/src/openssl33/crypto/stack/stack.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include "internal/cryptlib.h" |
12 | | #include "internal/numbers.h" |
13 | | #include "internal/safe_math.h" |
14 | | #include <openssl/stack.h> |
15 | | #include <errno.h> |
16 | | #include <openssl/e_os2.h> /* For ossl_inline */ |
17 | | |
18 | | OSSL_SAFE_MATH_SIGNED(int, int) |
19 | | |
20 | | /* |
21 | | * The initial number of nodes in the array. |
22 | | */ |
23 | | static const int min_nodes = 4; |
24 | | static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX |
25 | | ? (int)(SIZE_MAX / sizeof(void *)) |
26 | | : INT_MAX; |
27 | | |
28 | | struct stack_st { |
29 | | int num; |
30 | | const void **data; |
31 | | int sorted; |
32 | | int num_alloc; |
33 | | OPENSSL_sk_compfunc comp; |
34 | | }; |
35 | | |
36 | | OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, |
37 | | OPENSSL_sk_compfunc c) |
38 | 255k | { |
39 | 255k | OPENSSL_sk_compfunc old = sk->comp; |
40 | | |
41 | 255k | if (sk->comp != c) |
42 | 255k | sk->sorted = 0; |
43 | 255k | sk->comp = c; |
44 | | |
45 | 255k | return old; |
46 | 255k | } |
47 | | |
48 | | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) |
49 | 40.6M | { |
50 | 40.6M | OPENSSL_STACK *ret; |
51 | | |
52 | 40.6M | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
53 | 0 | goto err; |
54 | | |
55 | 40.6M | if (sk == NULL) { |
56 | 196 | ret->num = 0; |
57 | 196 | ret->sorted = 0; |
58 | 196 | ret->comp = NULL; |
59 | 40.6M | } else { |
60 | | /* direct structure assignment */ |
61 | 40.6M | *ret = *sk; |
62 | 40.6M | } |
63 | | |
64 | 40.6M | if (sk == NULL || sk->num == 0) { |
65 | | /* postpone |ret->data| allocation */ |
66 | 211 | ret->data = NULL; |
67 | 211 | ret->num_alloc = 0; |
68 | 211 | return ret; |
69 | 211 | } |
70 | | |
71 | | /* duplicate |sk->data| content */ |
72 | 40.6M | ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc); |
73 | 40.6M | if (ret->data == NULL) |
74 | 0 | goto err; |
75 | 40.6M | memcpy(ret->data, sk->data, sizeof(void *) * sk->num); |
76 | 40.6M | return ret; |
77 | | |
78 | 0 | err: |
79 | 0 | OPENSSL_sk_free(ret); |
80 | 0 | return NULL; |
81 | 40.6M | } |
82 | | |
83 | | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, |
84 | | OPENSSL_sk_copyfunc copy_func, |
85 | | OPENSSL_sk_freefunc free_func) |
86 | 1.53M | { |
87 | 1.53M | OPENSSL_STACK *ret; |
88 | 1.53M | int i; |
89 | | |
90 | 1.53M | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
91 | 0 | goto err; |
92 | | |
93 | 1.53M | if (sk == NULL) { |
94 | 188 | ret->num = 0; |
95 | 188 | ret->sorted = 0; |
96 | 188 | ret->comp = NULL; |
97 | 1.53M | } else { |
98 | | /* direct structure assignment */ |
99 | 1.53M | *ret = *sk; |
100 | 1.53M | } |
101 | | |
102 | 1.53M | if (sk == NULL || sk->num == 0) { |
103 | | /* postpone |ret| data allocation */ |
104 | 188 | ret->data = NULL; |
105 | 188 | ret->num_alloc = 0; |
106 | 188 | return ret; |
107 | 188 | } |
108 | | |
109 | 1.53M | ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes; |
110 | 1.53M | ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc); |
111 | 1.53M | if (ret->data == NULL) |
112 | 0 | goto err; |
113 | | |
114 | 16.6M | for (i = 0; i < ret->num; ++i) { |
115 | 15.0M | if (sk->data[i] == NULL) |
116 | 0 | continue; |
117 | 15.0M | if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { |
118 | 0 | while (--i >= 0) |
119 | 0 | if (ret->data[i] != NULL) |
120 | 0 | free_func((void *)ret->data[i]); |
121 | 0 | goto err; |
122 | 0 | } |
123 | 15.0M | } |
124 | 1.53M | return ret; |
125 | | |
126 | 0 | err: |
127 | 0 | OPENSSL_sk_free(ret); |
128 | 0 | return NULL; |
129 | 1.53M | } |
130 | | |
131 | | OPENSSL_STACK *OPENSSL_sk_new_null(void) |
132 | 164M | { |
133 | 164M | return OPENSSL_sk_new_reserve(NULL, 0); |
134 | 164M | } |
135 | | |
136 | | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c) |
137 | 23.1M | { |
138 | 23.1M | return OPENSSL_sk_new_reserve(c, 0); |
139 | 23.1M | } |
140 | | |
141 | | /* |
142 | | * Calculate the array growth based on the target size. |
143 | | * |
144 | | * The growth factor is a rational number and is defined by a numerator |
145 | | * and a denominator. According to Andrew Koenig in his paper "Why Are |
146 | | * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less |
147 | | * than the golden ratio (1.618...). |
148 | | * |
149 | | * Considering only the Fibonacci ratios less than the golden ratio, the |
150 | | * number of steps from the minimum allocation to integer overflow is: |
151 | | * factor decimal growths |
152 | | * 3/2 1.5 51 |
153 | | * 8/5 1.6 45 |
154 | | * 21/13 1.615... 44 |
155 | | * |
156 | | * All larger factors have the same number of growths. |
157 | | * |
158 | | * 3/2 and 8/5 have nice power of two shifts, so seem like a good choice. |
159 | | */ |
160 | | static ossl_inline int compute_growth(int target, int current) |
161 | 5.04M | { |
162 | 5.04M | int err = 0; |
163 | | |
164 | 10.0M | while (current < target) { |
165 | 5.04M | if (current >= max_nodes) |
166 | 0 | return 0; |
167 | | |
168 | 5.04M | current = safe_muldiv_int(current, 8, 5, &err); |
169 | 5.04M | if (err != 0) |
170 | 0 | return 0; |
171 | 5.04M | if (current >= max_nodes) |
172 | 0 | current = max_nodes; |
173 | 5.04M | } |
174 | 5.04M | return current; |
175 | 5.04M | } |
176 | | |
177 | | /* internal STACK storage allocation */ |
178 | | static int sk_reserve(OPENSSL_STACK *st, int n, int exact) |
179 | 407M | { |
180 | 407M | const void **tmpdata; |
181 | 407M | int num_alloc; |
182 | | |
183 | | /* Check to see the reservation isn't exceeding the hard limit */ |
184 | 407M | if (n > max_nodes - st->num) { |
185 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
186 | 0 | return 0; |
187 | 0 | } |
188 | | |
189 | | /* Figure out the new size */ |
190 | 407M | num_alloc = st->num + n; |
191 | 407M | if (num_alloc < min_nodes) |
192 | 38.5M | num_alloc = min_nodes; |
193 | | |
194 | | /* If |st->data| allocation was postponed */ |
195 | 407M | if (st->data == NULL) { |
196 | | /* |
197 | | * At this point, |st->num_alloc| and |st->num| are 0; |
198 | | * so |num_alloc| value is |n| or |min_nodes| if greater than |n|. |
199 | | */ |
200 | 27.0M | if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) |
201 | 0 | return 0; |
202 | 27.0M | st->num_alloc = num_alloc; |
203 | 27.0M | return 1; |
204 | 27.0M | } |
205 | | |
206 | 380M | if (!exact) { |
207 | 380M | if (num_alloc <= st->num_alloc) |
208 | 370M | return 1; |
209 | 9.14M | num_alloc = compute_growth(num_alloc, st->num_alloc); |
210 | 9.14M | if (num_alloc == 0) { |
211 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
212 | 0 | return 0; |
213 | 0 | } |
214 | 9.14M | } else if (num_alloc == st->num_alloc) { |
215 | 0 | return 1; |
216 | 0 | } |
217 | | |
218 | 9.14M | tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc); |
219 | 9.14M | if (tmpdata == NULL) |
220 | 0 | return 0; |
221 | | |
222 | 9.14M | st->data = tmpdata; |
223 | 9.14M | st->num_alloc = num_alloc; |
224 | 9.14M | return 1; |
225 | 9.14M | } |
226 | | |
227 | | OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n) |
228 | 188M | { |
229 | 188M | OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); |
230 | | |
231 | 188M | if (st == NULL) |
232 | 0 | return NULL; |
233 | | |
234 | 188M | st->comp = c; |
235 | | |
236 | 188M | if (n <= 0) |
237 | 187M | return st; |
238 | | |
239 | 1.09M | if (!sk_reserve(st, n, 1)) { |
240 | 0 | OPENSSL_sk_free(st); |
241 | 0 | return NULL; |
242 | 0 | } |
243 | | |
244 | 1.09M | return st; |
245 | 1.09M | } |
246 | | |
247 | | int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n) |
248 | 0 | { |
249 | 0 | if (st == NULL) { |
250 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
251 | 0 | return 0; |
252 | 0 | } |
253 | | |
254 | 0 | if (n < 0) |
255 | 0 | return 1; |
256 | 0 | return sk_reserve(st, n, 1); |
257 | 0 | } |
258 | | |
259 | | int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc) |
260 | 320M | { |
261 | 320M | if (st == NULL) { |
262 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
263 | 0 | return 0; |
264 | 0 | } |
265 | 320M | if (st->num == max_nodes) { |
266 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
267 | 0 | return 0; |
268 | 0 | } |
269 | | |
270 | 320M | if (!sk_reserve(st, 1, 0)) |
271 | 0 | return 0; |
272 | | |
273 | 320M | if ((loc >= st->num) || (loc < 0)) { |
274 | 320M | st->data[st->num] = data; |
275 | 320M | } else { |
276 | 5.62k | memmove(&st->data[loc + 1], &st->data[loc], |
277 | 5.62k | sizeof(st->data[0]) * (st->num - loc)); |
278 | 5.62k | st->data[loc] = data; |
279 | 5.62k | } |
280 | 320M | st->num++; |
281 | 320M | st->sorted = 0; |
282 | 320M | return st->num; |
283 | 320M | } |
284 | | |
285 | | static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc) |
286 | 2.29M | { |
287 | 2.29M | const void *ret = st->data[loc]; |
288 | | |
289 | 2.29M | if (loc != st->num - 1) |
290 | 236k | memmove(&st->data[loc], &st->data[loc + 1], |
291 | 236k | sizeof(st->data[0]) * (st->num - loc - 1)); |
292 | 2.29M | st->num--; |
293 | | |
294 | 2.29M | return (void *)ret; |
295 | 2.29M | } |
296 | | |
297 | | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p) |
298 | 148k | { |
299 | 148k | int i; |
300 | | |
301 | 148k | if (st == NULL) |
302 | 0 | return NULL; |
303 | | |
304 | 452k | for (i = 0; i < st->num; i++) |
305 | 452k | if (st->data[i] == p) |
306 | 148k | return internal_delete(st, i); |
307 | 0 | return NULL; |
308 | 148k | } |
309 | | |
310 | | void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc) |
311 | 341k | { |
312 | 341k | if (st == NULL || loc < 0 || loc >= st->num) |
313 | 0 | return NULL; |
314 | | |
315 | 341k | return internal_delete(st, loc); |
316 | 341k | } |
317 | | |
318 | | static int internal_find(OPENSSL_STACK *st, const void *data, |
319 | | int ret_val_options, int *pnum_matched) |
320 | 248k | { |
321 | 248k | const void *r; |
322 | 248k | int i, count = 0; |
323 | 248k | int *pnum = pnum_matched; |
324 | | |
325 | 248k | if (st == NULL || st->num == 0) |
326 | 97.3k | return -1; |
327 | | |
328 | 150k | if (pnum == NULL) |
329 | 143k | pnum = &count; |
330 | | |
331 | 150k | if (st->comp == NULL) { |
332 | 3.10M | for (i = 0; i < st->num; i++) |
333 | 3.10M | if (st->data[i] == data) { |
334 | 29.7k | *pnum = 1; |
335 | 29.7k | return i; |
336 | 29.7k | } |
337 | 2.39k | *pnum = 0; |
338 | 2.39k | return -1; |
339 | 32.1k | } |
340 | | |
341 | 118k | if (data == NULL) |
342 | 0 | return -1; |
343 | | |
344 | 118k | if (!st->sorted) { |
345 | 0 | int res = -1; |
346 | |
|
347 | 0 | for (i = 0; i < st->num; i++) |
348 | 0 | if (st->comp(&data, st->data + i) == 0) { |
349 | 0 | if (res == -1) |
350 | 0 | res = i; |
351 | 0 | ++*pnum; |
352 | | /* Check if only one result is wanted and exit if so */ |
353 | 0 | if (pnum_matched == NULL) |
354 | 0 | return i; |
355 | 0 | } |
356 | 0 | if (res == -1) |
357 | 0 | *pnum = 0; |
358 | 0 | return res; |
359 | 0 | } |
360 | | |
361 | 118k | if (pnum_matched != NULL) |
362 | 7.33k | ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH; |
363 | 118k | r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp, |
364 | 118k | ret_val_options); |
365 | | |
366 | 118k | if (pnum_matched != NULL) { |
367 | 7.33k | *pnum = 0; |
368 | 7.33k | if (r != NULL) { |
369 | 4.56k | const void **p = (const void **)r; |
370 | | |
371 | 9.12k | while (p < st->data + st->num) { |
372 | 4.56k | if (st->comp(&data, p) != 0) |
373 | 0 | break; |
374 | 4.56k | ++*pnum; |
375 | 4.56k | ++p; |
376 | 4.56k | } |
377 | 4.56k | } |
378 | 7.33k | } |
379 | | |
380 | 118k | return r == NULL ? -1 : (int)((const void **)r - st->data); |
381 | 118k | } |
382 | | |
383 | | int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data) |
384 | 171k | { |
385 | 171k | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL); |
386 | 171k | } |
387 | | |
388 | | int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data) |
389 | 0 | { |
390 | 0 | return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL); |
391 | 0 | } |
392 | | |
393 | | int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum) |
394 | 101k | { |
395 | 101k | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum); |
396 | 101k | } |
397 | | |
398 | | int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data) |
399 | 405M | { |
400 | 405M | if (st == NULL) |
401 | 0 | return 0; |
402 | 405M | return OPENSSL_sk_insert(st, data, st->num); |
403 | 405M | } |
404 | | |
405 | | int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data) |
406 | 0 | { |
407 | 0 | return OPENSSL_sk_insert(st, data, 0); |
408 | 0 | } |
409 | | |
410 | | void *OPENSSL_sk_shift(OPENSSL_STACK *st) |
411 | 0 | { |
412 | 0 | if (st == NULL || st->num == 0) |
413 | 0 | return NULL; |
414 | 0 | return internal_delete(st, 0); |
415 | 0 | } |
416 | | |
417 | | void *OPENSSL_sk_pop(OPENSSL_STACK *st) |
418 | 2.38M | { |
419 | 2.38M | if (st == NULL || st->num == 0) |
420 | 10.0k | return NULL; |
421 | 2.37M | return internal_delete(st, st->num - 1); |
422 | 2.38M | } |
423 | | |
424 | | void OPENSSL_sk_zero(OPENSSL_STACK *st) |
425 | 0 | { |
426 | 0 | if (st == NULL || st->num == 0) |
427 | 0 | return; |
428 | 0 | memset(st->data, 0, sizeof(*st->data) * st->num); |
429 | 0 | st->num = 0; |
430 | 0 | } |
431 | | |
432 | | void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func) |
433 | 49.0M | { |
434 | 49.0M | int i; |
435 | | |
436 | 49.0M | if (st == NULL) |
437 | 11.0M | return; |
438 | 212M | for (i = 0; i < st->num; i++) |
439 | 174M | if (st->data[i] != NULL) |
440 | 174M | func((char *)st->data[i]); |
441 | 38.0M | OPENSSL_sk_free(st); |
442 | 38.0M | } |
443 | | |
444 | | void OPENSSL_sk_free(OPENSSL_STACK *st) |
445 | 283M | { |
446 | 283M | if (st == NULL) |
447 | 53.0M | return; |
448 | 230M | OPENSSL_free(st->data); |
449 | 230M | OPENSSL_free(st); |
450 | 230M | } |
451 | | |
452 | | int OPENSSL_sk_num(const OPENSSL_STACK *st) |
453 | 1.25G | { |
454 | 1.25G | return st == NULL ? -1 : st->num; |
455 | 1.25G | } |
456 | | |
457 | | void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i) |
458 | 1.40G | { |
459 | 1.40G | if (st == NULL || i < 0 || i >= st->num) |
460 | 4.88k | return NULL; |
461 | 1.40G | return (void *)st->data[i]; |
462 | 1.40G | } |
463 | | |
464 | | void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data) |
465 | 12.9M | { |
466 | 12.9M | if (st == NULL) { |
467 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
468 | 0 | return NULL; |
469 | 0 | } |
470 | 12.9M | if (i < 0 || i >= st->num) { |
471 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT, |
472 | 0 | "i=%d", i); |
473 | 0 | return NULL; |
474 | 0 | } |
475 | 12.9M | st->data[i] = data; |
476 | 12.9M | st->sorted = 0; |
477 | 12.9M | return (void *)st->data[i]; |
478 | 12.9M | } |
479 | | |
480 | | void OPENSSL_sk_sort(OPENSSL_STACK *st) |
481 | 23.3M | { |
482 | 23.3M | if (st != NULL && !st->sorted && st->comp != NULL) { |
483 | 18.9M | if (st->num > 1) |
484 | 298k | qsort(st->data, st->num, sizeof(void *), st->comp); |
485 | 18.9M | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
486 | 18.9M | } |
487 | 23.3M | } |
488 | | |
489 | | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st) |
490 | 81.1k | { |
491 | 81.1k | return st == NULL ? 1 : st->sorted; |
492 | 81.1k | } |