Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/ssl/t1_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "internal/cryptlib.h"
27
#include "ssl_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_enc,
35
    tls1_mac,
36
    tls1_setup_key_block,
37
    tls1_generate_master_secret,
38
    tls1_change_cipher_state,
39
    tls1_final_finish_mac,
40
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
    tls1_alert_code,
43
    tls1_export_keying_material,
44
    0,
45
    ssl3_set_handshake_header,
46
    tls_close_construct_packet,
47
    ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
    tls1_enc,
52
    tls1_mac,
53
    tls1_setup_key_block,
54
    tls1_generate_master_secret,
55
    tls1_change_cipher_state,
56
    tls1_final_finish_mac,
57
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
58
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
59
    tls1_alert_code,
60
    tls1_export_keying_material,
61
    SSL_ENC_FLAG_EXPLICIT_IV,
62
    ssl3_set_handshake_header,
63
    tls_close_construct_packet,
64
    ssl3_handshake_write
65
};
66
67
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
68
    tls1_enc,
69
    tls1_mac,
70
    tls1_setup_key_block,
71
    tls1_generate_master_secret,
72
    tls1_change_cipher_state,
73
    tls1_final_finish_mac,
74
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
75
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
76
    tls1_alert_code,
77
    tls1_export_keying_material,
78
    SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
79
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
80
    ssl3_set_handshake_header,
81
    tls_close_construct_packet,
82
    ssl3_handshake_write
83
};
84
85
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
86
    tls13_enc,
87
    tls1_mac,
88
    tls13_setup_key_block,
89
    tls13_generate_master_secret,
90
    tls13_change_cipher_state,
91
    tls13_final_finish_mac,
92
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
93
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
94
    tls13_alert_code,
95
    tls13_export_keying_material,
96
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
97
    ssl3_set_handshake_header,
98
    tls_close_construct_packet,
99
    ssl3_handshake_write
100
};
101
102
long tls1_default_timeout(void)
103
119k
{
104
    /*
105
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
106
     * http, the cache would over fill
107
     */
108
119k
    return (60 * 60 * 2);
109
119k
}
110
111
int tls1_new(SSL *s)
112
119k
{
113
119k
    if (!ssl3_new(s))
114
0
        return 0;
115
119k
    if (!s->method->ssl_clear(s))
116
0
        return 0;
117
118
119k
    return 1;
119
119k
}
120
121
void tls1_free(SSL *s)
122
11.4k
{
123
11.4k
    OPENSSL_free(s->ext.session_ticket);
124
11.4k
    ssl3_free(s);
125
11.4k
}
126
127
int tls1_clear(SSL *s)
128
45.8k
{
129
45.8k
    if (!ssl3_clear(s))
130
0
        return 0;
131
132
45.8k
    if (s->method->version == TLS_ANY_VERSION)
133
45.8k
        s->version = TLS_MAX_VERSION_INTERNAL;
134
0
    else
135
0
        s->version = s->method->version;
136
137
45.8k
    return 1;
138
45.8k
}
139
140
/* Legacy NID to group_id mapping. Only works for groups we know about */
141
static struct {
142
    int nid;
143
    uint16_t group_id;
144
} nid_to_group[] = {
145
    { NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1 },
146
    { NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1 },
147
    { NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2 },
148
    { NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1 },
149
    { NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2 },
150
    { NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1 },
151
    { NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1 },
152
    { NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1 },
153
    { NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1 },
154
    { NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1 },
155
    { NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1 },
156
    { NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1 },
157
    { NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1 },
158
    { NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1 },
159
    { NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1 },
160
    { NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1 },
161
    { NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2 },
162
    { NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1 },
163
    { NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1 },
164
    { NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1 },
165
    { NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1 },
166
    { NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1 },
167
    { NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1 },
168
    { NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1 },
169
    { NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1 },
170
    { NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1 },
171
    { NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1 },
172
    { NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1 },
173
    { EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519 },
174
    { EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448 },
175
    { NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022 },
176
    { NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023 },
177
    { NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024 },
178
    { NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025 },
179
    { NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026 },
180
    { NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027 },
181
    { NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028 },
182
    { NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048 },
183
    { NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072 },
184
    { NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096 },
185
    { NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144 },
186
    { NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192 }
187
};
188
189
static const unsigned char ecformats_default[] = {
190
    TLSEXT_ECPOINTFORMAT_uncompressed,
191
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
192
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
193
};
194
195
/* The default curves */
196
static const uint16_t supported_groups_default[] = {
197
    29, /* X25519 (29) */
198
    23, /* secp256r1 (23) */
199
    30, /* X448 (30) */
200
    25, /* secp521r1 (25) */
201
    24, /* secp384r1 (24) */
202
    34, /* GC256A (34) */
203
    35, /* GC256B (35) */
204
    36, /* GC256C (36) */
205
    37, /* GC256D (37) */
206
    38, /* GC512A (38) */
207
    39, /* GC512B (39) */
208
    40, /* GC512C (40) */
209
    0x100, /* ffdhe2048 (0x100) */
210
    0x101, /* ffdhe3072 (0x101) */
211
    0x102, /* ffdhe4096 (0x102) */
212
    0x103, /* ffdhe6144 (0x103) */
213
    0x104, /* ffdhe8192 (0x104) */
214
};
215
216
static const uint16_t suiteb_curves[] = {
217
    TLSEXT_curve_P_256,
218
    TLSEXT_curve_P_384
219
};
220
221
struct provider_group_data_st {
222
    SSL_CTX *ctx;
223
    OSSL_PROVIDER *provider;
224
};
225
226
851k
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
227
static OSSL_CALLBACK add_provider_groups;
228
static int add_provider_groups(const OSSL_PARAM params[], void *data)
229
3.82M
{
230
3.82M
    struct provider_group_data_st *pgd = data;
231
3.82M
    SSL_CTX *ctx = pgd->ctx;
232
3.82M
    OSSL_PROVIDER *provider = pgd->provider;
233
3.82M
    const OSSL_PARAM *p;
234
3.82M
    TLS_GROUP_INFO *ginf = NULL;
235
3.82M
    EVP_KEYMGMT *keymgmt;
236
3.82M
    unsigned int gid;
237
3.82M
    unsigned int is_kem = 0;
238
3.82M
    int ret = 0;
239
240
3.82M
    if (ctx->group_list_max_len == ctx->group_list_len) {
241
425k
        TLS_GROUP_INFO *tmp = NULL;
242
243
425k
        if (ctx->group_list_max_len == 0)
244
72.8k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
245
425k
                * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
246
352k
        else
247
352k
            tmp = OPENSSL_realloc(ctx->group_list,
248
425k
                (ctx->group_list_max_len
249
425k
                    + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
250
425k
                    * sizeof(TLS_GROUP_INFO));
251
425k
        if (tmp == NULL) {
252
0
            ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
253
0
            return 0;
254
0
        }
255
425k
        ctx->group_list = tmp;
256
425k
        memset(tmp + ctx->group_list_max_len,
257
425k
            0,
258
425k
            sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
259
425k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
260
425k
    }
261
262
3.82M
    ginf = &ctx->group_list[ctx->group_list_len];
263
264
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
265
3.82M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
266
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
267
0
        goto err;
268
0
    }
269
3.82M
    ginf->tlsname = OPENSSL_strdup(p->data);
270
3.82M
    if (ginf->tlsname == NULL) {
271
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
272
0
        goto err;
273
0
    }
274
275
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
276
3.82M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
277
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
278
0
        goto err;
279
0
    }
280
3.82M
    ginf->realname = OPENSSL_strdup(p->data);
281
3.82M
    if (ginf->realname == NULL) {
282
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
283
0
        goto err;
284
0
    }
285
286
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
287
3.82M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
288
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
289
0
        goto err;
290
0
    }
291
3.82M
    ginf->group_id = (uint16_t)gid;
292
293
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
294
3.82M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
295
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
296
0
        goto err;
297
0
    }
298
3.82M
    ginf->algorithm = OPENSSL_strdup(p->data);
299
3.82M
    if (ginf->algorithm == NULL) {
300
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
301
0
        goto err;
302
0
    }
303
304
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
305
3.82M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
306
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
307
0
        goto err;
308
0
    }
309
310
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
311
3.82M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
312
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
313
0
        goto err;
314
0
    }
315
3.82M
    ginf->is_kem = 1 & is_kem;
316
317
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
318
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
319
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
320
0
        goto err;
321
0
    }
322
323
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
324
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
325
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
326
0
        goto err;
327
0
    }
328
329
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
330
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
331
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
332
0
        goto err;
333
0
    }
334
335
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
336
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
337
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
338
0
        goto err;
339
0
    }
340
    /*
341
     * Now check that the algorithm is actually usable for our property query
342
     * string. Regardless of the result we still return success because we have
343
     * successfully processed this group, even though we may decide not to use
344
     * it.
345
     */
346
3.82M
    ret = 1;
347
3.82M
    ERR_set_mark();
348
3.82M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
349
3.82M
    if (keymgmt != NULL) {
350
        /*
351
         * We have successfully fetched the algorithm - however if the provider
352
         * doesn't match this one then we ignore it.
353
         *
354
         * Note: We're cheating a little here. Technically if the same algorithm
355
         * is available from more than one provider then it is undefined which
356
         * implementation you will get back. Theoretically this could be
357
         * different every time...we assume here that you'll always get the
358
         * same one back if you repeat the exact same fetch. Is this a reasonable
359
         * assumption to make (in which case perhaps we should document this
360
         * behaviour)?
361
         */
362
3.82M
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
363
            /* We have a match - so we will use this group */
364
3.82M
            ctx->group_list_len++;
365
3.82M
            ginf = NULL;
366
3.82M
        }
367
3.82M
        EVP_KEYMGMT_free(keymgmt);
368
3.82M
    }
369
3.82M
    ERR_pop_to_mark();
370
3.82M
err:
371
3.82M
    if (ginf != NULL) {
372
0
        OPENSSL_free(ginf->tlsname);
373
0
        OPENSSL_free(ginf->realname);
374
0
        OPENSSL_free(ginf->algorithm);
375
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
376
0
    }
377
3.82M
    return ret;
378
3.82M
}
379
380
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
381
327k
{
382
327k
    struct provider_group_data_st pgd;
383
384
327k
    pgd.ctx = vctx;
385
327k
    pgd.provider = provider;
386
327k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
387
327k
        add_provider_groups, &pgd);
388
327k
}
389
390
int ssl_load_groups(SSL_CTX *ctx)
391
72.8k
{
392
72.8k
    size_t i, j, num_deflt_grps = 0;
393
72.8k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
394
395
72.8k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
396
0
        return 0;
397
398
1.31M
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
399
60.3M
        for (j = 0; j < ctx->group_list_len; j++) {
400
59.7M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
401
728k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
402
728k
                break;
403
728k
            }
404
59.7M
        }
405
1.23M
    }
406
407
72.8k
    if (num_deflt_grps == 0)
408
0
        return 1;
409
410
72.8k
    ctx->ext.supported_groups_default
411
72.8k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
412
413
72.8k
    if (ctx->ext.supported_groups_default == NULL) {
414
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
415
0
        return 0;
416
0
    }
417
418
72.8k
    memcpy(ctx->ext.supported_groups_default,
419
72.8k
        tmp_supp_groups,
420
72.8k
        num_deflt_grps * sizeof(tmp_supp_groups[0]));
421
72.8k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
422
423
72.8k
    return 1;
424
72.8k
}
425
426
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
427
725k
{
428
725k
    size_t i;
429
430
4.08M
    for (i = 0; i < ctx->group_list_len; i++) {
431
4.08M
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
432
3.35M
            || strcmp(ctx->group_list[i].realname, name) == 0)
433
725k
            return ctx->group_list[i].group_id;
434
4.08M
    }
435
436
0
    return 0;
437
725k
}
438
439
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
440
3.20M
{
441
3.20M
    size_t i;
442
443
69.8M
    for (i = 0; i < ctx->group_list_len; i++) {
444
69.8M
        if (ctx->group_list[i].group_id == group_id)
445
3.20M
            return &ctx->group_list[i];
446
69.8M
    }
447
448
0
    return NULL;
449
3.20M
}
450
451
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
452
1.40M
{
453
1.40M
    size_t i;
454
455
1.40M
    if (group_id == 0)
456
0
        return NID_undef;
457
458
    /*
459
     * Return well known Group NIDs - for backwards compatibility. This won't
460
     * work for groups we don't know about.
461
     */
462
44.8M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
463
44.7M
        if (nid_to_group[i].group_id == group_id)
464
1.30M
            return nid_to_group[i].nid;
465
44.7M
    }
466
100k
    if (!include_unknown)
467
100k
        return NID_undef;
468
0
    return TLSEXT_nid_unknown | (int)group_id;
469
100k
}
470
471
uint16_t tls1_nid2group_id(int nid)
472
28.1k
{
473
28.1k
    size_t i;
474
475
    /*
476
     * Return well known Group ids - for backwards compatibility. This won't
477
     * work for groups we don't know about.
478
     */
479
647k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
480
647k
        if (nid_to_group[i].nid == nid)
481
28.1k
            return nid_to_group[i].group_id;
482
647k
    }
483
484
6
    return 0;
485
28.1k
}
486
487
/*
488
 * Set *pgroups to the supported groups list and *pgroupslen to
489
 * the number of groups supported.
490
 */
491
void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
492
    size_t *pgroupslen)
493
460k
{
494
    /* For Suite B mode only include P-256, P-384 */
495
460k
    switch (tls1_suiteb(s)) {
496
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
497
0
        *pgroups = suiteb_curves;
498
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
499
0
        break;
500
501
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
502
0
        *pgroups = suiteb_curves;
503
0
        *pgroupslen = 1;
504
0
        break;
505
506
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
507
0
        *pgroups = suiteb_curves + 1;
508
0
        *pgroupslen = 1;
509
0
        break;
510
511
460k
    default:
512
460k
        if (s->ext.supportedgroups == NULL) {
513
231k
            *pgroups = s->ctx->ext.supported_groups_default;
514
231k
            *pgroupslen = s->ctx->ext.supported_groups_default_len;
515
231k
        } else {
516
228k
            *pgroups = s->ext.supportedgroups;
517
228k
            *pgroupslen = s->ext.supportedgroups_len;
518
228k
        }
519
460k
        break;
520
460k
    }
521
460k
}
522
523
int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
524
    int isec, int *okfortls13)
525
89.2k
{
526
89.2k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
527
89.2k
    int ret;
528
529
89.2k
    if (okfortls13 != NULL)
530
67.6k
        *okfortls13 = 0;
531
532
89.2k
    if (ginfo == NULL)
533
0
        return 0;
534
535
89.2k
    if (SSL_IS_DTLS(s)) {
536
0
        if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
537
0
            return 0;
538
0
        if (ginfo->maxdtls == 0)
539
0
            ret = 1;
540
0
        else
541
0
            ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
542
0
        if (ginfo->mindtls > 0)
543
0
            ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
544
89.2k
    } else {
545
89.2k
        if (ginfo->mintls < 0 || ginfo->maxtls < 0)
546
0
            return 0;
547
89.2k
        if (ginfo->maxtls == 0)
548
89.2k
            ret = 1;
549
0
        else
550
0
            ret = (minversion <= ginfo->maxtls);
551
89.2k
        if (ginfo->mintls > 0)
552
89.2k
            ret &= (maxversion >= ginfo->mintls);
553
89.2k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
554
67.6k
            *okfortls13 = (ginfo->maxtls == 0)
555
0
                || (ginfo->maxtls >= TLS1_3_VERSION);
556
89.2k
    }
557
89.2k
    ret &= !isec
558
13.5k
        || strcmp(ginfo->algorithm, "EC") == 0
559
13.5k
        || strcmp(ginfo->algorithm, "X25519") == 0
560
0
        || strcmp(ginfo->algorithm, "X448") == 0;
561
562
89.2k
    return ret;
563
89.2k
}
564
565
/* See if group is allowed by security callback */
566
int tls_group_allowed(SSL *s, uint16_t group, int op)
567
1.40M
{
568
1.40M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
569
1.40M
    unsigned char gtmp[2];
570
571
1.40M
    if (ginfo == NULL)
572
0
        return 0;
573
574
1.40M
    gtmp[0] = group >> 8;
575
1.40M
    gtmp[1] = group & 0xff;
576
1.40M
    return ssl_security(s, op, ginfo->secbits,
577
1.40M
        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
578
1.40M
}
579
580
/* Return 1 if "id" is in "list" */
581
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
582
102k
{
583
102k
    size_t i;
584
687k
    for (i = 0; i < listlen; i++)
585
631k
        if (list[i] == id)
586
46.6k
            return 1;
587
55.5k
    return 0;
588
102k
}
589
590
/*-
591
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
592
 * if there is no match.
593
 * For nmatch == -1, return number of matches
594
 * For nmatch == -2, return the id of the group to use for
595
 * a tmp key, or 0 if there is no match.
596
 */
597
uint16_t tls1_shared_group(SSL *s, int nmatch)
598
4.18k
{
599
4.18k
    const uint16_t *pref, *supp;
600
4.18k
    size_t num_pref, num_supp, i;
601
4.18k
    int k;
602
4.18k
    SSL_CTX *ctx = s->ctx;
603
604
    /* Can't do anything on client side */
605
4.18k
    if (s->server == 0)
606
0
        return 0;
607
4.18k
    if (nmatch == -2) {
608
1.09k
        if (tls1_suiteb(s)) {
609
            /*
610
             * For Suite B ciphersuite determines curve: we already know
611
             * these are acceptable due to previous checks.
612
             */
613
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
614
615
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
616
0
                return TLSEXT_curve_P_256;
617
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
618
0
                return TLSEXT_curve_P_384;
619
            /* Should never happen */
620
0
            return 0;
621
0
        }
622
        /* If not Suite B just return first preference shared curve */
623
1.09k
        nmatch = 0;
624
1.09k
    }
625
    /*
626
     * If server preference set, our groups are the preference order
627
     * otherwise peer decides.
628
     */
629
4.18k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
630
0
        tls1_get_supported_groups(s, &pref, &num_pref);
631
0
        tls1_get_peer_groups(s, &supp, &num_supp);
632
4.18k
    } else {
633
4.18k
        tls1_get_peer_groups(s, &pref, &num_pref);
634
4.18k
        tls1_get_supported_groups(s, &supp, &num_supp);
635
4.18k
    }
636
637
9.17k
    for (k = 0, i = 0; i < num_pref; i++) {
638
7.23k
        uint16_t id = pref[i];
639
7.23k
        const TLS_GROUP_INFO *inf;
640
641
7.23k
        if (!tls1_in_list(id, supp, num_supp)
642
2.73k
            || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
643
4.49k
            continue;
644
2.73k
        inf = tls1_group_id_lookup(ctx, id);
645
2.73k
        if (!ossl_assert(inf != NULL))
646
0
            return 0;
647
2.73k
        if (SSL_IS_DTLS(s)) {
648
0
            if (inf->maxdtls == -1)
649
0
                continue;
650
0
            if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls))
651
0
                || (inf->maxdtls != 0
652
0
                    && DTLS_VERSION_GT(s->version, inf->maxdtls)))
653
0
                continue;
654
2.73k
        } else {
655
2.73k
            if (inf->maxtls == -1)
656
0
                continue;
657
2.73k
            if ((inf->mintls != 0 && s->version < inf->mintls)
658
2.24k
                || (inf->maxtls != 0 && s->version > inf->maxtls))
659
492
                continue;
660
2.73k
        }
661
662
2.24k
        if (nmatch == k)
663
2.24k
            return id;
664
0
        k++;
665
0
    }
666
1.94k
    if (nmatch == -1)
667
0
        return k;
668
    /* Out of range (nmatch > k). */
669
1.94k
    return 0;
670
1.94k
}
671
672
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
673
    int *groups, size_t ngroups)
674
0
{
675
0
    uint16_t *glist;
676
0
    size_t i;
677
    /*
678
     * Bitmap of groups included to detect duplicates: two variables are added
679
     * to detect duplicates as some values are more than 32.
680
     */
681
0
    unsigned long *dup_list = NULL;
682
0
    unsigned long dup_list_egrp = 0;
683
0
    unsigned long dup_list_dhgrp = 0;
684
685
0
    if (ngroups == 0) {
686
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
687
0
        return 0;
688
0
    }
689
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
690
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
691
0
        return 0;
692
0
    }
693
0
    for (i = 0; i < ngroups; i++) {
694
0
        unsigned long idmask;
695
0
        uint16_t id;
696
0
        id = tls1_nid2group_id(groups[i]);
697
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
698
0
            goto err;
699
0
        idmask = 1L << (id & 0x00FF);
700
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
701
0
        if (!id || ((*dup_list) & idmask))
702
0
            goto err;
703
0
        *dup_list |= idmask;
704
0
        glist[i] = id;
705
0
    }
706
0
    OPENSSL_free(*pext);
707
0
    *pext = glist;
708
0
    *pextlen = ngroups;
709
0
    return 1;
710
0
err:
711
0
    OPENSSL_free(glist);
712
0
    return 0;
713
0
}
714
715
#define GROUPLIST_INCREMENT 40
716
#define GROUP_NAME_BUFFER_LENGTH 64
717
typedef struct {
718
    SSL_CTX *ctx;
719
    size_t gidcnt;
720
    size_t gidmax;
721
    uint16_t *gid_arr;
722
} gid_cb_st;
723
724
static int gid_cb(const char *elem, int len, void *arg)
725
{
726
    gid_cb_st *garg = arg;
727
    size_t i;
728
    uint16_t gid = 0;
729
    char etmp[GROUP_NAME_BUFFER_LENGTH];
730
731
    if (elem == NULL)
732
        return 0;
733
    if (garg->gidcnt == garg->gidmax) {
734
        uint16_t *tmp = OPENSSL_realloc(garg->gid_arr,
735
            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
736
        if (tmp == NULL)
737
            return 0;
738
        garg->gidmax += GROUPLIST_INCREMENT;
739
        garg->gid_arr = tmp;
740
    }
741
    if (len > (int)(sizeof(etmp) - 1))
742
        return 0;
743
    memcpy(etmp, elem, len);
744
    etmp[len] = 0;
745
746
    gid = tls1_group_name2id(garg->ctx, etmp);
747
    if (gid == 0) {
748
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
749
            "group '%s' cannot be set", etmp);
750
        return 0;
751
    }
752
    for (i = 0; i < garg->gidcnt; i++)
753
        if (garg->gid_arr[i] == gid)
754
            return 0;
755
    garg->gid_arr[garg->gidcnt++] = gid;
756
    return 1;
757
}
758
759
/* Set groups based on a colon separated list */
760
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
761
    const char *str)
762
{
763
    gid_cb_st gcb;
764
    uint16_t *tmparr;
765
    int ret = 0;
766
767
    gcb.gidcnt = 0;
768
    gcb.gidmax = GROUPLIST_INCREMENT;
769
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
770
    if (gcb.gid_arr == NULL)
771
        return 0;
772
    gcb.ctx = ctx;
773
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
774
        goto end;
775
    if (pext == NULL) {
776
        ret = 1;
777
        goto end;
778
    }
779
780
    /*
781
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
782
     * the result
783
     */
784
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
785
    if (tmparr == NULL)
786
        goto end;
787
    OPENSSL_free(*pext);
788
    *pext = tmparr;
789
    *pextlen = gcb.gidcnt;
790
    ret = 1;
791
end:
792
    OPENSSL_free(gcb.gid_arr);
793
    return ret;
794
}
795
796
/* Check a group id matches preferences */
797
int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
798
36.6k
{
799
36.6k
    const uint16_t *groups;
800
36.6k
    size_t groups_len;
801
802
36.6k
    if (group_id == 0)
803
16
        return 0;
804
805
    /* Check for Suite B compliance */
806
36.5k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
807
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
808
809
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
810
0
            if (group_id != TLSEXT_curve_P_256)
811
0
                return 0;
812
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
813
0
            if (group_id != TLSEXT_curve_P_384)
814
0
                return 0;
815
0
        } else {
816
            /* Should never happen */
817
0
            return 0;
818
0
        }
819
0
    }
820
821
36.5k
    if (check_own_groups) {
822
        /* Check group is one of our preferences */
823
8.91k
        tls1_get_supported_groups(s, &groups, &groups_len);
824
8.91k
        if (!tls1_in_list(group_id, groups, groups_len))
825
147
            return 0;
826
8.91k
    }
827
828
36.4k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
829
0
        return 0;
830
831
    /* For clients, nothing more to check */
832
36.4k
    if (!s->server)
833
8.77k
        return 1;
834
835
    /* Check group is one of peers preferences */
836
27.6k
    tls1_get_peer_groups(s, &groups, &groups_len);
837
838
    /*
839
     * RFC 4492 does not require the supported elliptic curves extension
840
     * so if it is not sent we can just choose any curve.
841
     * It is invalid to send an empty list in the supported groups
842
     * extension, so groups_len == 0 always means no extension.
843
     */
844
27.6k
    if (groups_len == 0)
845
13.6k
        return 1;
846
14.0k
    return tls1_in_list(group_id, groups, groups_len);
847
27.6k
}
848
849
void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
850
    size_t *num_formats)
851
78.5k
{
852
    /*
853
     * If we have a custom point format list use it otherwise use default
854
     */
855
78.5k
    if (s->ext.ecpointformats) {
856
0
        *pformats = s->ext.ecpointformats;
857
0
        *num_formats = s->ext.ecpointformats_len;
858
78.5k
    } else {
859
78.5k
        *pformats = ecformats_default;
860
        /* For Suite B we don't support char2 fields */
861
78.5k
        if (tls1_suiteb(s))
862
0
            *num_formats = sizeof(ecformats_default) - 1;
863
78.5k
        else
864
78.5k
            *num_formats = sizeof(ecformats_default);
865
78.5k
    }
866
78.5k
}
867
868
/* Check a key is compatible with compression extension */
869
static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
870
29.1k
{
871
29.1k
    unsigned char comp_id;
872
29.1k
    size_t i;
873
29.1k
    int point_conv;
874
875
    /* If not an EC key nothing to check */
876
29.1k
    if (!EVP_PKEY_is_a(pkey, "EC"))
877
0
        return 1;
878
879
    /* Get required compression id */
880
29.1k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
881
29.1k
    if (point_conv == 0)
882
0
        return 0;
883
29.1k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
884
29.0k
        comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
885
29.0k
    } else if (SSL_IS_TLS13(s)) {
886
        /*
887
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
888
         * this check.
889
         */
890
0
        return 1;
891
104
    } else {
892
104
        int field_type = EVP_PKEY_get_field_type(pkey);
893
894
104
        if (field_type == NID_X9_62_prime_field)
895
98
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
896
6
        else if (field_type == NID_X9_62_characteristic_two_field)
897
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
898
6
        else
899
6
            return 0;
900
104
    }
901
    /*
902
     * If point formats extension present check it, otherwise everything is
903
     * supported (see RFC4492).
904
     */
905
29.1k
    if (s->ext.peer_ecpointformats == NULL)
906
23.1k
        return 1;
907
908
10.4k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
909
9.47k
        if (s->ext.peer_ecpointformats[i] == comp_id)
910
5.04k
            return 1;
911
9.47k
    }
912
987
    return 0;
913
6.03k
}
914
915
/* Return group id of a key */
916
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
917
28.1k
{
918
28.1k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
919
920
28.1k
    if (curve_nid == NID_undef)
921
0
        return 0;
922
28.1k
    return tls1_nid2group_id(curve_nid);
923
28.1k
}
924
925
/*
926
 * Check cert parameters compatible with extensions: currently just checks EC
927
 * certificates have compatible curves and compression.
928
 */
929
static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
930
85.8k
{
931
85.8k
    uint16_t group_id;
932
85.8k
    EVP_PKEY *pkey;
933
85.8k
    pkey = X509_get0_pubkey(x);
934
85.8k
    if (pkey == NULL)
935
0
        return 0;
936
    /* If not EC nothing to do */
937
85.8k
    if (!EVP_PKEY_is_a(pkey, "EC"))
938
57.2k
        return 1;
939
    /* Check compression */
940
28.6k
    if (!tls1_check_pkey_comp(s, pkey))
941
959
        return 0;
942
27.6k
    group_id = tls1_get_group_id(pkey);
943
    /*
944
     * For a server we allow the certificate to not be in our list of supported
945
     * groups.
946
     */
947
27.6k
    if (!tls1_check_group_id(s, group_id, !s->server))
948
7.29k
        return 0;
949
    /*
950
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
951
     * SHA384+P-384.
952
     */
953
20.3k
    if (check_ee_md && tls1_suiteb(s)) {
954
0
        int check_md;
955
0
        size_t i;
956
957
        /* Check to see we have necessary signing algorithm */
958
0
        if (group_id == TLSEXT_curve_P_256)
959
0
            check_md = NID_ecdsa_with_SHA256;
960
0
        else if (group_id == TLSEXT_curve_P_384)
961
0
            check_md = NID_ecdsa_with_SHA384;
962
0
        else
963
0
            return 0; /* Should never happen */
964
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
965
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
966
0
                return 1;
967
0
            ;
968
0
        }
969
0
        return 0;
970
0
    }
971
20.3k
    return 1;
972
20.3k
}
973
974
/*
975
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
976
 * @s: SSL connection
977
 * @cid: Cipher ID we're considering using
978
 *
979
 * Checks that the kECDHE cipher suite we're considering using
980
 * is compatible with the client extensions.
981
 *
982
 * Returns 0 when the cipher can't be used or 1 when it can.
983
 */
984
int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
985
36.5k
{
986
    /* If not Suite B just need a shared group */
987
36.5k
    if (!tls1_suiteb(s))
988
36.5k
        return tls1_shared_group(s, 0) != 0;
989
    /*
990
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
991
     * curves permitted.
992
     */
993
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
994
0
        return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
995
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
996
0
        return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
997
998
0
    return 0;
999
0
}
1000
1001
/* Default sigalg schemes */
1002
static const uint16_t tls12_sigalgs[] = {
1003
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1004
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1005
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1006
    TLSEXT_SIGALG_ed25519,
1007
    TLSEXT_SIGALG_ed448,
1008
1009
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1010
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1011
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1012
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1013
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1014
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1015
1016
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1017
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1018
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1019
1020
    TLSEXT_SIGALG_ecdsa_sha224,
1021
    TLSEXT_SIGALG_ecdsa_sha1,
1022
1023
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1024
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1025
1026
    TLSEXT_SIGALG_dsa_sha224,
1027
    TLSEXT_SIGALG_dsa_sha1,
1028
1029
    TLSEXT_SIGALG_dsa_sha256,
1030
    TLSEXT_SIGALG_dsa_sha384,
1031
    TLSEXT_SIGALG_dsa_sha512,
1032
1033
#ifndef OPENSSL_NO_GOST
1034
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1035
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1036
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1037
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1038
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1039
#endif
1040
};
1041
1042
static const uint16_t suiteb_sigalgs[] = {
1043
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1044
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1045
};
1046
1047
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1048
    { "ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1049
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1050
        NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1 },
1051
    { "ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1052
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1053
        NID_ecdsa_with_SHA384, NID_secp384r1, 1 },
1054
    { "ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1055
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1056
        NID_ecdsa_with_SHA512, NID_secp521r1, 1 },
1057
    { "ed25519", TLSEXT_SIGALG_ed25519,
1058
        NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1059
        NID_undef, NID_undef, 1 },
1060
    { "ed448", TLSEXT_SIGALG_ed448,
1061
        NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1062
        NID_undef, NID_undef, 1 },
1063
    { NULL, TLSEXT_SIGALG_ecdsa_sha224,
1064
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1065
        NID_ecdsa_with_SHA224, NID_undef, 1 },
1066
    { NULL, TLSEXT_SIGALG_ecdsa_sha1,
1067
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1068
        NID_ecdsa_with_SHA1, NID_undef, 1 },
1069
    { "rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1070
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1071
        NID_undef, NID_undef, 1 },
1072
    { "rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1073
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1074
        NID_undef, NID_undef, 1 },
1075
    { "rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1076
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1077
        NID_undef, NID_undef, 1 },
1078
    { "rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1079
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1080
        NID_undef, NID_undef, 1 },
1081
    { "rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1082
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1083
        NID_undef, NID_undef, 1 },
1084
    { "rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1085
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1086
        NID_undef, NID_undef, 1 },
1087
    { "rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1088
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1089
        NID_sha256WithRSAEncryption, NID_undef, 1 },
1090
    { "rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1091
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1092
        NID_sha384WithRSAEncryption, NID_undef, 1 },
1093
    { "rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1094
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1095
        NID_sha512WithRSAEncryption, NID_undef, 1 },
1096
    { "rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1097
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1098
        NID_sha224WithRSAEncryption, NID_undef, 1 },
1099
    { "rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1100
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1101
        NID_sha1WithRSAEncryption, NID_undef, 1 },
1102
    { NULL, TLSEXT_SIGALG_dsa_sha256,
1103
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1104
        NID_dsa_with_SHA256, NID_undef, 1 },
1105
    { NULL, TLSEXT_SIGALG_dsa_sha384,
1106
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1107
        NID_undef, NID_undef, 1 },
1108
    { NULL, TLSEXT_SIGALG_dsa_sha512,
1109
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1110
        NID_undef, NID_undef, 1 },
1111
    { NULL, TLSEXT_SIGALG_dsa_sha224,
1112
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1113
        NID_undef, NID_undef, 1 },
1114
    { NULL, TLSEXT_SIGALG_dsa_sha1,
1115
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1116
        NID_dsaWithSHA1, NID_undef, 1 },
1117
#ifndef OPENSSL_NO_GOST
1118
    { NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1119
        NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1120
        NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1121
        NID_undef, NID_undef, 1 },
1122
    { NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1123
        NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1124
        NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1125
        NID_undef, NID_undef, 1 },
1126
    { NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1127
        NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1128
        NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1129
        NID_undef, NID_undef, 1 },
1130
    { NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1131
        NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1132
        NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1133
        NID_undef, NID_undef, 1 },
1134
    { NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1135
        NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1136
        NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1137
        NID_undef, NID_undef, 1 }
1138
#endif
1139
};
1140
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1141
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1142
    "rsa_pkcs1_md5_sha1", 0,
1143
    NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1144
    EVP_PKEY_RSA, SSL_PKEY_RSA,
1145
    NID_undef, NID_undef, 1
1146
};
1147
1148
/*
1149
 * Default signature algorithm values used if signature algorithms not present.
1150
 * From RFC5246. Note: order must match certificate index order.
1151
 */
1152
static const uint16_t tls_default_sigalg[] = {
1153
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1154
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1155
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1156
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1157
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1158
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1159
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1160
    0, /* SSL_PKEY_ED25519 */
1161
    0, /* SSL_PKEY_ED448 */
1162
};
1163
1164
int ssl_setup_sig_algs(SSL_CTX *ctx)
1165
11.4k
{
1166
11.4k
    size_t i;
1167
11.4k
    const SIGALG_LOOKUP *lu;
1168
11.4k
    SIGALG_LOOKUP *cache
1169
11.4k
        = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1170
11.4k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1171
11.4k
    int ret = 0;
1172
1173
11.4k
    if (cache == NULL || tmpkey == NULL)
1174
0
        goto err;
1175
1176
11.4k
    ERR_set_mark();
1177
11.4k
    for (i = 0, lu = sigalg_lookup_tbl;
1178
332k
        i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1179
321k
        EVP_PKEY_CTX *pctx;
1180
1181
321k
        cache[i] = *lu;
1182
1183
        /*
1184
         * Check hash is available.
1185
         * This test is not perfect. A provider could have support
1186
         * for a signature scheme, but not a particular hash. However the hash
1187
         * could be available from some other loaded provider. In that case it
1188
         * could be that the signature is available, and the hash is available
1189
         * independently - but not as a combination. We ignore this for now.
1190
         */
1191
321k
        if (lu->hash != NID_undef
1192
298k
            && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1193
57.3k
            cache[i].enabled = 0;
1194
57.3k
            continue;
1195
57.3k
        }
1196
1197
263k
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1198
0
            cache[i].enabled = 0;
1199
0
            continue;
1200
0
        }
1201
263k
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1202
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1203
263k
        if (pctx == NULL)
1204
0
            cache[i].enabled = 0;
1205
263k
        EVP_PKEY_CTX_free(pctx);
1206
263k
    }
1207
11.4k
    ERR_pop_to_mark();
1208
11.4k
    ctx->sigalg_lookup_cache = cache;
1209
11.4k
    cache = NULL;
1210
1211
11.4k
    ret = 1;
1212
11.4k
err:
1213
11.4k
    OPENSSL_free(cache);
1214
11.4k
    EVP_PKEY_free(tmpkey);
1215
11.4k
    return ret;
1216
11.4k
}
1217
1218
/* Lookup TLS signature algorithm */
1219
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1220
14.5M
{
1221
14.5M
    size_t i;
1222
14.5M
    const SIGALG_LOOKUP *lu;
1223
1224
14.5M
    for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1225
        /* cache should have the same number of elements as sigalg_lookup_tbl */
1226
232M
        i < OSSL_NELEM(sigalg_lookup_tbl);
1227
232M
        lu++, i++) {
1228
232M
        if (lu->sigalg == sigalg) {
1229
14.2M
            if (!lu->enabled)
1230
1.13M
                return NULL;
1231
13.0M
            return lu;
1232
14.2M
        }
1233
232M
    }
1234
377k
    return NULL;
1235
14.5M
}
1236
/* Lookup hash: return 0 if invalid or not enabled */
1237
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1238
4.10M
{
1239
4.10M
    const EVP_MD *md;
1240
4.10M
    if (lu == NULL)
1241
0
        return 0;
1242
    /* lu->hash == NID_undef means no associated digest */
1243
4.10M
    if (lu->hash == NID_undef) {
1244
402k
        md = NULL;
1245
3.70M
    } else {
1246
3.70M
        md = ssl_md(ctx, lu->hash_idx);
1247
3.70M
        if (md == NULL)
1248
0
            return 0;
1249
3.70M
    }
1250
4.10M
    if (pmd)
1251
4.01M
        *pmd = md;
1252
4.10M
    return 1;
1253
4.10M
}
1254
1255
/*
1256
 * Check if key is large enough to generate RSA-PSS signature.
1257
 *
1258
 * The key must greater than or equal to 2 * hash length + 2.
1259
 * SHA512 has a hash length of 64 bytes, which is incompatible
1260
 * with a 128 byte (1024 bit) key.
1261
 */
1262
339
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1263
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1264
    const SIGALG_LOOKUP *lu)
1265
339
{
1266
339
    const EVP_MD *md;
1267
1268
339
    if (pkey == NULL)
1269
0
        return 0;
1270
339
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1271
0
        return 0;
1272
339
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1273
0
        return 0;
1274
339
    return 1;
1275
339
}
1276
1277
/*
1278
 * Returns a signature algorithm when the peer did not send a list of supported
1279
 * signature algorithms. The signature algorithm is fixed for the certificate
1280
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1281
 * certificate type from |s| will be used.
1282
 * Returns the signature algorithm to use, or NULL on error.
1283
 */
1284
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1285
276k
{
1286
276k
    if (idx == -1) {
1287
20.4k
        if (s->server) {
1288
20.4k
            size_t i;
1289
1290
            /* Work out index corresponding to ciphersuite */
1291
29.4k
            for (i = 0; i < SSL_PKEY_NUM; i++) {
1292
29.4k
                const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1293
1294
29.4k
                if (clu == NULL)
1295
0
                    continue;
1296
29.4k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1297
20.4k
                    idx = i;
1298
20.4k
                    break;
1299
20.4k
                }
1300
29.4k
            }
1301
1302
            /*
1303
             * Some GOST ciphersuites allow more than one signature algorithms
1304
             * */
1305
20.4k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1306
0
                int real_idx;
1307
1308
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1309
0
                    real_idx--) {
1310
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1311
0
                        idx = real_idx;
1312
0
                        break;
1313
0
                    }
1314
0
                }
1315
0
            }
1316
            /*
1317
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1318
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1319
             */
1320
20.4k
            else if (idx == SSL_PKEY_GOST12_256) {
1321
0
                int real_idx;
1322
1323
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1324
0
                    real_idx--) {
1325
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1326
0
                        idx = real_idx;
1327
0
                        break;
1328
0
                    }
1329
0
                }
1330
0
            }
1331
20.4k
        } else {
1332
0
            idx = s->cert->key - s->cert->pkeys;
1333
0
        }
1334
20.4k
    }
1335
276k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1336
38.9k
        return NULL;
1337
237k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1338
227k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1339
1340
227k
        if (lu == NULL)
1341
143k
            return NULL;
1342
84.0k
        if (!tls1_lookup_md(s->ctx, lu, NULL))
1343
0
            return NULL;
1344
84.0k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1345
0
            return NULL;
1346
84.0k
        return lu;
1347
84.0k
    }
1348
9.94k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1349
0
        return NULL;
1350
9.94k
    return &legacy_rsa_sigalg;
1351
9.94k
}
1352
/* Set peer sigalg based key type */
1353
int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1354
1.94k
{
1355
1.94k
    size_t idx;
1356
1.94k
    const SIGALG_LOOKUP *lu;
1357
1358
1.94k
    if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1359
0
        return 0;
1360
1.94k
    lu = tls1_get_legacy_sigalg(s, idx);
1361
1.94k
    if (lu == NULL)
1362
9
        return 0;
1363
1.93k
    s->s3.tmp.peer_sigalg = lu;
1364
1.93k
    return 1;
1365
1.94k
}
1366
1367
size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1368
538k
{
1369
    /*
1370
     * If Suite B mode use Suite B sigalgs only, ignore any other
1371
     * preferences.
1372
     */
1373
538k
    switch (tls1_suiteb(s)) {
1374
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1375
0
        *psigs = suiteb_sigalgs;
1376
0
        return OSSL_NELEM(suiteb_sigalgs);
1377
1378
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1379
0
        *psigs = suiteb_sigalgs;
1380
0
        return 1;
1381
1382
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1383
0
        *psigs = suiteb_sigalgs + 1;
1384
0
        return 1;
1385
538k
    }
1386
    /*
1387
     *  We use client_sigalgs (if not NULL) if we're a server
1388
     *  and sending a certificate request or if we're a client and
1389
     *  determining which shared algorithm to use.
1390
     */
1391
538k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1392
0
        *psigs = s->cert->client_sigalgs;
1393
0
        return s->cert->client_sigalgslen;
1394
538k
    } else if (s->cert->conf_sigalgs) {
1395
0
        *psigs = s->cert->conf_sigalgs;
1396
0
        return s->cert->conf_sigalgslen;
1397
538k
    } else {
1398
538k
        *psigs = tls12_sigalgs;
1399
538k
        return OSSL_NELEM(tls12_sigalgs);
1400
538k
    }
1401
538k
}
1402
1403
/*
1404
 * Called by servers only. Checks that we have a sig alg that supports the
1405
 * specified EC curve.
1406
 */
1407
int tls_check_sigalg_curve(const SSL *s, int curve)
1408
0
{
1409
0
    const uint16_t *sigs;
1410
0
    size_t siglen, i;
1411
1412
0
    if (s->cert->conf_sigalgs) {
1413
0
        sigs = s->cert->conf_sigalgs;
1414
0
        siglen = s->cert->conf_sigalgslen;
1415
0
    } else {
1416
0
        sigs = tls12_sigalgs;
1417
0
        siglen = OSSL_NELEM(tls12_sigalgs);
1418
0
    }
1419
1420
0
    for (i = 0; i < siglen; i++) {
1421
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1422
1423
0
        if (lu == NULL)
1424
0
            continue;
1425
0
        if (lu->sig == EVP_PKEY_EC
1426
0
            && lu->curve != NID_undef
1427
0
            && curve == lu->curve)
1428
0
            return 1;
1429
0
    }
1430
1431
0
    return 0;
1432
0
}
1433
1434
/*
1435
 * Return the number of security bits for the signature algorithm, or 0 on
1436
 * error.
1437
 */
1438
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1439
260k
{
1440
260k
    const EVP_MD *md = NULL;
1441
260k
    int secbits = 0;
1442
1443
260k
    if (!tls1_lookup_md(ctx, lu, &md))
1444
0
        return 0;
1445
260k
    if (md != NULL) {
1446
244k
        int md_type = EVP_MD_get_type(md);
1447
1448
        /* Security bits: half digest bits */
1449
244k
        secbits = EVP_MD_get_size(md) * 4;
1450
        /*
1451
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1452
         * they're no longer accepted at security level 1. The real values don't
1453
         * really matter as long as they're lower than 80, which is our
1454
         * security level 1.
1455
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1456
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1457
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1458
         * puts a chosen-prefix attack for MD5 at 2^39.
1459
         */
1460
244k
        if (md_type == NID_sha1)
1461
32.2k
            secbits = 64;
1462
212k
        else if (md_type == NID_md5_sha1)
1463
416
            secbits = 67;
1464
212k
        else if (md_type == NID_md5)
1465
0
            secbits = 39;
1466
244k
    } else {
1467
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1468
15.7k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1469
7.20k
            secbits = 128;
1470
8.55k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1471
8.55k
            secbits = 224;
1472
15.7k
    }
1473
260k
    return secbits;
1474
260k
}
1475
1476
/*
1477
 * Check signature algorithm is consistent with sent supported signature
1478
 * algorithms and if so set relevant digest and signature scheme in
1479
 * s.
1480
 */
1481
int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1482
444
{
1483
444
    const uint16_t *sent_sigs;
1484
444
    const EVP_MD *md = NULL;
1485
444
    char sigalgstr[2];
1486
444
    size_t sent_sigslen, i, cidx;
1487
444
    int pkeyid = -1;
1488
444
    const SIGALG_LOOKUP *lu;
1489
444
    int secbits = 0;
1490
1491
444
    pkeyid = EVP_PKEY_get_id(pkey);
1492
    /* Should never happen */
1493
444
    if (pkeyid == -1)
1494
0
        return -1;
1495
444
    if (SSL_IS_TLS13(s)) {
1496
        /* Disallow DSA for TLS 1.3 */
1497
0
        if (pkeyid == EVP_PKEY_DSA) {
1498
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1499
0
            return 0;
1500
0
        }
1501
        /* Only allow PSS for TLS 1.3 */
1502
0
        if (pkeyid == EVP_PKEY_RSA)
1503
0
            pkeyid = EVP_PKEY_RSA_PSS;
1504
0
    }
1505
444
    lu = tls1_lookup_sigalg(s, sig);
1506
    /*
1507
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1508
     * is consistent with signature: RSA keys can be used for RSA-PSS
1509
     */
1510
444
    if (lu == NULL
1511
431
        || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1512
431
        || (pkeyid != lu->sig
1513
83
            && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1514
19
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1515
19
        return 0;
1516
19
    }
1517
    /* Check the sigalg is consistent with the key OID */
1518
425
    if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1519
425
        || lu->sig_idx != (int)cidx) {
1520
1
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1521
1
        return 0;
1522
1
    }
1523
1524
424
    if (pkeyid == EVP_PKEY_EC) {
1525
1526
        /* Check point compression is permitted */
1527
145
        if (!tls1_check_pkey_comp(s, pkey)) {
1528
11
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1529
11
                SSL_R_ILLEGAL_POINT_COMPRESSION);
1530
11
            return 0;
1531
11
        }
1532
1533
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1534
134
        if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1535
0
            int curve = ssl_get_EC_curve_nid(pkey);
1536
1537
0
            if (lu->curve != NID_undef && curve != lu->curve) {
1538
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1539
0
                return 0;
1540
0
            }
1541
0
        }
1542
134
        if (!SSL_IS_TLS13(s)) {
1543
            /* Check curve matches extensions */
1544
134
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1545
1
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1546
1
                return 0;
1547
1
            }
1548
133
            if (tls1_suiteb(s)) {
1549
                /* Check sigalg matches a permissible Suite B value */
1550
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1551
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1552
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1553
0
                        SSL_R_WRONG_SIGNATURE_TYPE);
1554
0
                    return 0;
1555
0
                }
1556
0
            }
1557
133
        }
1558
279
    } else if (tls1_suiteb(s)) {
1559
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1560
0
        return 0;
1561
0
    }
1562
1563
    /* Check signature matches a type we sent */
1564
412
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1565
5.65k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1566
5.65k
        if (sig == *sent_sigs)
1567
412
            break;
1568
5.65k
    }
1569
    /* Allow fallback to SHA1 if not strict mode */
1570
412
    if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1571
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1572
0
        return 0;
1573
0
    }
1574
412
    if (!tls1_lookup_md(s->ctx, lu, &md)) {
1575
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1576
0
        return 0;
1577
0
    }
1578
    /*
1579
     * Make sure security callback allows algorithm. For historical
1580
     * reasons we have to pass the sigalg as a two byte char array.
1581
     */
1582
412
    sigalgstr[0] = (sig >> 8) & 0xff;
1583
412
    sigalgstr[1] = sig & 0xff;
1584
412
    secbits = sigalg_security_bits(s->ctx, lu);
1585
412
    if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_get_type(md) : NID_undef, (void *)sigalgstr)) {
1586
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1587
0
        return 0;
1588
0
    }
1589
    /* Store the sigalg the peer uses */
1590
412
    s->s3.tmp.peer_sigalg = lu;
1591
412
    return 1;
1592
412
}
1593
1594
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1595
0
{
1596
0
    if (s->s3.tmp.peer_sigalg == NULL)
1597
0
        return 0;
1598
0
    *pnid = s->s3.tmp.peer_sigalg->sig;
1599
0
    return 1;
1600
0
}
1601
1602
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1603
0
{
1604
0
    if (s->s3.tmp.sigalg == NULL)
1605
0
        return 0;
1606
0
    *pnid = s->s3.tmp.sigalg->sig;
1607
0
    return 1;
1608
0
}
1609
1610
/*
1611
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1612
 * supported, doesn't appear in supported signature algorithms, isn't supported
1613
 * by the enabled protocol versions or by the security level.
1614
 *
1615
 * This function should only be used for checking which ciphers are supported
1616
 * by the client.
1617
 *
1618
 * Call ssl_cipher_disabled() to check that it's enabled or not.
1619
 */
1620
int ssl_set_client_disabled(SSL *s)
1621
353k
{
1622
353k
    s->s3.tmp.mask_a = 0;
1623
353k
    s->s3.tmp.mask_k = 0;
1624
353k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1625
353k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1626
353k
            &s->s3.tmp.max_ver, NULL)
1627
353k
        != 0)
1628
0
        return 0;
1629
353k
#ifndef OPENSSL_NO_PSK
1630
    /* with PSK there must be client callback set */
1631
353k
    if (!s->psk_client_callback) {
1632
353k
        s->s3.tmp.mask_a |= SSL_aPSK;
1633
353k
        s->s3.tmp.mask_k |= SSL_PSK;
1634
353k
    }
1635
353k
#endif /* OPENSSL_NO_PSK */
1636
353k
#ifndef OPENSSL_NO_SRP
1637
353k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1638
353k
        s->s3.tmp.mask_a |= SSL_aSRP;
1639
353k
        s->s3.tmp.mask_k |= SSL_kSRP;
1640
353k
    }
1641
353k
#endif
1642
353k
    return 1;
1643
353k
}
1644
1645
/*
1646
 * ssl_cipher_disabled - check that a cipher is disabled or not
1647
 * @s: SSL connection that you want to use the cipher on
1648
 * @c: cipher to check
1649
 * @op: Security check that you want to do
1650
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1651
 *
1652
 * Returns 1 when it's disabled, 0 when enabled.
1653
 */
1654
int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1655
3.49M
{
1656
3.49M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
1657
2.01M
        || c->algorithm_auth & s->s3.tmp.mask_a)
1658
1.48M
        return 1;
1659
2.01M
    if (s->s3.tmp.max_ver == 0)
1660
0
        return 1;
1661
2.01M
    if (!SSL_IS_DTLS(s)) {
1662
2.01M
        int min_tls = c->min_tls;
1663
1664
        /*
1665
         * For historical reasons we will allow ECHDE to be selected by a server
1666
         * in SSLv3 if we are a client
1667
         */
1668
2.01M
        if (min_tls == TLS1_VERSION && ecdhe
1669
1.14k
            && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1670
1.14k
            min_tls = SSL3_VERSION;
1671
1672
2.01M
        if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1673
5
            return 1;
1674
2.01M
    }
1675
2.01M
    if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver) || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1676
0
        return 1;
1677
1678
2.01M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1679
2.01M
}
1680
1681
int tls_use_ticket(SSL *s)
1682
165k
{
1683
165k
    if ((s->options & SSL_OP_NO_TICKET))
1684
0
        return 0;
1685
165k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1686
165k
}
1687
1688
int tls1_set_server_sigalgs(SSL *s)
1689
3.05k
{
1690
3.05k
    size_t i;
1691
1692
    /* Clear any shared signature algorithms */
1693
3.05k
    OPENSSL_free(s->shared_sigalgs);
1694
3.05k
    s->shared_sigalgs = NULL;
1695
3.05k
    s->shared_sigalgslen = 0;
1696
    /* Clear certificate validity flags */
1697
30.5k
    for (i = 0; i < SSL_PKEY_NUM; i++)
1698
27.4k
        s->s3.tmp.valid_flags[i] = 0;
1699
    /*
1700
     * If peer sent no signature algorithms check to see if we support
1701
     * the default algorithm for each certificate type
1702
     */
1703
3.05k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
1704
2.86k
        && s->s3.tmp.peer_sigalgs == NULL) {
1705
1.94k
        const uint16_t *sent_sigs;
1706
1.94k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1707
1708
19.4k
        for (i = 0; i < SSL_PKEY_NUM; i++) {
1709
17.5k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1710
17.5k
            size_t j;
1711
1712
17.5k
            if (lu == NULL)
1713
11.6k
                continue;
1714
            /* Check default matches a type we sent */
1715
107k
            for (j = 0; j < sent_sigslen; j++) {
1716
107k
                if (lu->sigalg == sent_sigs[j]) {
1717
5.59k
                    s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1718
5.59k
                    break;
1719
5.59k
                }
1720
107k
            }
1721
5.83k
        }
1722
1.94k
        return 1;
1723
1.94k
    }
1724
1725
1.10k
    if (!tls1_process_sigalgs(s)) {
1726
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1727
0
        return 0;
1728
0
    }
1729
1.10k
    if (s->shared_sigalgs != NULL)
1730
1.09k
        return 1;
1731
1732
    /* Fatal error if no shared signature algorithms */
1733
1.10k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1734
16
        SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1735
16
    return 0;
1736
1.10k
}
1737
1738
/*-
1739
 * Gets the ticket information supplied by the client if any.
1740
 *
1741
 *   hello: The parsed ClientHello data
1742
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
1743
 *       point to the resulting session.
1744
 */
1745
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1746
    SSL_SESSION **ret)
1747
30.3k
{
1748
30.3k
    size_t size;
1749
30.3k
    RAW_EXTENSION *ticketext;
1750
1751
30.3k
    *ret = NULL;
1752
30.3k
    s->ext.ticket_expected = 0;
1753
1754
    /*
1755
     * If tickets disabled or not supported by the protocol version
1756
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1757
     * resumption.
1758
     */
1759
30.3k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1760
0
        return SSL_TICKET_NONE;
1761
1762
30.3k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1763
30.3k
    if (!ticketext->present)
1764
23.9k
        return SSL_TICKET_NONE;
1765
1766
6.47k
    size = PACKET_remaining(&ticketext->data);
1767
1768
6.47k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1769
6.47k
        hello->session_id, hello->session_id_len, ret);
1770
30.3k
}
1771
1772
/*-
1773
 * tls_decrypt_ticket attempts to decrypt a session ticket.
1774
 *
1775
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1776
 * expecting a pre-shared key ciphersuite, in which case we have no use for
1777
 * session tickets and one will never be decrypted, nor will
1778
 * s->ext.ticket_expected be set to 1.
1779
 *
1780
 * Side effects:
1781
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
1782
 *   a new session ticket to the client because the client indicated support
1783
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1784
 *   a session ticket or we couldn't use the one it gave us, or if
1785
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1786
 *   Otherwise, s->ext.ticket_expected is set to 0.
1787
 *
1788
 *   etick: points to the body of the session ticket extension.
1789
 *   eticklen: the length of the session tickets extension.
1790
 *   sess_id: points at the session ID.
1791
 *   sesslen: the length of the session ID.
1792
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
1793
 *       point to the resulting session.
1794
 */
1795
SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1796
    size_t eticklen, const unsigned char *sess_id,
1797
    size_t sesslen, SSL_SESSION **psess)
1798
7.43k
{
1799
7.43k
    SSL_SESSION *sess = NULL;
1800
7.43k
    unsigned char *sdec;
1801
7.43k
    const unsigned char *p;
1802
7.43k
    int slen, ivlen, renew_ticket = 0, declen;
1803
7.43k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1804
7.43k
    size_t mlen;
1805
7.43k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1806
7.43k
    SSL_HMAC *hctx = NULL;
1807
7.43k
    EVP_CIPHER_CTX *ctx = NULL;
1808
7.43k
    SSL_CTX *tctx = s->session_ctx;
1809
1810
7.43k
    if (eticklen == 0) {
1811
        /*
1812
         * The client will accept a ticket but doesn't currently have
1813
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1814
         */
1815
4.04k
        ret = SSL_TICKET_EMPTY;
1816
4.04k
        goto end;
1817
4.04k
    }
1818
3.38k
    if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1819
        /*
1820
         * Indicate that the ticket couldn't be decrypted rather than
1821
         * generating the session from ticket now, trigger
1822
         * abbreviated handshake based on external mechanism to
1823
         * calculate the master secret later.
1824
         */
1825
0
        ret = SSL_TICKET_NO_DECRYPT;
1826
0
        goto end;
1827
0
    }
1828
1829
    /* Need at least keyname + iv */
1830
3.38k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1831
1.01k
        ret = SSL_TICKET_NO_DECRYPT;
1832
1.01k
        goto end;
1833
1.01k
    }
1834
1835
    /* Initialize session ticket encryption and HMAC contexts */
1836
2.36k
    hctx = ssl_hmac_new(tctx);
1837
2.36k
    if (hctx == NULL) {
1838
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
1839
0
        goto end;
1840
0
    }
1841
2.36k
    ctx = EVP_CIPHER_CTX_new();
1842
2.36k
    if (ctx == NULL) {
1843
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
1844
0
        goto end;
1845
0
    }
1846
2.36k
#ifndef OPENSSL_NO_DEPRECATED_3_0
1847
2.36k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1848
#else
1849
    if (tctx->ext.ticket_key_evp_cb != NULL)
1850
#endif
1851
0
    {
1852
0
        unsigned char *nctick = (unsigned char *)etick;
1853
0
        int rv = 0;
1854
1855
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
1856
0
            rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1857
0
                nctick + TLSEXT_KEYNAME_LENGTH,
1858
0
                ctx,
1859
0
                ssl_hmac_get0_EVP_MAC_CTX(hctx),
1860
0
                0);
1861
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
1862
0
        else if (tctx->ext.ticket_key_cb != NULL)
1863
            /* if 0 is returned, write an empty ticket */
1864
0
            rv = tctx->ext.ticket_key_cb(s, nctick,
1865
0
                nctick + TLSEXT_KEYNAME_LENGTH,
1866
0
                ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1867
0
#endif
1868
0
        if (rv < 0) {
1869
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
1870
0
            goto end;
1871
0
        }
1872
0
        if (rv == 0) {
1873
0
            ret = SSL_TICKET_NO_DECRYPT;
1874
0
            goto end;
1875
0
        }
1876
0
        if (rv == 2)
1877
0
            renew_ticket = 1;
1878
2.36k
    } else {
1879
2.36k
        EVP_CIPHER *aes256cbc = NULL;
1880
1881
        /* Check key name matches */
1882
2.36k
        if (memcmp(etick, tctx->ext.tick_key_name,
1883
2.36k
                TLSEXT_KEYNAME_LENGTH)
1884
2.36k
            != 0) {
1885
980
            ret = SSL_TICKET_NO_DECRYPT;
1886
980
            goto end;
1887
980
        }
1888
1889
1.38k
        aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1890
1.38k
            s->ctx->propq);
1891
1.38k
        if (aes256cbc == NULL
1892
1.38k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1893
1.38k
                   sizeof(tctx->ext.secure->tick_hmac_key),
1894
1.38k
                   "SHA256")
1895
1.38k
                <= 0
1896
1.38k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1897
1.38k
                   tctx->ext.secure->tick_aes_key,
1898
1.38k
                   etick + TLSEXT_KEYNAME_LENGTH)
1899
1.38k
                <= 0) {
1900
0
            EVP_CIPHER_free(aes256cbc);
1901
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
1902
0
            goto end;
1903
0
        }
1904
1.38k
        EVP_CIPHER_free(aes256cbc);
1905
1.38k
        if (SSL_IS_TLS13(s))
1906
626
            renew_ticket = 1;
1907
1.38k
    }
1908
    /*
1909
     * Attempt to process session ticket, first conduct sanity and integrity
1910
     * checks on ticket.
1911
     */
1912
1.38k
    mlen = ssl_hmac_size(hctx);
1913
1.38k
    if (mlen == 0) {
1914
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1915
0
        goto end;
1916
0
    }
1917
1918
1.38k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
1919
1.38k
    if (ivlen < 0) {
1920
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1921
0
        goto end;
1922
0
    }
1923
1924
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1925
1.38k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
1926
159
        ret = SSL_TICKET_NO_DECRYPT;
1927
159
        goto end;
1928
159
    }
1929
1.23k
    eticklen -= mlen;
1930
    /* Check HMAC of encrypted ticket */
1931
1.23k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1932
1.23k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1933
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1934
0
        goto end;
1935
0
    }
1936
1937
1.23k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1938
193
        ret = SSL_TICKET_NO_DECRYPT;
1939
193
        goto end;
1940
193
    }
1941
    /* Attempt to decrypt session data */
1942
    /* Move p after IV to start of encrypted ticket, update length */
1943
1.03k
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
1944
1.03k
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
1945
1.03k
    sdec = OPENSSL_malloc(eticklen);
1946
1.03k
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) {
1947
0
        OPENSSL_free(sdec);
1948
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1949
0
        goto end;
1950
0
    }
1951
1.03k
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1952
66
        OPENSSL_free(sdec);
1953
66
        ret = SSL_TICKET_NO_DECRYPT;
1954
66
        goto end;
1955
66
    }
1956
971
    slen += declen;
1957
971
    p = sdec;
1958
1959
971
    sess = d2i_SSL_SESSION(NULL, &p, slen);
1960
971
    slen -= p - sdec;
1961
971
    OPENSSL_free(sdec);
1962
971
    if (sess) {
1963
        /* Some additional consistency checks */
1964
816
        if (slen != 0) {
1965
12
            SSL_SESSION_free(sess);
1966
12
            sess = NULL;
1967
12
            ret = SSL_TICKET_NO_DECRYPT;
1968
12
            goto end;
1969
12
        }
1970
        /*
1971
         * The session ID, if non-empty, is used by some clients to detect
1972
         * that the ticket has been accepted. So we copy it to the session
1973
         * structure. If it is empty set length to zero as required by
1974
         * standard.
1975
         */
1976
804
        if (sesslen) {
1977
289
            memcpy(sess->session_id, sess_id, sesslen);
1978
289
            sess->session_id_length = sesslen;
1979
289
        }
1980
804
        if (renew_ticket)
1981
493
            ret = SSL_TICKET_SUCCESS_RENEW;
1982
311
        else
1983
311
            ret = SSL_TICKET_SUCCESS;
1984
804
        goto end;
1985
816
    }
1986
155
    ERR_clear_error();
1987
    /*
1988
     * For session parse failure, indicate that we need to send a new ticket.
1989
     */
1990
155
    ret = SSL_TICKET_NO_DECRYPT;
1991
1992
7.43k
end:
1993
7.43k
    EVP_CIPHER_CTX_free(ctx);
1994
7.43k
    ssl_hmac_free(hctx);
1995
1996
    /*
1997
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
1998
     * detected above. The callback is responsible for checking |ret| before it
1999
     * performs any action
2000
     */
2001
7.43k
    if (s->session_ctx->decrypt_ticket_cb != NULL
2002
0
        && (ret == SSL_TICKET_EMPTY
2003
0
            || ret == SSL_TICKET_NO_DECRYPT
2004
0
            || ret == SSL_TICKET_SUCCESS
2005
0
            || ret == SSL_TICKET_SUCCESS_RENEW)) {
2006
0
        size_t keyname_len = eticklen;
2007
0
        int retcb;
2008
2009
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2010
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2011
0
        retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
2012
0
            ret,
2013
0
            s->session_ctx->ticket_cb_data);
2014
0
        switch (retcb) {
2015
0
        case SSL_TICKET_RETURN_ABORT:
2016
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2017
0
            break;
2018
2019
0
        case SSL_TICKET_RETURN_IGNORE:
2020
0
            ret = SSL_TICKET_NONE;
2021
0
            SSL_SESSION_free(sess);
2022
0
            sess = NULL;
2023
0
            break;
2024
2025
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2026
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2027
0
                ret = SSL_TICKET_NO_DECRYPT;
2028
            /* else the value of |ret| will already do the right thing */
2029
0
            SSL_SESSION_free(sess);
2030
0
            sess = NULL;
2031
0
            break;
2032
2033
0
        case SSL_TICKET_RETURN_USE:
2034
0
        case SSL_TICKET_RETURN_USE_RENEW:
2035
0
            if (ret != SSL_TICKET_SUCCESS
2036
0
                && ret != SSL_TICKET_SUCCESS_RENEW)
2037
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2038
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2039
0
                ret = SSL_TICKET_SUCCESS;
2040
0
            else
2041
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2042
0
            break;
2043
2044
0
        default:
2045
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2046
0
        }
2047
0
    }
2048
2049
7.43k
    if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2050
7.43k
        switch (ret) {
2051
2.58k
        case SSL_TICKET_NO_DECRYPT:
2052
3.07k
        case SSL_TICKET_SUCCESS_RENEW:
2053
7.11k
        case SSL_TICKET_EMPTY:
2054
7.11k
            s->ext.ticket_expected = 1;
2055
7.43k
        }
2056
7.43k
    }
2057
2058
7.43k
    *psess = sess;
2059
2060
7.43k
    return ret;
2061
7.43k
}
2062
2063
/* Check to see if a signature algorithm is allowed */
2064
static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2065
4.64M
{
2066
4.64M
    unsigned char sigalgstr[2];
2067
4.64M
    int secbits;
2068
2069
4.64M
    if (lu == NULL || !lu->enabled)
2070
0
        return 0;
2071
    /* DSA is not allowed in TLS 1.3 */
2072
4.64M
    if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2073
9.95k
        return 0;
2074
    /*
2075
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2076
     * spec
2077
     */
2078
4.63M
    if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2079
1.85M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2080
1.19M
            || lu->hash_idx == SSL_MD_MD5_IDX
2081
1.19M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2082
693k
        return 0;
2083
2084
    /* See if public key algorithm allowed */
2085
3.93M
    if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2086
0
        return 0;
2087
2088
3.93M
    if (lu->sig == NID_id_GostR3410_2012_256
2089
3.93M
        || lu->sig == NID_id_GostR3410_2012_512
2090
3.93M
        || lu->sig == NID_id_GostR3410_2001) {
2091
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2092
0
        if (s->server && SSL_IS_TLS13(s))
2093
0
            return 0;
2094
0
        if (!s->server
2095
0
            && s->method->version == TLS_ANY_VERSION
2096
0
            && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2097
0
            int i, num;
2098
0
            STACK_OF(SSL_CIPHER) *sk;
2099
2100
            /*
2101
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2102
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2103
             * ciphersuites enabled.
2104
             */
2105
2106
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2107
0
                return 0;
2108
2109
0
            sk = SSL_get_ciphers(s);
2110
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2111
0
            for (i = 0; i < num; i++) {
2112
0
                const SSL_CIPHER *c;
2113
2114
0
                c = sk_SSL_CIPHER_value(sk, i);
2115
                /* Skip disabled ciphers */
2116
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2117
0
                    continue;
2118
2119
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2120
0
                    break;
2121
0
            }
2122
0
            if (i == num)
2123
0
                return 0;
2124
0
        }
2125
0
    }
2126
2127
    /* Finally see if security callback allows it */
2128
3.93M
    secbits = sigalg_security_bits(s->ctx, lu);
2129
3.93M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2130
3.93M
    sigalgstr[1] = lu->sigalg & 0xff;
2131
3.93M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2132
3.93M
}
2133
2134
/*
2135
 * Get a mask of disabled public key algorithms based on supported signature
2136
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2137
 * disabled.
2138
 */
2139
2140
void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2141
353k
{
2142
353k
    const uint16_t *sigalgs;
2143
353k
    size_t i, sigalgslen;
2144
353k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2145
    /*
2146
     * Go through all signature algorithms seeing if we support any
2147
     * in disabled_mask.
2148
     */
2149
353k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2150
10.7M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2151
10.3M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2152
10.3M
        const SSL_CERT_LOOKUP *clu;
2153
2154
10.3M
        if (lu == NULL)
2155
790k
            continue;
2156
2157
9.58M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2158
9.58M
        if (clu == NULL)
2159
0
            continue;
2160
2161
        /* If algorithm is disabled see if we can enable it */
2162
9.58M
        if ((clu->amask & disabled_mask) != 0
2163
1.46M
            && tls12_sigalg_allowed(s, op, lu))
2164
959k
            disabled_mask &= ~clu->amask;
2165
9.58M
    }
2166
353k
    *pmask_a |= disabled_mask;
2167
353k
}
2168
2169
int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2170
    const uint16_t *psig, size_t psiglen)
2171
116k
{
2172
116k
    size_t i;
2173
116k
    int rv = 0;
2174
2175
3.54M
    for (i = 0; i < psiglen; i++, psig++) {
2176
3.42M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2177
2178
3.42M
        if (lu == NULL
2179
3.16M
            || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2180
762k
            continue;
2181
2.66M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2182
0
            return 0;
2183
        /*
2184
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2185
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2186
         */
2187
2.66M
        if (rv == 0 && (!SSL_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224)))
2188
116k
            rv = 1;
2189
2.66M
    }
2190
116k
    if (rv == 0)
2191
116k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2192
116k
    return rv;
2193
116k
}
2194
2195
/* Given preference and allowed sigalgs set shared sigalgs */
2196
static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2197
    const uint16_t *pref, size_t preflen,
2198
    const uint16_t *allow, size_t allowlen)
2199
18.5k
{
2200
18.5k
    const uint16_t *ptmp, *atmp;
2201
18.5k
    size_t i, j, nmatch = 0;
2202
457k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2203
439k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2204
2205
        /* Skip disabled hashes or signature algorithms */
2206
439k
        if (lu == NULL
2207
193k
            || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2208
255k
            continue;
2209
2.87M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2210
2.87M
            if (*ptmp == *atmp) {
2211
184k
                nmatch++;
2212
184k
                if (shsig)
2213
92.0k
                    *shsig++ = lu;
2214
184k
                break;
2215
184k
            }
2216
2.87M
        }
2217
184k
    }
2218
18.5k
    return nmatch;
2219
18.5k
}
2220
2221
/* Set shared signature algorithms for SSL structures */
2222
static int tls1_set_shared_sigalgs(SSL *s)
2223
9.36k
{
2224
9.36k
    const uint16_t *pref, *allow, *conf;
2225
9.36k
    size_t preflen, allowlen, conflen;
2226
9.36k
    size_t nmatch;
2227
9.36k
    const SIGALG_LOOKUP **salgs = NULL;
2228
9.36k
    CERT *c = s->cert;
2229
9.36k
    unsigned int is_suiteb = tls1_suiteb(s);
2230
2231
9.36k
    OPENSSL_free(s->shared_sigalgs);
2232
9.36k
    s->shared_sigalgs = NULL;
2233
9.36k
    s->shared_sigalgslen = 0;
2234
    /* If client use client signature algorithms if not NULL */
2235
9.36k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2236
0
        conf = c->client_sigalgs;
2237
0
        conflen = c->client_sigalgslen;
2238
9.36k
    } else if (c->conf_sigalgs && !is_suiteb) {
2239
0
        conf = c->conf_sigalgs;
2240
0
        conflen = c->conf_sigalgslen;
2241
0
    } else
2242
9.36k
        conflen = tls12_get_psigalgs(s, 0, &conf);
2243
9.36k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2244
0
        pref = conf;
2245
0
        preflen = conflen;
2246
0
        allow = s->s3.tmp.peer_sigalgs;
2247
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2248
9.36k
    } else {
2249
9.36k
        allow = conf;
2250
9.36k
        allowlen = conflen;
2251
9.36k
        pref = s->s3.tmp.peer_sigalgs;
2252
9.36k
        preflen = s->s3.tmp.peer_sigalgslen;
2253
9.36k
    }
2254
9.36k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2255
9.36k
    if (nmatch) {
2256
9.15k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2257
0
            ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2258
0
            return 0;
2259
0
        }
2260
9.15k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2261
9.15k
    } else {
2262
219
        salgs = NULL;
2263
219
    }
2264
9.36k
    s->shared_sigalgs = salgs;
2265
9.36k
    s->shared_sigalgslen = nmatch;
2266
9.36k
    return 1;
2267
9.36k
}
2268
2269
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2270
30.7k
{
2271
30.7k
    unsigned int stmp;
2272
30.7k
    size_t size, i;
2273
30.7k
    uint16_t *buf;
2274
2275
30.7k
    size = PACKET_remaining(pkt);
2276
2277
    /* Invalid data length */
2278
30.7k
    if (size == 0 || (size & 1) != 0)
2279
68
        return 0;
2280
2281
30.6k
    size >>= 1;
2282
2283
30.6k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2284
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2285
0
        return 0;
2286
0
    }
2287
334k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2288
303k
        buf[i] = stmp;
2289
2290
30.6k
    if (i != size) {
2291
0
        OPENSSL_free(buf);
2292
0
        return 0;
2293
0
    }
2294
2295
30.6k
    OPENSSL_free(*pdest);
2296
30.6k
    *pdest = buf;
2297
30.6k
    *pdestlen = size;
2298
2299
30.6k
    return 1;
2300
30.6k
}
2301
2302
int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2303
11.3k
{
2304
    /* Extension ignored for inappropriate versions */
2305
11.3k
    if (!SSL_USE_SIGALGS(s))
2306
273
        return 1;
2307
    /* Should never happen */
2308
11.0k
    if (s->cert == NULL)
2309
0
        return 0;
2310
2311
11.0k
    if (cert)
2312
950
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2313
950
            &s->s3.tmp.peer_cert_sigalgslen);
2314
10.1k
    else
2315
10.1k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2316
10.1k
            &s->s3.tmp.peer_sigalgslen);
2317
11.0k
}
2318
2319
/* Set preferred digest for each key type */
2320
2321
int tls1_process_sigalgs(SSL *s)
2322
9.36k
{
2323
9.36k
    size_t i;
2324
9.36k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2325
2326
9.36k
    if (!tls1_set_shared_sigalgs(s))
2327
0
        return 0;
2328
2329
108k
    for (i = 0; i < SSL_PKEY_NUM; i++)
2330
99.0k
        pvalid[i] = 0;
2331
2332
101k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2333
92.0k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2334
92.0k
        int idx = sigptr->sig_idx;
2335
2336
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2337
92.0k
        if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2338
2.76k
            continue;
2339
        /* If not disabled indicate we can explicitly sign */
2340
89.2k
        if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2341
17.2k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2342
89.2k
    }
2343
9.36k
    return 1;
2344
9.36k
}
2345
2346
int SSL_get_sigalgs(SSL *s, int idx,
2347
    int *psign, int *phash, int *psignhash,
2348
    unsigned char *rsig, unsigned char *rhash)
2349
0
{
2350
0
    uint16_t *psig = s->s3.tmp.peer_sigalgs;
2351
0
    size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2352
0
    if (psig == NULL || numsigalgs > INT_MAX)
2353
0
        return 0;
2354
0
    if (idx >= 0) {
2355
0
        const SIGALG_LOOKUP *lu;
2356
2357
0
        if (idx >= (int)numsigalgs)
2358
0
            return 0;
2359
0
        psig += idx;
2360
0
        if (rhash != NULL)
2361
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2362
0
        if (rsig != NULL)
2363
0
            *rsig = (unsigned char)(*psig & 0xff);
2364
0
        lu = tls1_lookup_sigalg(s, *psig);
2365
0
        if (psign != NULL)
2366
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2367
0
        if (phash != NULL)
2368
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2369
0
        if (psignhash != NULL)
2370
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2371
0
    }
2372
0
    return (int)numsigalgs;
2373
0
}
2374
2375
int SSL_get_shared_sigalgs(SSL *s, int idx,
2376
    int *psign, int *phash, int *psignhash,
2377
    unsigned char *rsig, unsigned char *rhash)
2378
0
{
2379
0
    const SIGALG_LOOKUP *shsigalgs;
2380
0
    if (s->shared_sigalgs == NULL
2381
0
        || idx < 0
2382
0
        || idx >= (int)s->shared_sigalgslen
2383
0
        || s->shared_sigalgslen > INT_MAX)
2384
0
        return 0;
2385
0
    shsigalgs = s->shared_sigalgs[idx];
2386
0
    if (phash != NULL)
2387
0
        *phash = shsigalgs->hash;
2388
0
    if (psign != NULL)
2389
0
        *psign = shsigalgs->sig;
2390
0
    if (psignhash != NULL)
2391
0
        *psignhash = shsigalgs->sigandhash;
2392
0
    if (rsig != NULL)
2393
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2394
0
    if (rhash != NULL)
2395
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2396
0
    return (int)s->shared_sigalgslen;
2397
0
}
2398
2399
/* Maximum possible number of unique entries in sigalgs array */
2400
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2401
2402
typedef struct {
2403
    size_t sigalgcnt;
2404
    /* TLSEXT_SIGALG_XXX values */
2405
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2406
} sig_cb_st;
2407
2408
static void get_sigorhash(int *psig, int *phash, const char *str)
2409
0
{
2410
0
    if (strcmp(str, "RSA") == 0) {
2411
0
        *psig = EVP_PKEY_RSA;
2412
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2413
0
        *psig = EVP_PKEY_RSA_PSS;
2414
0
    } else if (strcmp(str, "DSA") == 0) {
2415
0
        *psig = EVP_PKEY_DSA;
2416
0
    } else if (strcmp(str, "ECDSA") == 0) {
2417
0
        *psig = EVP_PKEY_EC;
2418
0
    } else {
2419
0
        *phash = OBJ_sn2nid(str);
2420
0
        if (*phash == NID_undef)
2421
0
            *phash = OBJ_ln2nid(str);
2422
0
    }
2423
0
}
2424
/* Maximum length of a signature algorithm string component */
2425
#define TLS_MAX_SIGSTRING_LEN 40
2426
2427
static int sig_cb(const char *elem, int len, void *arg)
2428
0
{
2429
0
    sig_cb_st *sarg = arg;
2430
0
    size_t i;
2431
0
    const SIGALG_LOOKUP *s;
2432
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2433
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2434
0
    if (elem == NULL)
2435
0
        return 0;
2436
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2437
0
        return 0;
2438
0
    if (len > (int)(sizeof(etmp) - 1))
2439
0
        return 0;
2440
0
    memcpy(etmp, elem, len);
2441
0
    etmp[len] = 0;
2442
0
    p = strchr(etmp, '+');
2443
    /*
2444
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2445
     * if there's no '+' in the provided name, look for the new-style combined
2446
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2447
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2448
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2449
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2450
     * in the table.
2451
     */
2452
0
    if (p == NULL) {
2453
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2454
0
            i++, s++) {
2455
0
            if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2456
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2457
0
                break;
2458
0
            }
2459
0
        }
2460
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2461
0
            return 0;
2462
0
    } else {
2463
0
        *p = 0;
2464
0
        p++;
2465
0
        if (*p == 0)
2466
0
            return 0;
2467
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
2468
0
        get_sigorhash(&sig_alg, &hash_alg, p);
2469
0
        if (sig_alg == NID_undef || hash_alg == NID_undef)
2470
0
            return 0;
2471
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2472
0
            i++, s++) {
2473
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
2474
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2475
0
                break;
2476
0
            }
2477
0
        }
2478
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2479
0
            return 0;
2480
0
    }
2481
2482
    /* Reject duplicates */
2483
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2484
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2485
0
            sarg->sigalgcnt--;
2486
0
            return 0;
2487
0
        }
2488
0
    }
2489
0
    return 1;
2490
0
}
2491
2492
/*
2493
 * Set supported signature algorithms based on a colon separated list of the
2494
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2495
 */
2496
int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2497
0
{
2498
0
    sig_cb_st sig;
2499
0
    sig.sigalgcnt = 0;
2500
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2501
0
        return 0;
2502
0
    if (c == NULL)
2503
0
        return 1;
2504
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2505
0
}
2506
2507
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2508
    int client)
2509
0
{
2510
0
    uint16_t *sigalgs;
2511
2512
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2513
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2514
0
        return 0;
2515
0
    }
2516
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2517
2518
0
    if (client) {
2519
0
        OPENSSL_free(c->client_sigalgs);
2520
0
        c->client_sigalgs = sigalgs;
2521
0
        c->client_sigalgslen = salglen;
2522
0
    } else {
2523
0
        OPENSSL_free(c->conf_sigalgs);
2524
0
        c->conf_sigalgs = sigalgs;
2525
0
        c->conf_sigalgslen = salglen;
2526
0
    }
2527
2528
0
    return 1;
2529
0
}
2530
2531
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2532
0
{
2533
0
    uint16_t *sigalgs, *sptr;
2534
0
    size_t i;
2535
2536
0
    if (salglen & 1)
2537
0
        return 0;
2538
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2539
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2540
0
        return 0;
2541
0
    }
2542
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2543
0
        size_t j;
2544
0
        const SIGALG_LOOKUP *curr;
2545
0
        int md_id = *psig_nids++;
2546
0
        int sig_id = *psig_nids++;
2547
2548
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2549
0
            j++, curr++) {
2550
0
            if (curr->hash == md_id && curr->sig == sig_id) {
2551
0
                *sptr++ = curr->sigalg;
2552
0
                break;
2553
0
            }
2554
0
        }
2555
2556
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
2557
0
            goto err;
2558
0
    }
2559
2560
0
    if (client) {
2561
0
        OPENSSL_free(c->client_sigalgs);
2562
0
        c->client_sigalgs = sigalgs;
2563
0
        c->client_sigalgslen = salglen / 2;
2564
0
    } else {
2565
0
        OPENSSL_free(c->conf_sigalgs);
2566
0
        c->conf_sigalgs = sigalgs;
2567
0
        c->conf_sigalgslen = salglen / 2;
2568
0
    }
2569
2570
0
    return 1;
2571
2572
0
err:
2573
0
    OPENSSL_free(sigalgs);
2574
0
    return 0;
2575
0
}
2576
2577
static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2578
0
{
2579
0
    int sig_nid, use_pc_sigalgs = 0;
2580
0
    size_t i;
2581
0
    const SIGALG_LOOKUP *sigalg;
2582
0
    size_t sigalgslen;
2583
0
    if (default_nid == -1)
2584
0
        return 1;
2585
0
    sig_nid = X509_get_signature_nid(x);
2586
0
    if (default_nid)
2587
0
        return sig_nid == default_nid ? 1 : 0;
2588
2589
0
    if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2590
        /*
2591
         * If we're in TLSv1.3 then we only get here if we're checking the
2592
         * chain. If the peer has specified peer_cert_sigalgs then we use them
2593
         * otherwise we default to normal sigalgs.
2594
         */
2595
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2596
0
        use_pc_sigalgs = 1;
2597
0
    } else {
2598
0
        sigalgslen = s->shared_sigalgslen;
2599
0
    }
2600
0
    for (i = 0; i < sigalgslen; i++) {
2601
0
        sigalg = use_pc_sigalgs
2602
0
            ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2603
0
            : s->shared_sigalgs[i];
2604
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2605
0
            return 1;
2606
0
    }
2607
0
    return 0;
2608
0
}
2609
2610
/* Check to see if a certificate issuer name matches list of CA names */
2611
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2612
0
{
2613
0
    const X509_NAME *nm;
2614
0
    int i;
2615
0
    nm = X509_get_issuer_name(x);
2616
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
2617
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2618
0
            return 1;
2619
0
    }
2620
0
    return 0;
2621
0
}
2622
2623
/*
2624
 * Check certificate chain is consistent with TLS extensions and is usable by
2625
 * server. This servers two purposes: it allows users to check chains before
2626
 * passing them to the server and it allows the server to check chains before
2627
 * attempting to use them.
2628
 */
2629
2630
/* Flags which need to be set for a certificate when strict mode not set */
2631
2632
#define CERT_PKEY_VALID_FLAGS \
2633
0
    (CERT_PKEY_EE_SIGNATURE | CERT_PKEY_EE_PARAM)
2634
/* Strict mode flags */
2635
#define CERT_PKEY_STRICT_FLAGS                                           \
2636
0
    (CERT_PKEY_VALID_FLAGS | CERT_PKEY_CA_SIGNATURE | CERT_PKEY_CA_PARAM \
2637
0
        | CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE)
2638
2639
int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2640
    int idx)
2641
21.2k
{
2642
21.2k
    int i;
2643
21.2k
    int rv = 0;
2644
21.2k
    int check_flags = 0, strict_mode;
2645
21.2k
    CERT_PKEY *cpk = NULL;
2646
21.2k
    CERT *c = s->cert;
2647
21.2k
    uint32_t *pvalid;
2648
21.2k
    unsigned int suiteb_flags = tls1_suiteb(s);
2649
    /* idx == -1 means checking server chains */
2650
21.2k
    if (idx != -1) {
2651
        /* idx == -2 means checking client certificate chains */
2652
21.2k
        if (idx == -2) {
2653
0
            cpk = c->key;
2654
0
            idx = (int)(cpk - c->pkeys);
2655
0
        } else
2656
21.2k
            cpk = c->pkeys + idx;
2657
21.2k
        pvalid = s->s3.tmp.valid_flags + idx;
2658
21.2k
        x = cpk->x509;
2659
21.2k
        pk = cpk->privatekey;
2660
21.2k
        chain = cpk->chain;
2661
21.2k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2662
        /* If no cert or key, forget it */
2663
21.2k
        if (!x || !pk)
2664
14.1k
            goto end;
2665
21.2k
    } else {
2666
0
        size_t certidx;
2667
2668
0
        if (!x || !pk)
2669
0
            return 0;
2670
2671
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2672
0
            return 0;
2673
0
        idx = certidx;
2674
0
        pvalid = s->s3.tmp.valid_flags + idx;
2675
2676
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2677
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
2678
0
        else
2679
0
            check_flags = CERT_PKEY_VALID_FLAGS;
2680
0
        strict_mode = 1;
2681
0
    }
2682
2683
7.07k
    if (suiteb_flags) {
2684
0
        int ok;
2685
0
        if (check_flags)
2686
0
            check_flags |= CERT_PKEY_SUITEB;
2687
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2688
0
        if (ok == X509_V_OK)
2689
0
            rv |= CERT_PKEY_SUITEB;
2690
0
        else if (!check_flags)
2691
0
            goto end;
2692
0
    }
2693
2694
    /*
2695
     * Check all signature algorithms are consistent with signature
2696
     * algorithms extension if TLS 1.2 or later and strict mode.
2697
     */
2698
7.07k
    if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2699
0
        int default_nid;
2700
0
        int rsign = 0;
2701
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
2702
0
            || s->s3.tmp.peer_sigalgs != NULL) {
2703
0
            default_nid = 0;
2704
            /* If no sigalgs extension use defaults from RFC5246 */
2705
0
        } else {
2706
0
            switch (idx) {
2707
0
            case SSL_PKEY_RSA:
2708
0
                rsign = EVP_PKEY_RSA;
2709
0
                default_nid = NID_sha1WithRSAEncryption;
2710
0
                break;
2711
2712
0
            case SSL_PKEY_DSA_SIGN:
2713
0
                rsign = EVP_PKEY_DSA;
2714
0
                default_nid = NID_dsaWithSHA1;
2715
0
                break;
2716
2717
0
            case SSL_PKEY_ECC:
2718
0
                rsign = EVP_PKEY_EC;
2719
0
                default_nid = NID_ecdsa_with_SHA1;
2720
0
                break;
2721
2722
0
            case SSL_PKEY_GOST01:
2723
0
                rsign = NID_id_GostR3410_2001;
2724
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2725
0
                break;
2726
2727
0
            case SSL_PKEY_GOST12_256:
2728
0
                rsign = NID_id_GostR3410_2012_256;
2729
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2730
0
                break;
2731
2732
0
            case SSL_PKEY_GOST12_512:
2733
0
                rsign = NID_id_GostR3410_2012_512;
2734
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2735
0
                break;
2736
2737
0
            default:
2738
0
                default_nid = -1;
2739
0
                break;
2740
0
            }
2741
0
        }
2742
        /*
2743
         * If peer sent no signature algorithms extension and we have set
2744
         * preferred signature algorithms check we support sha1.
2745
         */
2746
0
        if (default_nid > 0 && c->conf_sigalgs) {
2747
0
            size_t j;
2748
0
            const uint16_t *p = c->conf_sigalgs;
2749
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2750
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2751
2752
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2753
0
                    break;
2754
0
            }
2755
0
            if (j == c->conf_sigalgslen) {
2756
0
                if (check_flags)
2757
0
                    goto skip_sigs;
2758
0
                else
2759
0
                    goto end;
2760
0
            }
2761
0
        }
2762
        /* Check signature algorithm of each cert in chain */
2763
0
        if (SSL_IS_TLS13(s)) {
2764
            /*
2765
             * We only get here if the application has called SSL_check_chain(),
2766
             * so check_flags is always set.
2767
             */
2768
0
            if (find_sig_alg(s, x, pk) != NULL)
2769
0
                rv |= CERT_PKEY_EE_SIGNATURE;
2770
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2771
0
            if (!check_flags)
2772
0
                goto end;
2773
0
        } else
2774
0
            rv |= CERT_PKEY_EE_SIGNATURE;
2775
0
        rv |= CERT_PKEY_CA_SIGNATURE;
2776
0
        for (i = 0; i < sk_X509_num(chain); i++) {
2777
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2778
0
                if (check_flags) {
2779
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
2780
0
                    break;
2781
0
                } else
2782
0
                    goto end;
2783
0
            }
2784
0
        }
2785
0
    }
2786
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2787
7.07k
    else if (check_flags)
2788
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2789
7.07k
skip_sigs:
2790
    /* Check cert parameters are consistent */
2791
7.07k
    if (tls1_check_cert_param(s, x, 1))
2792
6.45k
        rv |= CERT_PKEY_EE_PARAM;
2793
619
    else if (!check_flags)
2794
619
        goto end;
2795
6.45k
    if (!s->server)
2796
0
        rv |= CERT_PKEY_CA_PARAM;
2797
    /* In strict mode check rest of chain too */
2798
6.45k
    else if (strict_mode) {
2799
0
        rv |= CERT_PKEY_CA_PARAM;
2800
0
        for (i = 0; i < sk_X509_num(chain); i++) {
2801
0
            X509 *ca = sk_X509_value(chain, i);
2802
0
            if (!tls1_check_cert_param(s, ca, 0)) {
2803
0
                if (check_flags) {
2804
0
                    rv &= ~CERT_PKEY_CA_PARAM;
2805
0
                    break;
2806
0
                } else
2807
0
                    goto end;
2808
0
            }
2809
0
        }
2810
0
    }
2811
6.45k
    if (!s->server && strict_mode) {
2812
0
        STACK_OF(X509_NAME) *ca_dn;
2813
0
        int check_type = 0;
2814
2815
0
        if (EVP_PKEY_is_a(pk, "RSA"))
2816
0
            check_type = TLS_CT_RSA_SIGN;
2817
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
2818
0
            check_type = TLS_CT_DSS_SIGN;
2819
0
        else if (EVP_PKEY_is_a(pk, "EC"))
2820
0
            check_type = TLS_CT_ECDSA_SIGN;
2821
2822
0
        if (check_type) {
2823
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
2824
0
            size_t j;
2825
2826
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2827
0
                if (*ctypes == check_type) {
2828
0
                    rv |= CERT_PKEY_CERT_TYPE;
2829
0
                    break;
2830
0
                }
2831
0
            }
2832
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2833
0
                goto end;
2834
0
        } else {
2835
0
            rv |= CERT_PKEY_CERT_TYPE;
2836
0
        }
2837
2838
0
        ca_dn = s->s3.tmp.peer_ca_names;
2839
2840
0
        if (ca_dn == NULL
2841
0
            || sk_X509_NAME_num(ca_dn) == 0
2842
0
            || ssl_check_ca_name(ca_dn, x))
2843
0
            rv |= CERT_PKEY_ISSUER_NAME;
2844
0
        else
2845
0
            for (i = 0; i < sk_X509_num(chain); i++) {
2846
0
                X509 *xtmp = sk_X509_value(chain, i);
2847
2848
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
2849
0
                    rv |= CERT_PKEY_ISSUER_NAME;
2850
0
                    break;
2851
0
                }
2852
0
            }
2853
2854
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2855
0
            goto end;
2856
0
    } else
2857
6.45k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2858
2859
6.45k
    if (!check_flags || (rv & check_flags) == check_flags)
2860
6.45k
        rv |= CERT_PKEY_VALID;
2861
2862
21.2k
end:
2863
2864
21.2k
    if (TLS1_get_version(s) >= TLS1_2_VERSION)
2865
19.0k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2866
2.18k
    else
2867
2.18k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2868
2869
    /*
2870
     * When checking a CERT_PKEY structure all flags are irrelevant if the
2871
     * chain is invalid.
2872
     */
2873
21.2k
    if (!check_flags) {
2874
21.2k
        if (rv & CERT_PKEY_VALID) {
2875
6.45k
            *pvalid = rv;
2876
14.7k
        } else {
2877
            /* Preserve sign and explicit sign flag, clear rest */
2878
14.7k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2879
14.7k
            return 0;
2880
14.7k
        }
2881
21.2k
    }
2882
6.45k
    return rv;
2883
21.2k
}
2884
2885
/* Set validity of certificates in an SSL structure */
2886
void tls1_set_cert_validity(SSL *s)
2887
28.6k
{
2888
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2889
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2890
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2891
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2892
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2893
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2894
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2895
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2896
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2897
28.6k
}
2898
2899
/* User level utility function to check a chain is suitable */
2900
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2901
0
{
2902
0
    return tls1_check_chain(s, x, pk, chain, -1);
2903
0
}
2904
2905
EVP_PKEY *ssl_get_auto_dh(SSL *s)
2906
0
{
2907
0
    EVP_PKEY *dhp = NULL;
2908
0
    BIGNUM *p;
2909
0
    int dh_secbits = 80, sec_level_bits;
2910
0
    EVP_PKEY_CTX *pctx = NULL;
2911
0
    OSSL_PARAM_BLD *tmpl = NULL;
2912
0
    OSSL_PARAM *params = NULL;
2913
2914
0
    if (s->cert->dh_tmp_auto != 2) {
2915
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2916
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
2917
0
                dh_secbits = 128;
2918
0
            else
2919
0
                dh_secbits = 80;
2920
0
        } else {
2921
0
            if (s->s3.tmp.cert == NULL)
2922
0
                return NULL;
2923
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2924
0
        }
2925
0
    }
2926
2927
    /* Do not pick a prime that is too weak for the current security level */
2928
0
    sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2929
0
    if (dh_secbits < sec_level_bits)
2930
0
        dh_secbits = sec_level_bits;
2931
2932
0
    if (dh_secbits >= 192)
2933
0
        p = BN_get_rfc3526_prime_8192(NULL);
2934
0
    else if (dh_secbits >= 152)
2935
0
        p = BN_get_rfc3526_prime_4096(NULL);
2936
0
    else if (dh_secbits >= 128)
2937
0
        p = BN_get_rfc3526_prime_3072(NULL);
2938
0
    else if (dh_secbits >= 112)
2939
0
        p = BN_get_rfc3526_prime_2048(NULL);
2940
0
    else
2941
0
        p = BN_get_rfc2409_prime_1024(NULL);
2942
0
    if (p == NULL)
2943
0
        goto err;
2944
2945
0
    pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2946
0
    if (pctx == NULL
2947
0
        || EVP_PKEY_fromdata_init(pctx) != 1)
2948
0
        goto err;
2949
2950
0
    tmpl = OSSL_PARAM_BLD_new();
2951
0
    if (tmpl == NULL
2952
0
        || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2953
0
        || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2954
0
        goto err;
2955
2956
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
2957
0
    if (params == NULL
2958
0
        || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2959
0
        goto err;
2960
2961
0
err:
2962
0
    OSSL_PARAM_free(params);
2963
0
    OSSL_PARAM_BLD_free(tmpl);
2964
0
    EVP_PKEY_CTX_free(pctx);
2965
0
    BN_free(p);
2966
0
    return dhp;
2967
0
}
2968
2969
static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2970
16.5k
{
2971
16.5k
    int secbits = -1;
2972
16.5k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
2973
16.5k
    if (pkey) {
2974
        /*
2975
         * If no parameters this will return -1 and fail using the default
2976
         * security callback for any non-zero security level. This will
2977
         * reject keys which omit parameters but this only affects DSA and
2978
         * omission of parameters is never (?) done in practice.
2979
         */
2980
16.5k
        secbits = EVP_PKEY_get_security_bits(pkey);
2981
16.5k
    }
2982
16.5k
    if (s)
2983
2.26k
        return ssl_security(s, op, secbits, 0, x);
2984
14.3k
    else
2985
14.3k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
2986
16.5k
}
2987
2988
static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2989
16.5k
{
2990
    /* Lookup signature algorithm digest */
2991
16.5k
    int secbits, nid, pknid;
2992
    /* Don't check signature if self signed */
2993
16.5k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2994
16.5k
        return 1;
2995
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2996
0
        secbits = -1;
2997
    /* If digest NID not defined use signature NID */
2998
0
    if (nid == NID_undef)
2999
0
        nid = pknid;
3000
0
    if (s)
3001
0
        return ssl_security(s, op, secbits, nid, x);
3002
0
    else
3003
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3004
0
}
3005
3006
int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
3007
181k
{
3008
181k
    if (vfy)
3009
0
        vfy = SSL_SECOP_PEER;
3010
181k
    if (is_ee) {
3011
181k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3012
0
            return SSL_R_EE_KEY_TOO_SMALL;
3013
181k
    } else {
3014
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3015
0
            return SSL_R_CA_KEY_TOO_SMALL;
3016
0
    }
3017
181k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3018
0
        return SSL_R_CA_MD_TOO_WEAK;
3019
181k
    return 1;
3020
181k
}
3021
3022
/*
3023
 * Check security of a chain, if |sk| includes the end entity certificate then
3024
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3025
 * one to the peer. Return values: 1 if ok otherwise error code to use
3026
 */
3027
3028
int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3029
26.7k
{
3030
26.7k
    int rv, start_idx, i;
3031
26.7k
    if (x == NULL) {
3032
26.7k
        x = sk_X509_value(sk, 0);
3033
26.7k
        if (x == NULL)
3034
0
            return ERR_R_INTERNAL_ERROR;
3035
26.7k
        start_idx = 1;
3036
26.7k
    } else
3037
0
        start_idx = 0;
3038
3039
26.7k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3040
26.7k
    if (rv != 1)
3041
0
        return rv;
3042
3043
26.7k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3044
0
        x = sk_X509_value(sk, i);
3045
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3046
0
        if (rv != 1)
3047
0
            return rv;
3048
0
    }
3049
26.7k
    return 1;
3050
26.7k
}
3051
3052
/*
3053
 * For TLS 1.2 servers check if we have a certificate which can be used
3054
 * with the signature algorithm "lu" and return index of certificate.
3055
 */
3056
3057
static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3058
9.65k
{
3059
9.65k
    int sig_idx = lu->sig_idx;
3060
9.65k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3061
3062
    /* If not recognised or not supported by cipher mask it is not suitable */
3063
9.65k
    if (clu == NULL
3064
9.65k
        || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3065
8.60k
        || (clu->nid == EVP_PKEY_RSA_PSS
3066
566
            && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3067
1.37k
        return -1;
3068
3069
8.28k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3070
9.65k
}
3071
3072
/*
3073
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3074
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3075
 * the key.
3076
 * Returns true if the cert is usable and false otherwise.
3077
 */
3078
static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3079
    EVP_PKEY *pkey)
3080
47.4k
{
3081
47.4k
    const SIGALG_LOOKUP *lu;
3082
47.4k
    int mdnid, pknid, supported;
3083
47.4k
    size_t i;
3084
47.4k
    const char *mdname = NULL;
3085
3086
    /*
3087
     * If the given EVP_PKEY cannot support signing with this digest,
3088
     * the answer is simply 'no'.
3089
     */
3090
47.4k
    if (sig->hash != NID_undef)
3091
47.4k
        mdname = OBJ_nid2sn(sig->hash);
3092
47.4k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3093
47.4k
        mdname,
3094
47.4k
        s->ctx->propq);
3095
47.4k
    if (supported <= 0)
3096
0
        return 0;
3097
3098
    /*
3099
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3100
     * on the sigalg with which the certificate was signed (by its issuer).
3101
     */
3102
47.4k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3103
21.7k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3104
0
            return 0;
3105
121k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3106
100k
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3107
100k
            if (lu == NULL)
3108
72.3k
                continue;
3109
3110
            /*
3111
             * This does not differentiate between the
3112
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3113
             * have a chain here that lets us look at the key OID in the
3114
             * signing certificate.
3115
             */
3116
27.8k
            if (mdnid == lu->hash && pknid == lu->sig)
3117
52
                return 1;
3118
27.8k
        }
3119
21.7k
        return 0;
3120
21.7k
    }
3121
3122
    /*
3123
     * Without signat_algorithms_cert, any certificate for which we have
3124
     * a viable public key is permitted.
3125
     */
3126
25.6k
    return 1;
3127
47.4k
}
3128
3129
/*
3130
 * Returns true if |s| has a usable certificate configured for use
3131
 * with signature scheme |sig|.
3132
 * "Usable" includes a check for presence as well as applying
3133
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3134
 * Returns false if no usable certificate is found.
3135
 */
3136
static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3137
47.7k
{
3138
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3139
47.7k
    if (idx == -1)
3140
7.21k
        idx = sig->sig_idx;
3141
47.7k
    if (!ssl_has_cert(s, idx))
3142
354
        return 0;
3143
3144
47.4k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3145
47.4k
        s->cert->pkeys[idx].privatekey);
3146
47.7k
}
3147
3148
/*
3149
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3150
 * specified signature scheme |sig|, or false otherwise.
3151
 */
3152
static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3153
    EVP_PKEY *pkey)
3154
0
{
3155
0
    size_t idx;
3156
3157
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3158
0
        return 0;
3159
3160
    /* Check the key is consistent with the sig alg */
3161
0
    if ((int)idx != sig->sig_idx)
3162
0
        return 0;
3163
3164
0
    return check_cert_usable(s, sig, x, pkey);
3165
0
}
3166
3167
/*
3168
 * Find a signature scheme that works with the supplied certificate |x| and key
3169
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3170
 * available certs/keys to find one that works.
3171
 */
3172
static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3173
1.85k
{
3174
1.85k
    const SIGALG_LOOKUP *lu = NULL;
3175
1.85k
    size_t i;
3176
1.85k
    int curve = -1;
3177
1.85k
    EVP_PKEY *tmppkey;
3178
3179
    /* Look for a shared sigalgs matching possible certificates */
3180
5.80k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3181
5.72k
        lu = s->shared_sigalgs[i];
3182
3183
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3184
5.72k
        if (lu->hash == NID_sha1
3185
4.85k
            || lu->hash == NID_sha224
3186
4.66k
            || lu->sig == EVP_PKEY_DSA
3187
4.66k
            || lu->sig == EVP_PKEY_RSA)
3188
2.21k
            continue;
3189
        /* Check that we have a cert, and signature_algorithms_cert */
3190
3.50k
        if (!tls1_lookup_md(s->ctx, lu, NULL))
3191
0
            continue;
3192
3.50k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3193
3.31k
            || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3194
199
            continue;
3195
3196
3.31k
        tmppkey = (pkey != NULL) ? pkey
3197
3.31k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3198
3199
3.31k
        if (lu->sig == EVP_PKEY_EC) {
3200
3.13k
            if (curve == -1)
3201
1.72k
                curve = ssl_get_EC_curve_nid(tmppkey);
3202
3.13k
            if (lu->curve != NID_undef && curve != lu->curve)
3203
1.53k
                continue;
3204
3.13k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3205
            /* validate that key is large enough for the signature algorithm */
3206
180
            if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3207
0
                continue;
3208
180
        }
3209
1.77k
        break;
3210
3.31k
    }
3211
3212
1.85k
    if (i == s->shared_sigalgslen)
3213
81
        return NULL;
3214
3215
1.77k
    return lu;
3216
1.85k
}
3217
3218
/*
3219
 * Choose an appropriate signature algorithm based on available certificates
3220
 * Sets chosen certificate and signature algorithm.
3221
 *
3222
 * For servers if we fail to find a required certificate it is a fatal error,
3223
 * an appropriate error code is set and a TLS alert is sent.
3224
 *
3225
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3226
 * a fatal error: we will either try another certificate or not present one
3227
 * to the server. In this case no error is set.
3228
 */
3229
int tls_choose_sigalg(SSL *s, int fatalerrs)
3230
2.86k
{
3231
2.86k
    const SIGALG_LOOKUP *lu = NULL;
3232
2.86k
    int sig_idx = -1;
3233
3234
2.86k
    s->s3.tmp.cert = NULL;
3235
2.86k
    s->s3.tmp.sigalg = NULL;
3236
3237
2.86k
    if (SSL_IS_TLS13(s)) {
3238
678
        lu = find_sig_alg(s, NULL, NULL);
3239
678
        if (lu == NULL) {
3240
28
            if (!fatalerrs)
3241
0
                return 1;
3242
28
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3243
28
                SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3244
28
            return 0;
3245
28
        }
3246
2.18k
    } else {
3247
        /* If ciphersuite doesn't require a cert nothing to do */
3248
2.18k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3249
201
            return 1;
3250
1.98k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3251
8
            return 1;
3252
3253
1.97k
        if (SSL_USE_SIGALGS(s)) {
3254
1.79k
            size_t i;
3255
1.79k
            if (s->s3.tmp.peer_sigalgs != NULL) {
3256
376
                int curve = -1;
3257
3258
                /* For Suite B need to match signature algorithm to curve */
3259
376
                if (tls1_suiteb(s))
3260
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3261
0
                            .privatekey);
3262
3263
                /*
3264
                 * Find highest preference signature algorithm matching
3265
                 * cert type
3266
                 */
3267
9.86k
                for (i = 0; i < s->shared_sigalgslen; i++) {
3268
9.65k
                    lu = s->shared_sigalgs[i];
3269
3270
9.65k
                    if (s->server) {
3271
9.65k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3272
1.62k
                            continue;
3273
9.65k
                    } else {
3274
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3275
3276
0
                        sig_idx = lu->sig_idx;
3277
0
                        if (cc_idx != sig_idx)
3278
0
                            continue;
3279
0
                    }
3280
                    /* Check that we have a cert, and sig_algs_cert */
3281
8.03k
                    if (!has_usable_cert(s, lu, sig_idx))
3282
7.86k
                        continue;
3283
167
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3284
                        /* validate that key is large enough for the signature algorithm */
3285
52
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3286
3287
52
                        if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3288
0
                            continue;
3289
52
                    }
3290
167
                    if (curve == -1 || lu->curve == curve)
3291
167
                        break;
3292
167
                }
3293
376
#ifndef OPENSSL_NO_GOST
3294
                /*
3295
                 * Some Windows-based implementations do not send GOST algorithms indication
3296
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3297
                 * we have to assume GOST support.
3298
                 */
3299
376
                if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3300
0
                    if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3301
0
                        if (!fatalerrs)
3302
0
                            return 1;
3303
0
                        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3304
0
                            SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3305
0
                        return 0;
3306
0
                    } else {
3307
0
                        i = 0;
3308
0
                        sig_idx = lu->sig_idx;
3309
0
                    }
3310
0
                }
3311
376
#endif
3312
376
                if (i == s->shared_sigalgslen) {
3313
209
                    if (!fatalerrs)
3314
0
                        return 1;
3315
209
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3316
209
                        SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3317
209
                    return 0;
3318
209
                }
3319
1.41k
            } else {
3320
                /*
3321
                 * If we have no sigalg use defaults
3322
                 */
3323
1.41k
                const uint16_t *sent_sigs;
3324
1.41k
                size_t sent_sigslen;
3325
3326
1.41k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3327
0
                    if (!fatalerrs)
3328
0
                        return 1;
3329
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3330
0
                        SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3331
0
                    return 0;
3332
0
                }
3333
3334
                /* Check signature matches a type we sent */
3335
1.41k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3336
25.0k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3337
25.0k
                    if (lu->sigalg == *sent_sigs
3338
1.41k
                        && has_usable_cert(s, lu, lu->sig_idx))
3339
1.41k
                        break;
3340
25.0k
                }
3341
1.41k
                if (i == sent_sigslen) {
3342
0
                    if (!fatalerrs)
3343
0
                        return 1;
3344
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3345
0
                        SSL_R_WRONG_SIGNATURE_TYPE);
3346
0
                    return 0;
3347
0
                }
3348
1.41k
            }
3349
1.79k
        } else {
3350
186
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3351
0
                if (!fatalerrs)
3352
0
                    return 1;
3353
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3354
0
                    SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3355
0
                return 0;
3356
0
            }
3357
186
        }
3358
1.97k
    }
3359
2.41k
    if (sig_idx == -1)
3360
2.25k
        sig_idx = lu->sig_idx;
3361
2.41k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3362
2.41k
    s->cert->key = s->s3.tmp.cert;
3363
2.41k
    s->s3.tmp.sigalg = lu;
3364
2.41k
    return 1;
3365
2.86k
}
3366
3367
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3368
0
{
3369
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3370
0
        && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3371
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3372
0
        return 0;
3373
0
    }
3374
3375
0
    ctx->ext.max_fragment_len_mode = mode;
3376
0
    return 1;
3377
0
}
3378
3379
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3380
0
{
3381
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3382
0
        && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3383
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3384
0
        return 0;
3385
0
    }
3386
3387
0
    ssl->ext.max_fragment_len_mode = mode;
3388
0
    return 1;
3389
0
}
3390
3391
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3392
0
{
3393
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
3394
0
        return TLSEXT_max_fragment_length_DISABLED;
3395
0
    return session->ext.max_fragment_len_mode;
3396
0
}
3397
3398
/*
3399
 * Helper functions for HMAC access with legacy support included.
3400
 */
3401
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3402
2.40k
{
3403
2.40k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3404
2.40k
    EVP_MAC *mac = NULL;
3405
3406
2.40k
    if (ret == NULL)
3407
0
        return NULL;
3408
2.40k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3409
2.40k
    if (ctx->ext.ticket_key_evp_cb == NULL
3410
2.40k
        && ctx->ext.ticket_key_cb != NULL) {
3411
0
        if (!ssl_hmac_old_new(ret))
3412
0
            goto err;
3413
0
        return ret;
3414
0
    }
3415
2.40k
#endif
3416
2.40k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3417
2.40k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3418
0
        goto err;
3419
2.40k
    EVP_MAC_free(mac);
3420
2.40k
    return ret;
3421
0
err:
3422
0
    EVP_MAC_CTX_free(ret->ctx);
3423
0
    EVP_MAC_free(mac);
3424
0
    OPENSSL_free(ret);
3425
0
    return NULL;
3426
2.40k
}
3427
3428
void ssl_hmac_free(SSL_HMAC *ctx)
3429
7.46k
{
3430
7.46k
    if (ctx != NULL) {
3431
2.40k
        EVP_MAC_CTX_free(ctx->ctx);
3432
2.40k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3433
2.40k
        ssl_hmac_old_free(ctx);
3434
2.40k
#endif
3435
2.40k
        OPENSSL_free(ctx);
3436
2.40k
    }
3437
7.46k
}
3438
3439
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3440
0
{
3441
0
    return ctx->ctx;
3442
0
}
3443
3444
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3445
1.42k
{
3446
1.42k
    OSSL_PARAM params[2], *p = params;
3447
3448
1.42k
    if (ctx->ctx != NULL) {
3449
1.42k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3450
1.42k
        *p = OSSL_PARAM_construct_end();
3451
1.42k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
3452
1.42k
            return 1;
3453
1.42k
    }
3454
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3455
0
    if (ctx->old_ctx != NULL)
3456
0
        return ssl_hmac_old_init(ctx, key, len, md);
3457
0
#endif
3458
0
    return 0;
3459
0
}
3460
3461
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3462
1.26k
{
3463
1.26k
    if (ctx->ctx != NULL)
3464
1.26k
        return EVP_MAC_update(ctx->ctx, data, len);
3465
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3466
0
    if (ctx->old_ctx != NULL)
3467
0
        return ssl_hmac_old_update(ctx, data, len);
3468
0
#endif
3469
0
    return 0;
3470
0
}
3471
3472
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3473
    size_t max_size)
3474
1.26k
{
3475
1.26k
    if (ctx->ctx != NULL)
3476
1.26k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
3477
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3478
0
    if (ctx->old_ctx != NULL)
3479
0
        return ssl_hmac_old_final(ctx, md, len);
3480
0
#endif
3481
0
    return 0;
3482
0
}
3483
3484
size_t ssl_hmac_size(const SSL_HMAC *ctx)
3485
1.38k
{
3486
1.38k
    if (ctx->ctx != NULL)
3487
1.38k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3488
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3489
0
    if (ctx->old_ctx != NULL)
3490
0
        return ssl_hmac_old_size(ctx);
3491
0
#endif
3492
0
    return 0;
3493
0
}
3494
3495
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3496
31.5k
{
3497
31.5k
    char gname[OSSL_MAX_NAME_SIZE];
3498
3499
31.5k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3500
31.5k
        return OBJ_txt2nid(gname);
3501
3502
0
    return NID_undef;
3503
31.5k
}
3504
3505
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3506
    const unsigned char *enckey,
3507
    size_t enckeylen)
3508
28.6k
{
3509
28.6k
    if (EVP_PKEY_is_a(pkey, "DH")) {
3510
161
        int bits = EVP_PKEY_get_bits(pkey);
3511
3512
161
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
3513
            /* the encoded key must be padded to the length of the p */
3514
12
            return 0;
3515
28.4k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
3516
199
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3517
193
            || enckey[0] != 0x04)
3518
50
            return 0;
3519
199
    }
3520
3521
28.5k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3522
28.6k
}