/src/openssl33/crypto/evp/kem.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <stdlib.h> |
12 | | #include <openssl/objects.h> |
13 | | #include <openssl/evp.h> |
14 | | #include "internal/cryptlib.h" |
15 | | #include "internal/provider.h" |
16 | | #include "internal/core.h" |
17 | | #include "crypto/evp.h" |
18 | | #include "evp_local.h" |
19 | | |
20 | | static int evp_kem_init(EVP_PKEY_CTX *ctx, int operation, |
21 | | const OSSL_PARAM params[], EVP_PKEY *authkey) |
22 | 256 | { |
23 | 256 | int ret = 0; |
24 | 256 | EVP_KEM *kem = NULL; |
25 | 256 | EVP_KEYMGMT *tmp_keymgmt = NULL; |
26 | 256 | const OSSL_PROVIDER *tmp_prov = NULL; |
27 | 256 | void *provkey = NULL, *provauthkey = NULL; |
28 | 256 | const char *supported_kem = NULL; |
29 | 256 | int iter; |
30 | | |
31 | 256 | if (ctx == NULL || ctx->keytype == NULL) { |
32 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
33 | 0 | return 0; |
34 | 0 | } |
35 | | |
36 | 256 | evp_pkey_ctx_free_old_ops(ctx); |
37 | 256 | ctx->operation = operation; |
38 | | |
39 | 256 | if (ctx->pkey == NULL) { |
40 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_NO_KEY_SET); |
41 | 0 | goto err; |
42 | 0 | } |
43 | 256 | if (authkey != NULL && authkey->type != ctx->pkey->type) { |
44 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_DIFFERENT_KEY_TYPES); |
45 | 0 | return 0; |
46 | 0 | } |
47 | | /* |
48 | | * Try to derive the supported kem from |ctx->keymgmt|. |
49 | | */ |
50 | 256 | if (!ossl_assert(ctx->pkey->keymgmt == NULL |
51 | 256 | || ctx->pkey->keymgmt == ctx->keymgmt)) { |
52 | 0 | ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR); |
53 | 0 | goto err; |
54 | 0 | } |
55 | 256 | supported_kem = evp_keymgmt_util_query_operation_name(ctx->keymgmt, |
56 | 256 | OSSL_OP_KEM); |
57 | 256 | if (supported_kem == NULL) { |
58 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
59 | 0 | goto err; |
60 | 0 | } |
61 | | |
62 | | /* |
63 | | * Because we cleared out old ops, we shouldn't need to worry about |
64 | | * checking if kem is already there. |
65 | | * We perform two iterations: |
66 | | * |
67 | | * 1. Do the normal kem fetch, using the fetching data given by |
68 | | * the EVP_PKEY_CTX. |
69 | | * 2. Do the provider specific kem fetch, from the same provider |
70 | | * as |ctx->keymgmt| |
71 | | * |
72 | | * We then try to fetch the keymgmt from the same provider as the |
73 | | * kem, and try to export |ctx->pkey| to that keymgmt (when this |
74 | | * keymgmt happens to be the same as |ctx->keymgmt|, the export is |
75 | | * a no-op, but we call it anyway to not complicate the code even |
76 | | * more). |
77 | | * If the export call succeeds (returns a non-NULL provider key pointer), |
78 | | * we're done and can perform the operation itself. If not, we perform |
79 | | * the second iteration, or jump to legacy. |
80 | | */ |
81 | 512 | for (iter = 1, provkey = NULL; iter < 3 && provkey == NULL; iter++) { |
82 | 256 | EVP_KEYMGMT *tmp_keymgmt_tofree = NULL; |
83 | | |
84 | | /* |
85 | | * If we're on the second iteration, free the results from the first. |
86 | | * They are NULL on the first iteration, so no need to check what |
87 | | * iteration we're on. |
88 | | */ |
89 | 256 | EVP_KEM_free(kem); |
90 | 256 | EVP_KEYMGMT_free(tmp_keymgmt); |
91 | | |
92 | 256 | switch (iter) { |
93 | 256 | case 1: |
94 | 256 | kem = EVP_KEM_fetch(ctx->libctx, supported_kem, ctx->propquery); |
95 | 256 | if (kem != NULL) |
96 | 256 | tmp_prov = EVP_KEM_get0_provider(kem); |
97 | 256 | break; |
98 | 0 | case 2: |
99 | 0 | tmp_prov = EVP_KEYMGMT_get0_provider(ctx->keymgmt); |
100 | 0 | kem = evp_kem_fetch_from_prov((OSSL_PROVIDER *)tmp_prov, |
101 | 0 | supported_kem, ctx->propquery); |
102 | |
|
103 | 0 | if (kem == NULL) { |
104 | 0 | ERR_raise(ERR_LIB_EVP, |
105 | 0 | EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
106 | 0 | ret = -2; |
107 | 0 | goto err; |
108 | 0 | } |
109 | 256 | } |
110 | 256 | if (kem == NULL) |
111 | 0 | continue; |
112 | | |
113 | | /* |
114 | | * Ensure that the key is provided, either natively, or as a cached |
115 | | * export. We start by fetching the keymgmt with the same name as |
116 | | * |ctx->pkey|, but from the provider of the kem method, using the |
117 | | * same property query as when fetching the kem method. |
118 | | * With the keymgmt we found (if we did), we try to export |ctx->pkey| |
119 | | * to it (evp_pkey_export_to_provider() is smart enough to only actually |
120 | | * export it if |tmp_keymgmt| is different from |ctx->pkey|'s keymgmt) |
121 | | */ |
122 | 256 | tmp_keymgmt_tofree = tmp_keymgmt = evp_keymgmt_fetch_from_prov((OSSL_PROVIDER *)tmp_prov, |
123 | 256 | EVP_KEYMGMT_get0_name(ctx->keymgmt), |
124 | 256 | ctx->propquery); |
125 | 256 | if (tmp_keymgmt != NULL) { |
126 | 256 | provkey = evp_pkey_export_to_provider(ctx->pkey, ctx->libctx, |
127 | 256 | &tmp_keymgmt, ctx->propquery); |
128 | 256 | if (provkey != NULL && authkey != NULL) { |
129 | 0 | provauthkey = evp_pkey_export_to_provider(authkey, ctx->libctx, |
130 | 0 | &tmp_keymgmt, |
131 | 0 | ctx->propquery); |
132 | 0 | if (provauthkey == NULL) { |
133 | 0 | EVP_KEM_free(kem); |
134 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
135 | 0 | goto err; |
136 | 0 | } |
137 | 0 | } |
138 | 256 | } |
139 | 256 | if (tmp_keymgmt == NULL) |
140 | 0 | EVP_KEYMGMT_free(tmp_keymgmt_tofree); |
141 | 256 | } |
142 | | |
143 | 256 | if (provkey == NULL) { |
144 | 0 | EVP_KEM_free(kem); |
145 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
146 | 0 | goto err; |
147 | 0 | } |
148 | | |
149 | 256 | ctx->op.encap.kem = kem; |
150 | 256 | ctx->op.encap.algctx = kem->newctx(ossl_provider_ctx(kem->prov)); |
151 | 256 | if (ctx->op.encap.algctx == NULL) { |
152 | | /* The provider key can stay in the cache */ |
153 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
154 | 0 | goto err; |
155 | 0 | } |
156 | | |
157 | 256 | switch (operation) { |
158 | 156 | case EVP_PKEY_OP_ENCAPSULATE: |
159 | 156 | if (provauthkey != NULL && kem->auth_encapsulate_init != NULL) { |
160 | 0 | ret = kem->auth_encapsulate_init(ctx->op.encap.algctx, provkey, |
161 | 0 | provauthkey, params); |
162 | 156 | } else if (provauthkey == NULL && kem->encapsulate_init != NULL) { |
163 | 156 | ret = kem->encapsulate_init(ctx->op.encap.algctx, provkey, params); |
164 | 156 | } else { |
165 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
166 | 0 | ret = -2; |
167 | 0 | goto err; |
168 | 0 | } |
169 | 156 | break; |
170 | 156 | case EVP_PKEY_OP_DECAPSULATE: |
171 | 100 | if (provauthkey != NULL && kem->auth_decapsulate_init != NULL) { |
172 | 0 | ret = kem->auth_decapsulate_init(ctx->op.encap.algctx, provkey, |
173 | 0 | provauthkey, params); |
174 | 100 | } else if (provauthkey == NULL && kem->encapsulate_init != NULL) { |
175 | 100 | ret = kem->decapsulate_init(ctx->op.encap.algctx, provkey, params); |
176 | 100 | } else { |
177 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
178 | 0 | ret = -2; |
179 | 0 | goto err; |
180 | 0 | } |
181 | 100 | break; |
182 | 100 | default: |
183 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
184 | 0 | goto err; |
185 | 256 | } |
186 | | |
187 | 256 | EVP_KEYMGMT_free(tmp_keymgmt); |
188 | 256 | tmp_keymgmt = NULL; |
189 | | |
190 | 256 | if (ret > 0) |
191 | 256 | return 1; |
192 | 0 | err: |
193 | 0 | if (ret <= 0) { |
194 | 0 | evp_pkey_ctx_free_old_ops(ctx); |
195 | 0 | ctx->operation = EVP_PKEY_OP_UNDEFINED; |
196 | 0 | } |
197 | 0 | EVP_KEYMGMT_free(tmp_keymgmt); |
198 | 0 | return ret; |
199 | 256 | } |
200 | | |
201 | | int EVP_PKEY_auth_encapsulate_init(EVP_PKEY_CTX *ctx, EVP_PKEY *authpriv, |
202 | | const OSSL_PARAM params[]) |
203 | 0 | { |
204 | 0 | if (authpriv == NULL) |
205 | 0 | return 0; |
206 | 0 | return evp_kem_init(ctx, EVP_PKEY_OP_ENCAPSULATE, params, authpriv); |
207 | 0 | } |
208 | | |
209 | | int EVP_PKEY_encapsulate_init(EVP_PKEY_CTX *ctx, const OSSL_PARAM params[]) |
210 | 156 | { |
211 | 156 | return evp_kem_init(ctx, EVP_PKEY_OP_ENCAPSULATE, params, NULL); |
212 | 156 | } |
213 | | |
214 | | int EVP_PKEY_encapsulate(EVP_PKEY_CTX *ctx, |
215 | | unsigned char *out, size_t *outlen, |
216 | | unsigned char *secret, size_t *secretlen) |
217 | 184 | { |
218 | 184 | if (ctx == NULL) |
219 | 0 | return 0; |
220 | | |
221 | 184 | if (ctx->operation != EVP_PKEY_OP_ENCAPSULATE) { |
222 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_INITIALIZED); |
223 | 0 | return -1; |
224 | 0 | } |
225 | | |
226 | 184 | if (ctx->op.encap.algctx == NULL) { |
227 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
228 | 0 | return -2; |
229 | 0 | } |
230 | | |
231 | 184 | if (out != NULL && secret == NULL) |
232 | 0 | return 0; |
233 | | |
234 | 184 | return ctx->op.encap.kem->encapsulate(ctx->op.encap.algctx, |
235 | 184 | out, outlen, secret, secretlen); |
236 | 184 | } |
237 | | |
238 | | int EVP_PKEY_decapsulate_init(EVP_PKEY_CTX *ctx, const OSSL_PARAM params[]) |
239 | 100 | { |
240 | 100 | return evp_kem_init(ctx, EVP_PKEY_OP_DECAPSULATE, params, NULL); |
241 | 100 | } |
242 | | |
243 | | int EVP_PKEY_auth_decapsulate_init(EVP_PKEY_CTX *ctx, EVP_PKEY *authpub, |
244 | | const OSSL_PARAM params[]) |
245 | 0 | { |
246 | 0 | if (authpub == NULL) |
247 | 0 | return 0; |
248 | 0 | return evp_kem_init(ctx, EVP_PKEY_OP_DECAPSULATE, params, authpub); |
249 | 0 | } |
250 | | |
251 | | int EVP_PKEY_decapsulate(EVP_PKEY_CTX *ctx, |
252 | | unsigned char *secret, size_t *secretlen, |
253 | | const unsigned char *in, size_t inlen) |
254 | 100 | { |
255 | 100 | if (ctx == NULL |
256 | 100 | || (in == NULL || inlen == 0) |
257 | 100 | || (secret == NULL && secretlen == NULL)) |
258 | 0 | return 0; |
259 | | |
260 | 100 | if (ctx->operation != EVP_PKEY_OP_DECAPSULATE) { |
261 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_INITIALIZED); |
262 | 0 | return -1; |
263 | 0 | } |
264 | | |
265 | 100 | if (ctx->op.encap.algctx == NULL) { |
266 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
267 | 0 | return -2; |
268 | 0 | } |
269 | 100 | return ctx->op.encap.kem->decapsulate(ctx->op.encap.algctx, |
270 | 100 | secret, secretlen, in, inlen); |
271 | 100 | } |
272 | | |
273 | | static EVP_KEM *evp_kem_new(OSSL_PROVIDER *prov) |
274 | 8 | { |
275 | 8 | EVP_KEM *kem = OPENSSL_zalloc(sizeof(EVP_KEM)); |
276 | | |
277 | 8 | if (kem == NULL) |
278 | 0 | return NULL; |
279 | | |
280 | 8 | if (!CRYPTO_NEW_REF(&kem->refcnt, 1)) { |
281 | 0 | OPENSSL_free(kem); |
282 | 0 | return NULL; |
283 | 0 | } |
284 | 8 | kem->prov = prov; |
285 | 8 | ossl_provider_up_ref(prov); |
286 | | |
287 | 8 | return kem; |
288 | 8 | } |
289 | | |
290 | | static void *evp_kem_from_algorithm(int name_id, const OSSL_ALGORITHM *algodef, |
291 | | OSSL_PROVIDER *prov) |
292 | 118 | { |
293 | 118 | const OSSL_DISPATCH *fns = algodef->implementation; |
294 | 118 | EVP_KEM *kem = NULL; |
295 | 118 | int ctxfncnt = 0, encfncnt = 0, decfncnt = 0; |
296 | 118 | int gparamfncnt = 0, sparamfncnt = 0; |
297 | | |
298 | 118 | if ((kem = evp_kem_new(prov)) == NULL) { |
299 | 0 | ERR_raise(ERR_LIB_EVP, ERR_R_EVP_LIB); |
300 | 0 | goto err; |
301 | 0 | } |
302 | | |
303 | 118 | kem->name_id = name_id; |
304 | 118 | if ((kem->type_name = ossl_algorithm_get1_first_name(algodef)) == NULL) |
305 | 0 | goto err; |
306 | 118 | kem->description = algodef->algorithm_description; |
307 | | |
308 | 1.17k | for (; fns->function_id != 0; fns++) { |
309 | 1.05k | switch (fns->function_id) { |
310 | 118 | case OSSL_FUNC_KEM_NEWCTX: |
311 | 118 | if (kem->newctx != NULL) |
312 | 0 | break; |
313 | 118 | kem->newctx = OSSL_FUNC_kem_newctx(fns); |
314 | 118 | ctxfncnt++; |
315 | 118 | break; |
316 | 118 | case OSSL_FUNC_KEM_ENCAPSULATE_INIT: |
317 | 118 | if (kem->encapsulate_init != NULL) |
318 | 0 | break; |
319 | 118 | kem->encapsulate_init = OSSL_FUNC_kem_encapsulate_init(fns); |
320 | 118 | encfncnt++; |
321 | 118 | break; |
322 | 36 | case OSSL_FUNC_KEM_AUTH_ENCAPSULATE_INIT: |
323 | 36 | if (kem->auth_encapsulate_init != NULL) |
324 | 0 | break; |
325 | 36 | kem->auth_encapsulate_init = OSSL_FUNC_kem_auth_encapsulate_init(fns); |
326 | 36 | encfncnt++; |
327 | 36 | break; |
328 | 118 | case OSSL_FUNC_KEM_ENCAPSULATE: |
329 | 118 | if (kem->encapsulate != NULL) |
330 | 0 | break; |
331 | 118 | kem->encapsulate = OSSL_FUNC_kem_encapsulate(fns); |
332 | 118 | encfncnt++; |
333 | 118 | break; |
334 | 118 | case OSSL_FUNC_KEM_DECAPSULATE_INIT: |
335 | 118 | if (kem->decapsulate_init != NULL) |
336 | 0 | break; |
337 | 118 | kem->decapsulate_init = OSSL_FUNC_kem_decapsulate_init(fns); |
338 | 118 | decfncnt++; |
339 | 118 | break; |
340 | 36 | case OSSL_FUNC_KEM_AUTH_DECAPSULATE_INIT: |
341 | 36 | if (kem->auth_decapsulate_init != NULL) |
342 | 0 | break; |
343 | 36 | kem->auth_decapsulate_init = OSSL_FUNC_kem_auth_decapsulate_init(fns); |
344 | 36 | decfncnt++; |
345 | 36 | break; |
346 | 118 | case OSSL_FUNC_KEM_DECAPSULATE: |
347 | 118 | if (kem->decapsulate != NULL) |
348 | 0 | break; |
349 | 118 | kem->decapsulate = OSSL_FUNC_kem_decapsulate(fns); |
350 | 118 | decfncnt++; |
351 | 118 | break; |
352 | 118 | case OSSL_FUNC_KEM_FREECTX: |
353 | 118 | if (kem->freectx != NULL) |
354 | 0 | break; |
355 | 118 | kem->freectx = OSSL_FUNC_kem_freectx(fns); |
356 | 118 | ctxfncnt++; |
357 | 118 | break; |
358 | 12 | case OSSL_FUNC_KEM_DUPCTX: |
359 | 12 | if (kem->dupctx != NULL) |
360 | 0 | break; |
361 | 12 | kem->dupctx = OSSL_FUNC_kem_dupctx(fns); |
362 | 12 | break; |
363 | 12 | case OSSL_FUNC_KEM_GET_CTX_PARAMS: |
364 | 12 | if (kem->get_ctx_params != NULL) |
365 | 0 | break; |
366 | 12 | kem->get_ctx_params |
367 | 12 | = OSSL_FUNC_kem_get_ctx_params(fns); |
368 | 12 | gparamfncnt++; |
369 | 12 | break; |
370 | 12 | case OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS: |
371 | 12 | if (kem->gettable_ctx_params != NULL) |
372 | 0 | break; |
373 | 12 | kem->gettable_ctx_params |
374 | 12 | = OSSL_FUNC_kem_gettable_ctx_params(fns); |
375 | 12 | gparamfncnt++; |
376 | 12 | break; |
377 | 118 | case OSSL_FUNC_KEM_SET_CTX_PARAMS: |
378 | 118 | if (kem->set_ctx_params != NULL) |
379 | 0 | break; |
380 | 118 | kem->set_ctx_params |
381 | 118 | = OSSL_FUNC_kem_set_ctx_params(fns); |
382 | 118 | sparamfncnt++; |
383 | 118 | break; |
384 | 118 | case OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS: |
385 | 118 | if (kem->settable_ctx_params != NULL) |
386 | 0 | break; |
387 | 118 | kem->settable_ctx_params |
388 | 118 | = OSSL_FUNC_kem_settable_ctx_params(fns); |
389 | 118 | sparamfncnt++; |
390 | 118 | break; |
391 | 1.05k | } |
392 | 1.05k | } |
393 | 118 | if (ctxfncnt != 2 |
394 | 118 | || (encfncnt != 0 && encfncnt != 2 && encfncnt != 3) |
395 | 118 | || (decfncnt != 0 && decfncnt != 2 && decfncnt != 3) |
396 | 118 | || (encfncnt != decfncnt) |
397 | 118 | || (gparamfncnt != 0 && gparamfncnt != 2) |
398 | 118 | || (sparamfncnt != 0 && sparamfncnt != 2)) { |
399 | | /* |
400 | | * In order to be a consistent set of functions we must have at least |
401 | | * a set of context functions (newctx and freectx) as well as a pair |
402 | | * (or triplet) of "kem" functions: |
403 | | * (encapsulate_init, (and/or auth_encapsulate_init), encapsulate) or |
404 | | * (decapsulate_init, (and/or auth_decapsulate_init), decapsulate). |
405 | | * set_ctx_params and settable_ctx_params are optional, but if one of |
406 | | * them is present then the other one must also be present. The same |
407 | | * applies to get_ctx_params and gettable_ctx_params. |
408 | | * The dupctx function is optional. |
409 | | */ |
410 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_PROVIDER_FUNCTIONS); |
411 | 0 | goto err; |
412 | 0 | } |
413 | | |
414 | 118 | return kem; |
415 | 0 | err: |
416 | 0 | EVP_KEM_free(kem); |
417 | 0 | return NULL; |
418 | 118 | } |
419 | | |
420 | | void EVP_KEM_free(EVP_KEM *kem) |
421 | 658 | { |
422 | 658 | int i; |
423 | | |
424 | 658 | if (kem == NULL) |
425 | 256 | return; |
426 | | |
427 | 402 | CRYPTO_DOWN_REF(&kem->refcnt, &i); |
428 | 402 | if (i > 0) |
429 | 380 | return; |
430 | 22 | OPENSSL_free(kem->type_name); |
431 | 22 | ossl_provider_free(kem->prov); |
432 | 22 | CRYPTO_FREE_REF(&kem->refcnt); |
433 | 22 | OPENSSL_free(kem); |
434 | 22 | } |
435 | | |
436 | | int EVP_KEM_up_ref(EVP_KEM *kem) |
437 | 459 | { |
438 | 459 | int ref = 0; |
439 | | |
440 | 459 | CRYPTO_UP_REF(&kem->refcnt, &ref); |
441 | 459 | return 1; |
442 | 459 | } |
443 | | |
444 | | OSSL_PROVIDER *EVP_KEM_get0_provider(const EVP_KEM *kem) |
445 | 348 | { |
446 | 348 | return kem->prov; |
447 | 348 | } |
448 | | |
449 | | EVP_KEM *EVP_KEM_fetch(OSSL_LIB_CTX *ctx, const char *algorithm, |
450 | | const char *properties) |
451 | 256 | { |
452 | 256 | return evp_generic_fetch(ctx, OSSL_OP_KEM, algorithm, properties, |
453 | 256 | evp_kem_from_algorithm, |
454 | 256 | (int (*)(void *))EVP_KEM_up_ref, |
455 | 256 | (void (*)(void *))EVP_KEM_free); |
456 | 256 | } |
457 | | |
458 | | EVP_KEM *evp_kem_fetch_from_prov(OSSL_PROVIDER *prov, const char *algorithm, |
459 | | const char *properties) |
460 | 0 | { |
461 | 0 | return evp_generic_fetch_from_prov(prov, OSSL_OP_KEM, algorithm, properties, |
462 | 0 | evp_kem_from_algorithm, |
463 | 0 | (int (*)(void *))EVP_KEM_up_ref, |
464 | 0 | (void (*)(void *))EVP_KEM_free); |
465 | 0 | } |
466 | | |
467 | | int EVP_KEM_is_a(const EVP_KEM *kem, const char *name) |
468 | 0 | { |
469 | 0 | return kem != NULL && evp_is_a(kem->prov, kem->name_id, NULL, name); |
470 | 0 | } |
471 | | |
472 | | int evp_kem_get_number(const EVP_KEM *kem) |
473 | 0 | { |
474 | 0 | return kem->name_id; |
475 | 0 | } |
476 | | |
477 | | const char *EVP_KEM_get0_name(const EVP_KEM *kem) |
478 | 0 | { |
479 | 0 | return kem->type_name; |
480 | 0 | } |
481 | | |
482 | | const char *EVP_KEM_get0_description(const EVP_KEM *kem) |
483 | 0 | { |
484 | 0 | return kem->description; |
485 | 0 | } |
486 | | |
487 | | void EVP_KEM_do_all_provided(OSSL_LIB_CTX *libctx, |
488 | | void (*fn)(EVP_KEM *kem, void *arg), |
489 | | void *arg) |
490 | 8 | { |
491 | 8 | evp_generic_do_all(libctx, OSSL_OP_KEM, (void (*)(void *, void *))fn, arg, |
492 | 8 | evp_kem_from_algorithm, |
493 | 8 | (int (*)(void *))EVP_KEM_up_ref, |
494 | 8 | (void (*)(void *))EVP_KEM_free); |
495 | 8 | } |
496 | | |
497 | | int EVP_KEM_names_do_all(const EVP_KEM *kem, |
498 | | void (*fn)(const char *name, void *data), |
499 | | void *data) |
500 | 0 | { |
501 | 0 | if (kem->prov != NULL) |
502 | 0 | return evp_names_do_all(kem->prov, kem->name_id, fn, data); |
503 | | |
504 | 0 | return 1; |
505 | 0 | } |
506 | | |
507 | | const OSSL_PARAM *EVP_KEM_gettable_ctx_params(const EVP_KEM *kem) |
508 | 0 | { |
509 | 0 | void *provctx; |
510 | |
|
511 | 0 | if (kem == NULL || kem->gettable_ctx_params == NULL) |
512 | 0 | return NULL; |
513 | | |
514 | 0 | provctx = ossl_provider_ctx(EVP_KEM_get0_provider(kem)); |
515 | 0 | return kem->gettable_ctx_params(NULL, provctx); |
516 | 0 | } |
517 | | |
518 | | const OSSL_PARAM *EVP_KEM_settable_ctx_params(const EVP_KEM *kem) |
519 | 52 | { |
520 | 52 | void *provctx; |
521 | | |
522 | 52 | if (kem == NULL || kem->settable_ctx_params == NULL) |
523 | 0 | return NULL; |
524 | | |
525 | 52 | provctx = ossl_provider_ctx(EVP_KEM_get0_provider(kem)); |
526 | | return kem->settable_ctx_params(NULL, provctx); |
527 | 52 | } |