 77.3M | for (j = 0; j < md_block_size; j++) { |
425 | 76.2M | unsigned char b = 0, is_past_c, is_past_cp1; |
426 | 76.2M | if (k < header_length) |
427 | 2.07M | b = header[k]; |
428 | 74.1M | else if (k < data_plus_mac_plus_padding_size + header_length) |
429 | 9.81M | b = data[k - header_length]; |
430 | 76.2M | k++; |
431 | | |
432 | 76.2M | is_past_c = is_block_a & constant_time_ge_8_s(j, c); |
433 | 76.2M | is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1); |
434 | | /* |
435 | | * If this is the block containing the end of the application |
436 | | * data, and we are at the offset for the 0x80 value, then |
437 | | * overwrite b with 0x80. |
438 | | */ |
439 | 76.2M | b = constant_time_select_8(is_past_c, 0x80, b); |
440 | | /* |
441 | | * If this block contains the end of the application data |
442 | | * and we're past the 0x80 value then just write zero. |
443 | | */ |
444 | 76.2M | b = b & ~is_past_cp1; |
445 | | /* |
446 | | * If this is index_b (the final block), but not index_a (the end |
447 | | * of the data), then the 64-bit length didn't fit into index_a |
448 | | * and we're having to add an extra block of zeros. |
449 | | */ |
450 | 76.2M | b &= ~is_block_b | is_block_a; |
451 | | |
452 | | /* |
453 | | * The final bytes of one of the blocks contains the length. |
454 | | */ |
455 | 76.2M | if (j >= md_block_size - md_length_size) { |
456 | | /* If this is index_b, write a length byte. */ |
457 | 9.52M | b = constant_time_select_8(is_block_b, |
458 | 9.52M | length_bytes[j - (md_block_size - md_length_size)], b); |
459 | 9.52M | } |
460 | 76.2M | block[j] = b; |
461 | 76.2M | } |
462 | | |
463 | 1.11M | md_transform(md_state.c, block); |
464 | 1.11M | md_final_raw(md_state.c, block); |
465 | | /* If this is index_b, copy the hash value to |mac_out|. */ |
466 | 27.2M | for (j = 0; j < md_size; j++) |
467 | 26.1M | mac_out[j] |= block[j] & is_block_b; |
468 | 1.11M | } |
469 | | |
470 | 163k | md_ctx = EVP_MD_CTX_new(); |
471 | 163k | if (md_ctx == NULL) |
472 | 0 | goto err; |
473 | | |
474 | 163k | if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */) <= 0) |
475 | 0 | goto err; |
476 | 163k | if (is_sslv3) { |
477 | | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ |
478 | 0 | memset(hmac_pad, 0x5c, sslv3_pad_length); |
479 | |
|
480 | 0 | if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0 |
481 | 0 | || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0 |
482 | 0 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0) |
483 | 0 | goto err; |
484 | 163k | } else { |
485 | | /* Complete the HMAC in the standard manner. */ |
486 | 11.6M | for (i = 0; i < md_block_size; i++) |
487 | 11.4M | hmac_pad[i] ^= 0x6a; |
488 | | |
489 | 163k | if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0 |
490 | 163k | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0) |
491 | 0 | goto err; |
492 | 163k | } |
493 | 163k | ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u); |
494 | 163k | if (ret && md_out_size) |
495 | 163k | *md_out_size = md_out_size_u; |
496 | | |
497 | 163k | ret = 1; |
498 | 163k | err: |
499 | 163k | EVP_MD_CTX_free(md_ctx); |
500 | 163k | return ret; |
501 | 163k | } |