Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl33/crypto/ec/ecp_smpl.c
Line
Count
Source
1
/*
2
 * Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 */
10
11
/*
12
 * ECDSA low-level APIs are deprecated for public use, but still ok for
13
 * internal use.
14
 */
15
#include "internal/deprecated.h"
16
17
#include <openssl/err.h>
18
#include <openssl/symhacks.h>
19
20
#include "ec_local.h"
21
22
const EC_METHOD *EC_GFp_simple_method(void)
23
0
{
24
0
    static const EC_METHOD ret = {
25
0
        EC_FLAGS_DEFAULT_OCT,
26
0
        NID_X9_62_prime_field,
27
0
        ossl_ec_GFp_simple_group_init,
28
0
        ossl_ec_GFp_simple_group_finish,
29
0
        ossl_ec_GFp_simple_group_clear_finish,
30
0
        ossl_ec_GFp_simple_group_copy,
31
0
        ossl_ec_GFp_simple_group_set_curve,
32
0
        ossl_ec_GFp_simple_group_get_curve,
33
0
        ossl_ec_GFp_simple_group_get_degree,
34
0
        ossl_ec_group_simple_order_bits,
35
0
        ossl_ec_GFp_simple_group_check_discriminant,
36
0
        ossl_ec_GFp_simple_point_init,
37
0
        ossl_ec_GFp_simple_point_finish,
38
0
        ossl_ec_GFp_simple_point_clear_finish,
39
0
        ossl_ec_GFp_simple_point_copy,
40
0
        ossl_ec_GFp_simple_point_set_to_infinity,
41
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
42
0
        ossl_ec_GFp_simple_point_get_affine_coordinates,
43
0
        0, 0, 0,
44
0
        ossl_ec_GFp_simple_add,
45
0
        ossl_ec_GFp_simple_dbl,
46
0
        ossl_ec_GFp_simple_invert,
47
0
        ossl_ec_GFp_simple_is_at_infinity,
48
0
        ossl_ec_GFp_simple_is_on_curve,
49
0
        ossl_ec_GFp_simple_cmp,
50
0
        ossl_ec_GFp_simple_make_affine,
51
0
        ossl_ec_GFp_simple_points_make_affine,
52
0
        0 /* mul */,
53
0
        0 /* precompute_mult */,
54
0
        0 /* have_precompute_mult */,
55
0
        ossl_ec_GFp_simple_field_mul,
56
0
        ossl_ec_GFp_simple_field_sqr,
57
0
        0 /* field_div */,
58
0
        ossl_ec_GFp_simple_field_inv,
59
0
        0 /* field_encode */,
60
0
        0 /* field_decode */,
61
0
        0, /* field_set_to_one */
62
0
        ossl_ec_key_simple_priv2oct,
63
0
        ossl_ec_key_simple_oct2priv,
64
0
        0, /* set private */
65
0
        ossl_ec_key_simple_generate_key,
66
0
        ossl_ec_key_simple_check_key,
67
0
        ossl_ec_key_simple_generate_public_key,
68
0
        0, /* keycopy */
69
0
        0, /* keyfinish */
70
0
        ossl_ecdh_simple_compute_key,
71
0
        ossl_ecdsa_simple_sign_setup,
72
0
        ossl_ecdsa_simple_sign_sig,
73
0
        ossl_ecdsa_simple_verify_sig,
74
0
        0, /* field_inverse_mod_ord */
75
0
        ossl_ec_GFp_simple_blind_coordinates,
76
0
        ossl_ec_GFp_simple_ladder_pre,
77
0
        ossl_ec_GFp_simple_ladder_step,
78
0
        ossl_ec_GFp_simple_ladder_post
79
0
    };
80
81
0
    return &ret;
82
0
}
83
84
/*
85
 * Most method functions in this file are designed to work with
86
 * non-trivial representations of field elements if necessary
87
 * (see ecp_mont.c): while standard modular addition and subtraction
88
 * are used, the field_mul and field_sqr methods will be used for
89
 * multiplication, and field_encode and field_decode (if defined)
90
 * will be used for converting between representations.
91
 *
92
 * Functions ec_GFp_simple_points_make_affine() and
93
 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
94
 * that if a non-trivial representation is used, it is a Montgomery
95
 * representation (i.e. 'encoding' means multiplying by some factor R).
96
 */
97
98
int ossl_ec_GFp_simple_group_init(EC_GROUP *group)
99
934k
{
100
934k
    group->field = BN_new();
101
934k
    group->a = BN_new();
102
934k
    group->b = BN_new();
103
934k
    if (group->field == NULL || group->a == NULL || group->b == NULL) {
104
0
        BN_free(group->field);
105
0
        BN_free(group->a);
106
0
        BN_free(group->b);
107
0
        return 0;
108
0
    }
109
934k
    group->a_is_minus3 = 0;
110
934k
    return 1;
111
934k
}
112
113
void ossl_ec_GFp_simple_group_finish(EC_GROUP *group)
114
934k
{
115
934k
    BN_free(group->field);
116
934k
    BN_free(group->a);
117
934k
    BN_free(group->b);
118
934k
}
119
120
void ossl_ec_GFp_simple_group_clear_finish(EC_GROUP *group)
121
0
{
122
0
    BN_clear_free(group->field);
123
0
    BN_clear_free(group->a);
124
0
    BN_clear_free(group->b);
125
0
}
126
127
int ossl_ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
128
432k
{
129
432k
    if (!BN_copy(dest->field, src->field))
130
0
        return 0;
131
432k
    if (!BN_copy(dest->a, src->a))
132
0
        return 0;
133
432k
    if (!BN_copy(dest->b, src->b))
134
0
        return 0;
135
136
432k
    dest->a_is_minus3 = src->a_is_minus3;
137
138
432k
    return 1;
139
432k
}
140
141
int ossl_ec_GFp_simple_group_set_curve(EC_GROUP *group,
142
    const BIGNUM *p, const BIGNUM *a,
143
    const BIGNUM *b, BN_CTX *ctx)
144
430k
{
145
430k
    int ret = 0;
146
430k
    BN_CTX *new_ctx = NULL;
147
430k
    BIGNUM *tmp_a;
148
149
    /* p must be a prime > 3 */
150
430k
    if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
151
36
        ERR_raise(ERR_LIB_EC, EC_R_INVALID_FIELD);
152
36
        return 0;
153
36
    }
154
155
430k
    if (ctx == NULL) {
156
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
157
0
        if (ctx == NULL)
158
0
            return 0;
159
0
    }
160
161
430k
    BN_CTX_start(ctx);
162
430k
    tmp_a = BN_CTX_get(ctx);
163
430k
    if (tmp_a == NULL)
164
0
        goto err;
165
166
    /* group->field */
167
430k
    if (!BN_copy(group->field, p))
168
0
        goto err;
169
430k
    BN_set_negative(group->field, 0);
170
171
    /* group->a */
172
430k
    if (!BN_nnmod(tmp_a, a, p, ctx))
173
0
        goto err;
174
430k
    if (group->meth->field_encode != NULL) {
175
335k
        if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
176
0
            goto err;
177
335k
    } else if (!BN_copy(group->a, tmp_a))
178
0
        goto err;
179
180
    /* group->b */
181
430k
    if (!BN_nnmod(group->b, b, p, ctx))
182
0
        goto err;
183
430k
    if (group->meth->field_encode != NULL)
184
335k
        if (!group->meth->field_encode(group, group->b, group->b, ctx))
185
0
            goto err;
186
187
    /* group->a_is_minus3 */
188
430k
    if (!BN_add_word(tmp_a, 3))
189
0
        goto err;
190
430k
    group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
191
192
430k
    ret = 1;
193
194
430k
err:
195
430k
    BN_CTX_end(ctx);
196
430k
    BN_CTX_free(new_ctx);
197
430k
    return ret;
198
430k
}
199
200
int ossl_ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
201
    BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
202
213k
{
203
213k
    int ret = 0;
204
213k
    BN_CTX *new_ctx = NULL;
205
206
213k
    if (p != NULL) {
207
212k
        if (!BN_copy(p, group->field))
208
0
            return 0;
209
212k
    }
210
211
213k
    if (a != NULL || b != NULL) {
212
212k
        if (group->meth->field_decode != NULL) {
213
206k
            if (ctx == NULL) {
214
1.38k
                ctx = new_ctx = BN_CTX_new_ex(group->libctx);
215
1.38k
                if (ctx == NULL)
216
0
                    return 0;
217
1.38k
            }
218
206k
            if (a != NULL) {
219
206k
                if (!group->meth->field_decode(group, a, group->a, ctx))
220
0
                    goto err;
221
206k
            }
222
206k
            if (b != NULL) {
223
206k
                if (!group->meth->field_decode(group, b, group->b, ctx))
224
0
                    goto err;
225
206k
            }
226
206k
        } else {
227
5.77k
            if (a != NULL) {
228
5.77k
                if (!BN_copy(a, group->a))
229
0
                    goto err;
230
5.77k
            }
231
5.77k
            if (b != NULL) {
232
5.77k
                if (!BN_copy(b, group->b))
233
0
                    goto err;
234
5.77k
            }
235
5.77k
        }
236
212k
    }
237
238
213k
    ret = 1;
239
240
213k
err:
241
213k
    BN_CTX_free(new_ctx);
242
213k
    return ret;
243
213k
}
244
245
int ossl_ec_GFp_simple_group_get_degree(const EC_GROUP *group)
246
14.4k
{
247
14.4k
    return BN_num_bits(group->field);
248
14.4k
}
249
250
int ossl_ec_GFp_simple_group_check_discriminant(const EC_GROUP *group,
251
    BN_CTX *ctx)
252
3.42k
{
253
3.42k
    int ret = 0;
254
3.42k
    BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
255
3.42k
    const BIGNUM *p = group->field;
256
3.42k
    BN_CTX *new_ctx = NULL;
257
258
3.42k
    if (ctx == NULL) {
259
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
260
0
        if (ctx == NULL) {
261
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
262
0
            goto err;
263
0
        }
264
0
    }
265
3.42k
    BN_CTX_start(ctx);
266
3.42k
    a = BN_CTX_get(ctx);
267
3.42k
    b = BN_CTX_get(ctx);
268
3.42k
    tmp_1 = BN_CTX_get(ctx);
269
3.42k
    tmp_2 = BN_CTX_get(ctx);
270
3.42k
    order = BN_CTX_get(ctx);
271
3.42k
    if (order == NULL)
272
0
        goto err;
273
274
3.42k
    if (group->meth->field_decode != NULL) {
275
2.24k
        if (!group->meth->field_decode(group, a, group->a, ctx))
276
0
            goto err;
277
2.24k
        if (!group->meth->field_decode(group, b, group->b, ctx))
278
0
            goto err;
279
2.24k
    } else {
280
1.18k
        if (!BN_copy(a, group->a))
281
0
            goto err;
282
1.18k
        if (!BN_copy(b, group->b))
283
0
            goto err;
284
1.18k
    }
285
286
    /*-
287
     * check the discriminant:
288
     * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
289
     * 0 =< a, b < p
290
     */
291
3.42k
    if (BN_is_zero(a)) {
292
346
        if (BN_is_zero(b))
293
19
            goto err;
294
3.07k
    } else if (!BN_is_zero(b)) {
295
2.94k
        if (!BN_mod_sqr(tmp_1, a, p, ctx))
296
0
            goto err;
297
2.94k
        if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
298
0
            goto err;
299
2.94k
        if (!BN_lshift(tmp_1, tmp_2, 2))
300
0
            goto err;
301
        /* tmp_1 = 4*a^3 */
302
303
2.94k
        if (!BN_mod_sqr(tmp_2, b, p, ctx))
304
0
            goto err;
305
2.94k
        if (!BN_mul_word(tmp_2, 27))
306
0
            goto err;
307
        /* tmp_2 = 27*b^2 */
308
309
2.94k
        if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
310
0
            goto err;
311
2.94k
        if (BN_is_zero(a))
312
0
            goto err;
313
2.94k
    }
314
3.40k
    ret = 1;
315
316
3.42k
err:
317
3.42k
    BN_CTX_end(ctx);
318
3.42k
    BN_CTX_free(new_ctx);
319
3.42k
    return ret;
320
3.40k
}
321
322
int ossl_ec_GFp_simple_point_init(EC_POINT *point)
323
2.08M
{
324
2.08M
    point->X = BN_new();
325
2.08M
    point->Y = BN_new();
326
2.08M
    point->Z = BN_new();
327
2.08M
    point->Z_is_one = 0;
328
329
2.08M
    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
330
0
        BN_free(point->X);
331
0
        BN_free(point->Y);
332
0
        BN_free(point->Z);
333
0
        return 0;
334
0
    }
335
2.08M
    return 1;
336
2.08M
}
337
338
void ossl_ec_GFp_simple_point_finish(EC_POINT *point)
339
2.05M
{
340
2.05M
    BN_free(point->X);
341
2.05M
    BN_free(point->Y);
342
2.05M
    BN_free(point->Z);
343
2.05M
}
344
345
void ossl_ec_GFp_simple_point_clear_finish(EC_POINT *point)
346
31.6k
{
347
31.6k
    BN_clear_free(point->X);
348
31.6k
    BN_clear_free(point->Y);
349
31.6k
    BN_clear_free(point->Z);
350
31.6k
    point->Z_is_one = 0;
351
31.6k
}
352
353
int ossl_ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
354
1.07M
{
355
1.07M
    if (!BN_copy(dest->X, src->X))
356
0
        return 0;
357
1.07M
    if (!BN_copy(dest->Y, src->Y))
358
0
        return 0;
359
1.07M
    if (!BN_copy(dest->Z, src->Z))
360
0
        return 0;
361
1.07M
    dest->Z_is_one = src->Z_is_one;
362
1.07M
    dest->curve_name = src->curve_name;
363
364
1.07M
    return 1;
365
1.07M
}
366
367
int ossl_ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
368
    EC_POINT *point)
369
20.9k
{
370
20.9k
    point->Z_is_one = 0;
371
20.9k
    BN_zero(point->Z);
372
20.9k
    return 1;
373
20.9k
}
374
375
int ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
376
    EC_POINT *point,
377
    const BIGNUM *x,
378
    const BIGNUM *y,
379
    const BIGNUM *z,
380
    BN_CTX *ctx)
381
850k
{
382
850k
    BN_CTX *new_ctx = NULL;
383
850k
    int ret = 0;
384
385
850k
    if (ctx == NULL) {
386
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
387
0
        if (ctx == NULL)
388
0
            return 0;
389
0
    }
390
391
850k
    if (x != NULL) {
392
850k
        if (!BN_nnmod(point->X, x, group->field, ctx))
393
0
            goto err;
394
850k
        if (group->meth->field_encode) {
395
668k
            if (!group->meth->field_encode(group, point->X, point->X, ctx))
396
0
                goto err;
397
668k
        }
398
850k
    }
399
400
850k
    if (y != NULL) {
401
850k
        if (!BN_nnmod(point->Y, y, group->field, ctx))
402
0
            goto err;
403
850k
        if (group->meth->field_encode) {
404
668k
            if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
405
0
                goto err;
406
668k
        }
407
850k
    }
408
409
850k
    if (z != NULL) {
410
850k
        int Z_is_one;
411
412
850k
        if (!BN_nnmod(point->Z, z, group->field, ctx))
413
0
            goto err;
414
850k
        Z_is_one = BN_is_one(point->Z);
415
850k
        if (group->meth->field_encode) {
416
668k
            if (Z_is_one && (group->meth->field_set_to_one != 0)) {
417
668k
                if (!group->meth->field_set_to_one(group, point->Z, ctx))
418
0
                    goto err;
419
668k
            } else {
420
0
                if (!group->meth->field_encode(group, point->Z, point->Z, ctx))
421
0
                    goto err;
422
0
            }
423
668k
        }
424
850k
        point->Z_is_one = Z_is_one;
425
850k
    }
426
427
850k
    ret = 1;
428
429
850k
err:
430
850k
    BN_CTX_free(new_ctx);
431
850k
    return ret;
432
850k
}
433
434
int ossl_ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
435
    const EC_POINT *point,
436
    BIGNUM *x, BIGNUM *y,
437
    BIGNUM *z, BN_CTX *ctx)
438
0
{
439
0
    BN_CTX *new_ctx = NULL;
440
0
    int ret = 0;
441
442
0
    if (group->meth->field_decode != NULL) {
443
0
        if (ctx == NULL) {
444
0
            ctx = new_ctx = BN_CTX_new_ex(group->libctx);
445
0
            if (ctx == NULL)
446
0
                return 0;
447
0
        }
448
449
0
        if (x != NULL) {
450
0
            if (!group->meth->field_decode(group, x, point->X, ctx))
451
0
                goto err;
452
0
        }
453
0
        if (y != NULL) {
454
0
            if (!group->meth->field_decode(group, y, point->Y, ctx))
455
0
                goto err;
456
0
        }
457
0
        if (z != NULL) {
458
0
            if (!group->meth->field_decode(group, z, point->Z, ctx))
459
0
                goto err;
460
0
        }
461
0
    } else {
462
0
        if (x != NULL) {
463
0
            if (!BN_copy(x, point->X))
464
0
                goto err;
465
0
        }
466
0
        if (y != NULL) {
467
0
            if (!BN_copy(y, point->Y))
468
0
                goto err;
469
0
        }
470
0
        if (z != NULL) {
471
0
            if (!BN_copy(z, point->Z))
472
0
                goto err;
473
0
        }
474
0
    }
475
476
0
    ret = 1;
477
478
0
err:
479
0
    BN_CTX_free(new_ctx);
480
0
    return ret;
481
0
}
482
483
int ossl_ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
484
    EC_POINT *point,
485
    const BIGNUM *x,
486
    const BIGNUM *y, BN_CTX *ctx)
487
831k
{
488
831k
    if (x == NULL || y == NULL) {
489
        /*
490
         * unlike for projective coordinates, we do not tolerate this
491
         */
492
0
        ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
493
0
        return 0;
494
0
    }
495
496
831k
    return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
497
831k
        BN_value_one(), ctx);
498
831k
}
499
500
int ossl_ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
501
    const EC_POINT *point,
502
    BIGNUM *x, BIGNUM *y,
503
    BN_CTX *ctx)
504
17.7k
{
505
17.7k
    BN_CTX *new_ctx = NULL;
506
17.7k
    BIGNUM *Z, *Z_1, *Z_2, *Z_3;
507
17.7k
    const BIGNUM *Z_;
508
17.7k
    int ret = 0;
509
510
17.7k
    if (EC_POINT_is_at_infinity(group, point)) {
511
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
512
0
        return 0;
513
0
    }
514
515
17.7k
    if (ctx == NULL) {
516
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
517
0
        if (ctx == NULL)
518
0
            return 0;
519
0
    }
520
521
17.7k
    BN_CTX_start(ctx);
522
17.7k
    Z = BN_CTX_get(ctx);
523
17.7k
    Z_1 = BN_CTX_get(ctx);
524
17.7k
    Z_2 = BN_CTX_get(ctx);
525
17.7k
    Z_3 = BN_CTX_get(ctx);
526
17.7k
    if (Z_3 == NULL)
527
0
        goto err;
528
529
    /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
530
531
17.7k
    if (group->meth->field_decode != NULL) {
532
17.7k
        if (!group->meth->field_decode(group, Z, point->Z, ctx))
533
0
            goto err;
534
17.7k
        Z_ = Z;
535
17.7k
    } else {
536
0
        Z_ = point->Z;
537
0
    }
538
539
17.7k
    if (BN_is_one(Z_)) {
540
16.5k
        if (group->meth->field_decode != NULL) {
541
16.5k
            if (x != NULL) {
542
16.5k
                if (!group->meth->field_decode(group, x, point->X, ctx))
543
0
                    goto err;
544
16.5k
            }
545
16.5k
            if (y != NULL) {
546
16.5k
                if (!group->meth->field_decode(group, y, point->Y, ctx))
547
0
                    goto err;
548
16.5k
            }
549
16.5k
        } else {
550
0
            if (x != NULL) {
551
0
                if (!BN_copy(x, point->X))
552
0
                    goto err;
553
0
            }
554
0
            if (y != NULL) {
555
0
                if (!BN_copy(y, point->Y))
556
0
                    goto err;
557
0
            }
558
0
        }
559
16.5k
    } else {
560
1.16k
        if (!group->meth->field_inv(group, Z_1, Z_, ctx)) {
561
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
562
0
            goto err;
563
0
        }
564
565
1.16k
        if (group->meth->field_encode == NULL) {
566
            /* field_sqr works on standard representation */
567
0
            if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
568
0
                goto err;
569
1.16k
        } else {
570
1.16k
            if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
571
0
                goto err;
572
1.16k
        }
573
574
1.16k
        if (x != NULL) {
575
            /*
576
             * in the Montgomery case, field_mul will cancel out Montgomery
577
             * factor in X:
578
             */
579
1.16k
            if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
580
0
                goto err;
581
1.16k
        }
582
583
1.16k
        if (y != NULL) {
584
1.16k
            if (group->meth->field_encode == NULL) {
585
                /*
586
                 * field_mul works on standard representation
587
                 */
588
0
                if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
589
0
                    goto err;
590
1.16k
            } else {
591
1.16k
                if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
592
0
                    goto err;
593
1.16k
            }
594
595
            /*
596
             * in the Montgomery case, field_mul will cancel out Montgomery
597
             * factor in Y:
598
             */
599
1.16k
            if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
600
0
                goto err;
601
1.16k
        }
602
1.16k
    }
603
604
17.7k
    ret = 1;
605
606
17.7k
err:
607
17.7k
    BN_CTX_end(ctx);
608
17.7k
    BN_CTX_free(new_ctx);
609
17.7k
    return ret;
610
17.7k
}
611
612
int ossl_ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
613
    const EC_POINT *b, BN_CTX *ctx)
614
131k
{
615
131k
    int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *,
616
131k
        const BIGNUM *, BN_CTX *);
617
131k
    int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
618
131k
    const BIGNUM *p;
619
131k
    BN_CTX *new_ctx = NULL;
620
131k
    BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
621
131k
    int ret = 0;
622
623
131k
    if (a == b)
624
0
        return EC_POINT_dbl(group, r, a, ctx);
625
131k
    if (EC_POINT_is_at_infinity(group, a))
626
16.3k
        return EC_POINT_copy(r, b);
627
114k
    if (EC_POINT_is_at_infinity(group, b))
628
3.11k
        return EC_POINT_copy(r, a);
629
630
111k
    field_mul = group->meth->field_mul;
631
111k
    field_sqr = group->meth->field_sqr;
632
111k
    p = group->field;
633
634
111k
    if (ctx == NULL) {
635
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
636
0
        if (ctx == NULL)
637
0
            return 0;
638
0
    }
639
640
111k
    BN_CTX_start(ctx);
641
111k
    n0 = BN_CTX_get(ctx);
642
111k
    n1 = BN_CTX_get(ctx);
643
111k
    n2 = BN_CTX_get(ctx);
644
111k
    n3 = BN_CTX_get(ctx);
645
111k
    n4 = BN_CTX_get(ctx);
646
111k
    n5 = BN_CTX_get(ctx);
647
111k
    n6 = BN_CTX_get(ctx);
648
111k
    if (n6 == NULL)
649
0
        goto end;
650
651
    /*
652
     * Note that in this function we must not read components of 'a' or 'b'
653
     * once we have written the corresponding components of 'r'. ('r' might
654
     * be one of 'a' or 'b'.)
655
     */
656
657
    /* n1, n2 */
658
111k
    if (b->Z_is_one) {
659
97.9k
        if (!BN_copy(n1, a->X))
660
0
            goto end;
661
97.9k
        if (!BN_copy(n2, a->Y))
662
0
            goto end;
663
        /* n1 = X_a */
664
        /* n2 = Y_a */
665
97.9k
    } else {
666
13.6k
        if (!field_sqr(group, n0, b->Z, ctx))
667
0
            goto end;
668
13.6k
        if (!field_mul(group, n1, a->X, n0, ctx))
669
0
            goto end;
670
        /* n1 = X_a * Z_b^2 */
671
672
13.6k
        if (!field_mul(group, n0, n0, b->Z, ctx))
673
0
            goto end;
674
13.6k
        if (!field_mul(group, n2, a->Y, n0, ctx))
675
0
            goto end;
676
        /* n2 = Y_a * Z_b^3 */
677
13.6k
    }
678
679
    /* n3, n4 */
680
111k
    if (a->Z_is_one) {
681
3.37k
        if (!BN_copy(n3, b->X))
682
0
            goto end;
683
3.37k
        if (!BN_copy(n4, b->Y))
684
0
            goto end;
685
        /* n3 = X_b */
686
        /* n4 = Y_b */
687
108k
    } else {
688
108k
        if (!field_sqr(group, n0, a->Z, ctx))
689
0
            goto end;
690
108k
        if (!field_mul(group, n3, b->X, n0, ctx))
691
0
            goto end;
692
        /* n3 = X_b * Z_a^2 */
693
694
108k
        if (!field_mul(group, n0, n0, a->Z, ctx))
695
0
            goto end;
696
108k
        if (!field_mul(group, n4, b->Y, n0, ctx))
697
0
            goto end;
698
        /* n4 = Y_b * Z_a^3 */
699
108k
    }
700
701
    /* n5, n6 */
702
111k
    if (!BN_mod_sub_quick(n5, n1, n3, p))
703
0
        goto end;
704
111k
    if (!BN_mod_sub_quick(n6, n2, n4, p))
705
0
        goto end;
706
    /* n5 = n1 - n3 */
707
    /* n6 = n2 - n4 */
708
709
111k
    if (BN_is_zero(n5)) {
710
4.88k
        if (BN_is_zero(n6)) {
711
            /* a is the same point as b */
712
1.41k
            BN_CTX_end(ctx);
713
1.41k
            ret = EC_POINT_dbl(group, r, a, ctx);
714
1.41k
            ctx = NULL;
715
1.41k
            goto end;
716
3.46k
        } else {
717
            /* a is the inverse of b */
718
3.46k
            BN_zero(r->Z);
719
3.46k
            r->Z_is_one = 0;
720
3.46k
            ret = 1;
721
3.46k
            goto end;
722
3.46k
        }
723
4.88k
    }
724
725
    /* 'n7', 'n8' */
726
106k
    if (!BN_mod_add_quick(n1, n1, n3, p))
727
0
        goto end;
728
106k
    if (!BN_mod_add_quick(n2, n2, n4, p))
729
0
        goto end;
730
    /* 'n7' = n1 + n3 */
731
    /* 'n8' = n2 + n4 */
732
733
    /* Z_r */
734
106k
    if (a->Z_is_one && b->Z_is_one) {
735
0
        if (!BN_copy(r->Z, n5))
736
0
            goto end;
737
106k
    } else {
738
106k
        if (a->Z_is_one) {
739
3.10k
            if (!BN_copy(n0, b->Z))
740
0
                goto end;
741
103k
        } else if (b->Z_is_one) {
742
93.5k
            if (!BN_copy(n0, a->Z))
743
0
                goto end;
744
93.5k
        } else {
745
10.0k
            if (!field_mul(group, n0, a->Z, b->Z, ctx))
746
0
                goto end;
747
10.0k
        }
748
106k
        if (!field_mul(group, r->Z, n0, n5, ctx))
749
0
            goto end;
750
106k
    }
751
106k
    r->Z_is_one = 0;
752
    /* Z_r = Z_a * Z_b * n5 */
753
754
    /* X_r */
755
106k
    if (!field_sqr(group, n0, n6, ctx))
756
0
        goto end;
757
106k
    if (!field_sqr(group, n4, n5, ctx))
758
0
        goto end;
759
106k
    if (!field_mul(group, n3, n1, n4, ctx))
760
0
        goto end;
761
106k
    if (!BN_mod_sub_quick(r->X, n0, n3, p))
762
0
        goto end;
763
    /* X_r = n6^2 - n5^2 * 'n7' */
764
765
    /* 'n9' */
766
106k
    if (!BN_mod_lshift1_quick(n0, r->X, p))
767
0
        goto end;
768
106k
    if (!BN_mod_sub_quick(n0, n3, n0, p))
769
0
        goto end;
770
    /* n9 = n5^2 * 'n7' - 2 * X_r */
771
772
    /* Y_r */
773
106k
    if (!field_mul(group, n0, n0, n6, ctx))
774
0
        goto end;
775
106k
    if (!field_mul(group, n5, n4, n5, ctx))
776
0
        goto end; /* now n5 is n5^3 */
777
106k
    if (!field_mul(group, n1, n2, n5, ctx))
778
0
        goto end;
779
106k
    if (!BN_mod_sub_quick(n0, n0, n1, p))
780
0
        goto end;
781
106k
    if (BN_is_odd(n0))
782
53.2k
        if (!BN_add(n0, n0, p))
783
0
            goto end;
784
    /* now  0 <= n0 < 2*p,  and n0 is even */
785
106k
    if (!BN_rshift1(r->Y, n0))
786
0
        goto end;
787
    /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
788
789
106k
    ret = 1;
790
791
111k
end:
792
111k
    BN_CTX_end(ctx);
793
111k
    BN_CTX_free(new_ctx);
794
111k
    return ret;
795
106k
}
796
797
int ossl_ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
798
    BN_CTX *ctx)
799
931k
{
800
931k
    int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *,
801
931k
        const BIGNUM *, BN_CTX *);
802
931k
    int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
803
931k
    const BIGNUM *p;
804
931k
    BN_CTX *new_ctx = NULL;
805
931k
    BIGNUM *n0, *n1, *n2, *n3;
806
931k
    int ret = 0;
807
808
931k
    if (EC_POINT_is_at_infinity(group, a)) {
809
127k
        BN_zero(r->Z);
810
127k
        r->Z_is_one = 0;
811
127k
        return 1;
812
127k
    }
813
814
804k
    field_mul = group->meth->field_mul;
815
804k
    field_sqr = group->meth->field_sqr;
816
804k
    p = group->field;
817
818
804k
    if (ctx == NULL) {
819
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
820
0
        if (ctx == NULL)
821
0
            return 0;
822
0
    }
823
824
804k
    BN_CTX_start(ctx);
825
804k
    n0 = BN_CTX_get(ctx);
826
804k
    n1 = BN_CTX_get(ctx);
827
804k
    n2 = BN_CTX_get(ctx);
828
804k
    n3 = BN_CTX_get(ctx);
829
804k
    if (n3 == NULL)
830
0
        goto err;
831
832
    /*
833
     * Note that in this function we must not read components of 'a' once we
834
     * have written the corresponding components of 'r'. ('r' might the same
835
     * as 'a'.)
836
     */
837
838
    /* n1 */
839
804k
    if (a->Z_is_one) {
840
19.2k
        if (!field_sqr(group, n0, a->X, ctx))
841
0
            goto err;
842
19.2k
        if (!BN_mod_lshift1_quick(n1, n0, p))
843
0
            goto err;
844
19.2k
        if (!BN_mod_add_quick(n0, n0, n1, p))
845
0
            goto err;
846
19.2k
        if (!BN_mod_add_quick(n1, n0, group->a, p))
847
0
            goto err;
848
        /* n1 = 3 * X_a^2 + a_curve */
849
784k
    } else if (group->a_is_minus3) {
850
298k
        if (!field_sqr(group, n1, a->Z, ctx))
851
0
            goto err;
852
298k
        if (!BN_mod_add_quick(n0, a->X, n1, p))
853
0
            goto err;
854
298k
        if (!BN_mod_sub_quick(n2, a->X, n1, p))
855
0
            goto err;
856
298k
        if (!field_mul(group, n1, n0, n2, ctx))
857
0
            goto err;
858
298k
        if (!BN_mod_lshift1_quick(n0, n1, p))
859
0
            goto err;
860
298k
        if (!BN_mod_add_quick(n1, n0, n1, p))
861
0
            goto err;
862
        /*-
863
         * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
864
         *    = 3 * X_a^2 - 3 * Z_a^4
865
         */
866
486k
    } else {
867
486k
        if (!field_sqr(group, n0, a->X, ctx))
868
0
            goto err;
869
486k
        if (!BN_mod_lshift1_quick(n1, n0, p))
870
0
            goto err;
871
486k
        if (!BN_mod_add_quick(n0, n0, n1, p))
872
0
            goto err;
873
486k
        if (!field_sqr(group, n1, a->Z, ctx))
874
0
            goto err;
875
486k
        if (!field_sqr(group, n1, n1, ctx))
876
0
            goto err;
877
486k
        if (!field_mul(group, n1, n1, group->a, ctx))
878
0
            goto err;
879
486k
        if (!BN_mod_add_quick(n1, n1, n0, p))
880
0
            goto err;
881
        /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
882
486k
    }
883
884
    /* Z_r */
885
804k
    if (a->Z_is_one) {
886
19.2k
        if (!BN_copy(n0, a->Y))
887
0
            goto err;
888
784k
    } else {
889
784k
        if (!field_mul(group, n0, a->Y, a->Z, ctx))
890
0
            goto err;
891
784k
    }
892
804k
    if (!BN_mod_lshift1_quick(r->Z, n0, p))
893
0
        goto err;
894
804k
    r->Z_is_one = 0;
895
    /* Z_r = 2 * Y_a * Z_a */
896
897
    /* n2 */
898
804k
    if (!field_sqr(group, n3, a->Y, ctx))
899
0
        goto err;
900
804k
    if (!field_mul(group, n2, a->X, n3, ctx))
901
0
        goto err;
902
804k
    if (!BN_mod_lshift_quick(n2, n2, 2, p))
903
0
        goto err;
904
    /* n2 = 4 * X_a * Y_a^2 */
905
906
    /* X_r */
907
804k
    if (!BN_mod_lshift1_quick(n0, n2, p))
908
0
        goto err;
909
804k
    if (!field_sqr(group, r->X, n1, ctx))
910
0
        goto err;
911
804k
    if (!BN_mod_sub_quick(r->X, r->X, n0, p))
912
0
        goto err;
913
    /* X_r = n1^2 - 2 * n2 */
914
915
    /* n3 */
916
804k
    if (!field_sqr(group, n0, n3, ctx))
917
0
        goto err;
918
804k
    if (!BN_mod_lshift_quick(n3, n0, 3, p))
919
0
        goto err;
920
    /* n3 = 8 * Y_a^4 */
921
922
    /* Y_r */
923
804k
    if (!BN_mod_sub_quick(n0, n2, r->X, p))
924
0
        goto err;
925
804k
    if (!field_mul(group, n0, n1, n0, ctx))
926
0
        goto err;
927
804k
    if (!BN_mod_sub_quick(r->Y, n0, n3, p))
928
0
        goto err;
929
    /* Y_r = n1 * (n2 - X_r) - n3 */
930
931
804k
    ret = 1;
932
933
804k
err:
934
804k
    BN_CTX_end(ctx);
935
804k
    BN_CTX_free(new_ctx);
936
804k
    return ret;
937
804k
}
938
939
int ossl_ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point,
940
    BN_CTX *ctx)
941
56.7k
{
942
56.7k
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
943
        /* point is its own inverse */
944
8.64k
        return 1;
945
946
48.0k
    return BN_usub(point->Y, group->field, point->Y);
947
56.7k
}
948
949
int ossl_ec_GFp_simple_is_at_infinity(const EC_GROUP *group,
950
    const EC_POINT *point)
951
3.03M
{
952
3.03M
    return BN_is_zero(point->Z);
953
3.03M
}
954
955
int ossl_ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
956
    BN_CTX *ctx)
957
844k
{
958
844k
    int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *,
959
844k
        const BIGNUM *, BN_CTX *);
960
844k
    int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
961
844k
    const BIGNUM *p;
962
844k
    BN_CTX *new_ctx = NULL;
963
844k
    BIGNUM *rh, *tmp, *Z4, *Z6;
964
844k
    int ret = -1;
965
966
844k
    if (EC_POINT_is_at_infinity(group, point))
967
0
        return 1;
968
969
844k
    field_mul = group->meth->field_mul;
970
844k
    field_sqr = group->meth->field_sqr;
971
844k
    p = group->field;
972
973
844k
    if (ctx == NULL) {
974
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
975
0
        if (ctx == NULL)
976
0
            return -1;
977
0
    }
978
979
844k
    BN_CTX_start(ctx);
980
844k
    rh = BN_CTX_get(ctx);
981
844k
    tmp = BN_CTX_get(ctx);
982
844k
    Z4 = BN_CTX_get(ctx);
983
844k
    Z6 = BN_CTX_get(ctx);
984
844k
    if (Z6 == NULL)
985
0
        goto err;
986
987
    /*-
988
     * We have a curve defined by a Weierstrass equation
989
     *      y^2 = x^3 + a*x + b.
990
     * The point to consider is given in Jacobian projective coordinates
991
     * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
992
     * Substituting this and multiplying by  Z^6  transforms the above equation into
993
     *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
994
     * To test this, we add up the right-hand side in 'rh'.
995
     */
996
997
    /* rh := X^2 */
998
844k
    if (!field_sqr(group, rh, point->X, ctx))
999
0
        goto err;
1000
1001
844k
    if (!point->Z_is_one) {
1002
2.45k
        if (!field_sqr(group, tmp, point->Z, ctx))
1003
0
            goto err;
1004
2.45k
        if (!field_sqr(group, Z4, tmp, ctx))
1005
0
            goto err;
1006
2.45k
        if (!field_mul(group, Z6, Z4, tmp, ctx))
1007
0
            goto err;
1008
1009
        /* rh := (rh + a*Z^4)*X */
1010
2.45k
        if (group->a_is_minus3) {
1011
2.11k
            if (!BN_mod_lshift1_quick(tmp, Z4, p))
1012
0
                goto err;
1013
2.11k
            if (!BN_mod_add_quick(tmp, tmp, Z4, p))
1014
0
                goto err;
1015
2.11k
            if (!BN_mod_sub_quick(rh, rh, tmp, p))
1016
0
                goto err;
1017
2.11k
            if (!field_mul(group, rh, rh, point->X, ctx))
1018
0
                goto err;
1019
2.11k
        } else {
1020
344
            if (!field_mul(group, tmp, Z4, group->a, ctx))
1021
0
                goto err;
1022
344
            if (!BN_mod_add_quick(rh, rh, tmp, p))
1023
0
                goto err;
1024
344
            if (!field_mul(group, rh, rh, point->X, ctx))
1025
0
                goto err;
1026
344
        }
1027
1028
        /* rh := rh + b*Z^6 */
1029
2.45k
        if (!field_mul(group, tmp, group->b, Z6, ctx))
1030
0
            goto err;
1031
2.45k
        if (!BN_mod_add_quick(rh, rh, tmp, p))
1032
0
            goto err;
1033
842k
    } else {
1034
        /* point->Z_is_one */
1035
1036
        /* rh := (rh + a)*X */
1037
842k
        if (!BN_mod_add_quick(rh, rh, group->a, p))
1038
0
            goto err;
1039
842k
        if (!field_mul(group, rh, rh, point->X, ctx))
1040
0
            goto err;
1041
        /* rh := rh + b */
1042
842k
        if (!BN_mod_add_quick(rh, rh, group->b, p))
1043
0
            goto err;
1044
842k
    }
1045
1046
    /* 'lh' := Y^2 */
1047
844k
    if (!field_sqr(group, tmp, point->Y, ctx))
1048
0
        goto err;
1049
1050
844k
    ret = (0 == BN_ucmp(tmp, rh));
1051
1052
844k
err:
1053
844k
    BN_CTX_end(ctx);
1054
844k
    BN_CTX_free(new_ctx);
1055
844k
    return ret;
1056
844k
}
1057
1058
int ossl_ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
1059
    const EC_POINT *b, BN_CTX *ctx)
1060
174k
{
1061
    /*-
1062
     * return values:
1063
     *  -1   error
1064
     *   0   equal (in affine coordinates)
1065
     *   1   not equal
1066
     */
1067
1068
174k
    int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *,
1069
174k
        const BIGNUM *, BN_CTX *);
1070
174k
    int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
1071
174k
    BN_CTX *new_ctx = NULL;
1072
174k
    BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
1073
174k
    const BIGNUM *tmp1_, *tmp2_;
1074
174k
    int ret = -1;
1075
1076
174k
    if (EC_POINT_is_at_infinity(group, a)) {
1077
187
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
1078
187
    }
1079
1080
174k
    if (EC_POINT_is_at_infinity(group, b))
1081
0
        return 1;
1082
1083
174k
    if (a->Z_is_one && b->Z_is_one) {
1084
172k
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
1085
172k
    }
1086
1087
2.00k
    field_mul = group->meth->field_mul;
1088
2.00k
    field_sqr = group->meth->field_sqr;
1089
1090
2.00k
    if (ctx == NULL) {
1091
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1092
0
        if (ctx == NULL)
1093
0
            return -1;
1094
0
    }
1095
1096
2.00k
    BN_CTX_start(ctx);
1097
2.00k
    tmp1 = BN_CTX_get(ctx);
1098
2.00k
    tmp2 = BN_CTX_get(ctx);
1099
2.00k
    Za23 = BN_CTX_get(ctx);
1100
2.00k
    Zb23 = BN_CTX_get(ctx);
1101
2.00k
    if (Zb23 == NULL)
1102
0
        goto end;
1103
1104
    /*-
1105
     * We have to decide whether
1106
     *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
1107
     * or equivalently, whether
1108
     *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
1109
     */
1110
1111
2.00k
    if (!b->Z_is_one) {
1112
1.81k
        if (!field_sqr(group, Zb23, b->Z, ctx))
1113
0
            goto end;
1114
1.81k
        if (!field_mul(group, tmp1, a->X, Zb23, ctx))
1115
0
            goto end;
1116
1.81k
        tmp1_ = tmp1;
1117
1.81k
    } else
1118
189
        tmp1_ = a->X;
1119
2.00k
    if (!a->Z_is_one) {
1120
2.00k
        if (!field_sqr(group, Za23, a->Z, ctx))
1121
0
            goto end;
1122
2.00k
        if (!field_mul(group, tmp2, b->X, Za23, ctx))
1123
0
            goto end;
1124
2.00k
        tmp2_ = tmp2;
1125
2.00k
    } else
1126
0
        tmp2_ = b->X;
1127
1128
    /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
1129
2.00k
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1130
185
        ret = 1; /* points differ */
1131
185
        goto end;
1132
185
    }
1133
1134
1.81k
    if (!b->Z_is_one) {
1135
1.81k
        if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
1136
0
            goto end;
1137
1.81k
        if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
1138
0
            goto end;
1139
        /* tmp1_ = tmp1 */
1140
1.81k
    } else
1141
4
        tmp1_ = a->Y;
1142
1.81k
    if (!a->Z_is_one) {
1143
1.81k
        if (!field_mul(group, Za23, Za23, a->Z, ctx))
1144
0
            goto end;
1145
1.81k
        if (!field_mul(group, tmp2, b->Y, Za23, ctx))
1146
0
            goto end;
1147
        /* tmp2_ = tmp2 */
1148
1.81k
    } else
1149
0
        tmp2_ = b->Y;
1150
1151
    /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
1152
1.81k
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1153
0
        ret = 1; /* points differ */
1154
0
        goto end;
1155
0
    }
1156
1157
    /* points are equal */
1158
1.81k
    ret = 0;
1159
1160
2.00k
end:
1161
2.00k
    BN_CTX_end(ctx);
1162
2.00k
    BN_CTX_free(new_ctx);
1163
2.00k
    return ret;
1164
1.81k
}
1165
1166
int ossl_ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
1167
    BN_CTX *ctx)
1168
0
{
1169
0
    BN_CTX *new_ctx = NULL;
1170
0
    BIGNUM *x, *y;
1171
0
    int ret = 0;
1172
1173
0
    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
1174
0
        return 1;
1175
1176
0
    if (ctx == NULL) {
1177
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1178
0
        if (ctx == NULL)
1179
0
            return 0;
1180
0
    }
1181
1182
0
    BN_CTX_start(ctx);
1183
0
    x = BN_CTX_get(ctx);
1184
0
    y = BN_CTX_get(ctx);
1185
0
    if (y == NULL)
1186
0
        goto err;
1187
1188
0
    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
1189
0
        goto err;
1190
0
    if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
1191
0
        goto err;
1192
0
    if (!point->Z_is_one) {
1193
0
        ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
1194
0
        goto err;
1195
0
    }
1196
1197
0
    ret = 1;
1198
1199
0
err:
1200
0
    BN_CTX_end(ctx);
1201
0
    BN_CTX_free(new_ctx);
1202
0
    return ret;
1203
0
}
1204
1205
int ossl_ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
1206
    EC_POINT *points[], BN_CTX *ctx)
1207
5.41k
{
1208
5.41k
    BN_CTX *new_ctx = NULL;
1209
5.41k
    BIGNUM *tmp, *tmp_Z;
1210
5.41k
    BIGNUM **prod_Z = NULL;
1211
5.41k
    size_t i;
1212
5.41k
    int ret = 0;
1213
1214
5.41k
    if (num == 0)
1215
0
        return 1;
1216
1217
5.41k
    if (ctx == NULL) {
1218
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
1219
0
        if (ctx == NULL)
1220
0
            return 0;
1221
0
    }
1222
1223
5.41k
    BN_CTX_start(ctx);
1224
5.41k
    tmp = BN_CTX_get(ctx);
1225
5.41k
    tmp_Z = BN_CTX_get(ctx);
1226
5.41k
    if (tmp_Z == NULL)
1227
0
        goto err;
1228
1229
5.41k
    prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
1230
5.41k
    if (prod_Z == NULL)
1231
0
        goto err;
1232
26.8k
    for (i = 0; i < num; i++) {
1233
21.4k
        prod_Z[i] = BN_new();
1234
21.4k
        if (prod_Z[i] == NULL)
1235
0
            goto err;
1236
21.4k
    }
1237
1238
    /*
1239
     * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
1240
     * skipping any zero-valued inputs (pretend that they're 1).
1241
     */
1242
1243
5.41k
    if (!BN_is_zero(points[0]->Z)) {
1244
5.41k
        if (!BN_copy(prod_Z[0], points[0]->Z))
1245
0
            goto err;
1246
5.41k
    } else {
1247
0
        if (group->meth->field_set_to_one != 0) {
1248
0
            if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
1249
0
                goto err;
1250
0
        } else {
1251
0
            if (!BN_one(prod_Z[0]))
1252
0
                goto err;
1253
0
        }
1254
0
    }
1255
1256
21.4k
    for (i = 1; i < num; i++) {
1257
16.0k
        if (!BN_is_zero(points[i]->Z)) {
1258
15.6k
            if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
1259
15.6k
                    ctx))
1260
0
                goto err;
1261
15.6k
        } else {
1262
361
            if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
1263
0
                goto err;
1264
361
        }
1265
16.0k
    }
1266
1267
    /*
1268
     * Now use a single explicit inversion to replace every non-zero
1269
     * points[i]->Z by its inverse.
1270
     */
1271
1272
5.41k
    if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) {
1273
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1274
0
        goto err;
1275
0
    }
1276
5.41k
    if (group->meth->field_encode != NULL) {
1277
        /*
1278
         * In the Montgomery case, we just turned R*H (representing H) into
1279
         * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
1280
         * multiply by the Montgomery factor twice.
1281
         */
1282
5.41k
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1283
0
            goto err;
1284
5.41k
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1285
0
            goto err;
1286
5.41k
    }
1287
1288
21.4k
    for (i = num - 1; i > 0; --i) {
1289
        /*
1290
         * Loop invariant: tmp is the product of the inverses of points[0]->Z
1291
         * .. points[i]->Z (zero-valued inputs skipped).
1292
         */
1293
16.0k
        if (!BN_is_zero(points[i]->Z)) {
1294
            /*
1295
             * Set tmp_Z to the inverse of points[i]->Z (as product of Z
1296
             * inverses 0 .. i, Z values 0 .. i - 1).
1297
             */
1298
15.6k
            if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
1299
0
                goto err;
1300
            /*
1301
             * Update tmp to satisfy the loop invariant for i - 1.
1302
             */
1303
15.6k
            if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
1304
0
                goto err;
1305
            /* Replace points[i]->Z by its inverse. */
1306
15.6k
            if (!BN_copy(points[i]->Z, tmp_Z))
1307
0
                goto err;
1308
15.6k
        }
1309
16.0k
    }
1310
1311
5.41k
    if (!BN_is_zero(points[0]->Z)) {
1312
        /* Replace points[0]->Z by its inverse. */
1313
5.41k
        if (!BN_copy(points[0]->Z, tmp))
1314
0
            goto err;
1315
5.41k
    }
1316
1317
    /* Finally, fix up the X and Y coordinates for all points. */
1318
1319
26.8k
    for (i = 0; i < num; i++) {
1320
21.4k
        EC_POINT *p = points[i];
1321
1322
21.4k
        if (!BN_is_zero(p->Z)) {
1323
            /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */
1324
1325
21.1k
            if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
1326
0
                goto err;
1327
21.1k
            if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
1328
0
                goto err;
1329
1330
21.1k
            if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
1331
0
                goto err;
1332
21.1k
            if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
1333
0
                goto err;
1334
1335
21.1k
            if (group->meth->field_set_to_one != 0) {
1336
21.1k
                if (!group->meth->field_set_to_one(group, p->Z, ctx))
1337
0
                    goto err;
1338
21.1k
            } else {
1339
0
                if (!BN_one(p->Z))
1340
0
                    goto err;
1341
0
            }
1342
21.1k
            p->Z_is_one = 1;
1343
21.1k
        }
1344
21.4k
    }
1345
1346
5.41k
    ret = 1;
1347
1348
5.41k
err:
1349
5.41k
    BN_CTX_end(ctx);
1350
5.41k
    BN_CTX_free(new_ctx);
1351
5.41k
    if (prod_Z != NULL) {
1352
26.8k
        for (i = 0; i < num; i++) {
1353
21.4k
            if (prod_Z[i] == NULL)
1354
0
                break;
1355
21.4k
            BN_clear_free(prod_Z[i]);
1356
21.4k
        }
1357
5.41k
        OPENSSL_free(prod_Z);
1358
5.41k
    }
1359
5.41k
    return ret;
1360
5.41k
}
1361
1362
int ossl_ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1363
    const BIGNUM *b, BN_CTX *ctx)
1364
0
{
1365
0
    return BN_mod_mul(r, a, b, group->field, ctx);
1366
0
}
1367
1368
int ossl_ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1369
    BN_CTX *ctx)
1370
0
{
1371
0
    return BN_mod_sqr(r, a, group->field, ctx);
1372
0
}
1373
1374
/*-
1375
 * Computes the multiplicative inverse of a in GF(p), storing the result in r.
1376
 * If a is zero (or equivalent), you'll get an EC_R_CANNOT_INVERT error.
1377
 * Since we don't have a Mont structure here, SCA hardening is with blinding.
1378
 * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)
1379
 */
1380
int ossl_ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
1381
    const BIGNUM *a, BN_CTX *ctx)
1382
0
{
1383
0
    BIGNUM *e = NULL;
1384
0
    BN_CTX *new_ctx = NULL;
1385
0
    int ret = 0;
1386
1387
0
    if (ctx == NULL
1388
0
        && (ctx = new_ctx = BN_CTX_secure_new_ex(group->libctx)) == NULL)
1389
0
        return 0;
1390
1391
0
    BN_CTX_start(ctx);
1392
0
    if ((e = BN_CTX_get(ctx)) == NULL)
1393
0
        goto err;
1394
1395
0
    do {
1396
0
        if (!BN_priv_rand_range_ex(e, group->field, 0, ctx))
1397
0
            goto err;
1398
0
    } while (BN_is_zero(e));
1399
1400
    /* r := a * e */
1401
0
    if (!group->meth->field_mul(group, r, a, e, ctx))
1402
0
        goto err;
1403
    /* r := 1/(a * e) */
1404
0
    if (!BN_mod_inverse(r, r, group->field, ctx)) {
1405
0
        ERR_raise(ERR_LIB_EC, EC_R_CANNOT_INVERT);
1406
0
        goto err;
1407
0
    }
1408
    /* r := e/(a * e) = 1/a */
1409
0
    if (!group->meth->field_mul(group, r, r, e, ctx))
1410
0
        goto err;
1411
1412
0
    ret = 1;
1413
1414
0
err:
1415
0
    BN_CTX_end(ctx);
1416
0
    BN_CTX_free(new_ctx);
1417
0
    return ret;
1418
0
}
1419
1420
/*-
1421
 * Apply randomization of EC point projective coordinates:
1422
 *
1423
 *   (X, Y, Z) = (lambda^2*X, lambda^3*Y, lambda*Z)
1424
 *   lambda = [1, group->field)
1425
 *
1426
 */
1427
int ossl_ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
1428
    BN_CTX *ctx)
1429
5.31k
{
1430
5.31k
    int ret = 0;
1431
5.31k
    BIGNUM *lambda = NULL;
1432
5.31k
    BIGNUM *temp = NULL;
1433
1434
5.31k
    BN_CTX_start(ctx);
1435
5.31k
    lambda = BN_CTX_get(ctx);
1436
5.31k
    temp = BN_CTX_get(ctx);
1437
5.31k
    if (temp == NULL) {
1438
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1439
0
        goto end;
1440
0
    }
1441
1442
    /*-
1443
     * Make sure lambda is not zero.
1444
     * If the RNG fails, we cannot blind but nevertheless want
1445
     * code to continue smoothly and not clobber the error stack.
1446
     */
1447
5.31k
    do {
1448
5.31k
        ERR_set_mark();
1449
5.31k
        ret = BN_priv_rand_range_ex(lambda, group->field, 0, ctx);
1450
5.31k
        ERR_pop_to_mark();
1451
5.31k
        if (ret == 0) {
1452
0
            ret = 1;
1453
0
            goto end;
1454
0
        }
1455
5.31k
    } while (BN_is_zero(lambda));
1456
1457
    /* if field_encode defined convert between representations */
1458
5.31k
    if ((group->meth->field_encode != NULL
1459
5.31k
            && !group->meth->field_encode(group, lambda, lambda, ctx))
1460
5.31k
        || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)
1461
5.31k
        || !group->meth->field_sqr(group, temp, lambda, ctx)
1462
5.31k
        || !group->meth->field_mul(group, p->X, p->X, temp, ctx)
1463
5.31k
        || !group->meth->field_mul(group, temp, temp, lambda, ctx)
1464
5.31k
        || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
1465
0
        goto end;
1466
1467
5.31k
    p->Z_is_one = 0;
1468
5.31k
    ret = 1;
1469
1470
5.31k
end:
1471
5.31k
    BN_CTX_end(ctx);
1472
5.31k
    return ret;
1473
5.31k
}
1474
1475
/*-
1476
 * Input:
1477
 * - p: affine coordinates
1478
 *
1479
 * Output:
1480
 * - s := p, r := 2p: blinded projective (homogeneous) coordinates
1481
 *
1482
 * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
1483
 * multiplication resistant against side channel attacks" appendix, described at
1484
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
1485
 * simplified for Z1=1.
1486
 *
1487
 * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)
1488
 * for any non-zero \lambda that holds for projective (homogeneous) coords.
1489
 */
1490
int ossl_ec_GFp_simple_ladder_pre(const EC_GROUP *group,
1491
    EC_POINT *r, EC_POINT *s,
1492
    EC_POINT *p, BN_CTX *ctx)
1493
5.85k
{
1494
5.85k
    BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;
1495
1496
5.85k
    t1 = s->Z;
1497
5.85k
    t2 = r->Z;
1498
5.85k
    t3 = s->X;
1499
5.85k
    t4 = r->X;
1500
5.85k
    t5 = s->Y;
1501
1502
5.85k
    if (!p->Z_is_one /* r := 2p */
1503
5.85k
        || !group->meth->field_sqr(group, t3, p->X, ctx)
1504
5.85k
        || !BN_mod_sub_quick(t4, t3, group->a, group->field)
1505
5.85k
        || !group->meth->field_sqr(group, t4, t4, ctx)
1506
5.85k
        || !group->meth->field_mul(group, t5, p->X, group->b, ctx)
1507
5.85k
        || !BN_mod_lshift_quick(t5, t5, 3, group->field)
1508
        /* r->X coord output */
1509
5.85k
        || !BN_mod_sub_quick(r->X, t4, t5, group->field)
1510
5.85k
        || !BN_mod_add_quick(t1, t3, group->a, group->field)
1511
5.85k
        || !group->meth->field_mul(group, t2, p->X, t1, ctx)
1512
5.85k
        || !BN_mod_add_quick(t2, group->b, t2, group->field)
1513
        /* r->Z coord output */
1514
5.85k
        || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))
1515
0
        return 0;
1516
1517
    /* make sure lambda (r->Y here for storage) is not zero */
1518
5.85k
    do {
1519
5.85k
        if (!BN_priv_rand_range_ex(r->Y, group->field, 0, ctx))
1520
0
            return 0;
1521
5.85k
    } while (BN_is_zero(r->Y));
1522
1523
    /* make sure lambda (s->Z here for storage) is not zero */
1524
5.85k
    do {
1525
5.85k
        if (!BN_priv_rand_range_ex(s->Z, group->field, 0, ctx))
1526
0
            return 0;
1527
5.85k
    } while (BN_is_zero(s->Z));
1528
1529
    /* if field_encode defined convert between representations */
1530
5.85k
    if (group->meth->field_encode != NULL
1531
5.85k
        && (!group->meth->field_encode(group, r->Y, r->Y, ctx)
1532
5.85k
            || !group->meth->field_encode(group, s->Z, s->Z, ctx)))
1533
0
        return 0;
1534
1535
    /* blind r and s independently */
1536
5.85k
    if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
1537
5.85k
        || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)
1538
5.85k
        || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */
1539
0
        return 0;
1540
1541
5.85k
    r->Z_is_one = 0;
1542
5.85k
    s->Z_is_one = 0;
1543
1544
5.85k
    return 1;
1545
5.85k
}
1546
1547
/*-
1548
 * Input:
1549
 * - s, r: projective (homogeneous) coordinates
1550
 * - p: affine coordinates
1551
 *
1552
 * Output:
1553
 * - s := r + s, r := 2r: projective (homogeneous) coordinates
1554
 *
1555
 * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
1556
 * "A fast parallel elliptic curve multiplication resistant against side channel
1557
 * attacks", as described at
1558
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4
1559
 */
1560
int ossl_ec_GFp_simple_ladder_step(const EC_GROUP *group,
1561
    EC_POINT *r, EC_POINT *s,
1562
    EC_POINT *p, BN_CTX *ctx)
1563
2.26M
{
1564
2.26M
    int ret = 0;
1565
2.26M
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
1566
1567
2.26M
    BN_CTX_start(ctx);
1568
2.26M
    t0 = BN_CTX_get(ctx);
1569
2.26M
    t1 = BN_CTX_get(ctx);
1570
2.26M
    t2 = BN_CTX_get(ctx);
1571
2.26M
    t3 = BN_CTX_get(ctx);
1572
2.26M
    t4 = BN_CTX_get(ctx);
1573
2.26M
    t5 = BN_CTX_get(ctx);
1574
2.26M
    t6 = BN_CTX_get(ctx);
1575
1576
2.26M
    if (t6 == NULL
1577
2.26M
        || !group->meth->field_mul(group, t6, r->X, s->X, ctx)
1578
2.26M
        || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
1579
2.26M
        || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)
1580
2.26M
        || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
1581
2.26M
        || !group->meth->field_mul(group, t5, group->a, t0, ctx)
1582
2.26M
        || !BN_mod_add_quick(t5, t6, t5, group->field)
1583
2.26M
        || !BN_mod_add_quick(t6, t3, t4, group->field)
1584
2.26M
        || !group->meth->field_mul(group, t5, t6, t5, ctx)
1585
2.26M
        || !group->meth->field_sqr(group, t0, t0, ctx)
1586
2.26M
        || !BN_mod_lshift_quick(t2, group->b, 2, group->field)
1587
2.26M
        || !group->meth->field_mul(group, t0, t2, t0, ctx)
1588
2.26M
        || !BN_mod_lshift1_quick(t5, t5, group->field)
1589
2.26M
        || !BN_mod_sub_quick(t3, t4, t3, group->field)
1590
        /* s->Z coord output */
1591
2.26M
        || !group->meth->field_sqr(group, s->Z, t3, ctx)
1592
2.26M
        || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)
1593
2.26M
        || !BN_mod_add_quick(t0, t0, t5, group->field)
1594
        /* s->X coord output */
1595
2.26M
        || !BN_mod_sub_quick(s->X, t0, t4, group->field)
1596
2.26M
        || !group->meth->field_sqr(group, t4, r->X, ctx)
1597
2.26M
        || !group->meth->field_sqr(group, t5, r->Z, ctx)
1598
2.26M
        || !group->meth->field_mul(group, t6, t5, group->a, ctx)
1599
2.26M
        || !BN_mod_add_quick(t1, r->X, r->Z, group->field)
1600
2.26M
        || !group->meth->field_sqr(group, t1, t1, ctx)
1601
2.26M
        || !BN_mod_sub_quick(t1, t1, t4, group->field)
1602
2.26M
        || !BN_mod_sub_quick(t1, t1, t5, group->field)
1603
2.26M
        || !BN_mod_sub_quick(t3, t4, t6, group->field)
1604
2.26M
        || !group->meth->field_sqr(group, t3, t3, ctx)
1605
2.26M
        || !group->meth->field_mul(group, t0, t5, t1, ctx)
1606
2.26M
        || !group->meth->field_mul(group, t0, t2, t0, ctx)
1607
        /* r->X coord output */
1608
2.26M
        || !BN_mod_sub_quick(r->X, t3, t0, group->field)
1609
2.26M
        || !BN_mod_add_quick(t3, t4, t6, group->field)
1610
2.26M
        || !group->meth->field_sqr(group, t4, t5, ctx)
1611
2.26M
        || !group->meth->field_mul(group, t4, t4, t2, ctx)
1612
2.26M
        || !group->meth->field_mul(group, t1, t1, t3, ctx)
1613
2.26M
        || !BN_mod_lshift1_quick(t1, t1, group->field)
1614
        /* r->Z coord output */
1615
2.26M
        || !BN_mod_add_quick(r->Z, t4, t1, group->field))
1616
0
        goto err;
1617
1618
2.26M
    ret = 1;
1619
1620
2.26M
err:
1621
2.26M
    BN_CTX_end(ctx);
1622
2.26M
    return ret;
1623
2.26M
}
1624
1625
/*-
1626
 * Input:
1627
 * - s, r: projective (homogeneous) coordinates
1628
 * - p: affine coordinates
1629
 *
1630
 * Output:
1631
 * - r := (x,y): affine coordinates
1632
 *
1633
 * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
1634
 * Elliptic Curves and Side-Channel Attacks", modified to work in mixed
1635
 * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)
1636
 * coords, and return r in affine coordinates.
1637
 *
1638
 * X4 = two*Y1*X2*Z3*Z2;
1639
 * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);
1640
 * Z4 = two*Y1*Z3*SQR(Z2);
1641
 *
1642
 * Z4 != 0 because:
1643
 *  - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
1644
 *  - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
1645
 *  - Y1==0 implies p has order 2, so either r or s are infinity and handled by
1646
 *    one of the BN_is_zero(...) branches.
1647
 */
1648
int ossl_ec_GFp_simple_ladder_post(const EC_GROUP *group,
1649
    EC_POINT *r, EC_POINT *s,
1650
    EC_POINT *p, BN_CTX *ctx)
1651
5.85k
{
1652
5.85k
    int ret = 0;
1653
5.85k
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
1654
1655
5.85k
    if (BN_is_zero(r->Z))
1656
458
        return EC_POINT_set_to_infinity(group, r);
1657
1658
5.40k
    if (BN_is_zero(s->Z)) {
1659
147
        if (!EC_POINT_copy(r, p)
1660
147
            || !EC_POINT_invert(group, r, ctx))
1661
0
            return 0;
1662
147
        return 1;
1663
147
    }
1664
1665
5.25k
    BN_CTX_start(ctx);
1666
5.25k
    t0 = BN_CTX_get(ctx);
1667
5.25k
    t1 = BN_CTX_get(ctx);
1668
5.25k
    t2 = BN_CTX_get(ctx);
1669
5.25k
    t3 = BN_CTX_get(ctx);
1670
5.25k
    t4 = BN_CTX_get(ctx);
1671
5.25k
    t5 = BN_CTX_get(ctx);
1672
5.25k
    t6 = BN_CTX_get(ctx);
1673
1674
5.25k
    if (t6 == NULL
1675
5.25k
        || !BN_mod_lshift1_quick(t4, p->Y, group->field)
1676
5.25k
        || !group->meth->field_mul(group, t6, r->X, t4, ctx)
1677
5.25k
        || !group->meth->field_mul(group, t6, s->Z, t6, ctx)
1678
5.25k
        || !group->meth->field_mul(group, t5, r->Z, t6, ctx)
1679
5.25k
        || !BN_mod_lshift1_quick(t1, group->b, group->field)
1680
5.25k
        || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
1681
5.25k
        || !group->meth->field_sqr(group, t3, r->Z, ctx)
1682
5.25k
        || !group->meth->field_mul(group, t2, t3, t1, ctx)
1683
5.25k
        || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)
1684
5.25k
        || !group->meth->field_mul(group, t1, p->X, r->X, ctx)
1685
5.25k
        || !BN_mod_add_quick(t1, t1, t6, group->field)
1686
5.25k
        || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
1687
5.25k
        || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)
1688
5.25k
        || !BN_mod_add_quick(t6, r->X, t0, group->field)
1689
5.25k
        || !group->meth->field_mul(group, t6, t6, t1, ctx)
1690
5.25k
        || !BN_mod_add_quick(t6, t6, t2, group->field)
1691
5.25k
        || !BN_mod_sub_quick(t0, t0, r->X, group->field)
1692
5.25k
        || !group->meth->field_sqr(group, t0, t0, ctx)
1693
5.25k
        || !group->meth->field_mul(group, t0, t0, s->X, ctx)
1694
5.25k
        || !BN_mod_sub_quick(t0, t6, t0, group->field)
1695
5.25k
        || !group->meth->field_mul(group, t1, s->Z, t4, ctx)
1696
5.25k
        || !group->meth->field_mul(group, t1, t3, t1, ctx)
1697
5.25k
        || (group->meth->field_decode != NULL
1698
5.25k
            && !group->meth->field_decode(group, t1, t1, ctx))
1699
5.25k
        || !group->meth->field_inv(group, t1, t1, ctx)
1700
5.25k
        || (group->meth->field_encode != NULL
1701
5.25k
            && !group->meth->field_encode(group, t1, t1, ctx))
1702
5.25k
        || !group->meth->field_mul(group, r->X, t5, t1, ctx)
1703
5.25k
        || !group->meth->field_mul(group, r->Y, t0, t1, ctx))
1704
0
        goto err;
1705
1706
5.25k
    if (group->meth->field_set_to_one != NULL) {
1707
5.25k
        if (!group->meth->field_set_to_one(group, r->Z, ctx))
1708
0
            goto err;
1709
5.25k
    } else {
1710
0
        if (!BN_one(r->Z))
1711
0
            goto err;
1712
0
    }
1713
1714
5.25k
    r->Z_is_one = 1;
1715
5.25k
    ret = 1;
1716
1717
5.25k
err:
1718
5.25k
    BN_CTX_end(ctx);
1719
5.25k
    return ret;
1720
5.25k
}