Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl33/crypto/ec/ecp_nistz256.c
Line
Count
Source
1
/*
2
 * Copyright 2014-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4
 * Copyright (c) 2015, CloudFlare, Inc.
5
 *
6
 * Licensed under the Apache License 2.0 (the "License").  You may not use
7
 * this file except in compliance with the License.  You can obtain a copy
8
 * in the file LICENSE in the source distribution or at
9
 * https://www.openssl.org/source/license.html
10
 *
11
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13
 * (2) University of Haifa, Israel
14
 * (3) CloudFlare, Inc.
15
 *
16
 * Reference:
17
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18
 *                          256 Bit Primes"
19
 */
20
21
/*
22
 * ECDSA low level APIs are deprecated for public use, but still ok for
23
 * internal use.
24
 */
25
#include "internal/deprecated.h"
26
27
#include <string.h>
28
29
#include "internal/cryptlib.h"
30
#include "crypto/bn.h"
31
#include "ec_local.h"
32
#include "internal/refcount.h"
33
34
#if BN_BITS2 != 64
35
#define TOBN(hi, lo) lo, hi
36
#else
37
62.8k
#define TOBN(hi, lo) ((BN_ULONG)hi << 32 | lo)
38
#endif
39
40
4.33k
#define ALIGNPTR(p, N) ((unsigned char *)p + N - (size_t)p % N)
41
1.73M
#define P256_LIMBS (256 / BN_BITS2)
42
43
typedef unsigned short u16;
44
45
typedef struct {
46
    BN_ULONG X[P256_LIMBS];
47
    BN_ULONG Y[P256_LIMBS];
48
    BN_ULONG Z[P256_LIMBS];
49
} P256_POINT;
50
51
typedef struct {
52
    BN_ULONG X[P256_LIMBS];
53
    BN_ULONG Y[P256_LIMBS];
54
} P256_POINT_AFFINE;
55
56
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
57
58
/* structure for precomputed multiples of the generator */
59
struct nistz256_pre_comp_st {
60
    const EC_GROUP *group; /* Parent EC_GROUP object */
61
    size_t w; /* Window size */
62
    /*
63
     * Constant time access to the X and Y coordinates of the pre-computed,
64
     * generator multiplies, in the Montgomery domain. Pre-calculated
65
     * multiplies are stored in affine form.
66
     */
67
    PRECOMP256_ROW *precomp;
68
    void *precomp_storage;
69
    CRYPTO_REF_COUNT references;
70
};
71
72
/* Functions implemented in assembly */
73
/*
74
 * Most of below mentioned functions *preserve* the property of inputs
75
 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
76
 * inputs are fully reduced, then output is too. Note that reverse is
77
 * not true, in sense that given partially reduced inputs output can be
78
 * either, not unlikely reduced. And "most" in first sentence refers to
79
 * the fact that given the calculations flow one can tolerate that
80
 * addition, 1st function below, produces partially reduced result *if*
81
 * multiplications by 2 and 3, which customarily use addition, fully
82
 * reduce it. This effectively gives two options: a) addition produces
83
 * fully reduced result [as long as inputs are, just like remaining
84
 * functions]; b) addition is allowed to produce partially reduced
85
 * result, but multiplications by 2 and 3 perform additional reduction
86
 * step. Choice between the two can be platform-specific, but it was a)
87
 * in all cases so far...
88
 */
89
/* Modular add: res = a+b mod P   */
90
void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
91
    const BN_ULONG a[P256_LIMBS],
92
    const BN_ULONG b[P256_LIMBS]);
93
/* Modular mul by 2: res = 2*a mod P */
94
void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
95
    const BN_ULONG a[P256_LIMBS]);
96
/* Modular mul by 3: res = 3*a mod P */
97
void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
98
    const BN_ULONG a[P256_LIMBS]);
99
100
/* Modular div by 2: res = a/2 mod P */
101
void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
102
    const BN_ULONG a[P256_LIMBS]);
103
/* Modular sub: res = a-b mod P   */
104
void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
105
    const BN_ULONG a[P256_LIMBS],
106
    const BN_ULONG b[P256_LIMBS]);
107
/* Modular neg: res = -a mod P    */
108
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
109
/* Montgomery mul: res = a*b*2^-256 mod P */
110
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
111
    const BN_ULONG a[P256_LIMBS],
112
    const BN_ULONG b[P256_LIMBS]);
113
/* Montgomery sqr: res = a*a*2^-256 mod P */
114
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
115
    const BN_ULONG a[P256_LIMBS]);
116
/* Convert a number from Montgomery domain, by multiplying with 1 */
117
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
118
    const BN_ULONG in[P256_LIMBS]);
119
/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
120
void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
121
    const BN_ULONG in[P256_LIMBS]);
122
/* Functions that perform constant time access to the precomputed tables */
123
void ecp_nistz256_scatter_w5(P256_POINT *val,
124
    const P256_POINT *in_t, int idx);
125
void ecp_nistz256_gather_w5(P256_POINT *val,
126
    const P256_POINT *in_t, int idx);
127
void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
128
    const P256_POINT_AFFINE *in_t, int idx);
129
void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
130
    const P256_POINT_AFFINE *in_t, int idx);
131
132
/* One converted into the Montgomery domain */
133
static const BN_ULONG ONE[P256_LIMBS] = {
134
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
135
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
136
};
137
138
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
139
140
/* Precomputed tables for the default generator */
141
extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
142
143
/* Recode window to a signed digit, see ecp_nistputil.c for details */
144
static unsigned int _booth_recode_w5(unsigned int in)
145
225k
{
146
225k
    unsigned int s, d;
147
148
225k
    s = ~((in >> 5) - 1);
149
225k
    d = (1 << 6) - in - 1;
150
225k
    d = (d & s) | (in & ~s);
151
225k
    d = (d >> 1) + (d & 1);
152
153
225k
    return (d << 1) + (s & 1);
154
225k
}
155
156
static unsigned int _booth_recode_w7(unsigned int in)
157
607k
{
158
607k
    unsigned int s, d;
159
160
607k
    s = ~((in >> 7) - 1);
161
607k
    d = (1 << 8) - in - 1;
162
607k
    d = (d & s) | (in & ~s);
163
607k
    d = (d >> 1) + (d & 1);
164
165
607k
    return (d << 1) + (s & 1);
166
607k
}
167
168
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
169
    const BN_ULONG src[P256_LIMBS], BN_ULONG move)
170
828k
{
171
828k
    BN_ULONG mask1 = 0 - move;
172
828k
    BN_ULONG mask2 = ~mask1;
173
174
828k
    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
175
828k
    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
176
828k
    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
177
828k
    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
178
828k
    if (P256_LIMBS == 8) {
179
0
        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
180
0
        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
181
0
        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
182
0
        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
183
0
    }
184
828k
}
185
186
static BN_ULONG is_zero(BN_ULONG in)
187
83.8k
{
188
83.8k
    in |= (0 - in);
189
83.8k
    in = ~in;
190
83.8k
    in >>= BN_BITS2 - 1;
191
83.8k
    return in;
192
83.8k
}
193
194
static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
195
    const BN_ULONG b[P256_LIMBS])
196
32.8k
{
197
32.8k
    BN_ULONG res;
198
199
32.8k
    res = a[0] ^ b[0];
200
32.8k
    res |= a[1] ^ b[1];
201
32.8k
    res |= a[2] ^ b[2];
202
32.8k
    res |= a[3] ^ b[3];
203
32.8k
    if (P256_LIMBS == 8) {
204
0
        res |= a[4] ^ b[4];
205
0
        res |= a[5] ^ b[5];
206
0
        res |= a[6] ^ b[6];
207
0
        res |= a[7] ^ b[7];
208
0
    }
209
210
32.8k
    return is_zero(res);
211
32.8k
}
212
213
static BN_ULONG is_one(const BIGNUM *z)
214
36.0k
{
215
36.0k
    BN_ULONG res = 0;
216
36.0k
    BN_ULONG *a = bn_get_words(z);
217
218
36.0k
    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
219
34.5k
        res = a[0] ^ ONE[0];
220
34.5k
        res |= a[1] ^ ONE[1];
221
34.5k
        res |= a[2] ^ ONE[2];
222
34.5k
        res |= a[3] ^ ONE[3];
223
34.5k
        if (P256_LIMBS == 8) {
224
0
            res |= a[4] ^ ONE[4];
225
0
            res |= a[5] ^ ONE[5];
226
0
            res |= a[6] ^ ONE[6];
227
            /*
228
             * no check for a[7] (being zero) on 32-bit platforms,
229
             * because value of "one" takes only 7 limbs.
230
             */
231
0
        }
232
34.5k
        res = is_zero(res);
233
34.5k
    }
234
235
36.0k
    return res;
236
36.0k
}
237
238
/*
239
 * For reference, this macro is used only when new ecp_nistz256 assembly
240
 * module is being developed.  For example, configure with
241
 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
242
 * performing simplest arithmetic operations on 256-bit vectors. Then
243
 * work on implementation of higher-level functions performing point
244
 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
245
 * and never define it again. (The correct macro denoting presence of
246
 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
247
 */
248
#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
249
void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
250
void ecp_nistz256_point_add(P256_POINT *r,
251
    const P256_POINT *a, const P256_POINT *b);
252
void ecp_nistz256_point_add_affine(P256_POINT *r,
253
    const P256_POINT *a,
254
    const P256_POINT_AFFINE *b);
255
#else
256
/* Point double: r = 2*a */
257
static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
258
{
259
    BN_ULONG S[P256_LIMBS];
260
    BN_ULONG M[P256_LIMBS];
261
    BN_ULONG Zsqr[P256_LIMBS];
262
    BN_ULONG tmp0[P256_LIMBS];
263
264
    const BN_ULONG *in_x = a->X;
265
    const BN_ULONG *in_y = a->Y;
266
    const BN_ULONG *in_z = a->Z;
267
268
    BN_ULONG *res_x = r->X;
269
    BN_ULONG *res_y = r->Y;
270
    BN_ULONG *res_z = r->Z;
271
272
    ecp_nistz256_mul_by_2(S, in_y);
273
274
    ecp_nistz256_sqr_mont(Zsqr, in_z);
275
276
    ecp_nistz256_sqr_mont(S, S);
277
278
    ecp_nistz256_mul_mont(res_z, in_z, in_y);
279
    ecp_nistz256_mul_by_2(res_z, res_z);
280
281
    ecp_nistz256_add(M, in_x, Zsqr);
282
    ecp_nistz256_sub(Zsqr, in_x, Zsqr);
283
284
    ecp_nistz256_sqr_mont(res_y, S);
285
    ecp_nistz256_div_by_2(res_y, res_y);
286
287
    ecp_nistz256_mul_mont(M, M, Zsqr);
288
    ecp_nistz256_mul_by_3(M, M);
289
290
    ecp_nistz256_mul_mont(S, S, in_x);
291
    ecp_nistz256_mul_by_2(tmp0, S);
292
293
    ecp_nistz256_sqr_mont(res_x, M);
294
295
    ecp_nistz256_sub(res_x, res_x, tmp0);
296
    ecp_nistz256_sub(S, S, res_x);
297
298
    ecp_nistz256_mul_mont(S, S, M);
299
    ecp_nistz256_sub(res_y, S, res_y);
300
}
301
302
/* Point addition: r = a+b */
303
static void ecp_nistz256_point_add(P256_POINT *r,
304
    const P256_POINT *a, const P256_POINT *b)
305
{
306
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
307
    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
308
    BN_ULONG Z1sqr[P256_LIMBS];
309
    BN_ULONG Z2sqr[P256_LIMBS];
310
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
311
    BN_ULONG Hsqr[P256_LIMBS];
312
    BN_ULONG Rsqr[P256_LIMBS];
313
    BN_ULONG Hcub[P256_LIMBS];
314
315
    BN_ULONG res_x[P256_LIMBS];
316
    BN_ULONG res_y[P256_LIMBS];
317
    BN_ULONG res_z[P256_LIMBS];
318
319
    BN_ULONG in1infty, in2infty;
320
321
    const BN_ULONG *in1_x = a->X;
322
    const BN_ULONG *in1_y = a->Y;
323
    const BN_ULONG *in1_z = a->Z;
324
325
    const BN_ULONG *in2_x = b->X;
326
    const BN_ULONG *in2_y = b->Y;
327
    const BN_ULONG *in2_z = b->Z;
328
329
    /*
330
     * Infinity in encoded as (,,0)
331
     */
332
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
333
    if (P256_LIMBS == 8)
334
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
335
336
    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
337
    if (P256_LIMBS == 8)
338
        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
339
340
    in1infty = is_zero(in1infty);
341
    in2infty = is_zero(in2infty);
342
343
    ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
344
    ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
345
346
    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
347
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
348
349
    ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
350
    ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
351
    ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */
352
353
    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
354
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
355
    ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */
356
357
    /*
358
     * The formulae are incorrect if the points are equal so we check for
359
     * this and do doubling if this happens.
360
     *
361
     * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
362
     * that are bound to the affine coordinates (xi, yi) by the following
363
     * equations:
364
     *     - xi = Xi / (Zi)^2
365
     *     - y1 = Yi / (Zi)^3
366
     *
367
     * For the sake of optimization, the algorithm operates over
368
     * intermediate variables U1, U2 and S1, S2 that are derived from
369
     * the projective coordinates:
370
     *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
371
     *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
372
     *
373
     * It is easy to prove that is_equal(U1, U2) implies that the affine
374
     * x-coordinates are equal, or either point is at infinity.
375
     * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
376
     * equal, or either point is at infinity.
377
     *
378
     * The special case of either point being the point at infinity (Z1 or Z2
379
     * is zero), is handled separately later on in this function, so we avoid
380
     * jumping to point_double here in those special cases.
381
     *
382
     * When both points are inverse of each other, we know that the affine
383
     * x-coordinates are equal, and the y-coordinates have different sign.
384
     * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
385
     * will equal 0, thus the result is infinity, if we simply let this
386
     * function continue normally.
387
     *
388
     * We use bitwise operations to avoid potential side-channels introduced by
389
     * the short-circuiting behaviour of boolean operators.
390
     */
391
    if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
392
        /*
393
         * This is obviously not constant-time but it should never happen during
394
         * single point multiplication, so there is no timing leak for ECDH or
395
         * ECDSA signing.
396
         */
397
        ecp_nistz256_point_double(r, a);
398
        return;
399
    }
400
401
    ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
402
    ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
403
    ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
404
    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
405
    ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
406
407
    ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
408
    ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
409
410
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
411
    ecp_nistz256_sub(res_x, res_x, Hcub);
412
413
    ecp_nistz256_sub(res_y, U2, res_x);
414
415
    ecp_nistz256_mul_mont(S2, S1, Hcub);
416
    ecp_nistz256_mul_mont(res_y, R, res_y);
417
    ecp_nistz256_sub(res_y, res_y, S2);
418
419
    copy_conditional(res_x, in2_x, in1infty);
420
    copy_conditional(res_y, in2_y, in1infty);
421
    copy_conditional(res_z, in2_z, in1infty);
422
423
    copy_conditional(res_x, in1_x, in2infty);
424
    copy_conditional(res_y, in1_y, in2infty);
425
    copy_conditional(res_z, in1_z, in2infty);
426
427
    memcpy(r->X, res_x, sizeof(res_x));
428
    memcpy(r->Y, res_y, sizeof(res_y));
429
    memcpy(r->Z, res_z, sizeof(res_z));
430
}
431
432
/* Point addition when b is known to be affine: r = a+b */
433
static void ecp_nistz256_point_add_affine(P256_POINT *r,
434
    const P256_POINT *a,
435
    const P256_POINT_AFFINE *b)
436
{
437
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
438
    BN_ULONG Z1sqr[P256_LIMBS];
439
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
440
    BN_ULONG Hsqr[P256_LIMBS];
441
    BN_ULONG Rsqr[P256_LIMBS];
442
    BN_ULONG Hcub[P256_LIMBS];
443
444
    BN_ULONG res_x[P256_LIMBS];
445
    BN_ULONG res_y[P256_LIMBS];
446
    BN_ULONG res_z[P256_LIMBS];
447
448
    BN_ULONG in1infty, in2infty;
449
450
    const BN_ULONG *in1_x = a->X;
451
    const BN_ULONG *in1_y = a->Y;
452
    const BN_ULONG *in1_z = a->Z;
453
454
    const BN_ULONG *in2_x = b->X;
455
    const BN_ULONG *in2_y = b->Y;
456
457
    /*
458
     * Infinity in encoded as (,,0)
459
     */
460
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
461
    if (P256_LIMBS == 8)
462
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
463
464
    /*
465
     * In affine representation we encode infinity as (0,0), which is
466
     * not on the curve, so it is OK
467
     */
468
    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] | in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
469
    if (P256_LIMBS == 8)
470
        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] | in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
471
472
    in1infty = is_zero(in1infty);
473
    in2infty = is_zero(in2infty);
474
475
    ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
476
477
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
478
    ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */
479
480
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
481
482
    ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
483
484
    ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
485
    ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */
486
487
    ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
488
    ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
489
    ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
490
491
    ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */
492
    ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
493
494
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
495
    ecp_nistz256_sub(res_x, res_x, Hcub);
496
    ecp_nistz256_sub(H, U2, res_x);
497
498
    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
499
    ecp_nistz256_mul_mont(H, H, R);
500
    ecp_nistz256_sub(res_y, H, S2);
501
502
    copy_conditional(res_x, in2_x, in1infty);
503
    copy_conditional(res_x, in1_x, in2infty);
504
505
    copy_conditional(res_y, in2_y, in1infty);
506
    copy_conditional(res_y, in1_y, in2infty);
507
508
    copy_conditional(res_z, ONE, in1infty);
509
    copy_conditional(res_z, in1_z, in2infty);
510
511
    memcpy(r->X, res_x, sizeof(res_x));
512
    memcpy(r->Y, res_y, sizeof(res_y));
513
    memcpy(r->Z, res_z, sizeof(res_z));
514
}
515
#endif
516
517
/* r = in^-1 mod p */
518
static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
519
    const BN_ULONG in[P256_LIMBS])
520
123k
{
521
    /*
522
     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
523
     * ffffffff ffffffff We use FLT and used poly-2 as exponent
524
     */
525
123k
    BN_ULONG p2[P256_LIMBS];
526
123k
    BN_ULONG p4[P256_LIMBS];
527
123k
    BN_ULONG p8[P256_LIMBS];
528
123k
    BN_ULONG p16[P256_LIMBS];
529
123k
    BN_ULONG p32[P256_LIMBS];
530
123k
    BN_ULONG res[P256_LIMBS];
531
123k
    int i;
532
533
123k
    ecp_nistz256_sqr_mont(res, in);
534
123k
    ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
535
536
123k
    ecp_nistz256_sqr_mont(res, p2);
537
123k
    ecp_nistz256_sqr_mont(res, res);
538
123k
    ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
539
540
123k
    ecp_nistz256_sqr_mont(res, p4);
541
123k
    ecp_nistz256_sqr_mont(res, res);
542
123k
    ecp_nistz256_sqr_mont(res, res);
543
123k
    ecp_nistz256_sqr_mont(res, res);
544
123k
    ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
545
546
123k
    ecp_nistz256_sqr_mont(res, p8);
547
987k
    for (i = 0; i < 7; i++)
548
864k
        ecp_nistz256_sqr_mont(res, res);
549
123k
    ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
550
551
123k
    ecp_nistz256_sqr_mont(res, p16);
552
1.97M
    for (i = 0; i < 15; i++)
553
1.85M
        ecp_nistz256_sqr_mont(res, res);
554
123k
    ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
555
556
123k
    ecp_nistz256_sqr_mont(res, p32);
557
3.95M
    for (i = 0; i < 31; i++)
558
3.82M
        ecp_nistz256_sqr_mont(res, res);
559
123k
    ecp_nistz256_mul_mont(res, res, in);
560
561
15.9M
    for (i = 0; i < 32 * 4; i++)
562
15.8M
        ecp_nistz256_sqr_mont(res, res);
563
123k
    ecp_nistz256_mul_mont(res, res, p32);
564
565
4.07M
    for (i = 0; i < 32; i++)
566
3.95M
        ecp_nistz256_sqr_mont(res, res);
567
123k
    ecp_nistz256_mul_mont(res, res, p32);
568
569
2.09M
    for (i = 0; i < 16; i++)
570
1.97M
        ecp_nistz256_sqr_mont(res, res);
571
123k
    ecp_nistz256_mul_mont(res, res, p16);
572
573
1.11M
    for (i = 0; i < 8; i++)
574
987k
        ecp_nistz256_sqr_mont(res, res);
575
123k
    ecp_nistz256_mul_mont(res, res, p8);
576
577
123k
    ecp_nistz256_sqr_mont(res, res);
578
123k
    ecp_nistz256_sqr_mont(res, res);
579
123k
    ecp_nistz256_sqr_mont(res, res);
580
123k
    ecp_nistz256_sqr_mont(res, res);
581
123k
    ecp_nistz256_mul_mont(res, res, p4);
582
583
123k
    ecp_nistz256_sqr_mont(res, res);
584
123k
    ecp_nistz256_sqr_mont(res, res);
585
123k
    ecp_nistz256_mul_mont(res, res, p2);
586
587
123k
    ecp_nistz256_sqr_mont(res, res);
588
123k
    ecp_nistz256_sqr_mont(res, res);
589
123k
    ecp_nistz256_mul_mont(res, res, in);
590
591
123k
    memcpy(r, res, sizeof(res));
592
123k
}
593
594
/*
595
 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
596
 * returns one if it fits. Otherwise it returns zero.
597
 */
598
__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
599
    const BIGNUM *in)
600
391k
{
601
391k
    return bn_copy_words(out, in, P256_LIMBS);
602
391k
}
603
604
/* r = sum(scalar[i]*point[i]) */
605
__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
606
    P256_POINT *r,
607
    const BIGNUM **scalar,
608
    const EC_POINT **point,
609
    size_t num, BN_CTX *ctx)
610
4.33k
{
611
4.33k
    size_t i;
612
4.33k
    int j, ret = 0;
613
4.33k
    unsigned int idx;
614
4.33k
    unsigned char (*p_str)[33] = NULL;
615
4.33k
    const unsigned int window_size = 5;
616
4.33k
    const unsigned int mask = (1 << (window_size + 1)) - 1;
617
4.33k
    unsigned int wvalue;
618
4.33k
    P256_POINT *temp; /* place for 5 temporary points */
619
4.33k
    const BIGNUM **scalars = NULL;
620
4.33k
    P256_POINT(*table)
621
4.33k
    [16] = NULL;
622
4.33k
    void *table_storage = NULL;
623
624
4.33k
    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
625
4.33k
        || (table_storage = OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
626
4.33k
        || (p_str = OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
627
4.33k
        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL)
628
0
        goto err;
629
630
4.33k
    table = (void *)ALIGNPTR(table_storage, 64);
631
4.33k
    temp = (P256_POINT *)(table + num);
632
633
8.67k
    for (i = 0; i < num; i++) {
634
4.33k
        P256_POINT *row = table[i];
635
636
        /* This is an unusual input, we don't guarantee constant-timeness. */
637
4.33k
        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
638
0
            BIGNUM *mod;
639
640
0
            if ((mod = BN_CTX_get(ctx)) == NULL)
641
0
                goto err;
642
0
            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
643
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
644
0
                goto err;
645
0
            }
646
0
            scalars[i] = mod;
647
0
        } else
648
4.33k
            scalars[i] = scalar[i];
649
650
21.6k
        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
651
17.3k
            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
652
653
17.3k
            p_str[i][j + 0] = (unsigned char)d;
654
17.3k
            p_str[i][j + 1] = (unsigned char)(d >> 8);
655
17.3k
            p_str[i][j + 2] = (unsigned char)(d >> 16);
656
17.3k
            p_str[i][j + 3] = (unsigned char)(d >>= 24);
657
17.3k
            if (BN_BYTES == 8) {
658
17.3k
                d >>= 8;
659
17.3k
                p_str[i][j + 4] = (unsigned char)d;
660
17.3k
                p_str[i][j + 5] = (unsigned char)(d >> 8);
661
17.3k
                p_str[i][j + 6] = (unsigned char)(d >> 16);
662
17.3k
                p_str[i][j + 7] = (unsigned char)(d >> 24);
663
17.3k
            }
664
17.3k
        }
665
8.86k
        for (; j < 33; j++)
666
4.52k
            p_str[i][j] = 0;
667
668
4.33k
        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
669
4.33k
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
670
4.33k
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
671
0
            ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
672
0
            goto err;
673
0
        }
674
675
        /*
676
         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
677
         * is not stored. All other values are actually stored with an offset
678
         * of -1 in table.
679
         */
680
681
4.33k
        ecp_nistz256_scatter_w5(row, &temp[0], 1);
682
4.33k
        ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2  */
683
4.33k
        ecp_nistz256_scatter_w5(row, &temp[1], 2);
684
4.33k
        ecp_nistz256_point_add(&temp[2], &temp[1], &temp[0]); /*2+1=3  */
685
4.33k
        ecp_nistz256_scatter_w5(row, &temp[2], 3);
686
4.33k
        ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4  */
687
4.33k
        ecp_nistz256_scatter_w5(row, &temp[1], 4);
688
4.33k
        ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6  */
689
4.33k
        ecp_nistz256_scatter_w5(row, &temp[2], 6);
690
4.33k
        ecp_nistz256_point_add(&temp[3], &temp[1], &temp[0]); /*4+1=5  */
691
4.33k
        ecp_nistz256_scatter_w5(row, &temp[3], 5);
692
4.33k
        ecp_nistz256_point_add(&temp[4], &temp[2], &temp[0]); /*6+1=7  */
693
4.33k
        ecp_nistz256_scatter_w5(row, &temp[4], 7);
694
4.33k
        ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8  */
695
4.33k
        ecp_nistz256_scatter_w5(row, &temp[1], 8);
696
4.33k
        ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */
697
4.33k
        ecp_nistz256_scatter_w5(row, &temp[2], 12);
698
4.33k
        ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */
699
4.33k
        ecp_nistz256_scatter_w5(row, &temp[3], 10);
700
4.33k
        ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */
701
4.33k
        ecp_nistz256_scatter_w5(row, &temp[4], 14);
702
4.33k
        ecp_nistz256_point_add(&temp[2], &temp[2], &temp[0]); /*12+1=13*/
703
4.33k
        ecp_nistz256_scatter_w5(row, &temp[2], 13);
704
4.33k
        ecp_nistz256_point_add(&temp[3], &temp[3], &temp[0]); /*10+1=11*/
705
4.33k
        ecp_nistz256_scatter_w5(row, &temp[3], 11);
706
4.33k
        ecp_nistz256_point_add(&temp[4], &temp[4], &temp[0]); /*14+1=15*/
707
4.33k
        ecp_nistz256_scatter_w5(row, &temp[4], 15);
708
4.33k
        ecp_nistz256_point_add(&temp[2], &temp[1], &temp[0]); /*8+1=9  */
709
4.33k
        ecp_nistz256_scatter_w5(row, &temp[2], 9);
710
4.33k
        ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */
711
4.33k
        ecp_nistz256_scatter_w5(row, &temp[1], 16);
712
4.33k
    }
713
714
4.33k
    idx = 255;
715
716
4.33k
    wvalue = p_str[0][(idx - 1) / 8];
717
4.33k
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
718
719
    /*
720
     * We gather to temp[0], because we know it's position relative
721
     * to table
722
     */
723
4.33k
    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
724
4.33k
    memcpy(r, &temp[0], sizeof(temp[0]));
725
726
225k
    while (idx >= 5) {
727
438k
        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
728
216k
            unsigned int off = (idx - 1) / 8;
729
730
216k
            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
731
216k
            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
732
733
216k
            wvalue = _booth_recode_w5(wvalue);
734
735
216k
            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
736
737
216k
            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
738
216k
            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
739
740
216k
            ecp_nistz256_point_add(r, r, &temp[0]);
741
216k
        }
742
743
221k
        idx -= window_size;
744
745
221k
        ecp_nistz256_point_double(r, r);
746
221k
        ecp_nistz256_point_double(r, r);
747
221k
        ecp_nistz256_point_double(r, r);
748
221k
        ecp_nistz256_point_double(r, r);
749
221k
        ecp_nistz256_point_double(r, r);
750
221k
    }
751
752
    /* Final window */
753
8.67k
    for (i = 0; i < num; i++) {
754
4.33k
        wvalue = p_str[i][0];
755
4.33k
        wvalue = (wvalue << 1) & mask;
756
757
4.33k
        wvalue = _booth_recode_w5(wvalue);
758
759
4.33k
        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
760
761
4.33k
        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
762
4.33k
        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
763
764
4.33k
        ecp_nistz256_point_add(r, r, &temp[0]);
765
4.33k
    }
766
767
4.33k
    ret = 1;
768
4.33k
err:
769
4.33k
    OPENSSL_free(table_storage);
770
4.33k
    OPENSSL_free(p_str);
771
4.33k
    OPENSSL_free(scalars);
772
4.33k
    return ret;
773
4.33k
}
774
775
/* Coordinates of G, for which we have precomputed tables */
776
static const BN_ULONG def_xG[P256_LIMBS] = {
777
    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
778
    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
779
};
780
781
static const BN_ULONG def_yG[P256_LIMBS] = {
782
    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
783
    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
784
};
785
786
/*
787
 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
788
 * generator.
789
 */
790
static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
791
16.4k
{
792
16.4k
    return (bn_get_top(generator->X) == P256_LIMBS) && (bn_get_top(generator->Y) == P256_LIMBS) && is_equal(bn_get_words(generator->X), def_xG) && is_equal(bn_get_words(generator->Y), def_yG) && is_one(generator->Z);
793
16.4k
}
794
795
__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
796
0
{
797
    /*
798
     * We precompute a table for a Booth encoded exponent (wNAF) based
799
     * computation. Each table holds 64 values for safe access, with an
800
     * implicit value of infinity at index zero. We use window of size 7, and
801
     * therefore require ceil(256/7) = 37 tables.
802
     */
803
0
    const BIGNUM *order;
804
0
    EC_POINT *P = NULL, *T = NULL;
805
0
    const EC_POINT *generator;
806
0
    NISTZ256_PRE_COMP *pre_comp;
807
0
    BN_CTX *new_ctx = NULL;
808
0
    int i, j, k, ret = 0;
809
0
    size_t w;
810
811
0
    PRECOMP256_ROW *preComputedTable = NULL;
812
0
    unsigned char *precomp_storage = NULL;
813
814
    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
815
0
    EC_pre_comp_free(group);
816
0
    generator = EC_GROUP_get0_generator(group);
817
0
    if (generator == NULL) {
818
0
        ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
819
0
        return 0;
820
0
    }
821
822
0
    if (ecp_nistz256_is_affine_G(generator)) {
823
        /*
824
         * No need to calculate tables for the standard generator because we
825
         * have them statically.
826
         */
827
0
        return 1;
828
0
    }
829
830
0
    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
831
0
        return 0;
832
833
0
    if (ctx == NULL) {
834
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
835
0
        if (ctx == NULL)
836
0
            goto err;
837
0
    }
838
839
0
    BN_CTX_start(ctx);
840
841
0
    order = EC_GROUP_get0_order(group);
842
0
    if (order == NULL)
843
0
        goto err;
844
845
0
    if (BN_is_zero(order)) {
846
0
        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
847
0
        goto err;
848
0
    }
849
850
0
    w = 7;
851
852
0
    if ((precomp_storage = OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL)
853
0
        goto err;
854
855
0
    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
856
857
0
    P = EC_POINT_new(group);
858
0
    T = EC_POINT_new(group);
859
0
    if (P == NULL || T == NULL)
860
0
        goto err;
861
862
    /*
863
     * The zero entry is implicitly infinity, and we skip it, storing other
864
     * values with -1 offset.
865
     */
866
0
    if (!EC_POINT_copy(T, generator))
867
0
        goto err;
868
869
0
    for (k = 0; k < 64; k++) {
870
0
        if (!EC_POINT_copy(P, T))
871
0
            goto err;
872
0
        for (j = 0; j < 37; j++) {
873
0
            P256_POINT_AFFINE temp;
874
            /*
875
             * It would be faster to use EC_POINTs_make_affine and
876
             * make multiple points affine at the same time.
877
             */
878
0
            if (group->meth->make_affine == NULL
879
0
                || !group->meth->make_affine(group, P, ctx))
880
0
                goto err;
881
0
            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) || !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
882
0
                ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
883
0
                goto err;
884
0
            }
885
0
            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
886
0
            for (i = 0; i < 7; i++) {
887
0
                if (!EC_POINT_dbl(group, P, P, ctx))
888
0
                    goto err;
889
0
            }
890
0
        }
891
0
        if (!EC_POINT_add(group, T, T, generator, ctx))
892
0
            goto err;
893
0
    }
894
895
0
    pre_comp->group = group;
896
0
    pre_comp->w = w;
897
0
    pre_comp->precomp = preComputedTable;
898
0
    pre_comp->precomp_storage = precomp_storage;
899
0
    precomp_storage = NULL;
900
0
    SETPRECOMP(group, nistz256, pre_comp);
901
0
    pre_comp = NULL;
902
0
    ret = 1;
903
904
0
err:
905
0
    BN_CTX_end(ctx);
906
0
    BN_CTX_free(new_ctx);
907
908
0
    EC_nistz256_pre_comp_free(pre_comp);
909
0
    OPENSSL_free(precomp_storage);
910
0
    EC_POINT_free(P);
911
0
    EC_POINT_free(T);
912
0
    return ret;
913
0
}
914
915
__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
916
    const P256_POINT_AFFINE *in,
917
    BN_CTX *ctx)
918
0
{
919
0
    int ret = 0;
920
921
0
    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
922
0
        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
923
0
        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
924
0
        out->Z_is_one = 1;
925
926
0
    return ret;
927
0
}
928
929
/* r = scalar*G + sum(scalars[i]*points[i]) */
930
__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
931
    EC_POINT *r,
932
    const BIGNUM *scalar,
933
    size_t num,
934
    const EC_POINT *points[],
935
    const BIGNUM *scalars[], BN_CTX *ctx)
936
19.6k
{
937
19.6k
    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
938
19.6k
    unsigned char p_str[33] = { 0 };
939
19.6k
    const PRECOMP256_ROW *preComputedTable = NULL;
940
19.6k
    const NISTZ256_PRE_COMP *pre_comp = NULL;
941
19.6k
    const EC_POINT *generator = NULL;
942
19.6k
    const BIGNUM **new_scalars = NULL;
943
19.6k
    const EC_POINT **new_points = NULL;
944
19.6k
    unsigned int idx = 0;
945
19.6k
    const unsigned int window_size = 7;
946
19.6k
    const unsigned int mask = (1 << (window_size + 1)) - 1;
947
19.6k
    unsigned int wvalue;
948
19.6k
    ALIGN32 union {
949
19.6k
        P256_POINT p;
950
19.6k
        P256_POINT_AFFINE a;
951
19.6k
    } t, p;
952
19.6k
    BIGNUM *tmp_scalar;
953
954
19.6k
    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
955
0
        ERR_raise(ERR_LIB_EC, ERR_R_PASSED_INVALID_ARGUMENT);
956
0
        return 0;
957
0
    }
958
959
19.6k
    memset(&p, 0, sizeof(p));
960
19.6k
    BN_CTX_start(ctx);
961
962
19.6k
    if (scalar) {
963
16.4k
        generator = EC_GROUP_get0_generator(group);
964
16.4k
        if (generator == NULL) {
965
0
            ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
966
0
            goto err;
967
0
        }
968
969
        /* look if we can use precomputed multiples of generator */
970
16.4k
        pre_comp = group->pre_comp.nistz256;
971
972
16.4k
        if (pre_comp) {
973
            /*
974
             * If there is a precomputed table for the generator, check that
975
             * it was generated with the same generator.
976
             */
977
0
            EC_POINT *pre_comp_generator = EC_POINT_new(group);
978
0
            if (pre_comp_generator == NULL)
979
0
                goto err;
980
981
0
            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
982
0
            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
983
0
                    group, &p.a, ctx)) {
984
0
                EC_POINT_free(pre_comp_generator);
985
0
                goto err;
986
0
            }
987
988
0
            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
989
0
                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
990
991
0
            EC_POINT_free(pre_comp_generator);
992
0
        }
993
994
16.4k
        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
995
            /*
996
             * If there is no precomputed data, but the generator is the
997
             * default, a hardcoded table of precomputed data is used. This
998
             * is because applications, such as Apache, do not use
999
             * EC_KEY_precompute_mult.
1000
             */
1001
16.4k
            preComputedTable = ecp_nistz256_precomputed;
1002
16.4k
        }
1003
1004
16.4k
        if (preComputedTable) {
1005
16.4k
            BN_ULONG infty;
1006
1007
16.4k
            if ((BN_num_bits(scalar) > 256)
1008
15.1k
                || BN_is_negative(scalar)) {
1009
1.29k
                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1010
0
                    goto err;
1011
1012
1.29k
                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1013
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1014
0
                    goto err;
1015
0
                }
1016
1.29k
                scalar = tmp_scalar;
1017
1.29k
            }
1018
1019
80.2k
            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1020
63.8k
                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1021
1022
63.8k
                p_str[i + 0] = (unsigned char)d;
1023
63.8k
                p_str[i + 1] = (unsigned char)(d >> 8);
1024
63.8k
                p_str[i + 2] = (unsigned char)(d >> 16);
1025
63.8k
                p_str[i + 3] = (unsigned char)(d >>= 24);
1026
63.8k
                if (BN_BYTES == 8) {
1027
63.8k
                    d >>= 8;
1028
63.8k
                    p_str[i + 4] = (unsigned char)d;
1029
63.8k
                    p_str[i + 5] = (unsigned char)(d >> 8);
1030
63.8k
                    p_str[i + 6] = (unsigned char)(d >> 16);
1031
63.8k
                    p_str[i + 7] = (unsigned char)(d >> 24);
1032
63.8k
                }
1033
63.8k
            }
1034
1035
47.1k
            for (; i < 33; i++)
1036
30.7k
                p_str[i] = 0;
1037
1038
            /* First window */
1039
16.4k
            wvalue = (p_str[0] << 1) & mask;
1040
16.4k
            idx += window_size;
1041
1042
16.4k
            wvalue = _booth_recode_w7(wvalue);
1043
1044
16.4k
            ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1045
16.4k
                wvalue >> 1);
1046
1047
16.4k
            ecp_nistz256_neg(p.p.Z, p.p.Y);
1048
16.4k
            copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1049
1050
            /*
1051
             * Since affine infinity is encoded as (0,0) and
1052
             * Jacobian is (,,0), we need to harmonize them
1053
             * by assigning "one" or zero to Z.
1054
             */
1055
16.4k
            infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] | p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1056
16.4k
            if (P256_LIMBS == 8)
1057
0
                infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] | p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1058
1059
16.4k
            infty = 0 - is_zero(infty);
1060
16.4k
            infty = ~infty;
1061
1062
16.4k
            p.p.Z[0] = ONE[0] & infty;
1063
16.4k
            p.p.Z[1] = ONE[1] & infty;
1064
16.4k
            p.p.Z[2] = ONE[2] & infty;
1065
16.4k
            p.p.Z[3] = ONE[3] & infty;
1066
16.4k
            if (P256_LIMBS == 8) {
1067
0
                p.p.Z[4] = ONE[4] & infty;
1068
0
                p.p.Z[5] = ONE[5] & infty;
1069
0
                p.p.Z[6] = ONE[6] & infty;
1070
0
                p.p.Z[7] = ONE[7] & infty;
1071
0
            }
1072
1073
607k
            for (i = 1; i < 37; i++) {
1074
591k
                unsigned int off = (idx - 1) / 8;
1075
591k
                wvalue = p_str[off] | p_str[off + 1] << 8;
1076
591k
                wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1077
591k
                idx += window_size;
1078
1079
591k
                wvalue = _booth_recode_w7(wvalue);
1080
1081
591k
                ecp_nistz256_gather_w7(&t.a,
1082
591k
                    preComputedTable[i], wvalue >> 1);
1083
1084
591k
                ecp_nistz256_neg(t.p.Z, t.a.Y);
1085
591k
                copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1086
1087
591k
                ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1088
591k
            }
1089
16.4k
        } else {
1090
0
            p_is_infinity = 1;
1091
0
            no_precomp_for_generator = 1;
1092
0
        }
1093
16.4k
    } else
1094
3.23k
        p_is_infinity = 1;
1095
1096
19.6k
    if (no_precomp_for_generator) {
1097
        /*
1098
         * Without a precomputed table for the generator, it has to be
1099
         * handled like a normal point.
1100
         */
1101
0
        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1102
0
        if (new_scalars == NULL)
1103
0
            goto err;
1104
1105
0
        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1106
0
        if (new_points == NULL)
1107
0
            goto err;
1108
1109
0
        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1110
0
        new_scalars[num] = scalar;
1111
0
        memcpy(new_points, points, num * sizeof(EC_POINT *));
1112
0
        new_points[num] = generator;
1113
1114
0
        scalars = new_scalars;
1115
0
        points = new_points;
1116
0
        num++;
1117
0
    }
1118
1119
19.6k
    if (num) {
1120
4.33k
        P256_POINT *out = &t.p;
1121
4.33k
        if (p_is_infinity)
1122
3.23k
            out = &p.p;
1123
1124
4.33k
        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1125
0
            goto err;
1126
1127
4.33k
        if (!p_is_infinity)
1128
1.10k
            ecp_nistz256_point_add(&p.p, &p.p, out);
1129
4.33k
    }
1130
1131
    /* Not constant-time, but we're only operating on the public output. */
1132
19.6k
    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) || !bn_set_words(r->Y, p.p.Y, P256_LIMBS) || !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1133
0
        goto err;
1134
0
    }
1135
19.6k
    r->Z_is_one = is_one(r->Z) & 1;
1136
1137
19.6k
    ret = 1;
1138
1139
19.6k
err:
1140
19.6k
    BN_CTX_end(ctx);
1141
19.6k
    OPENSSL_free(new_points);
1142
19.6k
    OPENSSL_free(new_scalars);
1143
19.6k
    return ret;
1144
19.6k
}
1145
1146
__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1147
    const EC_POINT *point,
1148
    BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1149
123k
{
1150
123k
    BN_ULONG z_inv2[P256_LIMBS];
1151
123k
    BN_ULONG z_inv3[P256_LIMBS];
1152
123k
    BN_ULONG x_aff[P256_LIMBS];
1153
123k
    BN_ULONG y_aff[P256_LIMBS];
1154
123k
    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1155
123k
    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1156
1157
123k
    if (EC_POINT_is_at_infinity(group, point)) {
1158
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1159
0
        return 0;
1160
0
    }
1161
1162
123k
    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) || !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) || !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1163
0
        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1164
0
        return 0;
1165
0
    }
1166
1167
123k
    ecp_nistz256_mod_inverse(z_inv3, point_z);
1168
123k
    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1169
123k
    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1170
1171
123k
    if (x != NULL) {
1172
123k
        ecp_nistz256_from_mont(x_ret, x_aff);
1173
123k
        if (!bn_set_words(x, x_ret, P256_LIMBS))
1174
0
            return 0;
1175
123k
    }
1176
1177
123k
    if (y != NULL) {
1178
113k
        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1179
113k
        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1180
113k
        ecp_nistz256_from_mont(y_ret, y_aff);
1181
113k
        if (!bn_set_words(y, y_ret, P256_LIMBS))
1182
0
            return 0;
1183
113k
    }
1184
1185
123k
    return 1;
1186
123k
}
1187
1188
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1189
0
{
1190
0
    NISTZ256_PRE_COMP *ret = NULL;
1191
1192
0
    if (!group)
1193
0
        return NULL;
1194
1195
0
    ret = OPENSSL_zalloc(sizeof(*ret));
1196
1197
0
    if (ret == NULL)
1198
0
        return ret;
1199
1200
0
    ret->group = group;
1201
0
    ret->w = 6; /* default */
1202
1203
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1204
0
        OPENSSL_free(ret);
1205
0
        return NULL;
1206
0
    }
1207
0
    return ret;
1208
0
}
1209
1210
NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1211
0
{
1212
0
    int i;
1213
0
    if (p != NULL)
1214
0
        CRYPTO_UP_REF(&p->references, &i);
1215
0
    return p;
1216
0
}
1217
1218
void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1219
0
{
1220
0
    int i;
1221
1222
0
    if (pre == NULL)
1223
0
        return;
1224
1225
0
    CRYPTO_DOWN_REF(&pre->references, &i);
1226
0
    REF_PRINT_COUNT("EC_nistz256", i, pre);
1227
0
    if (i > 0)
1228
0
        return;
1229
0
    REF_ASSERT_ISNT(i < 0);
1230
1231
0
    OPENSSL_free(pre->precomp_storage);
1232
0
    CRYPTO_FREE_REF(&pre->references);
1233
0
    OPENSSL_free(pre);
1234
0
}
1235
1236
static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1237
0
{
1238
    /* There is a hard-coded table for the default generator. */
1239
0
    const EC_POINT *generator = EC_GROUP_get0_generator(group);
1240
1241
0
    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1242
        /* There is a hard-coded table for the default generator. */
1243
0
        return 1;
1244
0
    }
1245
1246
0
    return HAVEPRECOMP(group, nistz256);
1247
0
}
1248
1249
#if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) || defined(__powerpc64__) || defined(_ARCH_PP64) || defined(__aarch64__)
1250
/*
1251
 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1252
 */
1253
void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1254
    const BN_ULONG a[P256_LIMBS],
1255
    const BN_ULONG b[P256_LIMBS]);
1256
void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1257
    const BN_ULONG a[P256_LIMBS],
1258
    BN_ULONG rep);
1259
1260
static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1261
    const BIGNUM *x, BN_CTX *ctx)
1262
7.85k
{
1263
    /* RR = 2^512 mod ord(p256) */
1264
7.85k
    static const BN_ULONG RR[P256_LIMBS] = {
1265
7.85k
        TOBN(0x83244c95, 0xbe79eea2), TOBN(0x4699799c, 0x49bd6fa6),
1266
7.85k
        TOBN(0x2845b239, 0x2b6bec59), TOBN(0x66e12d94, 0xf3d95620)
1267
7.85k
    };
1268
    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1269
7.85k
    static const BN_ULONG one[P256_LIMBS] = {
1270
7.85k
        TOBN(0, 1), TOBN(0, 0), TOBN(0, 0), TOBN(0, 0)
1271
7.85k
    };
1272
    /*
1273
     * We don't use entry 0 in the table, so we omit it and address
1274
     * with -1 offset.
1275
     */
1276
7.85k
    BN_ULONG table[15][P256_LIMBS];
1277
7.85k
    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1278
7.85k
    int i, ret = 0;
1279
7.85k
    enum {
1280
7.85k
        i_1 = 0,
1281
7.85k
        i_10,
1282
7.85k
        i_11,
1283
7.85k
        i_101,
1284
7.85k
        i_111,
1285
7.85k
        i_1010,
1286
7.85k
        i_1111,
1287
7.85k
        i_10101,
1288
7.85k
        i_101010,
1289
7.85k
        i_101111,
1290
7.85k
        i_x6,
1291
7.85k
        i_x8,
1292
7.85k
        i_x16,
1293
7.85k
        i_x32
1294
7.85k
    };
1295
1296
    /*
1297
     * Catch allocation failure early.
1298
     */
1299
7.85k
    if (bn_wexpand(r, P256_LIMBS) == NULL) {
1300
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1301
0
        goto err;
1302
0
    }
1303
1304
7.85k
    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1305
0
        BIGNUM *tmp;
1306
1307
0
        if ((tmp = BN_CTX_get(ctx)) == NULL
1308
0
            || !BN_nnmod(tmp, x, group->order, ctx)) {
1309
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1310
0
            goto err;
1311
0
        }
1312
0
        x = tmp;
1313
0
    }
1314
1315
7.85k
    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1316
0
        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1317
0
        goto err;
1318
0
    }
1319
1320
7.85k
    ecp_nistz256_ord_mul_mont(table[0], t, RR);
1321
#if 0
1322
    /*
1323
     * Original sparse-then-fixed-window algorithm, retained for reference.
1324
     */
1325
    for (i = 2; i < 16; i += 2) {
1326
        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1327
        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1328
    }
1329
1330
    /*
1331
     * The top 128bit of the exponent are highly redudndant, so we
1332
     * perform an optimized flow
1333
     */
1334
    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
1335
    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */
1336
1337
    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
1338
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */
1339
1340
    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
1341
    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */
1342
1343
    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
1344
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */
1345
1346
    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
1347
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */
1348
1349
    /*
1350
     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1351
     */
1352
    for (i = 0; i < 32; i++) {
1353
        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1354
         * split into nibbles */
1355
        static const unsigned char expLo[32]  = {
1356
            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1357
            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1358
        };
1359
1360
        ecp_nistz256_ord_sqr_mont(out, out, 4);
1361
        /* The exponent is public, no need in constant-time access */
1362
        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1363
    }
1364
#else
1365
    /*
1366
     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1367
     *
1368
     * Even though this code path spares 12 squarings, 4.5%, and 13
1369
     * multiplications, 25%, on grand scale sign operation is not that
1370
     * much faster, not more that 2%...
1371
     */
1372
1373
    /* pre-calculate powers */
1374
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1375
1376
7.85k
    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1377
1378
7.85k
    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1379
1380
7.85k
    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1381
1382
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1383
1384
7.85k
    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1385
1386
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1387
7.85k
    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1388
1389
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1390
1391
7.85k
    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1392
1393
7.85k
    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1394
1395
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1396
7.85k
    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1397
1398
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1399
7.85k
    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1400
1401
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1402
7.85k
    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1403
1404
    /* calculations */
1405
7.85k
    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1406
7.85k
    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1407
1408
219k
    for (i = 0; i < 27; i++) {
1409
212k
        static const struct {
1410
212k
            unsigned char p, i;
1411
212k
        } chain[27] = {
1412
212k
            { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 },
1413
212k
            { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 },
1414
212k
            { 4, i_101 }, { 3, i_101 }, { 3, i_101 },
1415
212k
            { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 },
1416
212k
            { 2, i_1 }, { 5, i_1 }, { 6, i_1111 },
1417
212k
            { 5, i_111 }, { 4, i_111 }, { 5, i_111 },
1418
212k
            { 5, i_101 }, { 3, i_11 }, { 10, i_101111 },
1419
212k
            { 2, i_11 }, { 5, i_11 }, { 5, i_11 },
1420
212k
            { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 }
1421
212k
        };
1422
1423
212k
        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1424
212k
        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1425
212k
    }
1426
7.85k
#endif
1427
7.85k
    ecp_nistz256_ord_mul_mont(out, out, one);
1428
1429
    /*
1430
     * Can't fail, but check return code to be consistent anyway.
1431
     */
1432
7.85k
    if (!bn_set_words(r, out, P256_LIMBS))
1433
0
        goto err;
1434
1435
7.85k
    ret = 1;
1436
7.85k
err:
1437
7.85k
    return ret;
1438
7.85k
}
1439
#else
1440
#define ecp_nistz256_inv_mod_ord NULL
1441
#endif
1442
1443
const EC_METHOD *EC_GFp_nistz256_method(void)
1444
245k
{
1445
245k
    static const EC_METHOD ret = {
1446
245k
        EC_FLAGS_DEFAULT_OCT,
1447
245k
        NID_X9_62_prime_field,
1448
245k
        ossl_ec_GFp_mont_group_init,
1449
245k
        ossl_ec_GFp_mont_group_finish,
1450
245k
        ossl_ec_GFp_mont_group_clear_finish,
1451
245k
        ossl_ec_GFp_mont_group_copy,
1452
245k
        ossl_ec_GFp_mont_group_set_curve,
1453
245k
        ossl_ec_GFp_simple_group_get_curve,
1454
245k
        ossl_ec_GFp_simple_group_get_degree,
1455
245k
        ossl_ec_group_simple_order_bits,
1456
245k
        ossl_ec_GFp_simple_group_check_discriminant,
1457
245k
        ossl_ec_GFp_simple_point_init,
1458
245k
        ossl_ec_GFp_simple_point_finish,
1459
245k
        ossl_ec_GFp_simple_point_clear_finish,
1460
245k
        ossl_ec_GFp_simple_point_copy,
1461
245k
        ossl_ec_GFp_simple_point_set_to_infinity,
1462
245k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1463
245k
        ecp_nistz256_get_affine,
1464
245k
        0, 0, 0,
1465
245k
        ossl_ec_GFp_simple_add,
1466
245k
        ossl_ec_GFp_simple_dbl,
1467
245k
        ossl_ec_GFp_simple_invert,
1468
245k
        ossl_ec_GFp_simple_is_at_infinity,
1469
245k
        ossl_ec_GFp_simple_is_on_curve,
1470
245k
        ossl_ec_GFp_simple_cmp,
1471
245k
        ossl_ec_GFp_simple_make_affine,
1472
245k
        ossl_ec_GFp_simple_points_make_affine,
1473
245k
        ecp_nistz256_points_mul, /* mul */
1474
245k
        ecp_nistz256_mult_precompute, /* precompute_mult */
1475
245k
        ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */
1476
245k
        ossl_ec_GFp_mont_field_mul,
1477
245k
        ossl_ec_GFp_mont_field_sqr,
1478
245k
        0, /* field_div */
1479
245k
        ossl_ec_GFp_mont_field_inv,
1480
245k
        ossl_ec_GFp_mont_field_encode,
1481
245k
        ossl_ec_GFp_mont_field_decode,
1482
245k
        ossl_ec_GFp_mont_field_set_to_one,
1483
245k
        ossl_ec_key_simple_priv2oct,
1484
245k
        ossl_ec_key_simple_oct2priv,
1485
245k
        0, /* set private */
1486
245k
        ossl_ec_key_simple_generate_key,
1487
245k
        ossl_ec_key_simple_check_key,
1488
245k
        ossl_ec_key_simple_generate_public_key,
1489
245k
        0, /* keycopy */
1490
245k
        0, /* keyfinish */
1491
245k
        ossl_ecdh_simple_compute_key,
1492
245k
        ossl_ecdsa_simple_sign_setup,
1493
245k
        ossl_ecdsa_simple_sign_sig,
1494
245k
        ossl_ecdsa_simple_verify_sig,
1495
245k
        ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */
1496
245k
        0, /* blind_coordinates */
1497
245k
        0, /* ladder_pre */
1498
245k
        0, /* ladder_step */
1499
245k
        0 /* ladder_post */
1500
245k
    };
1501
1502
245k
    return &ret;
1503
245k
}