Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl33/providers/implementations/kem/rsa_kem.c
Line
Count
Source
1
/*
2
 * Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * RSA low level APIs are deprecated for public use, but still ok for
12
 * internal use.
13
 */
14
#include "internal/deprecated.h"
15
#include "internal/nelem.h"
16
17
#include <openssl/crypto.h>
18
#include <openssl/evp.h>
19
#include <openssl/core_dispatch.h>
20
#include <openssl/core_names.h>
21
#include <openssl/rsa.h>
22
#include <openssl/params.h>
23
#include <openssl/err.h>
24
#include "crypto/rsa.h"
25
#include <openssl/proverr.h>
26
#include "internal/nelem.h"
27
#include "prov/provider_ctx.h"
28
#include "prov/implementations.h"
29
#include "prov/securitycheck.h"
30
31
static OSSL_FUNC_kem_newctx_fn rsakem_newctx;
32
static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init;
33
static OSSL_FUNC_kem_encapsulate_fn rsakem_generate;
34
static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init;
35
static OSSL_FUNC_kem_decapsulate_fn rsakem_recover;
36
static OSSL_FUNC_kem_freectx_fn rsakem_freectx;
37
static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx;
38
static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params;
39
static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params;
40
static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params;
41
static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params;
42
43
/*
44
 * Only the KEM for RSASVE as defined in SP800-56b r2 is implemented
45
 * currently.
46
 */
47
0
#define KEM_OP_UNDEFINED -1
48
0
#define KEM_OP_RSASVE 0
49
50
/*
51
 * What's passed as an actual key is defined by the KEYMGMT interface.
52
 * We happen to know that our KEYMGMT simply passes RSA structures, so
53
 * we use that here too.
54
 */
55
typedef struct {
56
    OSSL_LIB_CTX *libctx;
57
    RSA *rsa;
58
    int op;
59
} PROV_RSA_CTX;
60
61
static const OSSL_ITEM rsakem_opname_id_map[] = {
62
    { KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE },
63
};
64
65
static int name2id(const char *name, const OSSL_ITEM *map, size_t sz)
66
0
{
67
0
    size_t i;
68
69
0
    if (name == NULL)
70
0
        return -1;
71
72
0
    for (i = 0; i < sz; ++i) {
73
0
        if (OPENSSL_strcasecmp(map[i].ptr, name) == 0)
74
0
            return map[i].id;
75
0
    }
76
0
    return -1;
77
0
}
78
79
static int rsakem_opname2id(const char *name)
80
0
{
81
0
    return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map));
82
0
}
83
84
static void *rsakem_newctx(void *provctx)
85
0
{
86
0
    PROV_RSA_CTX *prsactx = OPENSSL_zalloc(sizeof(PROV_RSA_CTX));
87
88
0
    if (prsactx == NULL)
89
0
        return NULL;
90
0
    prsactx->libctx = PROV_LIBCTX_OF(provctx);
91
0
    prsactx->op = KEM_OP_UNDEFINED;
92
93
0
    return prsactx;
94
0
}
95
96
static void rsakem_freectx(void *vprsactx)
97
0
{
98
0
    PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
99
100
0
    RSA_free(prsactx->rsa);
101
0
    OPENSSL_free(prsactx);
102
0
}
103
104
static void *rsakem_dupctx(void *vprsactx)
105
0
{
106
0
    PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx;
107
0
    PROV_RSA_CTX *dstctx;
108
109
0
    dstctx = OPENSSL_zalloc(sizeof(*srcctx));
110
0
    if (dstctx == NULL)
111
0
        return NULL;
112
113
0
    *dstctx = *srcctx;
114
0
    if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) {
115
0
        OPENSSL_free(dstctx);
116
0
        return NULL;
117
0
    }
118
0
    return dstctx;
119
0
}
120
121
static int rsakem_init(void *vprsactx, void *vrsa,
122
    const OSSL_PARAM params[], int operation)
123
0
{
124
0
    PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
125
126
0
    if (prsactx == NULL || vrsa == NULL)
127
0
        return 0;
128
129
0
    if (!ossl_rsa_check_key(prsactx->libctx, vrsa, operation))
130
0
        return 0;
131
132
0
    if (!RSA_up_ref(vrsa))
133
0
        return 0;
134
0
    RSA_free(prsactx->rsa);
135
0
    prsactx->rsa = vrsa;
136
137
0
    return rsakem_set_ctx_params(prsactx, params);
138
0
}
139
140
static int rsakem_encapsulate_init(void *vprsactx, void *vrsa,
141
    const OSSL_PARAM params[])
142
0
{
143
0
    return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_ENCAPSULATE);
144
0
}
145
146
static int rsakem_decapsulate_init(void *vprsactx, void *vrsa,
147
    const OSSL_PARAM params[])
148
0
{
149
0
    return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_DECAPSULATE);
150
0
}
151
152
static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params)
153
0
{
154
0
    PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx;
155
156
0
    return ctx != NULL;
157
0
}
158
159
static const OSSL_PARAM known_gettable_rsakem_ctx_params[] = {
160
    OSSL_PARAM_END
161
};
162
163
static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *vprsactx,
164
    ossl_unused void *provctx)
165
0
{
166
0
    return known_gettable_rsakem_ctx_params;
167
0
}
168
169
static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[])
170
0
{
171
0
    PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
172
0
    const OSSL_PARAM *p;
173
0
    int op;
174
175
0
    if (prsactx == NULL)
176
0
        return 0;
177
0
    if (params == NULL)
178
0
        return 1;
179
180
0
    p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
181
0
    if (p != NULL) {
182
0
        if (p->data_type != OSSL_PARAM_UTF8_STRING)
183
0
            return 0;
184
0
        op = rsakem_opname2id(p->data);
185
0
        if (op < 0)
186
0
            return 0;
187
0
        prsactx->op = op;
188
0
    }
189
0
    return 1;
190
0
}
191
192
static const OSSL_PARAM known_settable_rsakem_ctx_params[] = {
193
    OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
194
    OSSL_PARAM_END
195
};
196
197
static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *vprsactx,
198
    ossl_unused void *provctx)
199
15
{
200
15
    return known_settable_rsakem_ctx_params;
201
15
}
202
203
/*
204
 * NIST.SP.800-56Br2
205
 * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
206
 *
207
 * Generate a random in the range 1 < z < (n – 1)
208
 */
209
static int rsasve_gen_rand_bytes(RSA *rsa_pub,
210
    unsigned char *out, int outlen)
211
0
{
212
0
    int ret = 0;
213
0
    BN_CTX *bnctx;
214
0
    BIGNUM *z, *nminus3;
215
216
0
    bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub));
217
0
    if (bnctx == NULL)
218
0
        return 0;
219
220
    /*
221
     * Generate a random in the range 1 < z < (n – 1).
222
     * Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max
223
     * We can achieve this by adding 2.. but then we need to subtract 3 from
224
     * the upper bound i.e: 2 + (0 <= r < (n - 3))
225
     */
226
0
    BN_CTX_start(bnctx);
227
0
    nminus3 = BN_CTX_get(bnctx);
228
0
    z = BN_CTX_get(bnctx);
229
0
    ret = (z != NULL
230
0
        && (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL)
231
0
        && BN_sub_word(nminus3, 3)
232
0
        && BN_priv_rand_range_ex(z, nminus3, 0, bnctx)
233
0
        && BN_add_word(z, 2)
234
0
        && (BN_bn2binpad(z, out, outlen) == outlen));
235
0
    BN_CTX_end(bnctx);
236
0
    BN_CTX_free(bnctx);
237
0
    return ret;
238
0
}
239
240
/*
241
 * NIST.SP.800-56Br2
242
 * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
243
 */
244
static int rsasve_generate(PROV_RSA_CTX *prsactx,
245
    unsigned char *out, size_t *outlen,
246
    unsigned char *secret, size_t *secretlen)
247
0
{
248
0
    int ret;
249
0
    size_t nlen;
250
251
    /* Step (1): nlen = Ceil(len(n)/8) */
252
0
    nlen = RSA_size(prsactx->rsa);
253
254
0
    if (out == NULL) {
255
0
        if (nlen == 0) {
256
0
            ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
257
0
            return 0;
258
0
        }
259
0
        if (outlen == NULL && secretlen == NULL)
260
0
            return 0;
261
0
        if (outlen != NULL)
262
0
            *outlen = nlen;
263
0
        if (secretlen != NULL)
264
0
            *secretlen = nlen;
265
0
        return 1;
266
0
    }
267
268
    /*
269
     * If outlen is specified, then it must report the length
270
     * of the out buffer on input so that we can confirm
271
     * its size is sufficient for encapsulation
272
     */
273
0
    if (outlen != NULL && *outlen < nlen) {
274
0
        ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);
275
0
        return 0;
276
0
    }
277
278
    /*
279
     * Step (2): Generate a random byte string z of nlen bytes where
280
     *            1 < z < n - 1
281
     */
282
0
    if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, nlen))
283
0
        return 0;
284
285
    /* Step(3): out = RSAEP((n,e), z) */
286
0
    ret = RSA_public_encrypt(nlen, secret, out, prsactx->rsa, RSA_NO_PADDING);
287
0
    if (ret) {
288
0
        ret = 1;
289
0
        if (outlen != NULL)
290
0
            *outlen = nlen;
291
0
        if (secretlen != NULL)
292
0
            *secretlen = nlen;
293
0
    } else {
294
0
        OPENSSL_cleanse(secret, nlen);
295
0
    }
296
0
    return ret;
297
0
}
298
299
/**
300
 * rsasve_recover - Recovers a secret value from ciphertext using an RSA
301
 * private key.  Once, recovered, the secret value is considered to be a
302
 * shared secret.  Algorithm is performed as per NIST SP 800-56B Rev 2
303
 * 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER).
304
 *
305
 * This function performs RSA decryption using the private key from the
306
 * provided RSA context (`prsactx`). It takes the input ciphertext, decrypts
307
 * it, and writes the decrypted message to the output buffer.
308
 *
309
 * @prsactx:      The RSA context containing the private key.
310
 * @out:          The output buffer to store the decrypted message.
311
 * @outlen:       On input, the size of the output buffer. On successful
312
 *                completion, the actual length of the decrypted message.
313
 * @in:           The input buffer containing the ciphertext to be decrypted.
314
 * @inlen:        The length of the input ciphertext in bytes.
315
 *
316
 * Returns 1 on success, or 0 on error. In case of error, appropriate
317
 * error messages are raised using the ERR_raise function.
318
 */
319
static int rsasve_recover(PROV_RSA_CTX *prsactx,
320
    unsigned char *out, size_t *outlen,
321
    const unsigned char *in, size_t inlen)
322
0
{
323
0
    size_t nlen;
324
0
    int ret;
325
326
    /* Step (1): get the byte length of n */
327
0
    nlen = RSA_size(prsactx->rsa);
328
329
0
    if (out == NULL) {
330
0
        if (nlen == 0) {
331
0
            ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
332
0
            return 0;
333
0
        }
334
0
        *outlen = nlen;
335
0
        return 1;
336
0
    }
337
338
    /*
339
     * Step (2): check the input ciphertext 'inlen' matches the nlen
340
     * and that outlen is at least nlen bytes
341
     */
342
0
    if (inlen != nlen) {
343
0
        ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);
344
0
        return 0;
345
0
    }
346
347
    /*
348
     * If outlen is specified, then it must report the length
349
     * of the out buffer, so that we can confirm that it is of
350
     * sufficient size to hold the output of decapsulation
351
     */
352
0
    if (outlen != NULL && *outlen < nlen) {
353
0
        ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);
354
0
        return 0;
355
0
    }
356
357
    /* Step (3): out = RSADP((n,d), in) */
358
0
    ret = RSA_private_decrypt(inlen, in, out, prsactx->rsa, RSA_NO_PADDING);
359
0
    if (ret > 0 && outlen != NULL)
360
0
        *outlen = ret;
361
0
    return ret > 0;
362
0
}
363
364
static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen,
365
    unsigned char *secret, size_t *secretlen)
366
0
{
367
0
    PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
368
369
0
    switch (prsactx->op) {
370
0
    case KEM_OP_RSASVE:
371
0
        return rsasve_generate(prsactx, out, outlen, secret, secretlen);
372
0
    default:
373
0
        return -2;
374
0
    }
375
0
}
376
377
static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen,
378
    const unsigned char *in, size_t inlen)
379
0
{
380
0
    PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
381
382
0
    switch (prsactx->op) {
383
0
    case KEM_OP_RSASVE:
384
0
        return rsasve_recover(prsactx, out, outlen, in, inlen);
385
0
    default:
386
0
        return -2;
387
0
    }
388
0
}
389
390
const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = {
391
    { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx },
392
    { OSSL_FUNC_KEM_ENCAPSULATE_INIT,
393
        (void (*)(void))rsakem_encapsulate_init },
394
    { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate },
395
    { OSSL_FUNC_KEM_DECAPSULATE_INIT,
396
        (void (*)(void))rsakem_decapsulate_init },
397
    { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover },
398
    { OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx },
399
    { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx },
400
    { OSSL_FUNC_KEM_GET_CTX_PARAMS,
401
        (void (*)(void))rsakem_get_ctx_params },
402
    { OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS,
403
        (void (*)(void))rsakem_gettable_ctx_params },
404
    { OSSL_FUNC_KEM_SET_CTX_PARAMS,
405
        (void (*)(void))rsakem_set_ctx_params },
406
    { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
407
        (void (*)(void))rsakem_settable_ctx_params },
408
    OSSL_DISPATCH_END
409
};