Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl33/crypto/ec/ecp_nistp521.c
Line
Count
Source
1
/*
2
 * Copyright 2011-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
#error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    { 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
        0xff, 0xff },
77
    { 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
        0xff, 0xfc },
86
    { 0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
        0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
        0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
        0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
        0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
        0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
        0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
        0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
        0x3f, 0x00 },
95
    { 0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
        0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
        0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
        0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
        0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
        0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
        0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
        0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
        0xbd, 0x66 },
104
    { 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
        0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
        0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
        0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
        0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
        0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
        0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
        0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
        0x66, 0x50 }
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
97.6M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
5.17k
{
145
5.17k
    out[0] = (*((limb *)&in[0])) & bottom58bits;
146
5.17k
    out[1] = (*((limb_aX *)&in[7]) >> 2) & bottom58bits;
147
5.17k
    out[2] = (*((limb_aX *)&in[14]) >> 4) & bottom58bits;
148
5.17k
    out[3] = (*((limb_aX *)&in[21]) >> 6) & bottom58bits;
149
5.17k
    out[4] = (*((limb_aX *)&in[29])) & bottom58bits;
150
5.17k
    out[5] = (*((limb_aX *)&in[36]) >> 2) & bottom58bits;
151
5.17k
    out[6] = (*((limb_aX *)&in[43]) >> 4) & bottom58bits;
152
5.17k
    out[7] = (*((limb_aX *)&in[50]) >> 6) & bottom58bits;
153
5.17k
    out[8] = (*((limb_aX *)&in[58])) & bottom57bits;
154
5.17k
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
11.4k
{
162
11.4k
    memset(out, 0, 66);
163
11.4k
    (*((limb *)&out[0])) = in[0];
164
11.4k
    (*((limb_aX *)&out[7])) |= in[1] << 2;
165
11.4k
    (*((limb_aX *)&out[14])) |= in[2] << 4;
166
11.4k
    (*((limb_aX *)&out[21])) |= in[3] << 6;
167
11.4k
    (*((limb_aX *)&out[29])) = in[4];
168
11.4k
    (*((limb_aX *)&out[36])) |= in[5] << 2;
169
11.4k
    (*((limb_aX *)&out[43])) |= in[6] << 4;
170
11.4k
    (*((limb_aX *)&out[50])) |= in[7] << 6;
171
11.4k
    (*((limb_aX *)&out[58])) = in[8];
172
11.4k
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
5.17k
{
177
5.17k
    felem_bytearray b_out;
178
5.17k
    int num_bytes;
179
180
5.17k
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
5.17k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
5.17k
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
5.17k
    bin66_to_felem(out, b_out);
190
5.17k
    return 1;
191
5.17k
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
11.4k
{
196
11.4k
    felem_bytearray b_out;
197
11.4k
    felem_to_bin66(b_out, in);
198
11.4k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
11.4k
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
3.10M
{
221
3.10M
    out[0] = in[0];
222
3.10M
    out[1] = in[1];
223
3.10M
    out[2] = in[2];
224
3.10M
    out[3] = in[3];
225
3.10M
    out[4] = in[4];
226
3.10M
    out[5] = in[5];
227
3.10M
    out[6] = in[6];
228
3.10M
    out[7] = in[7];
229
3.10M
    out[8] = in[8];
230
3.10M
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
769k
{
235
769k
    out[0] += in[0];
236
769k
    out[1] += in[1];
237
769k
    out[2] += in[2];
238
769k
    out[3] += in[3];
239
769k
    out[4] += in[4];
240
769k
    out[5] += in[5];
241
769k
    out[6] += in[6];
242
769k
    out[7] += in[7];
243
769k
    out[8] += in[8];
244
769k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
7.89M
{
249
7.89M
    out[0] = in[0] * scalar;
250
7.89M
    out[1] = in[1] * scalar;
251
7.89M
    out[2] = in[2] * scalar;
252
7.89M
    out[3] = in[3] * scalar;
253
7.89M
    out[4] = in[4] * scalar;
254
7.89M
    out[5] = in[5] * scalar;
255
7.89M
    out[6] = in[6] * scalar;
256
7.89M
    out[7] = in[7] * scalar;
257
7.89M
    out[8] = in[8] * scalar;
258
7.89M
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
1.32M
{
263
1.32M
    out[0] *= scalar;
264
1.32M
    out[1] *= scalar;
265
1.32M
    out[2] *= scalar;
266
1.32M
    out[3] *= scalar;
267
1.32M
    out[4] *= scalar;
268
1.32M
    out[5] *= scalar;
269
1.32M
    out[6] *= scalar;
270
1.32M
    out[7] *= scalar;
271
1.32M
    out[8] *= scalar;
272
1.32M
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
441k
{
277
441k
    out[0] *= scalar;
278
441k
    out[1] *= scalar;
279
441k
    out[2] *= scalar;
280
441k
    out[3] *= scalar;
281
441k
    out[4] *= scalar;
282
441k
    out[5] *= scalar;
283
441k
    out[6] *= scalar;
284
441k
    out[7] *= scalar;
285
441k
    out[8] *= scalar;
286
441k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
16.0k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
16.0k
    static const limb two62m3 = (((limb)1) << 62) - (((limb)1) << 5);
299
16.0k
    static const limb two62m2 = (((limb)1) << 62) - (((limb)1) << 4);
300
301
16.0k
    out[0] = two62m3 - in[0];
302
16.0k
    out[1] = two62m2 - in[1];
303
16.0k
    out[2] = two62m2 - in[2];
304
16.0k
    out[3] = two62m2 - in[3];
305
16.0k
    out[4] = two62m2 - in[4];
306
16.0k
    out[5] = two62m2 - in[5];
307
16.0k
    out[6] = two62m2 - in[6];
308
16.0k
    out[7] = two62m2 - in[7];
309
16.0k
    out[8] = two62m2 - in[8];
310
16.0k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
692k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
692k
    static const limb two62m3 = (((limb)1) << 62) - (((limb)1) << 5);
325
692k
    static const limb two62m2 = (((limb)1) << 62) - (((limb)1) << 4);
326
327
692k
    out[0] += two62m3 - in[0];
328
692k
    out[1] += two62m2 - in[1];
329
692k
    out[2] += two62m2 - in[2];
330
692k
    out[3] += two62m2 - in[3];
331
692k
    out[4] += two62m2 - in[4];
332
692k
    out[5] += two62m2 - in[5];
333
692k
    out[6] += two62m2 - in[6];
334
692k
    out[7] += two62m2 - in[7];
335
692k
    out[8] += two62m2 - in[8];
336
692k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
1.29M
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
1.29M
    static const limb two63m6 = (((limb)1) << 63) - (((limb)1) << 6);
356
1.29M
    static const limb two63m5 = (((limb)1) << 63) - (((limb)1) << 5);
357
358
1.29M
    out[0] += two63m6 - in[0];
359
1.29M
    out[1] += two63m5 - in[1];
360
1.29M
    out[2] += two63m5 - in[2];
361
1.29M
    out[3] += two63m5 - in[3];
362
1.29M
    out[4] += two63m5 - in[4];
363
1.29M
    out[5] += two63m5 - in[5];
364
1.29M
    out[6] += two63m5 - in[6];
365
1.29M
    out[7] += two63m5 - in[7];
366
1.29M
    out[8] += two63m5 - in[8];
367
1.29M
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
441k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
441k
    static const uint128_t two127m70 = (((uint128_t)1) << 127) - (((uint128_t)1) << 70);
382
441k
    static const uint128_t two127m69 = (((uint128_t)1) << 127) - (((uint128_t)1) << 69);
383
384
441k
    out[0] += (two127m70 - in[0]);
385
441k
    out[1] += (two127m69 - in[1]);
386
441k
    out[2] += (two127m69 - in[2]);
387
441k
    out[3] += (two127m69 - in[3]);
388
441k
    out[4] += (two127m69 - in[4]);
389
441k
    out[5] += (two127m69 - in[5]);
390
441k
    out[6] += (two127m69 - in[6]);
391
441k
    out[7] += (two127m69 - in[7]);
392
441k
    out[8] += (two127m69 - in[8]);
393
441k
}
394
395
/*-
396
 * felem_square sets |out| = |in|^2
397
 * On entry:
398
 *   in[i] < 2^62
399
 * On exit:
400
 *   out[i] < 17 * max(in[i]) * max(in[i])
401
 */
402
static void felem_square_ref(largefelem out, const felem in)
403
2.68M
{
404
2.68M
    felem inx2, inx4;
405
2.68M
    felem_scalar(inx2, in, 2);
406
2.68M
    felem_scalar(inx4, in, 4);
407
408
    /*-
409
     * We have many cases were we want to do
410
     *   in[x] * in[y] +
411
     *   in[y] * in[x]
412
     * This is obviously just
413
     *   2 * in[x] * in[y]
414
     * However, rather than do the doubling on the 128 bit result, we
415
     * double one of the inputs to the multiplication by reading from
416
     * |inx2|
417
     */
418
419
2.68M
    out[0] = ((uint128_t)in[0]) * in[0];
420
2.68M
    out[1] = ((uint128_t)in[0]) * inx2[1];
421
2.68M
    out[2] = ((uint128_t)in[0]) * inx2[2] + ((uint128_t)in[1]) * in[1];
422
2.68M
    out[3] = ((uint128_t)in[0]) * inx2[3] + ((uint128_t)in[1]) * inx2[2];
423
2.68M
    out[4] = ((uint128_t)in[0]) * inx2[4] + ((uint128_t)in[1]) * inx2[3] + ((uint128_t)in[2]) * in[2];
424
2.68M
    out[5] = ((uint128_t)in[0]) * inx2[5] + ((uint128_t)in[1]) * inx2[4] + ((uint128_t)in[2]) * inx2[3];
425
2.68M
    out[6] = ((uint128_t)in[0]) * inx2[6] + ((uint128_t)in[1]) * inx2[5] + ((uint128_t)in[2]) * inx2[4] + ((uint128_t)in[3]) * in[3];
426
2.68M
    out[7] = ((uint128_t)in[0]) * inx2[7] + ((uint128_t)in[1]) * inx2[6] + ((uint128_t)in[2]) * inx2[5] + ((uint128_t)in[3]) * inx2[4];
427
2.68M
    out[8] = ((uint128_t)in[0]) * inx2[8] + ((uint128_t)in[1]) * inx2[7] + ((uint128_t)in[2]) * inx2[6] + ((uint128_t)in[3]) * inx2[5] + ((uint128_t)in[4]) * in[4];
428
429
    /*
430
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
431
     * They correspond to locations one bit up from the limbs produced above
432
     * so we would have to multiply by two to align them. Again, rather than
433
     * operate on the 128-bit result, we double one of the inputs to the
434
     * multiplication. If we want to double for both this reason, and the
435
     * reason above, then we end up multiplying by four.
436
     */
437
438
    /* 9 */
439
2.68M
    out[0] += ((uint128_t)in[1]) * inx4[8] + ((uint128_t)in[2]) * inx4[7] + ((uint128_t)in[3]) * inx4[6] + ((uint128_t)in[4]) * inx4[5];
440
441
    /* 10 */
442
2.68M
    out[1] += ((uint128_t)in[2]) * inx4[8] + ((uint128_t)in[3]) * inx4[7] + ((uint128_t)in[4]) * inx4[6] + ((uint128_t)in[5]) * inx2[5];
443
444
    /* 11 */
445
2.68M
    out[2] += ((uint128_t)in[3]) * inx4[8] + ((uint128_t)in[4]) * inx4[7] + ((uint128_t)in[5]) * inx4[6];
446
447
    /* 12 */
448
2.68M
    out[3] += ((uint128_t)in[4]) * inx4[8] + ((uint128_t)in[5]) * inx4[7] + ((uint128_t)in[6]) * inx2[6];
449
450
    /* 13 */
451
2.68M
    out[4] += ((uint128_t)in[5]) * inx4[8] + ((uint128_t)in[6]) * inx4[7];
452
453
    /* 14 */
454
2.68M
    out[5] += ((uint128_t)in[6]) * inx4[8] + ((uint128_t)in[7]) * inx2[7];
455
456
    /* 15 */
457
2.68M
    out[6] += ((uint128_t)in[7]) * inx4[8];
458
459
    /* 16 */
460
2.68M
    out[7] += ((uint128_t)in[8]) * inx2[8];
461
2.68M
}
462
463
/*-
464
 * felem_mul sets |out| = |in1| * |in2|
465
 * On entry:
466
 *   in1[i] < 2^64
467
 *   in2[i] < 2^63
468
 * On exit:
469
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
470
 */
471
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
472
2.35M
{
473
2.35M
    felem in2x2;
474
2.35M
    felem_scalar(in2x2, in2, 2);
475
476
2.35M
    out[0] = ((uint128_t)in1[0]) * in2[0];
477
478
2.35M
    out[1] = ((uint128_t)in1[0]) * in2[1] + ((uint128_t)in1[1]) * in2[0];
479
480
2.35M
    out[2] = ((uint128_t)in1[0]) * in2[2] + ((uint128_t)in1[1]) * in2[1] + ((uint128_t)in1[2]) * in2[0];
481
482
2.35M
    out[3] = ((uint128_t)in1[0]) * in2[3] + ((uint128_t)in1[1]) * in2[2] + ((uint128_t)in1[2]) * in2[1] + ((uint128_t)in1[3]) * in2[0];
483
484
2.35M
    out[4] = ((uint128_t)in1[0]) * in2[4] + ((uint128_t)in1[1]) * in2[3] + ((uint128_t)in1[2]) * in2[2] + ((uint128_t)in1[3]) * in2[1] + ((uint128_t)in1[4]) * in2[0];
485
486
2.35M
    out[5] = ((uint128_t)in1[0]) * in2[5] + ((uint128_t)in1[1]) * in2[4] + ((uint128_t)in1[2]) * in2[3] + ((uint128_t)in1[3]) * in2[2] + ((uint128_t)in1[4]) * in2[1] + ((uint128_t)in1[5]) * in2[0];
487
488
2.35M
    out[6] = ((uint128_t)in1[0]) * in2[6] + ((uint128_t)in1[1]) * in2[5] + ((uint128_t)in1[2]) * in2[4] + ((uint128_t)in1[3]) * in2[3] + ((uint128_t)in1[4]) * in2[2] + ((uint128_t)in1[5]) * in2[1] + ((uint128_t)in1[6]) * in2[0];
489
490
2.35M
    out[7] = ((uint128_t)in1[0]) * in2[7] + ((uint128_t)in1[1]) * in2[6] + ((uint128_t)in1[2]) * in2[5] + ((uint128_t)in1[3]) * in2[4] + ((uint128_t)in1[4]) * in2[3] + ((uint128_t)in1[5]) * in2[2] + ((uint128_t)in1[6]) * in2[1] + ((uint128_t)in1[7]) * in2[0];
491
492
2.35M
    out[8] = ((uint128_t)in1[0]) * in2[8] + ((uint128_t)in1[1]) * in2[7] + ((uint128_t)in1[2]) * in2[6] + ((uint128_t)in1[3]) * in2[5] + ((uint128_t)in1[4]) * in2[4] + ((uint128_t)in1[5]) * in2[3] + ((uint128_t)in1[6]) * in2[2] + ((uint128_t)in1[7]) * in2[1] + ((uint128_t)in1[8]) * in2[0];
493
494
    /* See comment in felem_square about the use of in2x2 here */
495
496
2.35M
    out[0] += ((uint128_t)in1[1]) * in2x2[8] + ((uint128_t)in1[2]) * in2x2[7] + ((uint128_t)in1[3]) * in2x2[6] + ((uint128_t)in1[4]) * in2x2[5] + ((uint128_t)in1[5]) * in2x2[4] + ((uint128_t)in1[6]) * in2x2[3] + ((uint128_t)in1[7]) * in2x2[2] + ((uint128_t)in1[8]) * in2x2[1];
497
498
2.35M
    out[1] += ((uint128_t)in1[2]) * in2x2[8] + ((uint128_t)in1[3]) * in2x2[7] + ((uint128_t)in1[4]) * in2x2[6] + ((uint128_t)in1[5]) * in2x2[5] + ((uint128_t)in1[6]) * in2x2[4] + ((uint128_t)in1[7]) * in2x2[3] + ((uint128_t)in1[8]) * in2x2[2];
499
500
2.35M
    out[2] += ((uint128_t)in1[3]) * in2x2[8] + ((uint128_t)in1[4]) * in2x2[7] + ((uint128_t)in1[5]) * in2x2[6] + ((uint128_t)in1[6]) * in2x2[5] + ((uint128_t)in1[7]) * in2x2[4] + ((uint128_t)in1[8]) * in2x2[3];
501
502
2.35M
    out[3] += ((uint128_t)in1[4]) * in2x2[8] + ((uint128_t)in1[5]) * in2x2[7] + ((uint128_t)in1[6]) * in2x2[6] + ((uint128_t)in1[7]) * in2x2[5] + ((uint128_t)in1[8]) * in2x2[4];
503
504
2.35M
    out[4] += ((uint128_t)in1[5]) * in2x2[8] + ((uint128_t)in1[6]) * in2x2[7] + ((uint128_t)in1[7]) * in2x2[6] + ((uint128_t)in1[8]) * in2x2[5];
505
506
2.35M
    out[5] += ((uint128_t)in1[6]) * in2x2[8] + ((uint128_t)in1[7]) * in2x2[7] + ((uint128_t)in1[8]) * in2x2[6];
507
508
2.35M
    out[6] += ((uint128_t)in1[7]) * in2x2[8] + ((uint128_t)in1[8]) * in2x2[7];
509
510
2.35M
    out[7] += ((uint128_t)in1[8]) * in2x2[8];
511
2.35M
}
512
513
static const limb bottom52bits = 0xfffffffffffff;
514
515
/*-
516
 * felem_reduce converts a largefelem to an felem.
517
 * On entry:
518
 *   in[i] < 2^128
519
 * On exit:
520
 *   out[i] < 2^59 + 2^14
521
 */
522
static void felem_reduce(felem out, const largefelem in)
523
4.59M
{
524
4.59M
    u64 overflow1, overflow2;
525
526
4.59M
    out[0] = ((limb)in[0]) & bottom58bits;
527
4.59M
    out[1] = ((limb)in[1]) & bottom58bits;
528
4.59M
    out[2] = ((limb)in[2]) & bottom58bits;
529
4.59M
    out[3] = ((limb)in[3]) & bottom58bits;
530
4.59M
    out[4] = ((limb)in[4]) & bottom58bits;
531
4.59M
    out[5] = ((limb)in[5]) & bottom58bits;
532
4.59M
    out[6] = ((limb)in[6]) & bottom58bits;
533
4.59M
    out[7] = ((limb)in[7]) & bottom58bits;
534
4.59M
    out[8] = ((limb)in[8]) & bottom58bits;
535
536
    /* out[i] < 2^58 */
537
538
4.59M
    out[1] += ((limb)in[0]) >> 58;
539
4.59M
    out[1] += (((limb)(in[0] >> 64)) & bottom52bits) << 6;
540
    /*-
541
     * out[1] < 2^58 + 2^6 + 2^58
542
     *        = 2^59 + 2^6
543
     */
544
4.59M
    out[2] += ((limb)(in[0] >> 64)) >> 52;
545
546
4.59M
    out[2] += ((limb)in[1]) >> 58;
547
4.59M
    out[2] += (((limb)(in[1] >> 64)) & bottom52bits) << 6;
548
4.59M
    out[3] += ((limb)(in[1] >> 64)) >> 52;
549
550
4.59M
    out[3] += ((limb)in[2]) >> 58;
551
4.59M
    out[3] += (((limb)(in[2] >> 64)) & bottom52bits) << 6;
552
4.59M
    out[4] += ((limb)(in[2] >> 64)) >> 52;
553
554
4.59M
    out[4] += ((limb)in[3]) >> 58;
555
4.59M
    out[4] += (((limb)(in[3] >> 64)) & bottom52bits) << 6;
556
4.59M
    out[5] += ((limb)(in[3] >> 64)) >> 52;
557
558
4.59M
    out[5] += ((limb)in[4]) >> 58;
559
4.59M
    out[5] += (((limb)(in[4] >> 64)) & bottom52bits) << 6;
560
4.59M
    out[6] += ((limb)(in[4] >> 64)) >> 52;
561
562
4.59M
    out[6] += ((limb)in[5]) >> 58;
563
4.59M
    out[6] += (((limb)(in[5] >> 64)) & bottom52bits) << 6;
564
4.59M
    out[7] += ((limb)(in[5] >> 64)) >> 52;
565
566
4.59M
    out[7] += ((limb)in[6]) >> 58;
567
4.59M
    out[7] += (((limb)(in[6] >> 64)) & bottom52bits) << 6;
568
4.59M
    out[8] += ((limb)(in[6] >> 64)) >> 52;
569
570
4.59M
    out[8] += ((limb)in[7]) >> 58;
571
4.59M
    out[8] += (((limb)(in[7] >> 64)) & bottom52bits) << 6;
572
    /*-
573
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
574
     *            < 2^59 + 2^13
575
     */
576
4.59M
    overflow1 = ((limb)(in[7] >> 64)) >> 52;
577
578
4.59M
    overflow1 += ((limb)in[8]) >> 58;
579
4.59M
    overflow1 += (((limb)(in[8] >> 64)) & bottom52bits) << 6;
580
4.59M
    overflow2 = ((limb)(in[8] >> 64)) >> 52;
581
582
4.59M
    overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */
583
4.59M
    overflow2 <<= 1; /* overflow2 < 2^13 */
584
585
4.59M
    out[0] += overflow1; /* out[0] < 2^60 */
586
4.59M
    out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */
587
588
4.59M
    out[1] += out[0] >> 58;
589
4.59M
    out[0] &= bottom58bits;
590
    /*-
591
     * out[0] < 2^58
592
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
593
     *        < 2^59 + 2^14
594
     */
595
4.59M
}
596
597
#if defined(ECP_NISTP521_ASM)
598
static void felem_square_wrapper(largefelem out, const felem in);
599
static void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
600
601
static void (*felem_square_p)(largefelem out, const felem in) = felem_square_wrapper;
602
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) = felem_mul_wrapper;
603
604
void p521_felem_square(largefelem out, const felem in);
605
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
606
607
#if defined(_ARCH_PPC64)
608
#include "crypto/ppc_arch.h"
609
#endif
610
611
static void felem_select(void)
612
{
613
#if defined(_ARCH_PPC64)
614
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
615
        felem_square_p = p521_felem_square;
616
        felem_mul_p = p521_felem_mul;
617
618
        return;
619
    }
620
#endif
621
622
    /* Default */
623
    felem_square_p = felem_square_ref;
624
    felem_mul_p = felem_mul_ref;
625
}
626
627
static void felem_square_wrapper(largefelem out, const felem in)
628
{
629
    felem_select();
630
    felem_square_p(out, in);
631
}
632
633
static void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
634
{
635
    felem_select();
636
    felem_mul_p(out, in1, in2);
637
}
638
639
#define felem_square felem_square_p
640
#define felem_mul felem_mul_p
641
#else
642
2.68M
#define felem_square felem_square_ref
643
2.35M
#define felem_mul felem_mul_ref
644
#endif
645
646
static void felem_square_reduce(felem out, const felem in)
647
0
{
648
0
    largefelem tmp;
649
0
    felem_square(tmp, in);
650
0
    felem_reduce(out, tmp);
651
0
}
652
653
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
654
0
{
655
0
    largefelem tmp;
656
0
    felem_mul(tmp, in1, in2);
657
0
    felem_reduce(out, tmp);
658
0
}
659
660
/*-
661
 * felem_inv calculates |out| = |in|^{-1}
662
 *
663
 * Based on Fermat's Little Theorem:
664
 *   a^p = a (mod p)
665
 *   a^{p-1} = 1 (mod p)
666
 *   a^{p-2} = a^{-1} (mod p)
667
 */
668
static void felem_inv(felem out, const felem in)
669
1.57k
{
670
1.57k
    felem ftmp, ftmp2, ftmp3, ftmp4;
671
1.57k
    largefelem tmp;
672
1.57k
    unsigned i;
673
674
1.57k
    felem_square(tmp, in);
675
1.57k
    felem_reduce(ftmp, tmp); /* 2^1 */
676
1.57k
    felem_mul(tmp, in, ftmp);
677
1.57k
    felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
678
1.57k
    felem_assign(ftmp2, ftmp);
679
1.57k
    felem_square(tmp, ftmp);
680
1.57k
    felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
681
1.57k
    felem_mul(tmp, in, ftmp);
682
1.57k
    felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */
683
1.57k
    felem_square(tmp, ftmp);
684
1.57k
    felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */
685
686
1.57k
    felem_square(tmp, ftmp2);
687
1.57k
    felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */
688
1.57k
    felem_square(tmp, ftmp3);
689
1.57k
    felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */
690
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
691
1.57k
    felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */
692
693
1.57k
    felem_assign(ftmp2, ftmp3);
694
1.57k
    felem_square(tmp, ftmp3);
695
1.57k
    felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */
696
1.57k
    felem_square(tmp, ftmp3);
697
1.57k
    felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */
698
1.57k
    felem_square(tmp, ftmp3);
699
1.57k
    felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */
700
1.57k
    felem_square(tmp, ftmp3);
701
1.57k
    felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */
702
1.57k
    felem_mul(tmp, ftmp3, ftmp);
703
1.57k
    felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */
704
1.57k
    felem_square(tmp, ftmp4);
705
1.57k
    felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */
706
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
707
1.57k
    felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */
708
1.57k
    felem_assign(ftmp2, ftmp3);
709
710
14.1k
    for (i = 0; i < 8; i++) {
711
12.5k
        felem_square(tmp, ftmp3);
712
12.5k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
713
12.5k
    }
714
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
715
1.57k
    felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */
716
1.57k
    felem_assign(ftmp2, ftmp3);
717
718
26.7k
    for (i = 0; i < 16; i++) {
719
25.1k
        felem_square(tmp, ftmp3);
720
25.1k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
721
25.1k
    }
722
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
723
1.57k
    felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */
724
1.57k
    felem_assign(ftmp2, ftmp3);
725
726
51.8k
    for (i = 0; i < 32; i++) {
727
50.3k
        felem_square(tmp, ftmp3);
728
50.3k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
729
50.3k
    }
730
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
731
1.57k
    felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */
732
1.57k
    felem_assign(ftmp2, ftmp3);
733
734
102k
    for (i = 0; i < 64; i++) {
735
100k
        felem_square(tmp, ftmp3);
736
100k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
737
100k
    }
738
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
739
1.57k
    felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */
740
1.57k
    felem_assign(ftmp2, ftmp3);
741
742
202k
    for (i = 0; i < 128; i++) {
743
201k
        felem_square(tmp, ftmp3);
744
201k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
745
201k
    }
746
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
747
1.57k
    felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */
748
1.57k
    felem_assign(ftmp2, ftmp3);
749
750
404k
    for (i = 0; i < 256; i++) {
751
402k
        felem_square(tmp, ftmp3);
752
402k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
753
402k
    }
754
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
755
1.57k
    felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */
756
757
15.7k
    for (i = 0; i < 9; i++) {
758
14.1k
        felem_square(tmp, ftmp3);
759
14.1k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
760
14.1k
    }
761
1.57k
    felem_mul(tmp, ftmp3, ftmp4);
762
1.57k
    felem_reduce(ftmp3, tmp); /* 2^521 - 2^2 */
763
1.57k
    felem_mul(tmp, ftmp3, in);
764
1.57k
    felem_reduce(out, tmp); /* 2^521 - 3 */
765
1.57k
}
766
767
/* This is 2^521-1, expressed as an felem */
768
static const felem kPrime = {
769
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
770
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
771
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
772
};
773
774
/*-
775
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
776
 * otherwise.
777
 * On entry:
778
 *   in[i] < 2^59 + 2^14
779
 */
780
static limb felem_is_zero(const felem in)
781
762k
{
782
762k
    felem ftmp;
783
762k
    limb is_zero, is_p;
784
762k
    felem_assign(ftmp, in);
785
786
762k
    ftmp[0] += ftmp[8] >> 57;
787
762k
    ftmp[8] &= bottom57bits;
788
    /* ftmp[8] < 2^57 */
789
762k
    ftmp[1] += ftmp[0] >> 58;
790
762k
    ftmp[0] &= bottom58bits;
791
762k
    ftmp[2] += ftmp[1] >> 58;
792
762k
    ftmp[1] &= bottom58bits;
793
762k
    ftmp[3] += ftmp[2] >> 58;
794
762k
    ftmp[2] &= bottom58bits;
795
762k
    ftmp[4] += ftmp[3] >> 58;
796
762k
    ftmp[3] &= bottom58bits;
797
762k
    ftmp[5] += ftmp[4] >> 58;
798
762k
    ftmp[4] &= bottom58bits;
799
762k
    ftmp[6] += ftmp[5] >> 58;
800
762k
    ftmp[5] &= bottom58bits;
801
762k
    ftmp[7] += ftmp[6] >> 58;
802
762k
    ftmp[6] &= bottom58bits;
803
762k
    ftmp[8] += ftmp[7] >> 58;
804
762k
    ftmp[7] &= bottom58bits;
805
    /* ftmp[8] < 2^57 + 4 */
806
807
    /*
808
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
809
     * than our bound for ftmp[8]. Therefore we only have to check if the
810
     * zero is zero or 2^521-1.
811
     */
812
813
762k
    is_zero = 0;
814
762k
    is_zero |= ftmp[0];
815
762k
    is_zero |= ftmp[1];
816
762k
    is_zero |= ftmp[2];
817
762k
    is_zero |= ftmp[3];
818
762k
    is_zero |= ftmp[4];
819
762k
    is_zero |= ftmp[5];
820
762k
    is_zero |= ftmp[6];
821
762k
    is_zero |= ftmp[7];
822
762k
    is_zero |= ftmp[8];
823
824
762k
    is_zero--;
825
    /*
826
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
827
     * can be set is if is_zero was 0 before the decrement.
828
     */
829
762k
    is_zero = 0 - (is_zero >> 63);
830
831
762k
    is_p = ftmp[0] ^ kPrime[0];
832
762k
    is_p |= ftmp[1] ^ kPrime[1];
833
762k
    is_p |= ftmp[2] ^ kPrime[2];
834
762k
    is_p |= ftmp[3] ^ kPrime[3];
835
762k
    is_p |= ftmp[4] ^ kPrime[4];
836
762k
    is_p |= ftmp[5] ^ kPrime[5];
837
762k
    is_p |= ftmp[6] ^ kPrime[6];
838
762k
    is_p |= ftmp[7] ^ kPrime[7];
839
762k
    is_p |= ftmp[8] ^ kPrime[8];
840
841
762k
    is_p--;
842
762k
    is_p = 0 - (is_p >> 63);
843
844
762k
    is_zero |= is_p;
845
762k
    return is_zero;
846
762k
}
847
848
static int felem_is_zero_int(const void *in)
849
0
{
850
0
    return (int)(felem_is_zero(in) & ((limb)1));
851
0
}
852
853
/*-
854
 * felem_contract converts |in| to its unique, minimal representation.
855
 * On entry:
856
 *   in[i] < 2^59 + 2^14
857
 */
858
static void felem_contract(felem out, const felem in)
859
7.53k
{
860
7.53k
    limb is_p, is_greater, sign;
861
7.53k
    static const limb two58 = ((limb)1) << 58;
862
863
7.53k
    felem_assign(out, in);
864
865
7.53k
    out[0] += out[8] >> 57;
866
7.53k
    out[8] &= bottom57bits;
867
    /* out[8] < 2^57 */
868
7.53k
    out[1] += out[0] >> 58;
869
7.53k
    out[0] &= bottom58bits;
870
7.53k
    out[2] += out[1] >> 58;
871
7.53k
    out[1] &= bottom58bits;
872
7.53k
    out[3] += out[2] >> 58;
873
7.53k
    out[2] &= bottom58bits;
874
7.53k
    out[4] += out[3] >> 58;
875
7.53k
    out[3] &= bottom58bits;
876
7.53k
    out[5] += out[4] >> 58;
877
7.53k
    out[4] &= bottom58bits;
878
7.53k
    out[6] += out[5] >> 58;
879
7.53k
    out[5] &= bottom58bits;
880
7.53k
    out[7] += out[6] >> 58;
881
7.53k
    out[6] &= bottom58bits;
882
7.53k
    out[8] += out[7] >> 58;
883
7.53k
    out[7] &= bottom58bits;
884
    /* out[8] < 2^57 + 4 */
885
886
    /*
887
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
888
     * out. See the comments in felem_is_zero regarding why we don't test for
889
     * other multiples of the prime.
890
     */
891
892
    /*
893
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
894
     */
895
896
7.53k
    is_p = out[0] ^ kPrime[0];
897
7.53k
    is_p |= out[1] ^ kPrime[1];
898
7.53k
    is_p |= out[2] ^ kPrime[2];
899
7.53k
    is_p |= out[3] ^ kPrime[3];
900
7.53k
    is_p |= out[4] ^ kPrime[4];
901
7.53k
    is_p |= out[5] ^ kPrime[5];
902
7.53k
    is_p |= out[6] ^ kPrime[6];
903
7.53k
    is_p |= out[7] ^ kPrime[7];
904
7.53k
    is_p |= out[8] ^ kPrime[8];
905
906
7.53k
    is_p--;
907
7.53k
    is_p &= is_p << 32;
908
7.53k
    is_p &= is_p << 16;
909
7.53k
    is_p &= is_p << 8;
910
7.53k
    is_p &= is_p << 4;
911
7.53k
    is_p &= is_p << 2;
912
7.53k
    is_p &= is_p << 1;
913
7.53k
    is_p = 0 - (is_p >> 63);
914
7.53k
    is_p = ~is_p;
915
916
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
917
918
7.53k
    out[0] &= is_p;
919
7.53k
    out[1] &= is_p;
920
7.53k
    out[2] &= is_p;
921
7.53k
    out[3] &= is_p;
922
7.53k
    out[4] &= is_p;
923
7.53k
    out[5] &= is_p;
924
7.53k
    out[6] &= is_p;
925
7.53k
    out[7] &= is_p;
926
7.53k
    out[8] &= is_p;
927
928
    /*
929
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
930
     * 57 is greater than zero as (2^521-1) + x >= 2^522
931
     */
932
7.53k
    is_greater = out[8] >> 57;
933
7.53k
    is_greater |= is_greater << 32;
934
7.53k
    is_greater |= is_greater << 16;
935
7.53k
    is_greater |= is_greater << 8;
936
7.53k
    is_greater |= is_greater << 4;
937
7.53k
    is_greater |= is_greater << 2;
938
7.53k
    is_greater |= is_greater << 1;
939
7.53k
    is_greater = 0 - (is_greater >> 63);
940
941
7.53k
    out[0] -= kPrime[0] & is_greater;
942
7.53k
    out[1] -= kPrime[1] & is_greater;
943
7.53k
    out[2] -= kPrime[2] & is_greater;
944
7.53k
    out[3] -= kPrime[3] & is_greater;
945
7.53k
    out[4] -= kPrime[4] & is_greater;
946
7.53k
    out[5] -= kPrime[5] & is_greater;
947
7.53k
    out[6] -= kPrime[6] & is_greater;
948
7.53k
    out[7] -= kPrime[7] & is_greater;
949
7.53k
    out[8] -= kPrime[8] & is_greater;
950
951
    /* Eliminate negative coefficients */
952
7.53k
    sign = -(out[0] >> 63);
953
7.53k
    out[0] += (two58 & sign);
954
7.53k
    out[1] -= (1 & sign);
955
7.53k
    sign = -(out[1] >> 63);
956
7.53k
    out[1] += (two58 & sign);
957
7.53k
    out[2] -= (1 & sign);
958
7.53k
    sign = -(out[2] >> 63);
959
7.53k
    out[2] += (two58 & sign);
960
7.53k
    out[3] -= (1 & sign);
961
7.53k
    sign = -(out[3] >> 63);
962
7.53k
    out[3] += (two58 & sign);
963
7.53k
    out[4] -= (1 & sign);
964
7.53k
    sign = -(out[4] >> 63);
965
7.53k
    out[4] += (two58 & sign);
966
7.53k
    out[5] -= (1 & sign);
967
7.53k
    sign = -(out[0] >> 63);
968
7.53k
    out[5] += (two58 & sign);
969
7.53k
    out[6] -= (1 & sign);
970
7.53k
    sign = -(out[6] >> 63);
971
7.53k
    out[6] += (two58 & sign);
972
7.53k
    out[7] -= (1 & sign);
973
7.53k
    sign = -(out[7] >> 63);
974
7.53k
    out[7] += (two58 & sign);
975
7.53k
    out[8] -= (1 & sign);
976
7.53k
    sign = -(out[5] >> 63);
977
7.53k
    out[5] += (two58 & sign);
978
7.53k
    out[6] -= (1 & sign);
979
7.53k
    sign = -(out[6] >> 63);
980
7.53k
    out[6] += (two58 & sign);
981
7.53k
    out[7] -= (1 & sign);
982
7.53k
    sign = -(out[7] >> 63);
983
7.53k
    out[7] += (two58 & sign);
984
7.53k
    out[8] -= (1 & sign);
985
7.53k
}
986
987
/*-
988
 * Group operations
989
 * ----------------
990
 *
991
 * Building on top of the field operations we have the operations on the
992
 * elliptic curve group itself. Points on the curve are represented in Jacobian
993
 * coordinates */
994
995
/*-
996
 * point_double calculates 2*(x_in, y_in, z_in)
997
 *
998
 * The method is taken from:
999
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1000
 *
1001
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1002
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1003
static void
1004
point_double(felem x_out, felem y_out, felem z_out,
1005
    const felem x_in, const felem y_in, const felem z_in)
1006
250k
{
1007
250k
    largefelem tmp, tmp2;
1008
250k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1009
1010
250k
    felem_assign(ftmp, x_in);
1011
250k
    felem_assign(ftmp2, x_in);
1012
1013
    /* delta = z^2 */
1014
250k
    felem_square(tmp, z_in);
1015
250k
    felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */
1016
1017
    /* gamma = y^2 */
1018
250k
    felem_square(tmp, y_in);
1019
250k
    felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */
1020
1021
    /* beta = x*gamma */
1022
250k
    felem_mul(tmp, x_in, gamma);
1023
250k
    felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */
1024
1025
    /* alpha = 3*(x-delta)*(x+delta) */
1026
250k
    felem_diff64(ftmp, delta);
1027
    /* ftmp[i] < 2^61 */
1028
250k
    felem_sum64(ftmp2, delta);
1029
    /* ftmp2[i] < 2^60 + 2^15 */
1030
250k
    felem_scalar64(ftmp2, 3);
1031
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1032
250k
    felem_mul(tmp, ftmp, ftmp2);
1033
    /*-
1034
     * tmp[i] < 17(3*2^121 + 3*2^76)
1035
     *        = 61*2^121 + 61*2^76
1036
     *        < 64*2^121 + 64*2^76
1037
     *        = 2^127 + 2^82
1038
     *        < 2^128
1039
     */
1040
250k
    felem_reduce(alpha, tmp);
1041
1042
    /* x' = alpha^2 - 8*beta */
1043
250k
    felem_square(tmp, alpha);
1044
    /*
1045
     * tmp[i] < 17*2^120 < 2^125
1046
     */
1047
250k
    felem_assign(ftmp, beta);
1048
250k
    felem_scalar64(ftmp, 8);
1049
    /* ftmp[i] < 2^62 + 2^17 */
1050
250k
    felem_diff_128_64(tmp, ftmp);
1051
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1052
250k
    felem_reduce(x_out, tmp);
1053
1054
    /* z' = (y + z)^2 - gamma - delta */
1055
250k
    felem_sum64(delta, gamma);
1056
    /* delta[i] < 2^60 + 2^15 */
1057
250k
    felem_assign(ftmp, y_in);
1058
250k
    felem_sum64(ftmp, z_in);
1059
    /* ftmp[i] < 2^60 + 2^15 */
1060
250k
    felem_square(tmp, ftmp);
1061
    /*
1062
     * tmp[i] < 17(2^122) < 2^127
1063
     */
1064
250k
    felem_diff_128_64(tmp, delta);
1065
    /* tmp[i] < 2^127 + 2^63 */
1066
250k
    felem_reduce(z_out, tmp);
1067
1068
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1069
250k
    felem_scalar64(beta, 4);
1070
    /* beta[i] < 2^61 + 2^16 */
1071
250k
    felem_diff64(beta, x_out);
1072
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1073
250k
    felem_mul(tmp, alpha, beta);
1074
    /*-
1075
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1076
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1077
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1078
     *        < 2^128
1079
     */
1080
250k
    felem_square(tmp2, gamma);
1081
    /*-
1082
     * tmp2[i] < 17*(2^59 + 2^14)^2
1083
     *         = 17*(2^118 + 2^74 + 2^28)
1084
     */
1085
250k
    felem_scalar128(tmp2, 8);
1086
    /*-
1087
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1088
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1089
     *         < 2^126
1090
     */
1091
250k
    felem_diff128(tmp, tmp2);
1092
    /*-
1093
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1094
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1095
     *          2^74 + 2^69 + 2^34 + 2^30
1096
     *        < 2^128
1097
     */
1098
250k
    felem_reduce(y_out, tmp);
1099
250k
}
1100
1101
/* copy_conditional copies in to out iff mask is all ones. */
1102
static void copy_conditional(felem out, const felem in, limb mask)
1103
1.16M
{
1104
1.16M
    unsigned i;
1105
11.6M
    for (i = 0; i < NLIMBS; ++i) {
1106
10.4M
        const limb tmp = mask & (in[i] ^ out[i]);
1107
10.4M
        out[i] ^= tmp;
1108
10.4M
    }
1109
1.16M
}
1110
1111
/*-
1112
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1113
 *
1114
 * The method is taken from
1115
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1116
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1117
 *
1118
 * This function includes a branch for checking whether the two input points
1119
 * are equal (while not equal to the point at infinity). See comment below
1120
 * on constant-time.
1121
 */
1122
static void point_add(felem x3, felem y3, felem z3,
1123
    const felem x1, const felem y1, const felem z1,
1124
    const int mixed, const felem x2, const felem y2,
1125
    const felem z2)
1126
190k
{
1127
190k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1128
190k
    largefelem tmp, tmp2;
1129
190k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1130
190k
    limb points_equal;
1131
1132
190k
    z1_is_zero = felem_is_zero(z1);
1133
190k
    z2_is_zero = felem_is_zero(z2);
1134
1135
    /* ftmp = z1z1 = z1**2 */
1136
190k
    felem_square(tmp, z1);
1137
190k
    felem_reduce(ftmp, tmp);
1138
1139
190k
    if (!mixed) {
1140
        /* ftmp2 = z2z2 = z2**2 */
1141
16.9k
        felem_square(tmp, z2);
1142
16.9k
        felem_reduce(ftmp2, tmp);
1143
1144
        /* u1 = ftmp3 = x1*z2z2 */
1145
16.9k
        felem_mul(tmp, x1, ftmp2);
1146
16.9k
        felem_reduce(ftmp3, tmp);
1147
1148
        /* ftmp5 = z1 + z2 */
1149
16.9k
        felem_assign(ftmp5, z1);
1150
16.9k
        felem_sum64(ftmp5, z2);
1151
        /* ftmp5[i] < 2^61 */
1152
1153
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1154
16.9k
        felem_square(tmp, ftmp5);
1155
        /* tmp[i] < 17*2^122 */
1156
16.9k
        felem_diff_128_64(tmp, ftmp);
1157
        /* tmp[i] < 17*2^122 + 2^63 */
1158
16.9k
        felem_diff_128_64(tmp, ftmp2);
1159
        /* tmp[i] < 17*2^122 + 2^64 */
1160
16.9k
        felem_reduce(ftmp5, tmp);
1161
1162
        /* ftmp2 = z2 * z2z2 */
1163
16.9k
        felem_mul(tmp, ftmp2, z2);
1164
16.9k
        felem_reduce(ftmp2, tmp);
1165
1166
        /* s1 = ftmp6 = y1 * z2**3 */
1167
16.9k
        felem_mul(tmp, y1, ftmp2);
1168
16.9k
        felem_reduce(ftmp6, tmp);
1169
173k
    } else {
1170
        /*
1171
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1172
         */
1173
1174
        /* u1 = ftmp3 = x1*z2z2 */
1175
173k
        felem_assign(ftmp3, x1);
1176
1177
        /* ftmp5 = 2*z1z2 */
1178
173k
        felem_scalar(ftmp5, z1, 2);
1179
1180
        /* s1 = ftmp6 = y1 * z2**3 */
1181
173k
        felem_assign(ftmp6, y1);
1182
173k
    }
1183
1184
    /* u2 = x2*z1z1 */
1185
190k
    felem_mul(tmp, x2, ftmp);
1186
    /* tmp[i] < 17*2^120 */
1187
1188
    /* h = ftmp4 = u2 - u1 */
1189
190k
    felem_diff_128_64(tmp, ftmp3);
1190
    /* tmp[i] < 17*2^120 + 2^63 */
1191
190k
    felem_reduce(ftmp4, tmp);
1192
1193
190k
    x_equal = felem_is_zero(ftmp4);
1194
1195
    /* z_out = ftmp5 * h */
1196
190k
    felem_mul(tmp, ftmp5, ftmp4);
1197
190k
    felem_reduce(z_out, tmp);
1198
1199
    /* ftmp = z1 * z1z1 */
1200
190k
    felem_mul(tmp, ftmp, z1);
1201
190k
    felem_reduce(ftmp, tmp);
1202
1203
    /* s2 = tmp = y2 * z1**3 */
1204
190k
    felem_mul(tmp, y2, ftmp);
1205
    /* tmp[i] < 17*2^120 */
1206
1207
    /* r = ftmp5 = (s2 - s1)*2 */
1208
190k
    felem_diff_128_64(tmp, ftmp6);
1209
    /* tmp[i] < 17*2^120 + 2^63 */
1210
190k
    felem_reduce(ftmp5, tmp);
1211
190k
    y_equal = felem_is_zero(ftmp5);
1212
190k
    felem_scalar64(ftmp5, 2);
1213
    /* ftmp5[i] < 2^61 */
1214
1215
    /*
1216
     * The formulae are incorrect if the points are equal, in affine coordinates
1217
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1218
     * happens.
1219
     *
1220
     * We use bitwise operations to avoid potential side-channels introduced by
1221
     * the short-circuiting behaviour of boolean operators.
1222
     *
1223
     * The special case of either point being the point at infinity (z1 and/or
1224
     * z2 are zero), is handled separately later on in this function, so we
1225
     * avoid jumping to point_double here in those special cases.
1226
     *
1227
     * Notice the comment below on the implications of this branching for timing
1228
     * leaks and why it is considered practically irrelevant.
1229
     */
1230
190k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1231
1232
190k
    if (points_equal) {
1233
        /*
1234
         * This is obviously not constant-time but it will almost-never happen
1235
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1236
         * where the intermediate value gets very close to the group order.
1237
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1238
         * for the scalar, it's possible for the intermediate value to be a small
1239
         * negative multiple of the base point, and for the final signed digit
1240
         * to be the same value. We believe that this only occurs for the scalar
1241
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1242
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1243
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1244
         * the final digit is also -9G. Since this only happens for a single
1245
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1246
         * check whether a secret scalar was that exact value, can already do
1247
         * so.)
1248
         */
1249
0
        point_double(x3, y3, z3, x1, y1, z1);
1250
0
        return;
1251
0
    }
1252
1253
    /* I = ftmp = (2h)**2 */
1254
190k
    felem_assign(ftmp, ftmp4);
1255
190k
    felem_scalar64(ftmp, 2);
1256
    /* ftmp[i] < 2^61 */
1257
190k
    felem_square(tmp, ftmp);
1258
    /* tmp[i] < 17*2^122 */
1259
190k
    felem_reduce(ftmp, tmp);
1260
1261
    /* J = ftmp2 = h * I */
1262
190k
    felem_mul(tmp, ftmp4, ftmp);
1263
190k
    felem_reduce(ftmp2, tmp);
1264
1265
    /* V = ftmp4 = U1 * I */
1266
190k
    felem_mul(tmp, ftmp3, ftmp);
1267
190k
    felem_reduce(ftmp4, tmp);
1268
1269
    /* x_out = r**2 - J - 2V */
1270
190k
    felem_square(tmp, ftmp5);
1271
    /* tmp[i] < 17*2^122 */
1272
190k
    felem_diff_128_64(tmp, ftmp2);
1273
    /* tmp[i] < 17*2^122 + 2^63 */
1274
190k
    felem_assign(ftmp3, ftmp4);
1275
190k
    felem_scalar64(ftmp4, 2);
1276
    /* ftmp4[i] < 2^61 */
1277
190k
    felem_diff_128_64(tmp, ftmp4);
1278
    /* tmp[i] < 17*2^122 + 2^64 */
1279
190k
    felem_reduce(x_out, tmp);
1280
1281
    /* y_out = r(V-x_out) - 2 * s1 * J */
1282
190k
    felem_diff64(ftmp3, x_out);
1283
    /*
1284
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1285
     */
1286
190k
    felem_mul(tmp, ftmp5, ftmp3);
1287
    /* tmp[i] < 17*2^122 */
1288
190k
    felem_mul(tmp2, ftmp6, ftmp2);
1289
    /* tmp2[i] < 17*2^120 */
1290
190k
    felem_scalar128(tmp2, 2);
1291
    /* tmp2[i] < 17*2^121 */
1292
190k
    felem_diff128(tmp, tmp2);
1293
    /*-
1294
     * tmp[i] < 2^127 - 2^69 + 17*2^122
1295
     *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1296
     *        < 2^127
1297
     */
1298
190k
    felem_reduce(y_out, tmp);
1299
1300
190k
    copy_conditional(x_out, x2, z1_is_zero);
1301
190k
    copy_conditional(x_out, x1, z2_is_zero);
1302
190k
    copy_conditional(y_out, y2, z1_is_zero);
1303
190k
    copy_conditional(y_out, y1, z2_is_zero);
1304
190k
    copy_conditional(z_out, z2, z1_is_zero);
1305
190k
    copy_conditional(z_out, z1, z2_is_zero);
1306
190k
    felem_assign(x3, x_out);
1307
190k
    felem_assign(y3, y_out);
1308
190k
    felem_assign(z3, z_out);
1309
190k
}
1310
1311
/*-
1312
 * Base point pre computation
1313
 * --------------------------
1314
 *
1315
 * Two different sorts of precomputed tables are used in the following code.
1316
 * Each contain various points on the curve, where each point is three field
1317
 * elements (x, y, z).
1318
 *
1319
 * For the base point table, z is usually 1 (0 for the point at infinity).
1320
 * This table has 16 elements:
1321
 * index | bits    | point
1322
 * ------+---------+------------------------------
1323
 *     0 | 0 0 0 0 | 0G
1324
 *     1 | 0 0 0 1 | 1G
1325
 *     2 | 0 0 1 0 | 2^130G
1326
 *     3 | 0 0 1 1 | (2^130 + 1)G
1327
 *     4 | 0 1 0 0 | 2^260G
1328
 *     5 | 0 1 0 1 | (2^260 + 1)G
1329
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1330
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1331
 *     8 | 1 0 0 0 | 2^390G
1332
 *     9 | 1 0 0 1 | (2^390 + 1)G
1333
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1334
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1335
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1336
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1337
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1338
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1339
 *
1340
 * The reason for this is so that we can clock bits into four different
1341
 * locations when doing simple scalar multiplies against the base point.
1342
 *
1343
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1344
1345
/* gmul is the table of precomputed base points */
1346
static const felem gmul[16][3] = {
1347
    { { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1348
        { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1349
        { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
1350
    { { 0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1351
          0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1352
          0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404 },
1353
        { 0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1354
            0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1355
            0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b },
1356
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1357
    { { 0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1358
          0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1359
          0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5 },
1360
        { 0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1361
            0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1362
            0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7 },
1363
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1364
    { { 0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1365
          0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1366
          0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9 },
1367
        { 0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1368
            0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1369
            0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe },
1370
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1371
    { { 0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1372
          0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1373
          0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065 },
1374
        { 0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1375
            0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1376
            0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524 },
1377
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1378
    { { 0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1379
          0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1380
          0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe },
1381
        { 0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1382
            0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1383
            0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7 },
1384
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1385
    { { 0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1386
          0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1387
          0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256 },
1388
        { 0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1389
            0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1390
            0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd },
1391
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1392
    { { 0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1393
          0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1394
          0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23 },
1395
        { 0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1396
            0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1397
            0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e },
1398
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1399
    { { 0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1400
          0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1401
          0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5 },
1402
        { 0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1403
            0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1404
            0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242 },
1405
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1406
    { { 0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1407
          0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1408
          0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203 },
1409
        { 0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1410
            0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1411
            0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f },
1412
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1413
    { { 0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1414
          0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1415
          0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a },
1416
        { 0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1417
            0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1418
            0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a },
1419
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1420
    { { 0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1421
          0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1422
          0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b },
1423
        { 0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1424
            0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1425
            0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f },
1426
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1427
    { { 0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1428
          0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1429
          0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf },
1430
        { 0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1431
            0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1432
            0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d },
1433
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1434
    { { 0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1435
          0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1436
          0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684 },
1437
        { 0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1438
            0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1439
            0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81 },
1440
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1441
    { { 0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1442
          0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1443
          0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d },
1444
        { 0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1445
            0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1446
            0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42 },
1447
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1448
    { { 0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1449
          0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1450
          0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f },
1451
        { 0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1452
            0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1453
            0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055 },
1454
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } }
1455
};
1456
1457
/*
1458
 * select_point selects the |idx|th point from a precomputation table and
1459
 * copies it to out.
1460
 */
1461
/* pre_comp below is of the size provided in |size| */
1462
static void select_point(const limb idx, unsigned int size,
1463
    const felem pre_comp[][3], felem out[3])
1464
191k
{
1465
191k
    unsigned i, j;
1466
191k
    limb *outlimbs = &out[0][0];
1467
1468
191k
    memset(out, 0, sizeof(*out) * 3);
1469
1470
3.26M
    for (i = 0; i < size; i++) {
1471
3.07M
        const limb *inlimbs = &pre_comp[i][0][0];
1472
3.07M
        limb mask = i ^ idx;
1473
3.07M
        mask |= mask >> 4;
1474
3.07M
        mask |= mask >> 2;
1475
3.07M
        mask |= mask >> 1;
1476
3.07M
        mask &= 1;
1477
3.07M
        mask--;
1478
86.0M
        for (j = 0; j < NLIMBS * 3; j++)
1479
82.9M
            outlimbs[j] |= inlimbs[j] & mask;
1480
3.07M
    }
1481
191k
}
1482
1483
/* get_bit returns the |i|th bit in |in| */
1484
static char get_bit(const felem_bytearray in, int i)
1485
792k
{
1486
792k
    if (i < 0)
1487
153
        return 0;
1488
792k
    return (in[i >> 3] >> (i & 7)) & 1;
1489
792k
}
1490
1491
/*
1492
 * Interleaved point multiplication using precomputed point multiples: The
1493
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1494
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1495
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1496
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1497
 */
1498
static void batch_mul(felem x_out, felem y_out, felem z_out,
1499
    const felem_bytearray scalars[],
1500
    const unsigned num_points, const u8 *g_scalar,
1501
    const int mixed, const felem pre_comp[][17][3],
1502
    const felem g_pre_comp[16][3])
1503
1.46k
{
1504
1.46k
    int i, skip;
1505
1.46k
    unsigned num, gen_mul = (g_scalar != NULL);
1506
1.46k
    felem nq[3], tmp[4];
1507
1.46k
    limb bits;
1508
1.46k
    u8 sign, digit;
1509
1510
    /* set nq to the point at infinity */
1511
1.46k
    memset(nq, 0, sizeof(nq));
1512
1513
    /*
1514
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1515
     * of the generator (last quarter of rounds) and additions of other
1516
     * points multiples (every 5th round).
1517
     */
1518
1.46k
    skip = 1; /* save two point operations in the first
1519
               * round */
1520
252k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1521
        /* double */
1522
251k
        if (!skip)
1523
249k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1524
1525
        /* add multiples of the generator */
1526
251k
        if (gen_mul && (i <= 130)) {
1527
175k
            bits = get_bit(g_scalar, i + 390) << 3;
1528
175k
            if (i < 130) {
1529
173k
                bits |= get_bit(g_scalar, i + 260) << 2;
1530
173k
                bits |= get_bit(g_scalar, i + 130) << 1;
1531
173k
                bits |= get_bit(g_scalar, i);
1532
173k
            }
1533
            /* select the point to add, in constant time */
1534
175k
            select_point(bits, 16, g_pre_comp, tmp);
1535
175k
            if (!skip) {
1536
                /* The 1 argument below is for "mixed" */
1537
173k
                point_add(nq[0], nq[1], nq[2],
1538
173k
                    nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1539
173k
            } else {
1540
1.30k
                memcpy(nq, tmp, 3 * sizeof(felem));
1541
1.30k
                skip = 0;
1542
1.30k
            }
1543
175k
        }
1544
1545
        /* do other additions every 5 doublings */
1546
251k
        if (num_points && (i % 5 == 0)) {
1547
            /* loop over all scalars */
1548
32.1k
            for (num = 0; num < num_points; ++num) {
1549
16.0k
                bits = get_bit(scalars[num], i + 4) << 5;
1550
16.0k
                bits |= get_bit(scalars[num], i + 3) << 4;
1551
16.0k
                bits |= get_bit(scalars[num], i + 2) << 3;
1552
16.0k
                bits |= get_bit(scalars[num], i + 1) << 2;
1553
16.0k
                bits |= get_bit(scalars[num], i) << 1;
1554
16.0k
                bits |= get_bit(scalars[num], i - 1);
1555
16.0k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1556
1557
                /*
1558
                 * select the point to add or subtract, in constant time
1559
                 */
1560
16.0k
                select_point(digit, 17, pre_comp[num], tmp);
1561
16.0k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1562
                                            * point */
1563
16.0k
                copy_conditional(tmp[1], tmp[3], (-(limb)sign));
1564
1565
16.0k
                if (!skip) {
1566
15.9k
                    point_add(nq[0], nq[1], nq[2],
1567
15.9k
                        nq[0], nq[1], nq[2],
1568
15.9k
                        mixed, tmp[0], tmp[1], tmp[2]);
1569
15.9k
                } else {
1570
153
                    memcpy(nq, tmp, 3 * sizeof(felem));
1571
153
                    skip = 0;
1572
153
                }
1573
16.0k
            }
1574
16.0k
        }
1575
251k
    }
1576
1.46k
    felem_assign(x_out, nq[0]);
1577
1.46k
    felem_assign(y_out, nq[1]);
1578
1.46k
    felem_assign(z_out, nq[2]);
1579
1.46k
}
1580
1581
/* Precomputation for the group generator. */
1582
struct nistp521_pre_comp_st {
1583
    felem g_pre_comp[16][3];
1584
    CRYPTO_REF_COUNT references;
1585
};
1586
1587
const EC_METHOD *EC_GFp_nistp521_method(void)
1588
42.7k
{
1589
42.7k
    static const EC_METHOD ret = {
1590
42.7k
        EC_FLAGS_DEFAULT_OCT,
1591
42.7k
        NID_X9_62_prime_field,
1592
42.7k
        ossl_ec_GFp_nistp521_group_init,
1593
42.7k
        ossl_ec_GFp_simple_group_finish,
1594
42.7k
        ossl_ec_GFp_simple_group_clear_finish,
1595
42.7k
        ossl_ec_GFp_nist_group_copy,
1596
42.7k
        ossl_ec_GFp_nistp521_group_set_curve,
1597
42.7k
        ossl_ec_GFp_simple_group_get_curve,
1598
42.7k
        ossl_ec_GFp_simple_group_get_degree,
1599
42.7k
        ossl_ec_group_simple_order_bits,
1600
42.7k
        ossl_ec_GFp_simple_group_check_discriminant,
1601
42.7k
        ossl_ec_GFp_simple_point_init,
1602
42.7k
        ossl_ec_GFp_simple_point_finish,
1603
42.7k
        ossl_ec_GFp_simple_point_clear_finish,
1604
42.7k
        ossl_ec_GFp_simple_point_copy,
1605
42.7k
        ossl_ec_GFp_simple_point_set_to_infinity,
1606
42.7k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1607
42.7k
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1608
42.7k
        0 /* point_set_compressed_coordinates */,
1609
42.7k
        0 /* point2oct */,
1610
42.7k
        0 /* oct2point */,
1611
42.7k
        ossl_ec_GFp_simple_add,
1612
42.7k
        ossl_ec_GFp_simple_dbl,
1613
42.7k
        ossl_ec_GFp_simple_invert,
1614
42.7k
        ossl_ec_GFp_simple_is_at_infinity,
1615
42.7k
        ossl_ec_GFp_simple_is_on_curve,
1616
42.7k
        ossl_ec_GFp_simple_cmp,
1617
42.7k
        ossl_ec_GFp_simple_make_affine,
1618
42.7k
        ossl_ec_GFp_simple_points_make_affine,
1619
42.7k
        ossl_ec_GFp_nistp521_points_mul,
1620
42.7k
        ossl_ec_GFp_nistp521_precompute_mult,
1621
42.7k
        ossl_ec_GFp_nistp521_have_precompute_mult,
1622
42.7k
        ossl_ec_GFp_nist_field_mul,
1623
42.7k
        ossl_ec_GFp_nist_field_sqr,
1624
42.7k
        0 /* field_div */,
1625
42.7k
        ossl_ec_GFp_simple_field_inv,
1626
42.7k
        0 /* field_encode */,
1627
42.7k
        0 /* field_decode */,
1628
42.7k
        0, /* field_set_to_one */
1629
42.7k
        ossl_ec_key_simple_priv2oct,
1630
42.7k
        ossl_ec_key_simple_oct2priv,
1631
42.7k
        0, /* set private */
1632
42.7k
        ossl_ec_key_simple_generate_key,
1633
42.7k
        ossl_ec_key_simple_check_key,
1634
42.7k
        ossl_ec_key_simple_generate_public_key,
1635
42.7k
        0, /* keycopy */
1636
42.7k
        0, /* keyfinish */
1637
42.7k
        ossl_ecdh_simple_compute_key,
1638
42.7k
        ossl_ecdsa_simple_sign_setup,
1639
42.7k
        ossl_ecdsa_simple_sign_sig,
1640
42.7k
        ossl_ecdsa_simple_verify_sig,
1641
42.7k
        0, /* field_inverse_mod_ord */
1642
42.7k
        0, /* blind_coordinates */
1643
42.7k
        0, /* ladder_pre */
1644
42.7k
        0, /* ladder_step */
1645
42.7k
        0 /* ladder_post */
1646
42.7k
    };
1647
1648
42.7k
    return &ret;
1649
42.7k
}
1650
1651
/******************************************************************************/
1652
/*
1653
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1654
 */
1655
1656
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1657
0
{
1658
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1659
1660
0
    if (ret == NULL)
1661
0
        return ret;
1662
1663
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1664
0
        OPENSSL_free(ret);
1665
0
        return NULL;
1666
0
    }
1667
0
    return ret;
1668
0
}
1669
1670
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1671
0
{
1672
0
    int i;
1673
0
    if (p != NULL)
1674
0
        CRYPTO_UP_REF(&p->references, &i);
1675
0
    return p;
1676
0
}
1677
1678
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1679
0
{
1680
0
    int i;
1681
1682
0
    if (p == NULL)
1683
0
        return;
1684
1685
0
    CRYPTO_DOWN_REF(&p->references, &i);
1686
0
    REF_PRINT_COUNT("EC_nistp521", i, p);
1687
0
    if (i > 0)
1688
0
        return;
1689
0
    REF_ASSERT_ISNT(i < 0);
1690
1691
0
    CRYPTO_FREE_REF(&p->references);
1692
0
    OPENSSL_free(p);
1693
0
}
1694
1695
/******************************************************************************/
1696
/*
1697
 * OPENSSL EC_METHOD FUNCTIONS
1698
 */
1699
1700
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1701
85.3k
{
1702
85.3k
    int ret;
1703
85.3k
    ret = ossl_ec_GFp_simple_group_init(group);
1704
85.3k
    group->a_is_minus3 = 1;
1705
85.3k
    return ret;
1706
85.3k
}
1707
1708
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1709
    const BIGNUM *a, const BIGNUM *b,
1710
    BN_CTX *ctx)
1711
42.7k
{
1712
42.7k
    int ret = 0;
1713
42.7k
    BIGNUM *curve_p, *curve_a, *curve_b;
1714
42.7k
#ifndef FIPS_MODULE
1715
42.7k
    BN_CTX *new_ctx = NULL;
1716
1717
42.7k
    if (ctx == NULL)
1718
0
        ctx = new_ctx = BN_CTX_new();
1719
42.7k
#endif
1720
42.7k
    if (ctx == NULL)
1721
0
        return 0;
1722
1723
42.7k
    BN_CTX_start(ctx);
1724
42.7k
    curve_p = BN_CTX_get(ctx);
1725
42.7k
    curve_a = BN_CTX_get(ctx);
1726
42.7k
    curve_b = BN_CTX_get(ctx);
1727
42.7k
    if (curve_b == NULL)
1728
0
        goto err;
1729
42.7k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1730
42.7k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1731
42.7k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1732
42.7k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1733
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1734
0
        goto err;
1735
0
    }
1736
42.7k
    group->field_mod_func = BN_nist_mod_521;
1737
42.7k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1738
42.7k
err:
1739
42.7k
    BN_CTX_end(ctx);
1740
42.7k
#ifndef FIPS_MODULE
1741
42.7k
    BN_CTX_free(new_ctx);
1742
42.7k
#endif
1743
42.7k
    return ret;
1744
42.7k
}
1745
1746
/*
1747
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1748
 * (X/Z^2, Y/Z^3)
1749
 */
1750
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1751
    const EC_POINT *point,
1752
    BIGNUM *x, BIGNUM *y,
1753
    BN_CTX *ctx)
1754
1.57k
{
1755
1.57k
    felem z1, z2, x_in, y_in, x_out, y_out;
1756
1.57k
    largefelem tmp;
1757
1758
1.57k
    if (EC_POINT_is_at_infinity(group, point)) {
1759
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1760
0
        return 0;
1761
0
    }
1762
1.57k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z)))
1763
0
        return 0;
1764
1.57k
    felem_inv(z2, z1);
1765
1.57k
    felem_square(tmp, z2);
1766
1.57k
    felem_reduce(z1, tmp);
1767
1.57k
    felem_mul(tmp, x_in, z1);
1768
1.57k
    felem_reduce(x_in, tmp);
1769
1.57k
    felem_contract(x_out, x_in);
1770
1.57k
    if (x != NULL) {
1771
1.57k
        if (!felem_to_BN(x, x_out)) {
1772
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1773
0
            return 0;
1774
0
        }
1775
1.57k
    }
1776
1.57k
    felem_mul(tmp, z1, z2);
1777
1.57k
    felem_reduce(z1, tmp);
1778
1.57k
    felem_mul(tmp, y_in, z1);
1779
1.57k
    felem_reduce(y_in, tmp);
1780
1.57k
    felem_contract(y_out, y_in);
1781
1.57k
    if (y != NULL) {
1782
1.49k
        if (!felem_to_BN(y, y_out)) {
1783
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1784
0
            return 0;
1785
0
        }
1786
1.49k
    }
1787
1.57k
    return 1;
1788
1.57k
}
1789
1790
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1791
static void make_points_affine(size_t num, felem points[][3],
1792
    felem tmp_felems[])
1793
0
{
1794
    /*
1795
     * Runs in constant time, unless an input is the point at infinity (which
1796
     * normally shouldn't happen).
1797
     */
1798
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1799
0
        points,
1800
0
        sizeof(felem),
1801
0
        tmp_felems,
1802
0
        (void (*)(void *))felem_one,
1803
0
        felem_is_zero_int,
1804
0
        (void (*)(void *, const void *))
1805
0
            felem_assign,
1806
0
        (void (*)(void *, const void *))
1807
0
            felem_square_reduce,
1808
0
        (void (*)(void *,
1809
0
            const void
1810
0
                *,
1811
0
            const void
1812
0
                *))
1813
0
            felem_mul_reduce,
1814
0
        (void (*)(void *, const void *))
1815
0
            felem_inv,
1816
0
        (void (*)(void *, const void *))
1817
0
            felem_contract);
1818
0
}
1819
1820
/*
1821
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1822
 * values Result is stored in r (r can equal one of the inputs).
1823
 */
1824
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1825
    const BIGNUM *scalar, size_t num,
1826
    const EC_POINT *points[],
1827
    const BIGNUM *scalars[], BN_CTX *ctx)
1828
1.46k
{
1829
1.46k
    int ret = 0;
1830
1.46k
    int j;
1831
1.46k
    int mixed = 0;
1832
1.46k
    BIGNUM *x, *y, *z, *tmp_scalar;
1833
1.46k
    felem_bytearray g_secret;
1834
1.46k
    felem_bytearray *secrets = NULL;
1835
1.46k
    felem(*pre_comp)[17][3] = NULL;
1836
1.46k
    felem *tmp_felems = NULL;
1837
1.46k
    unsigned i;
1838
1.46k
    int num_bytes;
1839
1.46k
    int have_pre_comp = 0;
1840
1.46k
    size_t num_points = num;
1841
1.46k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1842
1.46k
    NISTP521_PRE_COMP *pre = NULL;
1843
1.46k
    felem(*g_pre_comp)[3] = NULL;
1844
1.46k
    EC_POINT *generator = NULL;
1845
1.46k
    const EC_POINT *p = NULL;
1846
1.46k
    const BIGNUM *p_scalar = NULL;
1847
1848
1.46k
    BN_CTX_start(ctx);
1849
1.46k
    x = BN_CTX_get(ctx);
1850
1.46k
    y = BN_CTX_get(ctx);
1851
1.46k
    z = BN_CTX_get(ctx);
1852
1.46k
    tmp_scalar = BN_CTX_get(ctx);
1853
1.46k
    if (tmp_scalar == NULL)
1854
0
        goto err;
1855
1856
1.46k
    if (scalar != NULL) {
1857
1.33k
        pre = group->pre_comp.nistp521;
1858
1.33k
        if (pre)
1859
            /* we have precomputation, try to use it */
1860
0
            g_pre_comp = &pre->g_pre_comp[0];
1861
1.33k
        else
1862
            /* try to use the standard precomputation */
1863
1.33k
            g_pre_comp = (felem(*)[3])gmul;
1864
1.33k
        generator = EC_POINT_new(group);
1865
1.33k
        if (generator == NULL)
1866
0
            goto err;
1867
        /* get the generator from precomputation */
1868
1.33k
        if (!felem_to_BN(x, g_pre_comp[1][0]) || !felem_to_BN(y, g_pre_comp[1][1]) || !felem_to_BN(z, g_pre_comp[1][2])) {
1869
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1870
0
            goto err;
1871
0
        }
1872
1.33k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1873
1.33k
                generator,
1874
1.33k
                x, y, z, ctx))
1875
0
            goto err;
1876
1.33k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1877
            /* precomputation matches generator */
1878
1.33k
            have_pre_comp = 1;
1879
0
        else
1880
            /*
1881
             * we don't have valid precomputation: treat the generator as a
1882
             * random point
1883
             */
1884
0
            num_points++;
1885
1.33k
    }
1886
1887
1.46k
    if (num_points > 0) {
1888
153
        if (num_points >= 2) {
1889
            /*
1890
             * unless we precompute multiples for just one point, converting
1891
             * those into affine form is time well spent
1892
             */
1893
0
            mixed = 1;
1894
0
        }
1895
153
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1896
153
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1897
153
        if (mixed)
1898
0
            tmp_felems = OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1899
153
        if ((secrets == NULL) || (pre_comp == NULL)
1900
153
            || (mixed && (tmp_felems == NULL)))
1901
0
            goto err;
1902
1903
        /*
1904
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1905
         * i.e., they contribute nothing to the linear combination
1906
         */
1907
306
        for (i = 0; i < num_points; ++i) {
1908
153
            if (i == num) {
1909
                /*
1910
                 * we didn't have a valid precomputation, so we pick the
1911
                 * generator
1912
                 */
1913
0
                p = EC_GROUP_get0_generator(group);
1914
0
                p_scalar = scalar;
1915
153
            } else {
1916
                /* the i^th point */
1917
153
                p = points[i];
1918
153
                p_scalar = scalars[i];
1919
153
            }
1920
153
            if ((p_scalar != NULL) && (p != NULL)) {
1921
                /* reduce scalar to 0 <= scalar < 2^521 */
1922
153
                if ((BN_num_bits(p_scalar) > 521)
1923
153
                    || (BN_is_negative(p_scalar))) {
1924
                    /*
1925
                     * this is an unusual input, and we don't guarantee
1926
                     * constant-timeness
1927
                     */
1928
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1929
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1930
0
                        goto err;
1931
0
                    }
1932
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1933
0
                        secrets[i], sizeof(secrets[i]));
1934
153
                } else {
1935
153
                    num_bytes = BN_bn2lebinpad(p_scalar,
1936
153
                        secrets[i], sizeof(secrets[i]));
1937
153
                }
1938
153
                if (num_bytes < 0) {
1939
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1940
0
                    goto err;
1941
0
                }
1942
                /* precompute multiples */
1943
153
                if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z)))
1944
0
                    goto err;
1945
153
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1946
153
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1947
153
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1948
2.44k
                for (j = 2; j <= 16; ++j) {
1949
2.29k
                    if (j & 1) {
1950
1.07k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1951
1.07k
                            pre_comp[i][j][2], pre_comp[i][1][0],
1952
1.07k
                            pre_comp[i][1][1], pre_comp[i][1][2], 0,
1953
1.07k
                            pre_comp[i][j - 1][0],
1954
1.07k
                            pre_comp[i][j - 1][1],
1955
1.07k
                            pre_comp[i][j - 1][2]);
1956
1.22k
                    } else {
1957
1.22k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1958
1.22k
                            pre_comp[i][j][2], pre_comp[i][j / 2][0],
1959
1.22k
                            pre_comp[i][j / 2][1],
1960
1.22k
                            pre_comp[i][j / 2][2]);
1961
1.22k
                    }
1962
2.29k
                }
1963
153
            }
1964
153
        }
1965
153
        if (mixed)
1966
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1967
153
    }
1968
1969
    /* the scalar for the generator */
1970
1.46k
    if ((scalar != NULL) && (have_pre_comp)) {
1971
1.33k
        memset(g_secret, 0, sizeof(g_secret));
1972
        /* reduce scalar to 0 <= scalar < 2^521 */
1973
1.33k
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
1974
            /*
1975
             * this is an unusual input, and we don't guarantee
1976
             * constant-timeness
1977
             */
1978
48
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1979
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1980
0
                goto err;
1981
0
            }
1982
48
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1983
1.28k
        } else {
1984
1.28k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1985
1.28k
        }
1986
        /* do the multiplication with generator precomputation */
1987
1.33k
        batch_mul(x_out, y_out, z_out,
1988
1.33k
            (const felem_bytearray(*))secrets, num_points,
1989
1.33k
            g_secret,
1990
1.33k
            mixed, (const felem(*)[17][3])pre_comp,
1991
1.33k
            (const felem(*)[3])g_pre_comp);
1992
1.33k
    } else {
1993
        /* do the multiplication without generator precomputation */
1994
126
        batch_mul(x_out, y_out, z_out,
1995
126
            (const felem_bytearray(*))secrets, num_points,
1996
126
            NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1997
126
    }
1998
    /* reduce the output to its unique minimal representation */
1999
1.46k
    felem_contract(x_in, x_out);
2000
1.46k
    felem_contract(y_in, y_out);
2001
1.46k
    felem_contract(z_in, z_out);
2002
1.46k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) {
2003
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2004
0
        goto err;
2005
0
    }
2006
1.46k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2007
1.46k
        ctx);
2008
2009
1.46k
err:
2010
1.46k
    BN_CTX_end(ctx);
2011
1.46k
    EC_POINT_free(generator);
2012
1.46k
    OPENSSL_free(secrets);
2013
1.46k
    OPENSSL_free(pre_comp);
2014
1.46k
    OPENSSL_free(tmp_felems);
2015
1.46k
    return ret;
2016
1.46k
}
2017
2018
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2019
0
{
2020
0
    int ret = 0;
2021
0
    NISTP521_PRE_COMP *pre = NULL;
2022
0
    int i, j;
2023
0
    BIGNUM *x, *y;
2024
0
    EC_POINT *generator = NULL;
2025
0
    felem tmp_felems[16];
2026
0
#ifndef FIPS_MODULE
2027
0
    BN_CTX *new_ctx = NULL;
2028
0
#endif
2029
2030
    /* throw away old precomputation */
2031
0
    EC_pre_comp_free(group);
2032
2033
0
#ifndef FIPS_MODULE
2034
0
    if (ctx == NULL)
2035
0
        ctx = new_ctx = BN_CTX_new();
2036
0
#endif
2037
0
    if (ctx == NULL)
2038
0
        return 0;
2039
2040
0
    BN_CTX_start(ctx);
2041
0
    x = BN_CTX_get(ctx);
2042
0
    y = BN_CTX_get(ctx);
2043
0
    if (y == NULL)
2044
0
        goto err;
2045
    /* get the generator */
2046
0
    if (group->generator == NULL)
2047
0
        goto err;
2048
0
    generator = EC_POINT_new(group);
2049
0
    if (generator == NULL)
2050
0
        goto err;
2051
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2052
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2053
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2054
0
        goto err;
2055
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2056
0
        goto err;
2057
    /*
2058
     * if the generator is the standard one, use built-in precomputation
2059
     */
2060
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2061
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2062
0
        goto done;
2063
0
    }
2064
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2065
0
        goto err;
2066
    /* compute 2^130*G, 2^260*G, 2^390*G */
2067
0
    for (i = 1; i <= 4; i <<= 1) {
2068
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2069
0
            pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2070
0
            pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2071
0
        for (j = 0; j < 129; ++j) {
2072
0
            point_double(pre->g_pre_comp[2 * i][0],
2073
0
                pre->g_pre_comp[2 * i][1],
2074
0
                pre->g_pre_comp[2 * i][2],
2075
0
                pre->g_pre_comp[2 * i][0],
2076
0
                pre->g_pre_comp[2 * i][1],
2077
0
                pre->g_pre_comp[2 * i][2]);
2078
0
        }
2079
0
    }
2080
    /* g_pre_comp[0] is the point at infinity */
2081
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2082
    /* the remaining multiples */
2083
    /* 2^130*G + 2^260*G */
2084
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2085
0
        pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2086
0
        pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2087
0
        0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2088
0
        pre->g_pre_comp[2][2]);
2089
    /* 2^130*G + 2^390*G */
2090
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2091
0
        pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2092
0
        pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2093
0
        0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2094
0
        pre->g_pre_comp[2][2]);
2095
    /* 2^260*G + 2^390*G */
2096
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2097
0
        pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2098
0
        pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2099
0
        0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2100
0
        pre->g_pre_comp[4][2]);
2101
    /* 2^130*G + 2^260*G + 2^390*G */
2102
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2103
0
        pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2104
0
        pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2105
0
        0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2106
0
        pre->g_pre_comp[2][2]);
2107
0
    for (i = 1; i < 8; ++i) {
2108
        /* odd multiples: add G */
2109
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2110
0
            pre->g_pre_comp[2 * i + 1][1],
2111
0
            pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2112
0
            pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2113
0
            pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2114
0
            pre->g_pre_comp[1][2]);
2115
0
    }
2116
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2117
2118
0
done:
2119
0
    SETPRECOMP(group, nistp521, pre);
2120
0
    ret = 1;
2121
0
    pre = NULL;
2122
0
err:
2123
0
    BN_CTX_end(ctx);
2124
0
    EC_POINT_free(generator);
2125
0
#ifndef FIPS_MODULE
2126
0
    BN_CTX_free(new_ctx);
2127
0
#endif
2128
0
    EC_nistp521_pre_comp_free(pre);
2129
0
    return ret;
2130
0
}
2131
2132
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2133
0
{
2134
    return HAVEPRECOMP(group, nistp521);
2135
0
}