/src/openssl33/providers/implementations/kdfs/krb5kdf.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2018-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * DES low level APIs are deprecated for public use, but still ok for internal |
12 | | * use. We access the DES_set_odd_parity(3) function here. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include <stdlib.h> |
17 | | #include <stdarg.h> |
18 | | #include <string.h> |
19 | | |
20 | | #include <openssl/core_names.h> |
21 | | #include <openssl/des.h> |
22 | | #include <openssl/evp.h> |
23 | | #include <openssl/kdf.h> |
24 | | #include <openssl/proverr.h> |
25 | | |
26 | | #include "internal/cryptlib.h" |
27 | | #include "crypto/evp.h" |
28 | | #include "internal/numbers.h" |
29 | | #include "prov/implementations.h" |
30 | | #include "prov/provider_ctx.h" |
31 | | #include "prov/provider_util.h" |
32 | | #include "prov/providercommon.h" |
33 | | |
34 | | /* KRB5 KDF defined in RFC 3961, Section 5.1 */ |
35 | | |
36 | | static OSSL_FUNC_kdf_newctx_fn krb5kdf_new; |
37 | | static OSSL_FUNC_kdf_dupctx_fn krb5kdf_dup; |
38 | | static OSSL_FUNC_kdf_freectx_fn krb5kdf_free; |
39 | | static OSSL_FUNC_kdf_reset_fn krb5kdf_reset; |
40 | | static OSSL_FUNC_kdf_derive_fn krb5kdf_derive; |
41 | | static OSSL_FUNC_kdf_settable_ctx_params_fn krb5kdf_settable_ctx_params; |
42 | | static OSSL_FUNC_kdf_set_ctx_params_fn krb5kdf_set_ctx_params; |
43 | | static OSSL_FUNC_kdf_gettable_ctx_params_fn krb5kdf_gettable_ctx_params; |
44 | | static OSSL_FUNC_kdf_get_ctx_params_fn krb5kdf_get_ctx_params; |
45 | | |
46 | | static int KRB5KDF(const EVP_CIPHER *cipher, ENGINE *engine, |
47 | | const unsigned char *key, size_t key_len, |
48 | | const unsigned char *constant, size_t constant_len, |
49 | | unsigned char *okey, size_t okey_len); |
50 | | |
51 | | typedef struct { |
52 | | void *provctx; |
53 | | PROV_CIPHER cipher; |
54 | | unsigned char *key; |
55 | | size_t key_len; |
56 | | unsigned char *constant; |
57 | | size_t constant_len; |
58 | | } KRB5KDF_CTX; |
59 | | |
60 | | static void *krb5kdf_new(void *provctx) |
61 | 285 | { |
62 | 285 | KRB5KDF_CTX *ctx; |
63 | | |
64 | 285 | if (!ossl_prov_is_running()) |
65 | 0 | return NULL; |
66 | | |
67 | 285 | if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) |
68 | 0 | return NULL; |
69 | 285 | ctx->provctx = provctx; |
70 | 285 | return ctx; |
71 | 285 | } |
72 | | |
73 | | static void krb5kdf_free(void *vctx) |
74 | 285 | { |
75 | 285 | KRB5KDF_CTX *ctx = (KRB5KDF_CTX *)vctx; |
76 | | |
77 | 285 | if (ctx != NULL) { |
78 | 285 | krb5kdf_reset(ctx); |
79 | 285 | OPENSSL_free(ctx); |
80 | 285 | } |
81 | 285 | } |
82 | | |
83 | | static void krb5kdf_reset(void *vctx) |
84 | 285 | { |
85 | 285 | KRB5KDF_CTX *ctx = (KRB5KDF_CTX *)vctx; |
86 | 285 | void *provctx = ctx->provctx; |
87 | | |
88 | 285 | ossl_prov_cipher_reset(&ctx->cipher); |
89 | 285 | OPENSSL_clear_free(ctx->key, ctx->key_len); |
90 | 285 | OPENSSL_clear_free(ctx->constant, ctx->constant_len); |
91 | 285 | memset(ctx, 0, sizeof(*ctx)); |
92 | 285 | ctx->provctx = provctx; |
93 | 285 | } |
94 | | |
95 | | static int krb5kdf_set_membuf(unsigned char **dst, size_t *dst_len, |
96 | | const OSSL_PARAM *p) |
97 | 534 | { |
98 | 534 | OPENSSL_clear_free(*dst, *dst_len); |
99 | 534 | *dst = NULL; |
100 | 534 | *dst_len = 0; |
101 | 534 | return OSSL_PARAM_get_octet_string(p, (void **)dst, 0, dst_len); |
102 | 534 | } |
103 | | |
104 | | static void *krb5kdf_dup(void *vctx) |
105 | 0 | { |
106 | 0 | const KRB5KDF_CTX *src = (const KRB5KDF_CTX *)vctx; |
107 | 0 | KRB5KDF_CTX *dest; |
108 | |
|
109 | 0 | dest = krb5kdf_new(src->provctx); |
110 | 0 | if (dest != NULL) { |
111 | 0 | if (!ossl_prov_memdup(src->key, src->key_len, |
112 | 0 | &dest->key, &dest->key_len) |
113 | 0 | || !ossl_prov_memdup(src->constant, src->constant_len, |
114 | 0 | &dest->constant, &dest->constant_len) |
115 | 0 | || !ossl_prov_cipher_copy(&dest->cipher, &src->cipher)) |
116 | 0 | goto err; |
117 | 0 | } |
118 | 0 | return dest; |
119 | | |
120 | 0 | err: |
121 | 0 | krb5kdf_free(dest); |
122 | 0 | return NULL; |
123 | 0 | } |
124 | | |
125 | | static int krb5kdf_derive(void *vctx, unsigned char *key, size_t keylen, |
126 | | const OSSL_PARAM params[]) |
127 | 267 | { |
128 | 267 | KRB5KDF_CTX *ctx = (KRB5KDF_CTX *)vctx; |
129 | 267 | const EVP_CIPHER *cipher; |
130 | 267 | ENGINE *engine; |
131 | | |
132 | 267 | if (!ossl_prov_is_running() || !krb5kdf_set_ctx_params(ctx, params)) |
133 | 0 | return 0; |
134 | | |
135 | 267 | cipher = ossl_prov_cipher_cipher(&ctx->cipher); |
136 | 267 | if (cipher == NULL) { |
137 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CIPHER); |
138 | 0 | return 0; |
139 | 0 | } |
140 | 267 | if (ctx->key == NULL) { |
141 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); |
142 | 0 | return 0; |
143 | 0 | } |
144 | 267 | if (ctx->constant == NULL) { |
145 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CONSTANT); |
146 | 0 | return 0; |
147 | 0 | } |
148 | 267 | engine = ossl_prov_cipher_engine(&ctx->cipher); |
149 | 267 | return KRB5KDF(cipher, engine, ctx->key, ctx->key_len, |
150 | 267 | ctx->constant, ctx->constant_len, |
151 | 267 | key, keylen); |
152 | 267 | } |
153 | | |
154 | | static int krb5kdf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
155 | 190 | { |
156 | 190 | const OSSL_PARAM *p; |
157 | 190 | KRB5KDF_CTX *ctx = vctx; |
158 | 190 | OSSL_LIB_CTX *provctx = PROV_LIBCTX_OF(ctx->provctx); |
159 | | |
160 | 190 | if (params == NULL) |
161 | 92 | return 1; |
162 | | |
163 | 98 | if (!ossl_prov_cipher_load_from_params(&ctx->cipher, params, provctx)) |
164 | 6 | return 0; |
165 | | |
166 | 92 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_KEY)) != NULL) |
167 | 92 | if (!krb5kdf_set_membuf(&ctx->key, &ctx->key_len, p)) |
168 | 0 | return 0; |
169 | | |
170 | 92 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_CONSTANT)) |
171 | 92 | != NULL) |
172 | 92 | if (!krb5kdf_set_membuf(&ctx->constant, &ctx->constant_len, p)) |
173 | 0 | return 0; |
174 | | |
175 | 92 | return 1; |
176 | 92 | } |
177 | | |
178 | | static const OSSL_PARAM *krb5kdf_settable_ctx_params(ossl_unused void *ctx, |
179 | | ossl_unused void *provctx) |
180 | 285 | { |
181 | 285 | static const OSSL_PARAM known_settable_ctx_params[] = { |
182 | 285 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), |
183 | 285 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_CIPHER, NULL, 0), |
184 | 285 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_KEY, NULL, 0), |
185 | 285 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_CONSTANT, NULL, 0), |
186 | 285 | OSSL_PARAM_END |
187 | 285 | }; |
188 | 285 | return known_settable_ctx_params; |
189 | 285 | } |
190 | | |
191 | | static int krb5kdf_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
192 | 0 | { |
193 | 0 | KRB5KDF_CTX *ctx = (KRB5KDF_CTX *)vctx; |
194 | 0 | const EVP_CIPHER *cipher; |
195 | 0 | size_t len; |
196 | 0 | OSSL_PARAM *p; |
197 | |
|
198 | 0 | cipher = ossl_prov_cipher_cipher(&ctx->cipher); |
199 | 0 | if (cipher) |
200 | 0 | len = EVP_CIPHER_get_key_length(cipher); |
201 | 0 | else |
202 | 0 | len = EVP_MAX_KEY_LENGTH; |
203 | |
|
204 | 0 | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
205 | 0 | return OSSL_PARAM_set_size_t(p, len); |
206 | 0 | return -2; |
207 | 0 | } |
208 | | |
209 | | static const OSSL_PARAM *krb5kdf_gettable_ctx_params(ossl_unused void *ctx, |
210 | | ossl_unused void *provctx) |
211 | 0 | { |
212 | 0 | static const OSSL_PARAM known_gettable_ctx_params[] = { |
213 | 0 | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
214 | 0 | OSSL_PARAM_END |
215 | 0 | }; |
216 | 0 | return known_gettable_ctx_params; |
217 | 0 | } |
218 | | |
219 | | const OSSL_DISPATCH ossl_kdf_krb5kdf_functions[] = { |
220 | | { OSSL_FUNC_KDF_NEWCTX, (void (*)(void))krb5kdf_new }, |
221 | | { OSSL_FUNC_KDF_DUPCTX, (void (*)(void))krb5kdf_dup }, |
222 | | { OSSL_FUNC_KDF_FREECTX, (void (*)(void))krb5kdf_free }, |
223 | | { OSSL_FUNC_KDF_RESET, (void (*)(void))krb5kdf_reset }, |
224 | | { OSSL_FUNC_KDF_DERIVE, (void (*)(void))krb5kdf_derive }, |
225 | | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
226 | | (void (*)(void))krb5kdf_settable_ctx_params }, |
227 | | { OSSL_FUNC_KDF_SET_CTX_PARAMS, |
228 | | (void (*)(void))krb5kdf_set_ctx_params }, |
229 | | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
230 | | (void (*)(void))krb5kdf_gettable_ctx_params }, |
231 | | { OSSL_FUNC_KDF_GET_CTX_PARAMS, |
232 | | (void (*)(void))krb5kdf_get_ctx_params }, |
233 | | OSSL_DISPATCH_END |
234 | | }; |
235 | | |
236 | | #ifndef OPENSSL_NO_DES |
237 | | /* |
238 | | * DES3 is a special case, it requires a random-to-key function and its |
239 | | * input truncated to 21 bytes of the 24 produced by the cipher. |
240 | | * See RFC3961 6.3.1 |
241 | | */ |
242 | | static int fixup_des3_key(unsigned char *key) |
243 | 0 | { |
244 | 0 | unsigned char *cblock; |
245 | 0 | int i, j; |
246 | |
|
247 | 0 | for (i = 2; i >= 0; i--) { |
248 | 0 | cblock = &key[i * 8]; |
249 | 0 | memmove(cblock, &key[i * 7], 7); |
250 | 0 | cblock[7] = 0; |
251 | 0 | for (j = 0; j < 7; j++) |
252 | 0 | cblock[7] |= (cblock[j] & 1) << (j + 1); |
253 | 0 | DES_set_odd_parity((DES_cblock *)cblock); |
254 | 0 | } |
255 | | |
256 | | /* fail if keys are such that triple des degrades to single des */ |
257 | 0 | if (CRYPTO_memcmp(&key[0], &key[8], 8) == 0 || CRYPTO_memcmp(&key[8], &key[16], 8) == 0) { |
258 | 0 | return 0; |
259 | 0 | } |
260 | | |
261 | 0 | return 1; |
262 | 0 | } |
263 | | #endif |
264 | | |
265 | | /* |
266 | | * N-fold(K) where blocksize is N, and constant_len is K |
267 | | * Note: Here |= denotes concatenation |
268 | | * |
269 | | * L = lcm(N,K) |
270 | | * R = L/K |
271 | | * |
272 | | * for r: 1 -> R |
273 | | * s |= constant rot 13*(r-1)) |
274 | | * |
275 | | * block = 0 |
276 | | * for k: 1 -> K |
277 | | * block += s[N(k-1)..(N-1)k] (one's complement addition) |
278 | | * |
279 | | * Optimizing for space we compute: |
280 | | * for each l in L-1 -> 0: |
281 | | * s[l] = (constant rot 13*(l/K))[l%k] |
282 | | * block[l % N] += s[l] (with carry) |
283 | | * finally add carry if any |
284 | | */ |
285 | | static void n_fold(unsigned char *block, unsigned int blocksize, |
286 | | const unsigned char *constant, size_t constant_len) |
287 | 91 | { |
288 | 91 | unsigned int tmp, gcd, remainder, lcm, carry; |
289 | 91 | int b, l; |
290 | | |
291 | 91 | if (constant_len == blocksize) { |
292 | 7 | memcpy(block, constant, constant_len); |
293 | 7 | return; |
294 | 7 | } |
295 | | |
296 | | /* Least Common Multiple of lengths: LCM(a,b)*/ |
297 | 84 | gcd = blocksize; |
298 | 84 | remainder = constant_len; |
299 | | /* Calculate Great Common Divisor first GCD(a,b) */ |
300 | 159 | while (remainder != 0) { |
301 | 75 | tmp = gcd % remainder; |
302 | 75 | gcd = remainder; |
303 | 75 | remainder = tmp; |
304 | 75 | } |
305 | | /* resulting a is the GCD, LCM(a,b) = |a*b|/GCD(a,b) */ |
306 | 84 | lcm = blocksize * constant_len / gcd; |
307 | | |
308 | | /* now spread out the bits */ |
309 | 84 | memset(block, 0, blocksize); |
310 | | |
311 | | /* last to first to be able to bring carry forward */ |
312 | 84 | carry = 0; |
313 | 2.82k | for (l = lcm - 1; l >= 0; l--) { |
314 | 2.73k | unsigned int rotbits, rshift, rbyte; |
315 | | |
316 | | /* destination byte in block is l % N */ |
317 | 2.73k | b = l % blocksize; |
318 | | /* Our virtual s buffer is R = L/K long (K = constant_len) */ |
319 | | /* So we rotate backwards from R-1 to 0 (none) rotations */ |
320 | 2.73k | rotbits = 13 * (l / constant_len); |
321 | | /* find the byte on s where rotbits falls onto */ |
322 | 2.73k | rbyte = l - (rotbits / 8); |
323 | | /* calculate how much shift on that byte */ |
324 | 2.73k | rshift = rotbits & 0x07; |
325 | | /* rbyte % constant_len gives us the unrotated byte in the |
326 | | * constant buffer, get also the previous byte then |
327 | | * appropriately shift them to get the rotated byte we need */ |
328 | 2.73k | tmp = (constant[(rbyte - 1) % constant_len] << (8 - rshift) |
329 | 2.73k | | constant[rbyte % constant_len] >> rshift) |
330 | 2.73k | & 0xff; |
331 | | /* add with carry to any value placed by previous passes */ |
332 | 2.73k | tmp += carry + block[b]; |
333 | 2.73k | block[b] = tmp & 0xff; |
334 | | /* save any carry that may be left */ |
335 | 2.73k | carry = tmp >> 8; |
336 | 2.73k | } |
337 | | |
338 | | /* if any carry is left at the end, add it through the number */ |
339 | 115 | for (b = blocksize - 1; b >= 0 && carry != 0; b--) { |
340 | 31 | carry += block[b]; |
341 | 31 | block[b] = carry & 0xff; |
342 | 31 | carry >>= 8; |
343 | 31 | } |
344 | 84 | } |
345 | | |
346 | | static int cipher_init(EVP_CIPHER_CTX *ctx, |
347 | | const EVP_CIPHER *cipher, ENGINE *engine, |
348 | | const unsigned char *key, size_t key_len) |
349 | 1.34k | { |
350 | 1.34k | int klen, ret; |
351 | | |
352 | 1.34k | ret = EVP_EncryptInit_ex(ctx, cipher, engine, NULL, NULL); |
353 | 1.34k | if (!ret) |
354 | 0 | goto out; |
355 | | /* set the key len for the odd variable key len cipher */ |
356 | 1.34k | klen = EVP_CIPHER_CTX_get_key_length(ctx); |
357 | 1.34k | if (key_len != (size_t)klen) { |
358 | 67 | ret = EVP_CIPHER_CTX_set_key_length(ctx, key_len); |
359 | 67 | if (ret <= 0) { |
360 | 67 | ret = 0; |
361 | 67 | goto out; |
362 | 67 | } |
363 | 67 | } |
364 | 1.27k | ret = EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL); |
365 | 1.27k | if (!ret) |
366 | 2 | goto out; |
367 | | /* we never want padding, either the length requested is a multiple of |
368 | | * the cipher block size or we are passed a cipher that can cope with |
369 | | * partial blocks via techniques like cipher text stealing */ |
370 | 1.27k | ret = EVP_CIPHER_CTX_set_padding(ctx, 0); |
371 | 1.27k | if (!ret) |
372 | 0 | goto out; |
373 | | |
374 | 1.34k | out: |
375 | 1.34k | return ret; |
376 | 1.27k | } |
377 | | |
378 | | static int KRB5KDF(const EVP_CIPHER *cipher, ENGINE *engine, |
379 | | const unsigned char *key, size_t key_len, |
380 | | const unsigned char *constant, size_t constant_len, |
381 | | unsigned char *okey, size_t okey_len) |
382 | 267 | { |
383 | 267 | EVP_CIPHER_CTX *ctx = NULL; |
384 | 267 | unsigned char block[EVP_MAX_BLOCK_LENGTH * 2]; |
385 | 267 | unsigned char *plainblock, *cipherblock; |
386 | 267 | size_t blocksize; |
387 | 267 | size_t cipherlen; |
388 | 267 | size_t osize; |
389 | 267 | #ifndef OPENSSL_NO_DES |
390 | 267 | int des3_no_fixup = 0; |
391 | 267 | #endif |
392 | 267 | int ret; |
393 | | |
394 | 267 | if (key_len != okey_len) { |
395 | 69 | #ifndef OPENSSL_NO_DES |
396 | | /* special case for 3des, where the caller may be requesting |
397 | | * the random raw key, instead of the fixed up key */ |
398 | 69 | if (EVP_CIPHER_get_nid(cipher) == NID_des_ede3_cbc && key_len == 24 && okey_len == 21) { |
399 | 0 | des3_no_fixup = 1; |
400 | 69 | } else { |
401 | 69 | #endif |
402 | 69 | ERR_raise(ERR_LIB_PROV, PROV_R_WRONG_OUTPUT_BUFFER_SIZE); |
403 | 69 | return 0; |
404 | 69 | #ifndef OPENSSL_NO_DES |
405 | 69 | } |
406 | 69 | #endif |
407 | 69 | } |
408 | | |
409 | 198 | ctx = EVP_CIPHER_CTX_new(); |
410 | 198 | if (ctx == NULL) |
411 | 0 | return 0; |
412 | | |
413 | 198 | ret = cipher_init(ctx, cipher, engine, key, key_len); |
414 | 198 | if (!ret) |
415 | 69 | goto out; |
416 | | |
417 | | /* Initialize input block */ |
418 | 129 | blocksize = EVP_CIPHER_CTX_get_block_size(ctx); |
419 | | |
420 | 129 | if (blocksize == 0) { |
421 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CIPHER); |
422 | 0 | ret = 0; |
423 | 0 | goto out; |
424 | 0 | } |
425 | | |
426 | 129 | if (constant_len > blocksize) { |
427 | 38 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_CONSTANT_LENGTH); |
428 | 38 | ret = 0; |
429 | 38 | goto out; |
430 | 38 | } |
431 | | |
432 | 91 | n_fold(block, blocksize, constant, constant_len); |
433 | 91 | plainblock = block; |
434 | 91 | cipherblock = block + EVP_MAX_BLOCK_LENGTH; |
435 | | |
436 | 1.30k | for (osize = 0; osize < okey_len; osize += cipherlen) { |
437 | 1.23k | int olen; |
438 | | |
439 | 1.23k | ret = EVP_EncryptUpdate(ctx, cipherblock, &olen, |
440 | 1.23k | plainblock, blocksize); |
441 | 1.23k | if (!ret) |
442 | 24 | goto out; |
443 | 1.21k | cipherlen = olen; |
444 | 1.21k | ret = EVP_EncryptFinal_ex(ctx, cipherblock, &olen); |
445 | 1.21k | if (!ret) |
446 | 0 | goto out; |
447 | 1.21k | if (olen != 0) { |
448 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_WRONG_FINAL_BLOCK_LENGTH); |
449 | 0 | ret = 0; |
450 | 0 | goto out; |
451 | 0 | } |
452 | | |
453 | | /* write cipherblock out */ |
454 | 1.21k | if (cipherlen > okey_len - osize) |
455 | 0 | cipherlen = okey_len - osize; |
456 | 1.21k | memcpy(okey + osize, cipherblock, cipherlen); |
457 | | |
458 | 1.21k | if (okey_len > osize + cipherlen) { |
459 | | /* we need to reinitialize cipher context per spec */ |
460 | 1.14k | ret = EVP_CIPHER_CTX_reset(ctx); |
461 | 1.14k | if (!ret) |
462 | 0 | goto out; |
463 | 1.14k | ret = cipher_init(ctx, cipher, engine, key, key_len); |
464 | 1.14k | if (!ret) |
465 | 0 | goto out; |
466 | | |
467 | | /* also swap block offsets so last ciphertext becomes new |
468 | | * plaintext */ |
469 | 1.14k | plainblock = cipherblock; |
470 | 1.14k | if (cipherblock == block) { |
471 | 540 | cipherblock += EVP_MAX_BLOCK_LENGTH; |
472 | 607 | } else { |
473 | 607 | cipherblock = block; |
474 | 607 | } |
475 | 1.14k | } |
476 | 1.21k | } |
477 | | |
478 | 67 | #ifndef OPENSSL_NO_DES |
479 | 67 | if (EVP_CIPHER_get_nid(cipher) == NID_des_ede3_cbc && !des3_no_fixup) { |
480 | 0 | ret = fixup_des3_key(okey); |
481 | 0 | if (!ret) { |
482 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GENERATE_KEY); |
483 | 0 | goto out; |
484 | 0 | } |
485 | 0 | } |
486 | 67 | #endif |
487 | | |
488 | 67 | ret = 1; |
489 | | |
490 | 198 | out: |
491 | 198 | EVP_CIPHER_CTX_free(ctx); |
492 | 198 | OPENSSL_cleanse(block, EVP_MAX_BLOCK_LENGTH * 2); |
493 | 198 | return ret; |
494 | 67 | } |