Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl33/ssl/t1_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "ssl_local.h"
27
#include "quic/quic_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_setup_key_block,
35
    tls1_generate_master_secret,
36
    tls1_change_cipher_state,
37
    tls1_final_finish_mac,
38
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40
    tls1_alert_code,
41
    tls1_export_keying_material,
42
    0,
43
    ssl3_set_handshake_header,
44
    tls_close_construct_packet,
45
    ssl3_handshake_write
46
};
47
48
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49
    tls1_setup_key_block,
50
    tls1_generate_master_secret,
51
    tls1_change_cipher_state,
52
    tls1_final_finish_mac,
53
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55
    tls1_alert_code,
56
    tls1_export_keying_material,
57
    SSL_ENC_FLAG_EXPLICIT_IV,
58
    ssl3_set_handshake_header,
59
    tls_close_construct_packet,
60
    ssl3_handshake_write
61
};
62
63
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64
    tls1_setup_key_block,
65
    tls1_generate_master_secret,
66
    tls1_change_cipher_state,
67
    tls1_final_finish_mac,
68
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70
    tls1_alert_code,
71
    tls1_export_keying_material,
72
    SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74
    ssl3_set_handshake_header,
75
    tls_close_construct_packet,
76
    ssl3_handshake_write
77
};
78
79
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80
    tls13_setup_key_block,
81
    tls13_generate_master_secret,
82
    tls13_change_cipher_state,
83
    tls13_final_finish_mac,
84
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86
    tls13_alert_code,
87
    tls13_export_keying_material,
88
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89
    ssl3_set_handshake_header,
90
    tls_close_construct_packet,
91
    ssl3_handshake_write
92
};
93
94
OSSL_TIME tls1_default_timeout(void)
95
119k
{
96
    /*
97
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98
     * http, the cache would over fill
99
     */
100
119k
    return ossl_seconds2time(60 * 60 * 2);
101
119k
}
102
103
int tls1_new(SSL *s)
104
119k
{
105
119k
    if (!ssl3_new(s))
106
0
        return 0;
107
119k
    if (!s->method->ssl_clear(s))
108
0
        return 0;
109
110
119k
    return 1;
111
119k
}
112
113
void tls1_free(SSL *s)
114
43.8k
{
115
43.8k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117
43.8k
    if (sc == NULL)
118
0
        return;
119
120
43.8k
    OPENSSL_free(sc->ext.session_ticket);
121
43.8k
    ssl3_free(s);
122
43.8k
}
123
124
int tls1_clear(SSL *s)
125
175k
{
126
175k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128
175k
    if (sc == NULL)
129
0
        return 0;
130
131
175k
    if (!ssl3_clear(s))
132
0
        return 0;
133
134
175k
    if (s->method->version == TLS_ANY_VERSION)
135
175k
        sc->version = TLS_MAX_VERSION_INTERNAL;
136
0
    else
137
0
        sc->version = s->method->version;
138
139
175k
    return 1;
140
175k
}
141
142
/* Legacy NID to group_id mapping. Only works for groups we know about */
143
static const struct {
144
    int nid;
145
    uint16_t group_id;
146
} nid_to_group[] = {
147
    { NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1 },
148
    { NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1 },
149
    { NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2 },
150
    { NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1 },
151
    { NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2 },
152
    { NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1 },
153
    { NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1 },
154
    { NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1 },
155
    { NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1 },
156
    { NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1 },
157
    { NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1 },
158
    { NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1 },
159
    { NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1 },
160
    { NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1 },
161
    { NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1 },
162
    { NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1 },
163
    { NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2 },
164
    { NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1 },
165
    { NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1 },
166
    { NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1 },
167
    { NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1 },
168
    { NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1 },
169
    { NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1 },
170
    { NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1 },
171
    { NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1 },
172
    { NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1 },
173
    { NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1 },
174
    { NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1 },
175
    { EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519 },
176
    { EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448 },
177
    { NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13 },
178
    { NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13 },
179
    { NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13 },
180
    { NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A },
181
    { NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B },
182
    { NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C },
183
    { NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D },
184
    { NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A },
185
    { NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B },
186
    { NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C },
187
    { NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048 },
188
    { NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072 },
189
    { NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096 },
190
    { NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144 },
191
    { NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192 }
192
};
193
194
static const unsigned char ecformats_default[] = {
195
    TLSEXT_ECPOINTFORMAT_uncompressed,
196
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198
};
199
200
/* The default curves */
201
static const uint16_t supported_groups_default[] = {
202
    OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */
203
    OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */
204
    OSSL_TLS_GROUP_ID_x448, /* X448 (30) */
205
    OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */
206
    OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */
207
    OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */
208
    OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */
209
    OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */
210
    OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */
211
    OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */
212
    OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */
213
    OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */
214
    OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */
215
    OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */
216
    OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */
217
    OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */
218
    OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */
219
};
220
221
static const uint16_t suiteb_curves[] = {
222
    OSSL_TLS_GROUP_ID_secp256r1,
223
    OSSL_TLS_GROUP_ID_secp384r1,
224
};
225
226
struct provider_ctx_data_st {
227
    SSL_CTX *ctx;
228
    OSSL_PROVIDER *provider;
229
};
230
231
851k
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
232
static OSSL_CALLBACK add_provider_groups;
233
static int add_provider_groups(const OSSL_PARAM params[], void *data)
234
3.82M
{
235
3.82M
    struct provider_ctx_data_st *pgd = data;
236
3.82M
    SSL_CTX *ctx = pgd->ctx;
237
3.82M
    OSSL_PROVIDER *provider = pgd->provider;
238
3.82M
    const OSSL_PARAM *p;
239
3.82M
    TLS_GROUP_INFO *ginf = NULL;
240
3.82M
    EVP_KEYMGMT *keymgmt;
241
3.82M
    unsigned int gid;
242
3.82M
    unsigned int is_kem = 0;
243
3.82M
    int ret = 0;
244
245
3.82M
    if (ctx->group_list_max_len == ctx->group_list_len) {
246
425k
        TLS_GROUP_INFO *tmp = NULL;
247
248
425k
        if (ctx->group_list_max_len == 0)
249
72.8k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250
425k
                * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
352k
        else
252
352k
            tmp = OPENSSL_realloc(ctx->group_list,
253
425k
                (ctx->group_list_max_len
254
425k
                    + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255
425k
                    * sizeof(TLS_GROUP_INFO));
256
425k
        if (tmp == NULL)
257
0
            return 0;
258
425k
        ctx->group_list = tmp;
259
425k
        memset(tmp + ctx->group_list_max_len,
260
425k
            0,
261
425k
            sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262
425k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263
425k
    }
264
265
3.82M
    ginf = &ctx->group_list[ctx->group_list_len];
266
267
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268
3.82M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270
0
        goto err;
271
0
    }
272
3.82M
    ginf->tlsname = OPENSSL_strdup(p->data);
273
3.82M
    if (ginf->tlsname == NULL)
274
0
        goto err;
275
276
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277
3.82M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279
0
        goto err;
280
0
    }
281
3.82M
    ginf->realname = OPENSSL_strdup(p->data);
282
3.82M
    if (ginf->realname == NULL)
283
0
        goto err;
284
285
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286
3.82M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
3.82M
    ginf->group_id = (uint16_t)gid;
291
292
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293
3.82M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295
0
        goto err;
296
0
    }
297
3.82M
    ginf->algorithm = OPENSSL_strdup(p->data);
298
3.82M
    if (ginf->algorithm == NULL)
299
0
        goto err;
300
301
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302
3.82M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304
0
        goto err;
305
0
    }
306
307
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308
3.82M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
3.82M
    ginf->is_kem = 1 & is_kem;
313
314
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317
0
        goto err;
318
0
    }
319
320
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323
0
        goto err;
324
0
    }
325
326
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329
0
        goto err;
330
0
    }
331
332
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335
0
        goto err;
336
0
    }
337
    /*
338
     * Now check that the algorithm is actually usable for our property query
339
     * string. Regardless of the result we still return success because we have
340
     * successfully processed this group, even though we may decide not to use
341
     * it.
342
     */
343
3.82M
    ret = 1;
344
3.82M
    ERR_set_mark();
345
3.82M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346
3.82M
    if (keymgmt != NULL) {
347
        /*
348
         * We have successfully fetched the algorithm - however if the provider
349
         * doesn't match this one then we ignore it.
350
         *
351
         * Note: We're cheating a little here. Technically if the same algorithm
352
         * is available from more than one provider then it is undefined which
353
         * implementation you will get back. Theoretically this could be
354
         * different every time...we assume here that you'll always get the
355
         * same one back if you repeat the exact same fetch. Is this a reasonable
356
         * assumption to make (in which case perhaps we should document this
357
         * behaviour)?
358
         */
359
3.82M
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360
            /* We have a match - so we will use this group */
361
3.82M
            ctx->group_list_len++;
362
3.82M
            ginf = NULL;
363
3.82M
        }
364
3.82M
        EVP_KEYMGMT_free(keymgmt);
365
3.82M
    }
366
3.82M
    ERR_pop_to_mark();
367
3.82M
err:
368
3.82M
    if (ginf != NULL) {
369
0
        OPENSSL_free(ginf->tlsname);
370
0
        OPENSSL_free(ginf->realname);
371
0
        OPENSSL_free(ginf->algorithm);
372
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373
0
    }
374
3.82M
    return ret;
375
3.82M
}
376
377
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378
327k
{
379
327k
    struct provider_ctx_data_st pgd;
380
381
327k
    pgd.ctx = vctx;
382
327k
    pgd.provider = provider;
383
327k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384
327k
        add_provider_groups, &pgd);
385
327k
}
386
387
int ssl_load_groups(SSL_CTX *ctx)
388
72.8k
{
389
72.8k
    size_t i, j, num_deflt_grps = 0;
390
72.8k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392
72.8k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393
0
        return 0;
394
395
1.31M
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396
60.3M
        for (j = 0; j < ctx->group_list_len; j++) {
397
59.7M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398
728k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399
728k
                break;
400
728k
            }
401
59.7M
        }
402
1.23M
    }
403
404
72.8k
    if (num_deflt_grps == 0)
405
0
        return 1;
406
407
72.8k
    ctx->ext.supported_groups_default
408
72.8k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410
72.8k
    if (ctx->ext.supported_groups_default == NULL)
411
0
        return 0;
412
413
72.8k
    memcpy(ctx->ext.supported_groups_default,
414
72.8k
        tmp_supp_groups,
415
72.8k
        num_deflt_grps * sizeof(tmp_supp_groups[0]));
416
72.8k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418
72.8k
    return 1;
419
72.8k
}
420
421
static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
422
544k
{
423
544k
    return (sinf->keytype != NULL
424
544k
            ? sinf->keytype
425
544k
            : (sinf->sig_name != NULL
426
544k
                      ? sinf->sig_name
427
544k
                      : sinf->sigalg_name));
428
544k
}
429
430
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
431
static OSSL_CALLBACK add_provider_sigalgs;
432
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
433
{
434
    struct provider_ctx_data_st *pgd = data;
435
    SSL_CTX *ctx = pgd->ctx;
436
    OSSL_PROVIDER *provider = pgd->provider;
437
    const OSSL_PARAM *p;
438
    TLS_SIGALG_INFO *sinf = NULL;
439
    EVP_KEYMGMT *keymgmt;
440
    const char *keytype;
441
    unsigned int code_point = 0;
442
    int ret = 0;
443
444
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
445
        TLS_SIGALG_INFO *tmp = NULL;
446
447
        if (ctx->sigalg_list_max_len == 0)
448
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
449
                * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
450
        else
451
            tmp = OPENSSL_realloc(ctx->sigalg_list,
452
                (ctx->sigalg_list_max_len
453
                    + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
454
                    * sizeof(TLS_SIGALG_INFO));
455
        if (tmp == NULL)
456
            return 0;
457
        ctx->sigalg_list = tmp;
458
        memset(tmp + ctx->sigalg_list_max_len, 0,
459
            sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
460
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
461
    }
462
463
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
464
465
    /* First, mandatory parameters */
466
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
467
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
468
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
469
        goto err;
470
    }
471
    OPENSSL_free(sinf->sigalg_name);
472
    sinf->sigalg_name = OPENSSL_strdup(p->data);
473
    if (sinf->sigalg_name == NULL)
474
        goto err;
475
476
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
477
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
478
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
479
        goto err;
480
    }
481
    OPENSSL_free(sinf->name);
482
    sinf->name = OPENSSL_strdup(p->data);
483
    if (sinf->name == NULL)
484
        goto err;
485
486
    p = OSSL_PARAM_locate_const(params,
487
        OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
488
    if (p == NULL
489
        || !OSSL_PARAM_get_uint(p, &code_point)
490
        || code_point > UINT16_MAX) {
491
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
492
        goto err;
493
    }
494
    sinf->code_point = (uint16_t)code_point;
495
496
    p = OSSL_PARAM_locate_const(params,
497
        OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
498
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
499
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
500
        goto err;
501
    }
502
503
    /* Now, optional parameters */
504
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
505
    if (p == NULL) {
506
        sinf->sigalg_oid = NULL;
507
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
508
        goto err;
509
    } else {
510
        OPENSSL_free(sinf->sigalg_oid);
511
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
512
        if (sinf->sigalg_oid == NULL)
513
            goto err;
514
    }
515
516
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
517
    if (p == NULL) {
518
        sinf->sig_name = NULL;
519
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
520
        goto err;
521
    } else {
522
        OPENSSL_free(sinf->sig_name);
523
        sinf->sig_name = OPENSSL_strdup(p->data);
524
        if (sinf->sig_name == NULL)
525
            goto err;
526
    }
527
528
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
529
    if (p == NULL) {
530
        sinf->sig_oid = NULL;
531
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
532
        goto err;
533
    } else {
534
        OPENSSL_free(sinf->sig_oid);
535
        sinf->sig_oid = OPENSSL_strdup(p->data);
536
        if (sinf->sig_oid == NULL)
537
            goto err;
538
    }
539
540
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
541
    if (p == NULL) {
542
        sinf->hash_name = NULL;
543
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
544
        goto err;
545
    } else {
546
        OPENSSL_free(sinf->hash_name);
547
        sinf->hash_name = OPENSSL_strdup(p->data);
548
        if (sinf->hash_name == NULL)
549
            goto err;
550
    }
551
552
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
553
    if (p == NULL) {
554
        sinf->hash_oid = NULL;
555
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
556
        goto err;
557
    } else {
558
        OPENSSL_free(sinf->hash_oid);
559
        sinf->hash_oid = OPENSSL_strdup(p->data);
560
        if (sinf->hash_oid == NULL)
561
            goto err;
562
    }
563
564
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
565
    if (p == NULL) {
566
        sinf->keytype = NULL;
567
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
568
        goto err;
569
    } else {
570
        OPENSSL_free(sinf->keytype);
571
        sinf->keytype = OPENSSL_strdup(p->data);
572
        if (sinf->keytype == NULL)
573
            goto err;
574
    }
575
576
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
577
    if (p == NULL) {
578
        sinf->keytype_oid = NULL;
579
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
580
        goto err;
581
    } else {
582
        OPENSSL_free(sinf->keytype_oid);
583
        sinf->keytype_oid = OPENSSL_strdup(p->data);
584
        if (sinf->keytype_oid == NULL)
585
            goto err;
586
    }
587
588
    /* The remaining parameters below are mandatory again */
589
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
590
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
591
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
592
        goto err;
593
    }
594
    if ((sinf->mintls != 0) && (sinf->mintls != -1) && ((sinf->mintls < TLS1_3_VERSION))) {
595
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
596
        ret = 1;
597
        goto err;
598
    }
599
600
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
601
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
602
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
603
        goto err;
604
    }
605
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < sinf->mintls))) {
606
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
607
        goto err;
608
    }
609
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < TLS1_3_VERSION))) {
610
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
611
        ret = 1;
612
        goto err;
613
    }
614
615
    /*
616
     * Now check that the algorithm is actually usable for our property query
617
     * string. Regardless of the result we still return success because we have
618
     * successfully processed this signature, even though we may decide not to
619
     * use it.
620
     */
621
    ret = 1;
622
    ERR_set_mark();
623
    keytype = inferred_keytype(sinf);
624
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
625
    if (keymgmt != NULL) {
626
        /*
627
         * We have successfully fetched the algorithm - however if the provider
628
         * doesn't match this one then we ignore it.
629
         *
630
         * Note: We're cheating a little here. Technically if the same algorithm
631
         * is available from more than one provider then it is undefined which
632
         * implementation you will get back. Theoretically this could be
633
         * different every time...we assume here that you'll always get the
634
         * same one back if you repeat the exact same fetch. Is this a reasonable
635
         * assumption to make (in which case perhaps we should document this
636
         * behaviour)?
637
         */
638
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
639
            /*
640
             * We have a match - so we could use this signature;
641
             * Check proper object registration first, though.
642
             * Don't care about return value as this may have been
643
             * done within providers or previous calls to
644
             * add_provider_sigalgs.
645
             */
646
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
647
            /* sanity check: Without successful registration don't use alg */
648
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) || (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
649
                ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
650
                goto err;
651
            }
652
            if (sinf->sig_name != NULL)
653
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
654
            if (sinf->keytype != NULL)
655
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
656
            if (sinf->hash_name != NULL)
657
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
658
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
659
                (sinf->hash_name != NULL
660
                        ? OBJ_txt2nid(sinf->hash_name)
661
                        : NID_undef),
662
                OBJ_txt2nid(keytype));
663
            ctx->sigalg_list_len++;
664
            sinf = NULL;
665
        }
666
        EVP_KEYMGMT_free(keymgmt);
667
    }
668
    ERR_pop_to_mark();
669
err:
670
    if (sinf != NULL) {
671
        OPENSSL_free(sinf->name);
672
        sinf->name = NULL;
673
        OPENSSL_free(sinf->sigalg_name);
674
        sinf->sigalg_name = NULL;
675
        OPENSSL_free(sinf->sigalg_oid);
676
        sinf->sigalg_oid = NULL;
677
        OPENSSL_free(sinf->sig_name);
678
        sinf->sig_name = NULL;
679
        OPENSSL_free(sinf->sig_oid);
680
        sinf->sig_oid = NULL;
681
        OPENSSL_free(sinf->hash_name);
682
        sinf->hash_name = NULL;
683
        OPENSSL_free(sinf->hash_oid);
684
        sinf->hash_oid = NULL;
685
        OPENSSL_free(sinf->keytype);
686
        sinf->keytype = NULL;
687
        OPENSSL_free(sinf->keytype_oid);
688
        sinf->keytype_oid = NULL;
689
    }
690
    return ret;
691
}
692
693
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
694
304k
{
695
304k
    struct provider_ctx_data_st pgd;
696
697
304k
    pgd.ctx = vctx;
698
304k
    pgd.provider = provider;
699
304k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
700
304k
        add_provider_sigalgs, &pgd);
701
    /*
702
     * Always OK, even if provider doesn't support the capability:
703
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
704
     */
705
304k
    return 1;
706
304k
}
707
708
int ssl_load_sigalgs(SSL_CTX *ctx)
709
152k
{
710
152k
    size_t i;
711
152k
    SSL_CERT_LOOKUP lu;
712
713
152k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
714
0
        return 0;
715
716
    /* now populate ctx->ssl_cert_info */
717
152k
    if (ctx->sigalg_list_len > 0) {
718
90.6k
        OPENSSL_free(ctx->ssl_cert_info);
719
90.6k
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
720
90.6k
        if (ctx->ssl_cert_info == NULL)
721
0
            return 0;
722
362k
        for (i = 0; i < ctx->sigalg_list_len; i++) {
723
272k
            const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
724
272k
            ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
725
272k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
726
272k
        }
727
90.6k
    }
728
729
    /*
730
     * For now, leave it at this: legacy sigalgs stay in their own
731
     * data structures until "legacy cleanup" occurs.
732
     */
733
734
152k
    return 1;
735
152k
}
736
737
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
738
725k
{
739
725k
    size_t i;
740
741
4.08M
    for (i = 0; i < ctx->group_list_len; i++) {
742
4.08M
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
743
3.35M
            || strcmp(ctx->group_list[i].realname, name) == 0)
744
725k
            return ctx->group_list[i].group_id;
745
4.08M
    }
746
747
0
    return 0;
748
725k
}
749
750
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
751
3.20M
{
752
3.20M
    size_t i;
753
754
69.8M
    for (i = 0; i < ctx->group_list_len; i++) {
755
69.8M
        if (ctx->group_list[i].group_id == group_id)
756
3.20M
            return &ctx->group_list[i];
757
69.8M
    }
758
759
0
    return NULL;
760
3.20M
}
761
762
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
763
0
{
764
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
765
766
0
    if (tls_group_info == NULL)
767
0
        return NULL;
768
769
0
    return tls_group_info->tlsname;
770
0
}
771
772
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
773
1.40M
{
774
1.40M
    size_t i;
775
776
1.40M
    if (group_id == 0)
777
0
        return NID_undef;
778
779
    /*
780
     * Return well known Group NIDs - for backwards compatibility. This won't
781
     * work for groups we don't know about.
782
     */
783
44.8M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
784
44.7M
        if (nid_to_group[i].group_id == group_id)
785
1.30M
            return nid_to_group[i].nid;
786
44.7M
    }
787
100k
    if (!include_unknown)
788
100k
        return NID_undef;
789
0
    return TLSEXT_nid_unknown | (int)group_id;
790
100k
}
791
792
uint16_t tls1_nid2group_id(int nid)
793
28.1k
{
794
28.1k
    size_t i;
795
796
    /*
797
     * Return well known Group ids - for backwards compatibility. This won't
798
     * work for groups we don't know about.
799
     */
800
647k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
801
647k
        if (nid_to_group[i].nid == nid)
802
28.1k
            return nid_to_group[i].group_id;
803
647k
    }
804
805
6
    return 0;
806
28.1k
}
807
808
/*
809
 * Set *pgroups to the supported groups list and *pgroupslen to
810
 * the number of groups supported.
811
 */
812
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
813
    size_t *pgroupslen)
814
460k
{
815
460k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
816
817
    /* For Suite B mode only include P-256, P-384 */
818
460k
    switch (tls1_suiteb(s)) {
819
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
820
0
        *pgroups = suiteb_curves;
821
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
822
0
        break;
823
824
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
825
0
        *pgroups = suiteb_curves;
826
0
        *pgroupslen = 1;
827
0
        break;
828
829
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
830
0
        *pgroups = suiteb_curves + 1;
831
0
        *pgroupslen = 1;
832
0
        break;
833
834
460k
    default:
835
460k
        if (s->ext.supportedgroups == NULL) {
836
231k
            *pgroups = sctx->ext.supported_groups_default;
837
231k
            *pgroupslen = sctx->ext.supported_groups_default_len;
838
231k
        } else {
839
228k
            *pgroups = s->ext.supportedgroups;
840
228k
            *pgroupslen = s->ext.supportedgroups_len;
841
228k
        }
842
460k
        break;
843
460k
    }
844
460k
}
845
846
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
847
    int minversion, int maxversion,
848
    int isec, int *okfortls13)
849
1.48M
{
850
1.48M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
851
1.48M
        group_id);
852
1.48M
    int ret;
853
1.48M
    int group_minversion, group_maxversion;
854
855
1.48M
    if (okfortls13 != NULL)
856
978k
        *okfortls13 = 0;
857
858
1.48M
    if (ginfo == NULL)
859
0
        return 0;
860
861
1.48M
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
862
1.48M
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
863
864
1.48M
    if (group_minversion < 0 || group_maxversion < 0)
865
131k
        return 0;
866
1.35M
    if (group_maxversion == 0)
867
1.35M
        ret = 1;
868
0
    else
869
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
870
1.35M
    if (group_minversion > 0)
871
1.35M
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
872
873
1.35M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
874
1.17M
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
875
737k
            *okfortls13 = (group_maxversion == 0)
876
0
                || (group_maxversion >= TLS1_3_VERSION);
877
1.17M
    }
878
1.35M
    ret &= !isec
879
324k
        || strcmp(ginfo->algorithm, "EC") == 0
880
323k
        || strcmp(ginfo->algorithm, "X25519") == 0
881
100k
        || strcmp(ginfo->algorithm, "X448") == 0;
882
883
1.35M
    return ret;
884
1.48M
}
885
886
/* See if group is allowed by security callback */
887
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
888
1.40M
{
889
1.40M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
890
1.40M
        group);
891
1.40M
    unsigned char gtmp[2];
892
893
1.40M
    if (ginfo == NULL)
894
0
        return 0;
895
896
1.40M
    gtmp[0] = group >> 8;
897
1.40M
    gtmp[1] = group & 0xff;
898
1.40M
    return ssl_security(s, op, ginfo->secbits,
899
1.40M
        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
900
1.40M
}
901
902
/* Return 1 if "id" is in "list" */
903
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
904
102k
{
905
102k
    size_t i;
906
687k
    for (i = 0; i < listlen; i++)
907
631k
        if (list[i] == id)
908
46.6k
            return 1;
909
55.5k
    return 0;
910
102k
}
911
912
/*-
913
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
914
 * if there is no match.
915
 * For nmatch == -1, return number of matches
916
 * For nmatch == -2, return the id of the group to use for
917
 * a tmp key, or 0 if there is no match.
918
 */
919
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
920
44.4k
{
921
44.4k
    const uint16_t *pref, *supp;
922
44.4k
    size_t num_pref, num_supp, i;
923
44.4k
    int k;
924
44.4k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
925
926
    /* Can't do anything on client side */
927
44.4k
    if (s->server == 0)
928
0
        return 0;
929
44.4k
    if (nmatch == -2) {
930
10.9k
        if (tls1_suiteb(s)) {
931
            /*
932
             * For Suite B ciphersuite determines curve: we already know
933
             * these are acceptable due to previous checks.
934
             */
935
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
936
937
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
938
0
                return OSSL_TLS_GROUP_ID_secp256r1;
939
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
940
0
                return OSSL_TLS_GROUP_ID_secp384r1;
941
            /* Should never happen */
942
0
            return 0;
943
0
        }
944
        /* If not Suite B just return first preference shared curve */
945
10.9k
        nmatch = 0;
946
10.9k
    }
947
    /*
948
     * If server preference set, our groups are the preference order
949
     * otherwise peer decides.
950
     */
951
44.4k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
952
0
        tls1_get_supported_groups(s, &pref, &num_pref);
953
0
        tls1_get_peer_groups(s, &supp, &num_supp);
954
44.4k
    } else {
955
44.4k
        tls1_get_peer_groups(s, &pref, &num_pref);
956
44.4k
        tls1_get_supported_groups(s, &supp, &num_supp);
957
44.4k
    }
958
959
94.2k
    for (k = 0, i = 0; i < num_pref; i++) {
960
72.1k
        uint16_t id = pref[i];
961
72.1k
        const TLS_GROUP_INFO *inf;
962
72.1k
        int minversion, maxversion;
963
964
72.1k
        if (!tls1_in_list(id, supp, num_supp)
965
28.4k
            || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
966
43.6k
            continue;
967
28.4k
        inf = tls1_group_id_lookup(ctx, id);
968
28.4k
        if (!ossl_assert(inf != NULL))
969
0
            return 0;
970
971
28.4k
        minversion = SSL_CONNECTION_IS_DTLS(s)
972
28.4k
            ? inf->mindtls
973
28.4k
            : inf->mintls;
974
28.4k
        maxversion = SSL_CONNECTION_IS_DTLS(s)
975
28.4k
            ? inf->maxdtls
976
28.4k
            : inf->maxtls;
977
28.4k
        if (maxversion == -1)
978
3.78k
            continue;
979
24.6k
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
980
22.2k
            || (maxversion != 0
981
0
                && ssl_version_cmp(s, s->version, maxversion) > 0))
982
2.43k
            continue;
983
984
22.2k
        if (nmatch == k)
985
22.2k
            return id;
986
0
        k++;
987
0
    }
988
22.1k
    if (nmatch == -1)
989
0
        return k;
990
    /* Out of range (nmatch > k). */
991
22.1k
    return 0;
992
22.1k
}
993
994
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
995
    int *groups, size_t ngroups)
996
0
{
997
0
    uint16_t *glist;
998
0
    size_t i;
999
    /*
1000
     * Bitmap of groups included to detect duplicates: two variables are added
1001
     * to detect duplicates as some values are more than 32.
1002
     */
1003
0
    unsigned long *dup_list = NULL;
1004
0
    unsigned long dup_list_egrp = 0;
1005
0
    unsigned long dup_list_dhgrp = 0;
1006
1007
0
    if (ngroups == 0) {
1008
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1009
0
        return 0;
1010
0
    }
1011
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1012
0
        return 0;
1013
0
    for (i = 0; i < ngroups; i++) {
1014
0
        unsigned long idmask;
1015
0
        uint16_t id;
1016
0
        id = tls1_nid2group_id(groups[i]);
1017
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1018
0
            goto err;
1019
0
        idmask = 1L << (id & 0x00FF);
1020
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1021
0
        if (!id || ((*dup_list) & idmask))
1022
0
            goto err;
1023
0
        *dup_list |= idmask;
1024
0
        glist[i] = id;
1025
0
    }
1026
0
    OPENSSL_free(*pext);
1027
0
    *pext = glist;
1028
0
    *pextlen = ngroups;
1029
0
    return 1;
1030
0
err:
1031
0
    OPENSSL_free(glist);
1032
0
    return 0;
1033
0
}
1034
1035
0
#define GROUPLIST_INCREMENT 40
1036
#define GROUP_NAME_BUFFER_LENGTH 64
1037
typedef struct {
1038
    SSL_CTX *ctx;
1039
    size_t gidcnt;
1040
    size_t gidmax;
1041
    uint16_t *gid_arr;
1042
} gid_cb_st;
1043
1044
static int gid_cb(const char *elem, int len, void *arg)
1045
{
1046
    gid_cb_st *garg = arg;
1047
    size_t i;
1048
    uint16_t gid = 0;
1049
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1050
    int ignore_unknown = 0;
1051
1052
    if (elem == NULL)
1053
        return 0;
1054
    if (elem[0] == '?') {
1055
        ignore_unknown = 1;
1056
        ++elem;
1057
        --len;
1058
    }
1059
    if (garg->gidcnt == garg->gidmax) {
1060
        uint16_t *tmp = OPENSSL_realloc(garg->gid_arr,
1061
            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1062
        if (tmp == NULL)
1063
            return 0;
1064
        garg->gidmax += GROUPLIST_INCREMENT;
1065
        garg->gid_arr = tmp;
1066
    }
1067
    if (len > (int)(sizeof(etmp) - 1))
1068
        return 0;
1069
    memcpy(etmp, elem, len);
1070
    etmp[len] = 0;
1071
1072
    gid = tls1_group_name2id(garg->ctx, etmp);
1073
    if (gid == 0) {
1074
        /* Unknown group - ignore, if ignore_unknown */
1075
        return ignore_unknown;
1076
    }
1077
    for (i = 0; i < garg->gidcnt; i++)
1078
        if (garg->gid_arr[i] == gid) {
1079
            /* Duplicate group - ignore */
1080
            return 1;
1081
        }
1082
    garg->gid_arr[garg->gidcnt++] = gid;
1083
    return 1;
1084
}
1085
1086
/* Set groups based on a colon separated list */
1087
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1088
    const char *str)
1089
0
{
1090
0
    gid_cb_st gcb;
1091
0
    uint16_t *tmparr;
1092
0
    int ret = 0;
1093
1094
0
    gcb.gidcnt = 0;
1095
0
    gcb.gidmax = GROUPLIST_INCREMENT;
1096
0
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1097
0
    if (gcb.gid_arr == NULL)
1098
0
        return 0;
1099
0
    gcb.ctx = ctx;
1100
0
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1101
0
        goto end;
1102
0
    if (gcb.gidcnt == 0) {
1103
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1104
0
            "No valid groups in '%s'", str);
1105
0
        goto end;
1106
0
    }
1107
0
    if (pext == NULL) {
1108
0
        ret = 1;
1109
0
        goto end;
1110
0
    }
1111
1112
    /*
1113
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
1114
     * the result
1115
     */
1116
0
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1117
0
    if (tmparr == NULL)
1118
0
        goto end;
1119
0
    OPENSSL_free(*pext);
1120
0
    *pext = tmparr;
1121
0
    *pextlen = gcb.gidcnt;
1122
0
    ret = 1;
1123
0
end:
1124
0
    OPENSSL_free(gcb.gid_arr);
1125
0
    return ret;
1126
0
}
1127
1128
/* Check a group id matches preferences */
1129
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1130
    int check_own_groups)
1131
36.6k
{
1132
36.6k
    const uint16_t *groups;
1133
36.6k
    size_t groups_len;
1134
1135
36.6k
    if (group_id == 0)
1136
16
        return 0;
1137
1138
    /* Check for Suite B compliance */
1139
36.5k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1140
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1141
1142
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1143
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1144
0
                return 0;
1145
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1146
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1147
0
                return 0;
1148
0
        } else {
1149
            /* Should never happen */
1150
0
            return 0;
1151
0
        }
1152
0
    }
1153
1154
36.5k
    if (check_own_groups) {
1155
        /* Check group is one of our preferences */
1156
8.91k
        tls1_get_supported_groups(s, &groups, &groups_len);
1157
8.91k
        if (!tls1_in_list(group_id, groups, groups_len))
1158
147
            return 0;
1159
8.91k
    }
1160
1161
36.4k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1162
0
        return 0;
1163
1164
    /* For clients, nothing more to check */
1165
36.4k
    if (!s->server)
1166
8.77k
        return 1;
1167
1168
    /* Check group is one of peers preferences */
1169
27.6k
    tls1_get_peer_groups(s, &groups, &groups_len);
1170
1171
    /*
1172
     * RFC 4492 does not require the supported elliptic curves extension
1173
     * so if it is not sent we can just choose any curve.
1174
     * It is invalid to send an empty list in the supported groups
1175
     * extension, so groups_len == 0 always means no extension.
1176
     */
1177
27.6k
    if (groups_len == 0)
1178
13.6k
        return 1;
1179
14.0k
    return tls1_in_list(group_id, groups, groups_len);
1180
27.6k
}
1181
1182
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1183
    size_t *num_formats)
1184
78.5k
{
1185
    /*
1186
     * If we have a custom point format list use it otherwise use default
1187
     */
1188
78.5k
    if (s->ext.ecpointformats) {
1189
0
        *pformats = s->ext.ecpointformats;
1190
0
        *num_formats = s->ext.ecpointformats_len;
1191
78.5k
    } else {
1192
78.5k
        *pformats = ecformats_default;
1193
        /* For Suite B we don't support char2 fields */
1194
78.5k
        if (tls1_suiteb(s))
1195
0
            *num_formats = sizeof(ecformats_default) - 1;
1196
78.5k
        else
1197
78.5k
            *num_formats = sizeof(ecformats_default);
1198
78.5k
    }
1199
78.5k
}
1200
1201
/* Check a key is compatible with compression extension */
1202
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1203
29.1k
{
1204
29.1k
    unsigned char comp_id;
1205
29.1k
    size_t i;
1206
29.1k
    int point_conv;
1207
1208
    /* If not an EC key nothing to check */
1209
29.1k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1210
0
        return 1;
1211
1212
    /* Get required compression id */
1213
29.1k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1214
29.1k
    if (point_conv == 0)
1215
0
        return 0;
1216
29.1k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1217
29.0k
        comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1218
29.0k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1219
        /*
1220
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1221
         * this check.
1222
         */
1223
0
        return 1;
1224
104
    } else {
1225
104
        int field_type = EVP_PKEY_get_field_type(pkey);
1226
1227
104
        if (field_type == NID_X9_62_prime_field)
1228
98
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1229
6
        else if (field_type == NID_X9_62_characteristic_two_field)
1230
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1231
6
        else
1232
6
            return 0;
1233
104
    }
1234
    /*
1235
     * If point formats extension present check it, otherwise everything is
1236
     * supported (see RFC4492).
1237
     */
1238
29.1k
    if (s->ext.peer_ecpointformats == NULL)
1239
23.1k
        return 1;
1240
1241
10.4k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1242
9.47k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1243
5.04k
            return 1;
1244
9.47k
    }
1245
987
    return 0;
1246
6.03k
}
1247
1248
/* Return group id of a key */
1249
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1250
28.1k
{
1251
28.1k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1252
1253
28.1k
    if (curve_nid == NID_undef)
1254
0
        return 0;
1255
28.1k
    return tls1_nid2group_id(curve_nid);
1256
28.1k
}
1257
1258
/*
1259
 * Check cert parameters compatible with extensions: currently just checks EC
1260
 * certificates have compatible curves and compression.
1261
 */
1262
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1263
85.8k
{
1264
85.8k
    uint16_t group_id;
1265
85.8k
    EVP_PKEY *pkey;
1266
85.8k
    pkey = X509_get0_pubkey(x);
1267
85.8k
    if (pkey == NULL)
1268
0
        return 0;
1269
    /* If not EC nothing to do */
1270
85.8k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1271
57.2k
        return 1;
1272
    /* Check compression */
1273
28.6k
    if (!tls1_check_pkey_comp(s, pkey))
1274
959
        return 0;
1275
27.6k
    group_id = tls1_get_group_id(pkey);
1276
    /*
1277
     * For a server we allow the certificate to not be in our list of supported
1278
     * groups.
1279
     */
1280
27.6k
    if (!tls1_check_group_id(s, group_id, !s->server))
1281
7.29k
        return 0;
1282
    /*
1283
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1284
     * SHA384+P-384.
1285
     */
1286
20.3k
    if (check_ee_md && tls1_suiteb(s)) {
1287
0
        int check_md;
1288
0
        size_t i;
1289
1290
        /* Check to see we have necessary signing algorithm */
1291
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1292
0
            check_md = NID_ecdsa_with_SHA256;
1293
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1294
0
            check_md = NID_ecdsa_with_SHA384;
1295
0
        else
1296
0
            return 0; /* Should never happen */
1297
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1298
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1299
0
                return 1;
1300
0
        }
1301
0
        return 0;
1302
0
    }
1303
20.3k
    return 1;
1304
20.3k
}
1305
1306
/*
1307
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1308
 * @s: SSL connection
1309
 * @cid: Cipher ID we're considering using
1310
 *
1311
 * Checks that the kECDHE cipher suite we're considering using
1312
 * is compatible with the client extensions.
1313
 *
1314
 * Returns 0 when the cipher can't be used or 1 when it can.
1315
 */
1316
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1317
36.5k
{
1318
    /* If not Suite B just need a shared group */
1319
36.5k
    if (!tls1_suiteb(s))
1320
36.5k
        return tls1_shared_group(s, 0) != 0;
1321
    /*
1322
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1323
     * curves permitted.
1324
     */
1325
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1326
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1327
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1328
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1329
1330
0
    return 0;
1331
0
}
1332
1333
/* Default sigalg schemes */
1334
static const uint16_t tls12_sigalgs[] = {
1335
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1336
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1337
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1338
    TLSEXT_SIGALG_ed25519,
1339
    TLSEXT_SIGALG_ed448,
1340
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1341
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1342
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1343
1344
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1345
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1346
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1347
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1348
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1349
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1350
1351
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1352
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1353
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1354
1355
    TLSEXT_SIGALG_ecdsa_sha224,
1356
    TLSEXT_SIGALG_ecdsa_sha1,
1357
1358
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1359
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1360
1361
    TLSEXT_SIGALG_dsa_sha224,
1362
    TLSEXT_SIGALG_dsa_sha1,
1363
1364
    TLSEXT_SIGALG_dsa_sha256,
1365
    TLSEXT_SIGALG_dsa_sha384,
1366
    TLSEXT_SIGALG_dsa_sha512,
1367
1368
#ifndef OPENSSL_NO_GOST
1369
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1370
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1371
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1372
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1373
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1374
#endif
1375
};
1376
1377
static const uint16_t suiteb_sigalgs[] = {
1378
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1379
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1380
};
1381
1382
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1383
    { "ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1384
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1385
        NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1 },
1386
    { "ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1387
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1388
        NID_ecdsa_with_SHA384, NID_secp384r1, 1 },
1389
    { "ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1390
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1391
        NID_ecdsa_with_SHA512, NID_secp521r1, 1 },
1392
    { "ed25519", TLSEXT_SIGALG_ed25519,
1393
        NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1394
        NID_undef, NID_undef, 1 },
1395
    { "ed448", TLSEXT_SIGALG_ed448,
1396
        NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1397
        NID_undef, NID_undef, 1 },
1398
    { NULL, TLSEXT_SIGALG_ecdsa_sha224,
1399
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1400
        NID_ecdsa_with_SHA224, NID_undef, 1 },
1401
    { NULL, TLSEXT_SIGALG_ecdsa_sha1,
1402
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1403
        NID_ecdsa_with_SHA1, NID_undef, 1 },
1404
    { "ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1405
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1406
        NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1 },
1407
    { "ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1408
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1409
        NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1 },
1410
    { "ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1411
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1412
        NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1 },
1413
    { "rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1414
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1415
        NID_undef, NID_undef, 1 },
1416
    { "rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1417
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1418
        NID_undef, NID_undef, 1 },
1419
    { "rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1420
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1421
        NID_undef, NID_undef, 1 },
1422
    { "rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1423
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1424
        NID_undef, NID_undef, 1 },
1425
    { "rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1426
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1427
        NID_undef, NID_undef, 1 },
1428
    { "rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1429
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1430
        NID_undef, NID_undef, 1 },
1431
    { "rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1432
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1433
        NID_sha256WithRSAEncryption, NID_undef, 1 },
1434
    { "rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1435
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1436
        NID_sha384WithRSAEncryption, NID_undef, 1 },
1437
    { "rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1438
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1439
        NID_sha512WithRSAEncryption, NID_undef, 1 },
1440
    { "rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1441
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1442
        NID_sha224WithRSAEncryption, NID_undef, 1 },
1443
    { "rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1444
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1445
        NID_sha1WithRSAEncryption, NID_undef, 1 },
1446
    { NULL, TLSEXT_SIGALG_dsa_sha256,
1447
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1448
        NID_dsa_with_SHA256, NID_undef, 1 },
1449
    { NULL, TLSEXT_SIGALG_dsa_sha384,
1450
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1451
        NID_undef, NID_undef, 1 },
1452
    { NULL, TLSEXT_SIGALG_dsa_sha512,
1453
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1454
        NID_undef, NID_undef, 1 },
1455
    { NULL, TLSEXT_SIGALG_dsa_sha224,
1456
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1457
        NID_undef, NID_undef, 1 },
1458
    { NULL, TLSEXT_SIGALG_dsa_sha1,
1459
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1460
        NID_dsaWithSHA1, NID_undef, 1 },
1461
#ifndef OPENSSL_NO_GOST
1462
    { NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1463
        NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1464
        NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1465
        NID_undef, NID_undef, 1 },
1466
    { NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1467
        NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1468
        NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1469
        NID_undef, NID_undef, 1 },
1470
    { NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1471
        NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1472
        NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1473
        NID_undef, NID_undef, 1 },
1474
    { NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1475
        NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1476
        NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1477
        NID_undef, NID_undef, 1 },
1478
    { NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1479
        NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1480
        NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1481
        NID_undef, NID_undef, 1 }
1482
#endif
1483
};
1484
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1485
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1486
    "rsa_pkcs1_md5_sha1", 0,
1487
    NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1488
    EVP_PKEY_RSA, SSL_PKEY_RSA,
1489
    NID_undef, NID_undef, 1
1490
};
1491
1492
/*
1493
 * Default signature algorithm values used if signature algorithms not present.
1494
 * From RFC5246. Note: order must match certificate index order.
1495
 */
1496
static const uint16_t tls_default_sigalg[] = {
1497
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1498
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1499
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1500
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1501
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1502
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1503
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1504
    0, /* SSL_PKEY_ED25519 */
1505
    0, /* SSL_PKEY_ED448 */
1506
};
1507
1508
int ssl_setup_sigalgs(SSL_CTX *ctx)
1509
61.4k
{
1510
61.4k
    size_t i, cache_idx, sigalgs_len;
1511
61.4k
    const SIGALG_LOOKUP *lu;
1512
61.4k
    SIGALG_LOOKUP *cache = NULL;
1513
61.4k
    uint16_t *tls12_sigalgs_list = NULL;
1514
61.4k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1515
61.4k
    int ret = 0;
1516
1517
61.4k
    if (ctx == NULL)
1518
0
        goto err;
1519
1520
61.4k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1521
1522
61.4k
    cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1523
61.4k
    if (cache == NULL || tmpkey == NULL)
1524
0
        goto err;
1525
1526
61.4k
    tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1527
61.4k
    if (tls12_sigalgs_list == NULL)
1528
0
        goto err;
1529
1530
61.4k
    ERR_set_mark();
1531
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1532
61.4k
    for (i = 0, lu = sigalg_lookup_tbl;
1533
1.96M
        i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1534
1.90M
        EVP_PKEY_CTX *pctx;
1535
1536
1.90M
        cache[i] = *lu;
1537
1.90M
        tls12_sigalgs_list[i] = tls12_sigalgs[i];
1538
1539
        /*
1540
         * Check hash is available.
1541
         * This test is not perfect. A provider could have support
1542
         * for a signature scheme, but not a particular hash. However the hash
1543
         * could be available from some other loaded provider. In that case it
1544
         * could be that the signature is available, and the hash is available
1545
         * independently - but not as a combination. We ignore this for now.
1546
         */
1547
1.90M
        if (lu->hash != NID_undef
1548
1.78M
            && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1549
307k
            cache[i].enabled = 0;
1550
307k
            continue;
1551
307k
        }
1552
1553
1.59M
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1554
0
            cache[i].enabled = 0;
1555
0
            continue;
1556
0
        }
1557
1.59M
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1558
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1559
1.59M
        if (pctx == NULL)
1560
0
            cache[i].enabled = 0;
1561
1.59M
        EVP_PKEY_CTX_free(pctx);
1562
1.59M
    }
1563
1564
    /* Now complete cache and tls12_sigalgs list with provider sig information */
1565
61.4k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1566
61.4k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
1567
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1568
0
        cache[cache_idx].name = si.name;
1569
0
        cache[cache_idx].sigalg = si.code_point;
1570
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
1571
0
        cache[cache_idx].hash = si.hash_name ? OBJ_txt2nid(si.hash_name) : NID_undef;
1572
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1573
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1574
0
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1575
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1576
0
        cache[cache_idx].curve = NID_undef;
1577
        /* all provided sigalgs are enabled by load */
1578
0
        cache[cache_idx].enabled = 1;
1579
0
        cache_idx++;
1580
0
    }
1581
61.4k
    ERR_pop_to_mark();
1582
61.4k
    ctx->sigalg_lookup_cache = cache;
1583
61.4k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
1584
61.4k
    ctx->tls12_sigalgs_len = sigalgs_len;
1585
61.4k
    cache = NULL;
1586
61.4k
    tls12_sigalgs_list = NULL;
1587
1588
61.4k
    ret = 1;
1589
61.4k
err:
1590
61.4k
    OPENSSL_free(cache);
1591
61.4k
    OPENSSL_free(tls12_sigalgs_list);
1592
61.4k
    EVP_PKEY_free(tmpkey);
1593
61.4k
    return ret;
1594
61.4k
}
1595
1596
/* Lookup TLS signature algorithm */
1597
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1598
    uint16_t sigalg)
1599
14.5M
{
1600
14.5M
    size_t i;
1601
14.5M
    const SIGALG_LOOKUP *lu;
1602
1603
14.5M
    for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1604
232M
        i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1605
232M
        lu++, i++) {
1606
232M
        if (lu->sigalg == sigalg) {
1607
14.2M
            if (!lu->enabled)
1608
1.13M
                return NULL;
1609
13.0M
            return lu;
1610
14.2M
        }
1611
232M
    }
1612
377k
    return NULL;
1613
14.5M
}
1614
/* Lookup hash: return 0 if invalid or not enabled */
1615
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1616
4.10M
{
1617
4.10M
    const EVP_MD *md;
1618
1619
4.10M
    if (lu == NULL)
1620
0
        return 0;
1621
    /* lu->hash == NID_undef means no associated digest */
1622
4.10M
    if (lu->hash == NID_undef) {
1623
402k
        md = NULL;
1624
3.70M
    } else {
1625
3.70M
        md = ssl_md(ctx, lu->hash_idx);
1626
3.70M
        if (md == NULL)
1627
0
            return 0;
1628
3.70M
    }
1629
4.10M
    if (pmd)
1630
4.01M
        *pmd = md;
1631
4.10M
    return 1;
1632
4.10M
}
1633
1634
/*
1635
 * Check if key is large enough to generate RSA-PSS signature.
1636
 *
1637
 * The key must greater than or equal to 2 * hash length + 2.
1638
 * SHA512 has a hash length of 64 bytes, which is incompatible
1639
 * with a 128 byte (1024 bit) key.
1640
 */
1641
339
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1642
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1643
    const SIGALG_LOOKUP *lu)
1644
339
{
1645
339
    const EVP_MD *md;
1646
1647
339
    if (pkey == NULL)
1648
0
        return 0;
1649
339
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1650
0
        return 0;
1651
339
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1652
0
        return 0;
1653
339
    return 1;
1654
339
}
1655
1656
/*
1657
 * Returns a signature algorithm when the peer did not send a list of supported
1658
 * signature algorithms. The signature algorithm is fixed for the certificate
1659
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1660
 * certificate type from |s| will be used.
1661
 * Returns the signature algorithm to use, or NULL on error.
1662
 */
1663
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1664
    int idx)
1665
276k
{
1666
276k
    if (idx == -1) {
1667
20.4k
        if (s->server) {
1668
20.4k
            size_t i;
1669
1670
            /* Work out index corresponding to ciphersuite */
1671
29.4k
            for (i = 0; i < s->ssl_pkey_num; i++) {
1672
29.4k
                const SSL_CERT_LOOKUP *clu
1673
29.4k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1674
1675
29.4k
                if (clu == NULL)
1676
0
                    continue;
1677
29.4k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1678
20.4k
                    idx = i;
1679
20.4k
                    break;
1680
20.4k
                }
1681
29.4k
            }
1682
1683
            /*
1684
             * Some GOST ciphersuites allow more than one signature algorithms
1685
             * */
1686
20.4k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1687
0
                int real_idx;
1688
1689
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1690
0
                    real_idx--) {
1691
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1692
0
                        idx = real_idx;
1693
0
                        break;
1694
0
                    }
1695
0
                }
1696
0
            }
1697
            /*
1698
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1699
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1700
             */
1701
20.4k
            else if (idx == SSL_PKEY_GOST12_256) {
1702
0
                int real_idx;
1703
1704
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1705
0
                    real_idx--) {
1706
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1707
0
                        idx = real_idx;
1708
0
                        break;
1709
0
                    }
1710
0
                }
1711
0
            }
1712
20.4k
        } else {
1713
0
            idx = s->cert->key - s->cert->pkeys;
1714
0
        }
1715
20.4k
    }
1716
276k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1717
38.9k
        return NULL;
1718
1719
237k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1720
227k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1721
1722
227k
        if (lu == NULL)
1723
143k
            return NULL;
1724
84.0k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1725
0
            return NULL;
1726
84.0k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1727
0
            return NULL;
1728
84.0k
        return lu;
1729
84.0k
    }
1730
9.94k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1731
0
        return NULL;
1732
9.94k
    return &legacy_rsa_sigalg;
1733
9.94k
}
1734
/* Set peer sigalg based key type */
1735
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1736
1.94k
{
1737
1.94k
    size_t idx;
1738
1.94k
    const SIGALG_LOOKUP *lu;
1739
1740
1.94k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1741
0
        return 0;
1742
1.94k
    lu = tls1_get_legacy_sigalg(s, idx);
1743
1.94k
    if (lu == NULL)
1744
9
        return 0;
1745
1.93k
    s->s3.tmp.peer_sigalg = lu;
1746
1.93k
    return 1;
1747
1.94k
}
1748
1749
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1750
538k
{
1751
    /*
1752
     * If Suite B mode use Suite B sigalgs only, ignore any other
1753
     * preferences.
1754
     */
1755
538k
    switch (tls1_suiteb(s)) {
1756
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1757
0
        *psigs = suiteb_sigalgs;
1758
0
        return OSSL_NELEM(suiteb_sigalgs);
1759
1760
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1761
0
        *psigs = suiteb_sigalgs;
1762
0
        return 1;
1763
1764
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1765
0
        *psigs = suiteb_sigalgs + 1;
1766
0
        return 1;
1767
538k
    }
1768
    /*
1769
     *  We use client_sigalgs (if not NULL) if we're a server
1770
     *  and sending a certificate request or if we're a client and
1771
     *  determining which shared algorithm to use.
1772
     */
1773
538k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1774
0
        *psigs = s->cert->client_sigalgs;
1775
0
        return s->cert->client_sigalgslen;
1776
538k
    } else if (s->cert->conf_sigalgs) {
1777
0
        *psigs = s->cert->conf_sigalgs;
1778
0
        return s->cert->conf_sigalgslen;
1779
538k
    } else {
1780
538k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1781
538k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1782
538k
    }
1783
538k
}
1784
1785
/*
1786
 * Called by servers only. Checks that we have a sig alg that supports the
1787
 * specified EC curve.
1788
 */
1789
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1790
0
{
1791
0
    const uint16_t *sigs;
1792
0
    size_t siglen, i;
1793
1794
0
    if (s->cert->conf_sigalgs) {
1795
0
        sigs = s->cert->conf_sigalgs;
1796
0
        siglen = s->cert->conf_sigalgslen;
1797
0
    } else {
1798
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1799
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1800
0
    }
1801
1802
0
    for (i = 0; i < siglen; i++) {
1803
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1804
1805
0
        if (lu == NULL)
1806
0
            continue;
1807
0
        if (lu->sig == EVP_PKEY_EC
1808
0
            && lu->curve != NID_undef
1809
0
            && curve == lu->curve)
1810
0
            return 1;
1811
0
    }
1812
1813
0
    return 0;
1814
0
}
1815
1816
/*
1817
 * Return the number of security bits for the signature algorithm, or 0 on
1818
 * error.
1819
 */
1820
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1821
726k
{
1822
726k
    const EVP_MD *md = NULL;
1823
726k
    int secbits = 0;
1824
1825
726k
    if (!tls1_lookup_md(ctx, lu, &md))
1826
0
        return 0;
1827
726k
    if (md != NULL) {
1828
678k
        int md_type = EVP_MD_get_type(md);
1829
1830
        /* Security bits: half digest bits */
1831
678k
        secbits = EVP_MD_get_size(md) * 4;
1832
        /*
1833
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1834
         * they're no longer accepted at security level 1. The real values don't
1835
         * really matter as long as they're lower than 80, which is our
1836
         * security level 1.
1837
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1838
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1839
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1840
         * puts a chosen-prefix attack for MD5 at 2^39.
1841
         */
1842
678k
        if (md_type == NID_sha1)
1843
57.1k
            secbits = 64;
1844
621k
        else if (md_type == NID_md5_sha1)
1845
1.89k
            secbits = 67;
1846
619k
        else if (md_type == NID_md5)
1847
0
            secbits = 39;
1848
678k
    } else {
1849
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1850
47.4k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1851
23.0k
            secbits = 128;
1852
24.4k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1853
24.4k
            secbits = 224;
1854
47.4k
    }
1855
    /*
1856
     * For provider-based sigalgs we have secbits information available
1857
     * in the (provider-loaded) sigalg_list structure
1858
     */
1859
726k
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1860
0
        && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1861
0
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1862
0
    }
1863
726k
    return secbits;
1864
726k
}
1865
1866
/*
1867
 * Check signature algorithm is consistent with sent supported signature
1868
 * algorithms and if so set relevant digest and signature scheme in
1869
 * s.
1870
 */
1871
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1872
7.77k
{
1873
7.77k
    const uint16_t *sent_sigs;
1874
7.77k
    const EVP_MD *md = NULL;
1875
7.77k
    char sigalgstr[2];
1876
7.77k
    size_t sent_sigslen, i, cidx;
1877
7.77k
    int pkeyid = -1;
1878
7.77k
    const SIGALG_LOOKUP *lu;
1879
7.77k
    int secbits = 0;
1880
1881
7.77k
    pkeyid = EVP_PKEY_get_id(pkey);
1882
1883
7.77k
    if (SSL_CONNECTION_IS_TLS13(s)) {
1884
        /* Disallow DSA for TLS 1.3 */
1885
6.76k
        if (pkeyid == EVP_PKEY_DSA) {
1886
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1887
0
            return 0;
1888
0
        }
1889
        /* Only allow PSS for TLS 1.3 */
1890
6.76k
        if (pkeyid == EVP_PKEY_RSA)
1891
6.75k
            pkeyid = EVP_PKEY_RSA_PSS;
1892
6.76k
    }
1893
7.77k
    lu = tls1_lookup_sigalg(s, sig);
1894
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1895
7.77k
    if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1896
0
        pkeyid = lu->sig;
1897
1898
    /* Should never happen */
1899
7.77k
    if (pkeyid == -1)
1900
0
        return -1;
1901
1902
    /*
1903
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1904
     * is consistent with signature: RSA keys can be used for RSA-PSS
1905
     */
1906
7.77k
    if (lu == NULL
1907
7.73k
        || (SSL_CONNECTION_IS_TLS13(s)
1908
6.74k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1909
7.73k
        || (pkeyid != lu->sig
1910
145
            && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1911
65
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1912
65
        return 0;
1913
65
    }
1914
    /* Check the sigalg is consistent with the key OID */
1915
7.70k
    if (!ssl_cert_lookup_by_nid(
1916
7.70k
            (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1917
7.70k
            &cidx, SSL_CONNECTION_GET_CTX(s))
1918
7.70k
        || lu->sig_idx != (int)cidx) {
1919
5
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1920
5
        return 0;
1921
5
    }
1922
1923
7.70k
    if (pkeyid == EVP_PKEY_EC) {
1924
1925
        /* Check point compression is permitted */
1926
144
        if (!tls1_check_pkey_comp(s, pkey)) {
1927
11
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1928
11
                SSL_R_ILLEGAL_POINT_COMPRESSION);
1929
11
            return 0;
1930
11
        }
1931
1932
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1933
133
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
1934
0
            int curve = ssl_get_EC_curve_nid(pkey);
1935
1936
0
            if (lu->curve != NID_undef && curve != lu->curve) {
1937
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1938
0
                return 0;
1939
0
            }
1940
0
        }
1941
133
        if (!SSL_CONNECTION_IS_TLS13(s)) {
1942
            /* Check curve matches extensions */
1943
133
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1944
3
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1945
3
                return 0;
1946
3
            }
1947
130
            if (tls1_suiteb(s)) {
1948
                /* Check sigalg matches a permissible Suite B value */
1949
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1950
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1951
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1952
0
                        SSL_R_WRONG_SIGNATURE_TYPE);
1953
0
                    return 0;
1954
0
                }
1955
0
            }
1956
130
        }
1957
7.55k
    } else if (tls1_suiteb(s)) {
1958
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1959
0
        return 0;
1960
0
    }
1961
1962
    /* Check signature matches a type we sent */
1963
7.68k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1964
99.9k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1965
99.9k
        if (sig == *sent_sigs)
1966
7.68k
            break;
1967
99.9k
    }
1968
    /* Allow fallback to SHA1 if not strict mode */
1969
7.68k
    if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1970
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1971
0
        return 0;
1972
0
    }
1973
7.68k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
1974
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1975
0
        return 0;
1976
0
    }
1977
    /*
1978
     * Make sure security callback allows algorithm. For historical
1979
     * reasons we have to pass the sigalg as a two byte char array.
1980
     */
1981
7.68k
    sigalgstr[0] = (sig >> 8) & 0xff;
1982
7.68k
    sigalgstr[1] = sig & 0xff;
1983
7.68k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
1984
7.68k
    if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_get_type(md) : NID_undef, (void *)sigalgstr)) {
1985
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1986
0
        return 0;
1987
0
    }
1988
    /* Store the sigalg the peer uses */
1989
7.68k
    s->s3.tmp.peer_sigalg = lu;
1990
7.68k
    return 1;
1991
7.68k
}
1992
1993
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1994
0
{
1995
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
1996
1997
0
    if (sc == NULL)
1998
0
        return 0;
1999
2000
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2001
0
        return 0;
2002
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2003
0
    return 1;
2004
0
}
2005
2006
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2007
0
{
2008
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2009
2010
0
    if (sc == NULL)
2011
0
        return 0;
2012
2013
0
    if (sc->s3.tmp.sigalg == NULL)
2014
0
        return 0;
2015
0
    *pnid = sc->s3.tmp.sigalg->sig;
2016
0
    return 1;
2017
0
}
2018
2019
/*
2020
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2021
 * supported, doesn't appear in supported signature algorithms, isn't supported
2022
 * by the enabled protocol versions or by the security level.
2023
 *
2024
 * This function should only be used for checking which ciphers are supported
2025
 * by the client.
2026
 *
2027
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2028
 */
2029
int ssl_set_client_disabled(SSL_CONNECTION *s)
2030
353k
{
2031
353k
    s->s3.tmp.mask_a = 0;
2032
353k
    s->s3.tmp.mask_k = 0;
2033
353k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2034
353k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2035
353k
            &s->s3.tmp.max_ver, NULL)
2036
353k
        != 0)
2037
0
        return 0;
2038
353k
#ifndef OPENSSL_NO_PSK
2039
    /* with PSK there must be client callback set */
2040
353k
    if (!s->psk_client_callback) {
2041
353k
        s->s3.tmp.mask_a |= SSL_aPSK;
2042
353k
        s->s3.tmp.mask_k |= SSL_PSK;
2043
353k
    }
2044
353k
#endif /* OPENSSL_NO_PSK */
2045
353k
#ifndef OPENSSL_NO_SRP
2046
353k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2047
353k
        s->s3.tmp.mask_a |= SSL_aSRP;
2048
353k
        s->s3.tmp.mask_k |= SSL_kSRP;
2049
353k
    }
2050
353k
#endif
2051
353k
    return 1;
2052
353k
}
2053
2054
/*
2055
 * ssl_cipher_disabled - check that a cipher is disabled or not
2056
 * @s: SSL connection that you want to use the cipher on
2057
 * @c: cipher to check
2058
 * @op: Security check that you want to do
2059
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2060
 *
2061
 * Returns 1 when it's disabled, 0 when enabled.
2062
 */
2063
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2064
    int op, int ecdhe)
2065
31.8M
{
2066
31.8M
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2067
31.8M
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2068
2069
31.8M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2070
18.5M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2071
13.2M
        return 1;
2072
18.5M
    if (s->s3.tmp.max_ver == 0)
2073
0
        return 1;
2074
2075
18.5M
    if (SSL_IS_QUIC_HANDSHAKE(s))
2076
        /* For QUIC, only allow these ciphersuites. */
2077
479k
        switch (SSL_CIPHER_get_id(c)) {
2078
152k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2079
325k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2080
479k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2081
479k
            break;
2082
34
        default:
2083
34
            return 1;
2084
479k
        }
2085
2086
    /*
2087
     * For historical reasons we will allow ECHDE to be selected by a server
2088
     * in SSLv3 if we are a client
2089
     */
2090
18.5M
    if (minversion == TLS1_VERSION
2091
1.24M
        && ecdhe
2092
5.47k
        && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2093
5.46k
        minversion = SSL3_VERSION;
2094
2095
18.5M
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2096
18.0M
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2097
453k
        return 1;
2098
2099
18.0M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2100
18.5M
}
2101
2102
int tls_use_ticket(SSL_CONNECTION *s)
2103
165k
{
2104
165k
    if ((s->options & SSL_OP_NO_TICKET))
2105
0
        return 0;
2106
165k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2107
165k
}
2108
2109
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2110
29.6k
{
2111
29.6k
    size_t i;
2112
2113
    /* Clear any shared signature algorithms */
2114
29.6k
    OPENSSL_free(s->shared_sigalgs);
2115
29.6k
    s->shared_sigalgs = NULL;
2116
29.6k
    s->shared_sigalgslen = 0;
2117
2118
    /* Clear certificate validity flags */
2119
29.6k
    if (s->s3.tmp.valid_flags)
2120
113
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2121
29.5k
    else
2122
29.5k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2123
29.6k
    if (s->s3.tmp.valid_flags == NULL)
2124
0
        return 0;
2125
    /*
2126
     * If peer sent no signature algorithms check to see if we support
2127
     * the default algorithm for each certificate type
2128
     */
2129
29.6k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2130
28.9k
        && s->s3.tmp.peer_sigalgs == NULL) {
2131
21.9k
        const uint16_t *sent_sigs;
2132
21.9k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2133
2134
258k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2135
236k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2136
236k
            size_t j;
2137
2138
236k
            if (lu == NULL)
2139
170k
                continue;
2140
            /* Check default matches a type we sent */
2141
1.48M
            for (j = 0; j < sent_sigslen; j++) {
2142
1.47M
                if (lu->sigalg == sent_sigs[j]) {
2143
60.4k
                    s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2144
60.4k
                    break;
2145
60.4k
                }
2146
1.47M
            }
2147
65.8k
        }
2148
21.9k
        return 1;
2149
21.9k
    }
2150
2151
7.68k
    if (!tls1_process_sigalgs(s)) {
2152
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2153
0
        return 0;
2154
0
    }
2155
7.68k
    if (s->shared_sigalgs != NULL)
2156
7.57k
        return 1;
2157
2158
    /* Fatal error if no shared signature algorithms */
2159
7.68k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2160
108
        SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2161
108
    return 0;
2162
7.68k
}
2163
2164
/*-
2165
 * Gets the ticket information supplied by the client if any.
2166
 *
2167
 *   hello: The parsed ClientHello data
2168
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2169
 *       point to the resulting session.
2170
 */
2171
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2172
    CLIENTHELLO_MSG *hello,
2173
    SSL_SESSION **ret)
2174
30.3k
{
2175
30.3k
    size_t size;
2176
30.3k
    RAW_EXTENSION *ticketext;
2177
2178
30.3k
    *ret = NULL;
2179
30.3k
    s->ext.ticket_expected = 0;
2180
2181
    /*
2182
     * If tickets disabled or not supported by the protocol version
2183
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2184
     * resumption.
2185
     */
2186
30.3k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2187
0
        return SSL_TICKET_NONE;
2188
2189
30.3k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2190
30.3k
    if (!ticketext->present)
2191
23.9k
        return SSL_TICKET_NONE;
2192
2193
6.47k
    size = PACKET_remaining(&ticketext->data);
2194
2195
6.47k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2196
6.47k
        hello->session_id, hello->session_id_len, ret);
2197
30.3k
}
2198
2199
/*-
2200
 * tls_decrypt_ticket attempts to decrypt a session ticket.
2201
 *
2202
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2203
 * expecting a pre-shared key ciphersuite, in which case we have no use for
2204
 * session tickets and one will never be decrypted, nor will
2205
 * s->ext.ticket_expected be set to 1.
2206
 *
2207
 * Side effects:
2208
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
2209
 *   a new session ticket to the client because the client indicated support
2210
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2211
 *   a session ticket or we couldn't use the one it gave us, or if
2212
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2213
 *   Otherwise, s->ext.ticket_expected is set to 0.
2214
 *
2215
 *   etick: points to the body of the session ticket extension.
2216
 *   eticklen: the length of the session tickets extension.
2217
 *   sess_id: points at the session ID.
2218
 *   sesslen: the length of the session ID.
2219
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
2220
 *       point to the resulting session.
2221
 */
2222
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2223
    const unsigned char *etick,
2224
    size_t eticklen,
2225
    const unsigned char *sess_id,
2226
    size_t sesslen, SSL_SESSION **psess)
2227
7.43k
{
2228
7.43k
    SSL_SESSION *sess = NULL;
2229
7.43k
    unsigned char *sdec;
2230
7.43k
    const unsigned char *p;
2231
7.43k
    int slen, ivlen, renew_ticket = 0, declen;
2232
7.43k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2233
7.43k
    size_t mlen;
2234
7.43k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2235
7.43k
    SSL_HMAC *hctx = NULL;
2236
7.43k
    EVP_CIPHER_CTX *ctx = NULL;
2237
7.43k
    SSL_CTX *tctx = s->session_ctx;
2238
7.43k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2239
2240
7.43k
    if (eticklen == 0) {
2241
        /*
2242
         * The client will accept a ticket but doesn't currently have
2243
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2244
         */
2245
4.04k
        ret = SSL_TICKET_EMPTY;
2246
4.04k
        goto end;
2247
4.04k
    }
2248
3.38k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2249
        /*
2250
         * Indicate that the ticket couldn't be decrypted rather than
2251
         * generating the session from ticket now, trigger
2252
         * abbreviated handshake based on external mechanism to
2253
         * calculate the master secret later.
2254
         */
2255
0
        ret = SSL_TICKET_NO_DECRYPT;
2256
0
        goto end;
2257
0
    }
2258
2259
    /* Need at least keyname + iv */
2260
3.38k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2261
1.01k
        ret = SSL_TICKET_NO_DECRYPT;
2262
1.01k
        goto end;
2263
1.01k
    }
2264
2265
    /* Initialize session ticket encryption and HMAC contexts */
2266
2.36k
    hctx = ssl_hmac_new(tctx);
2267
2.36k
    if (hctx == NULL) {
2268
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2269
0
        goto end;
2270
0
    }
2271
2.36k
    ctx = EVP_CIPHER_CTX_new();
2272
2.36k
    if (ctx == NULL) {
2273
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2274
0
        goto end;
2275
0
    }
2276
2.36k
#ifndef OPENSSL_NO_DEPRECATED_3_0
2277
2.36k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2278
#else
2279
    if (tctx->ext.ticket_key_evp_cb != NULL)
2280
#endif
2281
0
    {
2282
0
        unsigned char *nctick = (unsigned char *)etick;
2283
0
        int rv = 0;
2284
2285
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
2286
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
2287
0
                nctick,
2288
0
                nctick + TLSEXT_KEYNAME_LENGTH,
2289
0
                ctx,
2290
0
                ssl_hmac_get0_EVP_MAC_CTX(hctx),
2291
0
                0);
2292
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
2293
0
        else if (tctx->ext.ticket_key_cb != NULL)
2294
            /* if 0 is returned, write an empty ticket */
2295
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
2296
0
                nctick + TLSEXT_KEYNAME_LENGTH,
2297
0
                ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2298
0
#endif
2299
0
        if (rv < 0) {
2300
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2301
0
            goto end;
2302
0
        }
2303
0
        if (rv == 0) {
2304
0
            ret = SSL_TICKET_NO_DECRYPT;
2305
0
            goto end;
2306
0
        }
2307
0
        if (rv == 2)
2308
0
            renew_ticket = 1;
2309
2.36k
    } else {
2310
2.36k
        EVP_CIPHER *aes256cbc = NULL;
2311
2312
        /* Check key name matches */
2313
2.36k
        if (memcmp(etick, tctx->ext.tick_key_name,
2314
2.36k
                TLSEXT_KEYNAME_LENGTH)
2315
2.36k
            != 0) {
2316
980
            ret = SSL_TICKET_NO_DECRYPT;
2317
980
            goto end;
2318
980
        }
2319
2320
1.38k
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2321
1.38k
            sctx->propq);
2322
1.38k
        if (aes256cbc == NULL
2323
1.38k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2324
1.38k
                   sizeof(tctx->ext.secure->tick_hmac_key),
2325
1.38k
                   "SHA256")
2326
1.38k
                <= 0
2327
1.38k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2328
1.38k
                   tctx->ext.secure->tick_aes_key,
2329
1.38k
                   etick + TLSEXT_KEYNAME_LENGTH)
2330
1.38k
                <= 0) {
2331
0
            EVP_CIPHER_free(aes256cbc);
2332
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2333
0
            goto end;
2334
0
        }
2335
1.38k
        EVP_CIPHER_free(aes256cbc);
2336
1.38k
        if (SSL_CONNECTION_IS_TLS13(s))
2337
626
            renew_ticket = 1;
2338
1.38k
    }
2339
    /*
2340
     * Attempt to process session ticket, first conduct sanity and integrity
2341
     * checks on ticket.
2342
     */
2343
1.38k
    mlen = ssl_hmac_size(hctx);
2344
1.38k
    if (mlen == 0) {
2345
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2346
0
        goto end;
2347
0
    }
2348
2349
1.38k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2350
1.38k
    if (ivlen < 0) {
2351
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2352
0
        goto end;
2353
0
    }
2354
2355
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2356
1.38k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2357
159
        ret = SSL_TICKET_NO_DECRYPT;
2358
159
        goto end;
2359
159
    }
2360
1.23k
    eticklen -= mlen;
2361
    /* Check HMAC of encrypted ticket */
2362
1.23k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2363
1.23k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2364
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2365
0
        goto end;
2366
0
    }
2367
2368
1.23k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2369
193
        ret = SSL_TICKET_NO_DECRYPT;
2370
193
        goto end;
2371
193
    }
2372
    /* Attempt to decrypt session data */
2373
    /* Move p after IV to start of encrypted ticket, update length */
2374
1.03k
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2375
1.03k
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2376
1.03k
    sdec = OPENSSL_malloc(eticklen);
2377
1.03k
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) {
2378
0
        OPENSSL_free(sdec);
2379
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2380
0
        goto end;
2381
0
    }
2382
1.03k
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2383
66
        OPENSSL_free(sdec);
2384
66
        ret = SSL_TICKET_NO_DECRYPT;
2385
66
        goto end;
2386
66
    }
2387
971
    slen += declen;
2388
971
    p = sdec;
2389
2390
971
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2391
971
    slen -= p - sdec;
2392
971
    OPENSSL_free(sdec);
2393
971
    if (sess) {
2394
        /* Some additional consistency checks */
2395
816
        if (slen != 0) {
2396
12
            SSL_SESSION_free(sess);
2397
12
            sess = NULL;
2398
12
            ret = SSL_TICKET_NO_DECRYPT;
2399
12
            goto end;
2400
12
        }
2401
        /*
2402
         * The session ID, if non-empty, is used by some clients to detect
2403
         * that the ticket has been accepted. So we copy it to the session
2404
         * structure. If it is empty set length to zero as required by
2405
         * standard.
2406
         */
2407
804
        if (sesslen) {
2408
289
            memcpy(sess->session_id, sess_id, sesslen);
2409
289
            sess->session_id_length = sesslen;
2410
289
        }
2411
804
        if (renew_ticket)
2412
493
            ret = SSL_TICKET_SUCCESS_RENEW;
2413
311
        else
2414
311
            ret = SSL_TICKET_SUCCESS;
2415
804
        goto end;
2416
816
    }
2417
155
    ERR_clear_error();
2418
    /*
2419
     * For session parse failure, indicate that we need to send a new ticket.
2420
     */
2421
155
    ret = SSL_TICKET_NO_DECRYPT;
2422
2423
7.43k
end:
2424
7.43k
    EVP_CIPHER_CTX_free(ctx);
2425
7.43k
    ssl_hmac_free(hctx);
2426
2427
    /*
2428
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2429
     * detected above. The callback is responsible for checking |ret| before it
2430
     * performs any action
2431
     */
2432
7.43k
    if (s->session_ctx->decrypt_ticket_cb != NULL
2433
0
        && (ret == SSL_TICKET_EMPTY
2434
0
            || ret == SSL_TICKET_NO_DECRYPT
2435
0
            || ret == SSL_TICKET_SUCCESS
2436
0
            || ret == SSL_TICKET_SUCCESS_RENEW)) {
2437
0
        size_t keyname_len = eticklen;
2438
0
        int retcb;
2439
2440
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2441
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2442
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2443
0
            sess, etick, keyname_len,
2444
0
            ret,
2445
0
            s->session_ctx->ticket_cb_data);
2446
0
        switch (retcb) {
2447
0
        case SSL_TICKET_RETURN_ABORT:
2448
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2449
0
            break;
2450
2451
0
        case SSL_TICKET_RETURN_IGNORE:
2452
0
            ret = SSL_TICKET_NONE;
2453
0
            SSL_SESSION_free(sess);
2454
0
            sess = NULL;
2455
0
            break;
2456
2457
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2458
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2459
0
                ret = SSL_TICKET_NO_DECRYPT;
2460
            /* else the value of |ret| will already do the right thing */
2461
0
            SSL_SESSION_free(sess);
2462
0
            sess = NULL;
2463
0
            break;
2464
2465
0
        case SSL_TICKET_RETURN_USE:
2466
0
        case SSL_TICKET_RETURN_USE_RENEW:
2467
0
            if (ret != SSL_TICKET_SUCCESS
2468
0
                && ret != SSL_TICKET_SUCCESS_RENEW)
2469
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2470
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2471
0
                ret = SSL_TICKET_SUCCESS;
2472
0
            else
2473
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2474
0
            break;
2475
2476
0
        default:
2477
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2478
0
        }
2479
0
    }
2480
2481
7.43k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2482
7.43k
        switch (ret) {
2483
2.58k
        case SSL_TICKET_NO_DECRYPT:
2484
3.07k
        case SSL_TICKET_SUCCESS_RENEW:
2485
7.11k
        case SSL_TICKET_EMPTY:
2486
7.11k
            s->ext.ticket_expected = 1;
2487
7.43k
        }
2488
7.43k
    }
2489
2490
7.43k
    *psess = sess;
2491
2492
7.43k
    return ret;
2493
7.43k
}
2494
2495
/* Check to see if a signature algorithm is allowed */
2496
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2497
    const SIGALG_LOOKUP *lu)
2498
4.64M
{
2499
4.64M
    unsigned char sigalgstr[2];
2500
4.64M
    int secbits;
2501
2502
4.64M
    if (lu == NULL || !lu->enabled)
2503
0
        return 0;
2504
    /* DSA is not allowed in TLS 1.3 */
2505
4.64M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2506
9.95k
        return 0;
2507
    /*
2508
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2509
     * spec
2510
     */
2511
4.63M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2512
3.50M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
2513
1.85M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2514
1.19M
            || lu->hash_idx == SSL_MD_MD5_IDX
2515
1.19M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2516
693k
        return 0;
2517
2518
    /* See if public key algorithm allowed */
2519
3.93M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2520
0
        return 0;
2521
2522
3.93M
    if (lu->sig == NID_id_GostR3410_2012_256
2523
3.93M
        || lu->sig == NID_id_GostR3410_2012_512
2524
3.93M
        || lu->sig == NID_id_GostR3410_2001) {
2525
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2526
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
2527
0
            return 0;
2528
0
        if (!s->server
2529
0
            && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2530
0
            && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2531
0
            int i, num;
2532
0
            STACK_OF(SSL_CIPHER) *sk;
2533
2534
            /*
2535
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2536
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2537
             * ciphersuites enabled.
2538
             */
2539
2540
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2541
0
                return 0;
2542
2543
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2544
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2545
0
            for (i = 0; i < num; i++) {
2546
0
                const SSL_CIPHER *c;
2547
2548
0
                c = sk_SSL_CIPHER_value(sk, i);
2549
                /* Skip disabled ciphers */
2550
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2551
0
                    continue;
2552
2553
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2554
0
                    break;
2555
0
            }
2556
0
            if (i == num)
2557
0
                return 0;
2558
0
        }
2559
0
    }
2560
2561
    /* Finally see if security callback allows it */
2562
3.93M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2563
3.93M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2564
3.93M
    sigalgstr[1] = lu->sigalg & 0xff;
2565
3.93M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2566
3.93M
}
2567
2568
/*
2569
 * Get a mask of disabled public key algorithms based on supported signature
2570
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2571
 * disabled.
2572
 */
2573
2574
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2575
353k
{
2576
353k
    const uint16_t *sigalgs;
2577
353k
    size_t i, sigalgslen;
2578
353k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2579
    /*
2580
     * Go through all signature algorithms seeing if we support any
2581
     * in disabled_mask.
2582
     */
2583
353k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2584
10.7M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2585
10.3M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2586
10.3M
        const SSL_CERT_LOOKUP *clu;
2587
2588
10.3M
        if (lu == NULL)
2589
790k
            continue;
2590
2591
9.58M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2592
9.58M
            SSL_CONNECTION_GET_CTX(s));
2593
9.58M
        if (clu == NULL)
2594
0
            continue;
2595
2596
        /* If algorithm is disabled see if we can enable it */
2597
9.58M
        if ((clu->amask & disabled_mask) != 0
2598
1.46M
            && tls12_sigalg_allowed(s, op, lu))
2599
959k
            disabled_mask &= ~clu->amask;
2600
9.58M
    }
2601
353k
    *pmask_a |= disabled_mask;
2602
353k
}
2603
2604
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2605
    const uint16_t *psig, size_t psiglen)
2606
116k
{
2607
116k
    size_t i;
2608
116k
    int rv = 0;
2609
2610
3.54M
    for (i = 0; i < psiglen; i++, psig++) {
2611
3.42M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2612
2613
3.42M
        if (lu == NULL
2614
3.16M
            || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2615
762k
            continue;
2616
2.66M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2617
0
            return 0;
2618
        /*
2619
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2620
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2621
         */
2622
2.66M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224)))
2623
116k
            rv = 1;
2624
2.66M
    }
2625
116k
    if (rv == 0)
2626
116k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2627
116k
    return rv;
2628
116k
}
2629
2630
/* Given preference and allowed sigalgs set shared sigalgs */
2631
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2632
    const SIGALG_LOOKUP **shsig,
2633
    const uint16_t *pref, size_t preflen,
2634
    const uint16_t *allow, size_t allowlen)
2635
18.5k
{
2636
18.5k
    const uint16_t *ptmp, *atmp;
2637
18.5k
    size_t i, j, nmatch = 0;
2638
457k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2639
439k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2640
2641
        /* Skip disabled hashes or signature algorithms */
2642
439k
        if (lu == NULL
2643
193k
            || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2644
255k
            continue;
2645
2.87M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2646
2.87M
            if (*ptmp == *atmp) {
2647
184k
                nmatch++;
2648
184k
                if (shsig)
2649
92.0k
                    *shsig++ = lu;
2650
184k
                break;
2651
184k
            }
2652
2.87M
        }
2653
184k
    }
2654
18.5k
    return nmatch;
2655
18.5k
}
2656
2657
/* Set shared signature algorithms for SSL structures */
2658
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2659
9.36k
{
2660
9.36k
    const uint16_t *pref, *allow, *conf;
2661
9.36k
    size_t preflen, allowlen, conflen;
2662
9.36k
    size_t nmatch;
2663
9.36k
    const SIGALG_LOOKUP **salgs = NULL;
2664
9.36k
    CERT *c = s->cert;
2665
9.36k
    unsigned int is_suiteb = tls1_suiteb(s);
2666
2667
9.36k
    OPENSSL_free(s->shared_sigalgs);
2668
9.36k
    s->shared_sigalgs = NULL;
2669
9.36k
    s->shared_sigalgslen = 0;
2670
    /* If client use client signature algorithms if not NULL */
2671
9.36k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2672
0
        conf = c->client_sigalgs;
2673
0
        conflen = c->client_sigalgslen;
2674
9.36k
    } else if (c->conf_sigalgs && !is_suiteb) {
2675
0
        conf = c->conf_sigalgs;
2676
0
        conflen = c->conf_sigalgslen;
2677
0
    } else
2678
9.36k
        conflen = tls12_get_psigalgs(s, 0, &conf);
2679
9.36k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2680
0
        pref = conf;
2681
0
        preflen = conflen;
2682
0
        allow = s->s3.tmp.peer_sigalgs;
2683
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2684
9.36k
    } else {
2685
9.36k
        allow = conf;
2686
9.36k
        allowlen = conflen;
2687
9.36k
        pref = s->s3.tmp.peer_sigalgs;
2688
9.36k
        preflen = s->s3.tmp.peer_sigalgslen;
2689
9.36k
    }
2690
9.36k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2691
9.36k
    if (nmatch) {
2692
9.15k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2693
0
            return 0;
2694
9.15k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2695
9.15k
    } else {
2696
219
        salgs = NULL;
2697
219
    }
2698
9.36k
    s->shared_sigalgs = salgs;
2699
9.36k
    s->shared_sigalgslen = nmatch;
2700
9.36k
    return 1;
2701
9.36k
}
2702
2703
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2704
30.7k
{
2705
30.7k
    unsigned int stmp;
2706
30.7k
    size_t size, i;
2707
30.7k
    uint16_t *buf;
2708
2709
30.7k
    size = PACKET_remaining(pkt);
2710
2711
    /* Invalid data length */
2712
30.7k
    if (size == 0 || (size & 1) != 0)
2713
68
        return 0;
2714
2715
30.6k
    size >>= 1;
2716
2717
30.6k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2718
0
        return 0;
2719
334k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2720
303k
        buf[i] = stmp;
2721
2722
30.6k
    if (i != size) {
2723
0
        OPENSSL_free(buf);
2724
0
        return 0;
2725
0
    }
2726
2727
30.6k
    OPENSSL_free(*pdest);
2728
30.6k
    *pdest = buf;
2729
30.6k
    *pdestlen = size;
2730
2731
30.6k
    return 1;
2732
30.6k
}
2733
2734
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2735
11.3k
{
2736
    /* Extension ignored for inappropriate versions */
2737
11.3k
    if (!SSL_USE_SIGALGS(s))
2738
273
        return 1;
2739
    /* Should never happen */
2740
11.0k
    if (s->cert == NULL)
2741
0
        return 0;
2742
2743
11.0k
    if (cert)
2744
950
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2745
950
            &s->s3.tmp.peer_cert_sigalgslen);
2746
10.1k
    else
2747
10.1k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2748
10.1k
            &s->s3.tmp.peer_sigalgslen);
2749
11.0k
}
2750
2751
/* Set preferred digest for each key type */
2752
2753
int tls1_process_sigalgs(SSL_CONNECTION *s)
2754
9.36k
{
2755
9.36k
    size_t i;
2756
9.36k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2757
2758
9.36k
    if (!tls1_set_shared_sigalgs(s))
2759
0
        return 0;
2760
2761
108k
    for (i = 0; i < s->ssl_pkey_num; i++)
2762
99.0k
        pvalid[i] = 0;
2763
2764
101k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2765
92.0k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2766
92.0k
        int idx = sigptr->sig_idx;
2767
2768
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2769
92.0k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2770
2.76k
            continue;
2771
        /* If not disabled indicate we can explicitly sign */
2772
89.2k
        if (pvalid[idx] == 0
2773
17.2k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2774
17.2k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2775
89.2k
    }
2776
9.36k
    return 1;
2777
9.36k
}
2778
2779
int SSL_get_sigalgs(SSL *s, int idx,
2780
    int *psign, int *phash, int *psignhash,
2781
    unsigned char *rsig, unsigned char *rhash)
2782
0
{
2783
0
    uint16_t *psig;
2784
0
    size_t numsigalgs;
2785
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2786
2787
0
    if (sc == NULL)
2788
0
        return 0;
2789
2790
0
    psig = sc->s3.tmp.peer_sigalgs;
2791
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
2792
2793
0
    if (psig == NULL || numsigalgs > INT_MAX)
2794
0
        return 0;
2795
0
    if (idx >= 0) {
2796
0
        const SIGALG_LOOKUP *lu;
2797
2798
0
        if (idx >= (int)numsigalgs)
2799
0
            return 0;
2800
0
        psig += idx;
2801
0
        if (rhash != NULL)
2802
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2803
0
        if (rsig != NULL)
2804
0
            *rsig = (unsigned char)(*psig & 0xff);
2805
0
        lu = tls1_lookup_sigalg(sc, *psig);
2806
0
        if (psign != NULL)
2807
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2808
0
        if (phash != NULL)
2809
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2810
0
        if (psignhash != NULL)
2811
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2812
0
    }
2813
0
    return (int)numsigalgs;
2814
0
}
2815
2816
int SSL_get_shared_sigalgs(SSL *s, int idx,
2817
    int *psign, int *phash, int *psignhash,
2818
    unsigned char *rsig, unsigned char *rhash)
2819
0
{
2820
0
    const SIGALG_LOOKUP *shsigalgs;
2821
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2822
2823
0
    if (sc == NULL)
2824
0
        return 0;
2825
2826
0
    if (sc->shared_sigalgs == NULL
2827
0
        || idx < 0
2828
0
        || idx >= (int)sc->shared_sigalgslen
2829
0
        || sc->shared_sigalgslen > INT_MAX)
2830
0
        return 0;
2831
0
    shsigalgs = sc->shared_sigalgs[idx];
2832
0
    if (phash != NULL)
2833
0
        *phash = shsigalgs->hash;
2834
0
    if (psign != NULL)
2835
0
        *psign = shsigalgs->sig;
2836
0
    if (psignhash != NULL)
2837
0
        *psignhash = shsigalgs->sigandhash;
2838
0
    if (rsig != NULL)
2839
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2840
0
    if (rhash != NULL)
2841
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2842
0
    return (int)sc->shared_sigalgslen;
2843
0
}
2844
2845
/* Maximum possible number of unique entries in sigalgs array */
2846
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2847
2848
typedef struct {
2849
    size_t sigalgcnt;
2850
    /* TLSEXT_SIGALG_XXX values */
2851
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2852
    SSL_CTX *ctx;
2853
} sig_cb_st;
2854
2855
static void get_sigorhash(int *psig, int *phash, const char *str)
2856
0
{
2857
0
    if (strcmp(str, "RSA") == 0) {
2858
0
        *psig = EVP_PKEY_RSA;
2859
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2860
0
        *psig = EVP_PKEY_RSA_PSS;
2861
0
    } else if (strcmp(str, "DSA") == 0) {
2862
0
        *psig = EVP_PKEY_DSA;
2863
0
    } else if (strcmp(str, "ECDSA") == 0) {
2864
0
        *psig = EVP_PKEY_EC;
2865
0
    } else {
2866
0
        *phash = OBJ_sn2nid(str);
2867
0
        if (*phash == NID_undef)
2868
0
            *phash = OBJ_ln2nid(str);
2869
0
    }
2870
0
}
2871
/* Maximum length of a signature algorithm string component */
2872
#define TLS_MAX_SIGSTRING_LEN 40
2873
2874
static int sig_cb(const char *elem, int len, void *arg)
2875
0
{
2876
0
    sig_cb_st *sarg = arg;
2877
0
    size_t i = 0;
2878
0
    const SIGALG_LOOKUP *s;
2879
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2880
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2881
0
    int ignore_unknown = 0;
2882
2883
0
    if (elem == NULL)
2884
0
        return 0;
2885
0
    if (elem[0] == '?') {
2886
0
        ignore_unknown = 1;
2887
0
        ++elem;
2888
0
        --len;
2889
0
    }
2890
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2891
0
        return 0;
2892
0
    if (len > (int)(sizeof(etmp) - 1))
2893
0
        return 0;
2894
0
    memcpy(etmp, elem, len);
2895
0
    etmp[len] = 0;
2896
0
    p = strchr(etmp, '+');
2897
    /*
2898
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2899
     * if there's no '+' in the provided name, look for the new-style combined
2900
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2901
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2902
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2903
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2904
     * in the table.
2905
     */
2906
0
    if (p == NULL) {
2907
        /* Load provider sigalgs */
2908
0
        if (sarg->ctx != NULL) {
2909
            /* Check if a provider supports the sigalg */
2910
0
            for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
2911
0
                if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
2912
0
                    && strcmp(etmp,
2913
0
                           sarg->ctx->sigalg_list[i].sigalg_name)
2914
0
                        == 0) {
2915
0
                    sarg->sigalgs[sarg->sigalgcnt++] = sarg->ctx->sigalg_list[i].code_point;
2916
0
                    break;
2917
0
                }
2918
0
            }
2919
0
        }
2920
        /* Check the built-in sigalgs */
2921
0
        if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
2922
0
            for (i = 0, s = sigalg_lookup_tbl;
2923
0
                i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
2924
0
                if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2925
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2926
0
                    break;
2927
0
                }
2928
0
            }
2929
0
            if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
2930
                /* Ignore unknown algorithms if ignore_unknown */
2931
0
                return ignore_unknown;
2932
0
            }
2933
0
        }
2934
0
    } else {
2935
0
        *p = 0;
2936
0
        p++;
2937
0
        if (*p == 0)
2938
0
            return 0;
2939
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
2940
0
        get_sigorhash(&sig_alg, &hash_alg, p);
2941
0
        if (sig_alg == NID_undef || hash_alg == NID_undef) {
2942
            /* Ignore unknown algorithms if ignore_unknown */
2943
0
            return ignore_unknown;
2944
0
        }
2945
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2946
0
            i++, s++) {
2947
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
2948
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2949
0
                break;
2950
0
            }
2951
0
        }
2952
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
2953
            /* Ignore unknown algorithms if ignore_unknown */
2954
0
            return ignore_unknown;
2955
0
        }
2956
0
    }
2957
2958
    /* Ignore duplicates */
2959
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2960
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2961
0
            sarg->sigalgcnt--;
2962
0
            return 1;
2963
0
        }
2964
0
    }
2965
0
    return 1;
2966
0
}
2967
2968
/*
2969
 * Set supported signature algorithms based on a colon separated list of the
2970
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2971
 */
2972
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
2973
0
{
2974
0
    sig_cb_st sig;
2975
0
    sig.sigalgcnt = 0;
2976
2977
0
    if (ctx != NULL)
2978
0
        sig.ctx = ctx;
2979
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2980
0
        return 0;
2981
0
    if (sig.sigalgcnt == 0) {
2982
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
2983
0
            "No valid signature algorithms in '%s'", str);
2984
0
        return 0;
2985
0
    }
2986
0
    if (c == NULL)
2987
0
        return 1;
2988
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2989
0
}
2990
2991
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2992
    int client)
2993
0
{
2994
0
    uint16_t *sigalgs;
2995
2996
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
2997
0
        return 0;
2998
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2999
3000
0
    if (client) {
3001
0
        OPENSSL_free(c->client_sigalgs);
3002
0
        c->client_sigalgs = sigalgs;
3003
0
        c->client_sigalgslen = salglen;
3004
0
    } else {
3005
0
        OPENSSL_free(c->conf_sigalgs);
3006
0
        c->conf_sigalgs = sigalgs;
3007
0
        c->conf_sigalgslen = salglen;
3008
0
    }
3009
3010
0
    return 1;
3011
0
}
3012
3013
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3014
0
{
3015
0
    uint16_t *sigalgs, *sptr;
3016
0
    size_t i;
3017
3018
0
    if (salglen & 1)
3019
0
        return 0;
3020
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3021
0
        return 0;
3022
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3023
0
        size_t j;
3024
0
        const SIGALG_LOOKUP *curr;
3025
0
        int md_id = *psig_nids++;
3026
0
        int sig_id = *psig_nids++;
3027
3028
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3029
0
            j++, curr++) {
3030
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3031
0
                *sptr++ = curr->sigalg;
3032
0
                break;
3033
0
            }
3034
0
        }
3035
3036
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3037
0
            goto err;
3038
0
    }
3039
3040
0
    if (client) {
3041
0
        OPENSSL_free(c->client_sigalgs);
3042
0
        c->client_sigalgs = sigalgs;
3043
0
        c->client_sigalgslen = salglen / 2;
3044
0
    } else {
3045
0
        OPENSSL_free(c->conf_sigalgs);
3046
0
        c->conf_sigalgs = sigalgs;
3047
0
        c->conf_sigalgslen = salglen / 2;
3048
0
    }
3049
3050
0
    return 1;
3051
3052
0
err:
3053
0
    OPENSSL_free(sigalgs);
3054
0
    return 0;
3055
0
}
3056
3057
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3058
0
{
3059
0
    int sig_nid, use_pc_sigalgs = 0;
3060
0
    size_t i;
3061
0
    const SIGALG_LOOKUP *sigalg;
3062
0
    size_t sigalgslen;
3063
3064
0
    if (default_nid == -1)
3065
0
        return 1;
3066
0
    sig_nid = X509_get_signature_nid(x);
3067
0
    if (default_nid)
3068
0
        return sig_nid == default_nid ? 1 : 0;
3069
3070
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3071
        /*
3072
         * If we're in TLSv1.3 then we only get here if we're checking the
3073
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3074
         * otherwise we default to normal sigalgs.
3075
         */
3076
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3077
0
        use_pc_sigalgs = 1;
3078
0
    } else {
3079
0
        sigalgslen = s->shared_sigalgslen;
3080
0
    }
3081
0
    for (i = 0; i < sigalgslen; i++) {
3082
0
        sigalg = use_pc_sigalgs
3083
0
            ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3084
0
            : s->shared_sigalgs[i];
3085
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3086
0
            return 1;
3087
0
    }
3088
0
    return 0;
3089
0
}
3090
3091
/* Check to see if a certificate issuer name matches list of CA names */
3092
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3093
0
{
3094
0
    const X509_NAME *nm;
3095
0
    int i;
3096
0
    nm = X509_get_issuer_name(x);
3097
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3098
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3099
0
            return 1;
3100
0
    }
3101
0
    return 0;
3102
0
}
3103
3104
/*
3105
 * Check certificate chain is consistent with TLS extensions and is usable by
3106
 * server. This servers two purposes: it allows users to check chains before
3107
 * passing them to the server and it allows the server to check chains before
3108
 * attempting to use them.
3109
 */
3110
3111
/* Flags which need to be set for a certificate when strict mode not set */
3112
3113
#define CERT_PKEY_VALID_FLAGS \
3114
0
    (CERT_PKEY_EE_SIGNATURE | CERT_PKEY_EE_PARAM)
3115
/* Strict mode flags */
3116
#define CERT_PKEY_STRICT_FLAGS                                           \
3117
0
    (CERT_PKEY_VALID_FLAGS | CERT_PKEY_CA_SIGNATURE | CERT_PKEY_CA_PARAM \
3118
0
        | CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE)
3119
3120
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3121
    STACK_OF(X509) *chain, int idx)
3122
236k
{
3123
236k
    int i;
3124
236k
    int rv = 0;
3125
236k
    int check_flags = 0, strict_mode;
3126
236k
    CERT_PKEY *cpk = NULL;
3127
236k
    CERT *c = s->cert;
3128
236k
    uint32_t *pvalid;
3129
236k
    unsigned int suiteb_flags = tls1_suiteb(s);
3130
3131
    /*
3132
     * Meaning of idx:
3133
     * idx == -1 means SSL_check_chain() invocation
3134
     * idx == -2 means checking client certificate chains
3135
     * idx >= 0 means checking SSL_PKEY index
3136
     *
3137
     * For RPK, where there may be no cert, we ignore -1
3138
     */
3139
236k
    if (idx != -1) {
3140
236k
        if (idx == -2) {
3141
0
            cpk = c->key;
3142
0
            idx = (int)(cpk - c->pkeys);
3143
0
        } else
3144
236k
            cpk = c->pkeys + idx;
3145
236k
        pvalid = s->s3.tmp.valid_flags + idx;
3146
236k
        x = cpk->x509;
3147
236k
        pk = cpk->privatekey;
3148
236k
        chain = cpk->chain;
3149
236k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3150
236k
        if (tls12_rpk_and_privkey(s, idx)) {
3151
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3152
0
                return 0;
3153
0
            *pvalid = rv = CERT_PKEY_RPK;
3154
0
            return rv;
3155
0
        }
3156
        /* If no cert or key, forget it */
3157
236k
        if (x == NULL || pk == NULL)
3158
157k
            goto end;
3159
236k
    } else {
3160
0
        size_t certidx;
3161
3162
0
        if (x == NULL || pk == NULL)
3163
0
            return 0;
3164
3165
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
3166
0
                SSL_CONNECTION_GET_CTX(s))
3167
0
            == NULL)
3168
0
            return 0;
3169
0
        idx = certidx;
3170
0
        pvalid = s->s3.tmp.valid_flags + idx;
3171
3172
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3173
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
3174
0
        else
3175
0
            check_flags = CERT_PKEY_VALID_FLAGS;
3176
0
        strict_mode = 1;
3177
0
    }
3178
3179
78.8k
    if (suiteb_flags) {
3180
0
        int ok;
3181
0
        if (check_flags)
3182
0
            check_flags |= CERT_PKEY_SUITEB;
3183
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3184
0
        if (ok == X509_V_OK)
3185
0
            rv |= CERT_PKEY_SUITEB;
3186
0
        else if (!check_flags)
3187
0
            goto end;
3188
0
    }
3189
3190
    /*
3191
     * Check all signature algorithms are consistent with signature
3192
     * algorithms extension if TLS 1.2 or later and strict mode.
3193
     */
3194
78.8k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3195
32.3k
        && strict_mode) {
3196
0
        int default_nid;
3197
0
        int rsign = 0;
3198
3199
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
3200
0
            || s->s3.tmp.peer_sigalgs != NULL) {
3201
0
            default_nid = 0;
3202
            /* If no sigalgs extension use defaults from RFC5246 */
3203
0
        } else {
3204
0
            switch (idx) {
3205
0
            case SSL_PKEY_RSA:
3206
0
                rsign = EVP_PKEY_RSA;
3207
0
                default_nid = NID_sha1WithRSAEncryption;
3208
0
                break;
3209
3210
0
            case SSL_PKEY_DSA_SIGN:
3211
0
                rsign = EVP_PKEY_DSA;
3212
0
                default_nid = NID_dsaWithSHA1;
3213
0
                break;
3214
3215
0
            case SSL_PKEY_ECC:
3216
0
                rsign = EVP_PKEY_EC;
3217
0
                default_nid = NID_ecdsa_with_SHA1;
3218
0
                break;
3219
3220
0
            case SSL_PKEY_GOST01:
3221
0
                rsign = NID_id_GostR3410_2001;
3222
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3223
0
                break;
3224
3225
0
            case SSL_PKEY_GOST12_256:
3226
0
                rsign = NID_id_GostR3410_2012_256;
3227
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3228
0
                break;
3229
3230
0
            case SSL_PKEY_GOST12_512:
3231
0
                rsign = NID_id_GostR3410_2012_512;
3232
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3233
0
                break;
3234
3235
0
            default:
3236
0
                default_nid = -1;
3237
0
                break;
3238
0
            }
3239
0
        }
3240
        /*
3241
         * If peer sent no signature algorithms extension and we have set
3242
         * preferred signature algorithms check we support sha1.
3243
         */
3244
0
        if (default_nid > 0 && c->conf_sigalgs) {
3245
0
            size_t j;
3246
0
            const uint16_t *p = c->conf_sigalgs;
3247
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3248
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3249
3250
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3251
0
                    break;
3252
0
            }
3253
0
            if (j == c->conf_sigalgslen) {
3254
0
                if (check_flags)
3255
0
                    goto skip_sigs;
3256
0
                else
3257
0
                    goto end;
3258
0
            }
3259
0
        }
3260
        /* Check signature algorithm of each cert in chain */
3261
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
3262
            /*
3263
             * We only get here if the application has called SSL_check_chain(),
3264
             * so check_flags is always set.
3265
             */
3266
0
            if (find_sig_alg(s, x, pk) != NULL)
3267
0
                rv |= CERT_PKEY_EE_SIGNATURE;
3268
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3269
0
            if (!check_flags)
3270
0
                goto end;
3271
0
        } else
3272
0
            rv |= CERT_PKEY_EE_SIGNATURE;
3273
0
        rv |= CERT_PKEY_CA_SIGNATURE;
3274
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3275
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3276
0
                if (check_flags) {
3277
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
3278
0
                    break;
3279
0
                } else
3280
0
                    goto end;
3281
0
            }
3282
0
        }
3283
0
    }
3284
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3285
78.8k
    else if (check_flags)
3286
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3287
78.8k
skip_sigs:
3288
    /* Check cert parameters are consistent */
3289
78.8k
    if (tls1_check_cert_param(s, x, 1))
3290
71.1k
        rv |= CERT_PKEY_EE_PARAM;
3291
7.63k
    else if (!check_flags)
3292
7.63k
        goto end;
3293
71.1k
    if (!s->server)
3294
0
        rv |= CERT_PKEY_CA_PARAM;
3295
    /* In strict mode check rest of chain too */
3296
71.1k
    else if (strict_mode) {
3297
0
        rv |= CERT_PKEY_CA_PARAM;
3298
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3299
0
            X509 *ca = sk_X509_value(chain, i);
3300
0
            if (!tls1_check_cert_param(s, ca, 0)) {
3301
0
                if (check_flags) {
3302
0
                    rv &= ~CERT_PKEY_CA_PARAM;
3303
0
                    break;
3304
0
                } else
3305
0
                    goto end;
3306
0
            }
3307
0
        }
3308
0
    }
3309
71.1k
    if (!s->server && strict_mode) {
3310
0
        STACK_OF(X509_NAME) *ca_dn;
3311
0
        int check_type = 0;
3312
3313
0
        if (EVP_PKEY_is_a(pk, "RSA"))
3314
0
            check_type = TLS_CT_RSA_SIGN;
3315
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
3316
0
            check_type = TLS_CT_DSS_SIGN;
3317
0
        else if (EVP_PKEY_is_a(pk, "EC"))
3318
0
            check_type = TLS_CT_ECDSA_SIGN;
3319
3320
0
        if (check_type) {
3321
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
3322
0
            size_t j;
3323
3324
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3325
0
                if (*ctypes == check_type) {
3326
0
                    rv |= CERT_PKEY_CERT_TYPE;
3327
0
                    break;
3328
0
                }
3329
0
            }
3330
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3331
0
                goto end;
3332
0
        } else {
3333
0
            rv |= CERT_PKEY_CERT_TYPE;
3334
0
        }
3335
3336
0
        ca_dn = s->s3.tmp.peer_ca_names;
3337
3338
0
        if (ca_dn == NULL
3339
0
            || sk_X509_NAME_num(ca_dn) == 0
3340
0
            || ssl_check_ca_name(ca_dn, x))
3341
0
            rv |= CERT_PKEY_ISSUER_NAME;
3342
0
        else
3343
0
            for (i = 0; i < sk_X509_num(chain); i++) {
3344
0
                X509 *xtmp = sk_X509_value(chain, i);
3345
3346
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
3347
0
                    rv |= CERT_PKEY_ISSUER_NAME;
3348
0
                    break;
3349
0
                }
3350
0
            }
3351
3352
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3353
0
            goto end;
3354
0
    } else
3355
71.1k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3356
3357
71.1k
    if (!check_flags || (rv & check_flags) == check_flags)
3358
71.1k
        rv |= CERT_PKEY_VALID;
3359
3360
236k
end:
3361
3362
236k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3363
97.0k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3364
139k
    else
3365
139k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3366
3367
    /*
3368
     * When checking a CERT_PKEY structure all flags are irrelevant if the
3369
     * chain is invalid.
3370
     */
3371
236k
    if (!check_flags) {
3372
236k
        if (rv & CERT_PKEY_VALID) {
3373
71.1k
            *pvalid = rv;
3374
165k
        } else {
3375
            /* Preserve sign and explicit sign flag, clear rest */
3376
165k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3377
165k
            return 0;
3378
165k
        }
3379
236k
    }
3380
71.1k
    return rv;
3381
236k
}
3382
3383
/* Set validity of certificates in an SSL structure */
3384
void tls1_set_cert_validity(SSL_CONNECTION *s)
3385
28.6k
{
3386
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3387
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3388
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3389
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3390
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3391
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3392
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3393
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3394
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3395
28.6k
}
3396
3397
/* User level utility function to check a chain is suitable */
3398
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3399
0
{
3400
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3401
3402
0
    if (sc == NULL)
3403
0
        return 0;
3404
3405
0
    return tls1_check_chain(sc, x, pk, chain, -1);
3406
0
}
3407
3408
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3409
0
{
3410
0
    EVP_PKEY *dhp = NULL;
3411
0
    BIGNUM *p;
3412
0
    int dh_secbits = 80, sec_level_bits;
3413
0
    EVP_PKEY_CTX *pctx = NULL;
3414
0
    OSSL_PARAM_BLD *tmpl = NULL;
3415
0
    OSSL_PARAM *params = NULL;
3416
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3417
3418
0
    if (s->cert->dh_tmp_auto != 2) {
3419
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3420
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
3421
0
                dh_secbits = 128;
3422
0
            else
3423
0
                dh_secbits = 80;
3424
0
        } else {
3425
0
            if (s->s3.tmp.cert == NULL)
3426
0
                return NULL;
3427
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3428
0
        }
3429
0
    }
3430
3431
    /* Do not pick a prime that is too weak for the current security level */
3432
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3433
0
        NULL, NULL);
3434
0
    if (dh_secbits < sec_level_bits)
3435
0
        dh_secbits = sec_level_bits;
3436
3437
0
    if (dh_secbits >= 192)
3438
0
        p = BN_get_rfc3526_prime_8192(NULL);
3439
0
    else if (dh_secbits >= 152)
3440
0
        p = BN_get_rfc3526_prime_4096(NULL);
3441
0
    else if (dh_secbits >= 128)
3442
0
        p = BN_get_rfc3526_prime_3072(NULL);
3443
0
    else if (dh_secbits >= 112)
3444
0
        p = BN_get_rfc3526_prime_2048(NULL);
3445
0
    else
3446
0
        p = BN_get_rfc2409_prime_1024(NULL);
3447
0
    if (p == NULL)
3448
0
        goto err;
3449
3450
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3451
0
    if (pctx == NULL
3452
0
        || EVP_PKEY_fromdata_init(pctx) != 1)
3453
0
        goto err;
3454
3455
0
    tmpl = OSSL_PARAM_BLD_new();
3456
0
    if (tmpl == NULL
3457
0
        || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3458
0
        || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3459
0
        goto err;
3460
3461
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
3462
0
    if (params == NULL
3463
0
        || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3464
0
        goto err;
3465
3466
0
err:
3467
0
    OSSL_PARAM_free(params);
3468
0
    OSSL_PARAM_BLD_free(tmpl);
3469
0
    EVP_PKEY_CTX_free(pctx);
3470
0
    BN_free(p);
3471
0
    return dhp;
3472
0
}
3473
3474
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3475
    int op)
3476
164k
{
3477
164k
    int secbits = -1;
3478
164k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
3479
3480
164k
    if (pkey) {
3481
        /*
3482
         * If no parameters this will return -1 and fail using the default
3483
         * security callback for any non-zero security level. This will
3484
         * reject keys which omit parameters but this only affects DSA and
3485
         * omission of parameters is never (?) done in practice.
3486
         */
3487
164k
        secbits = EVP_PKEY_get_security_bits(pkey);
3488
164k
    }
3489
164k
    if (s != NULL)
3490
24.5k
        return ssl_security(s, op, secbits, 0, x);
3491
140k
    else
3492
140k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
3493
164k
}
3494
3495
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3496
    int op)
3497
164k
{
3498
    /* Lookup signature algorithm digest */
3499
164k
    int secbits, nid, pknid;
3500
3501
    /* Don't check signature if self signed */
3502
164k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3503
164k
        return 1;
3504
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3505
0
        secbits = -1;
3506
    /* If digest NID not defined use signature NID */
3507
0
    if (nid == NID_undef)
3508
0
        nid = pknid;
3509
0
    if (s != NULL)
3510
0
        return ssl_security(s, op, secbits, nid, x);
3511
0
    else
3512
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3513
0
}
3514
3515
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3516
    int is_ee)
3517
181k
{
3518
181k
    if (vfy)
3519
0
        vfy = SSL_SECOP_PEER;
3520
181k
    if (is_ee) {
3521
181k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3522
0
            return SSL_R_EE_KEY_TOO_SMALL;
3523
181k
    } else {
3524
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3525
0
            return SSL_R_CA_KEY_TOO_SMALL;
3526
0
    }
3527
181k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3528
0
        return SSL_R_CA_MD_TOO_WEAK;
3529
181k
    return 1;
3530
181k
}
3531
3532
/*
3533
 * Check security of a chain, if |sk| includes the end entity certificate then
3534
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3535
 * one to the peer. Return values: 1 if ok otherwise error code to use
3536
 */
3537
3538
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3539
    X509 *x, int vfy)
3540
26.7k
{
3541
26.7k
    int rv, start_idx, i;
3542
3543
26.7k
    if (x == NULL) {
3544
26.7k
        x = sk_X509_value(sk, 0);
3545
26.7k
        if (x == NULL)
3546
0
            return ERR_R_INTERNAL_ERROR;
3547
26.7k
        start_idx = 1;
3548
26.7k
    } else
3549
0
        start_idx = 0;
3550
3551
26.7k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3552
26.7k
    if (rv != 1)
3553
0
        return rv;
3554
3555
26.7k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3556
0
        x = sk_X509_value(sk, i);
3557
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3558
0
        if (rv != 1)
3559
0
            return rv;
3560
0
    }
3561
26.7k
    return 1;
3562
26.7k
}
3563
3564
/*
3565
 * For TLS 1.2 servers check if we have a certificate which can be used
3566
 * with the signature algorithm "lu" and return index of certificate.
3567
 */
3568
3569
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3570
    const SIGALG_LOOKUP *lu)
3571
29.3k
{
3572
29.3k
    int sig_idx = lu->sig_idx;
3573
29.3k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3574
29.3k
        SSL_CONNECTION_GET_CTX(s));
3575
3576
    /* If not recognised or not supported by cipher mask it is not suitable */
3577
29.3k
    if (clu == NULL
3578
29.3k
        || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3579
18.4k
        || (clu->pkey_nid == EVP_PKEY_RSA_PSS
3580
1.22k
            && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3581
11.5k
        return -1;
3582
3583
    /* If doing RPK, the CERT_PKEY won't be "valid" */
3584
17.7k
    if (tls12_rpk_and_privkey(s, sig_idx))
3585
0
        return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3586
3587
17.7k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3588
17.7k
}
3589
3590
/*
3591
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3592
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3593
 * the key.
3594
 * Returns true if the cert is usable and false otherwise.
3595
 */
3596
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3597
    X509 *x, EVP_PKEY *pkey)
3598
47.4k
{
3599
47.4k
    const SIGALG_LOOKUP *lu;
3600
47.4k
    int mdnid, pknid, supported;
3601
47.4k
    size_t i;
3602
47.4k
    const char *mdname = NULL;
3603
47.4k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3604
3605
    /*
3606
     * If the given EVP_PKEY cannot support signing with this digest,
3607
     * the answer is simply 'no'.
3608
     */
3609
47.4k
    if (sig->hash != NID_undef)
3610
47.4k
        mdname = OBJ_nid2sn(sig->hash);
3611
47.4k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3612
47.4k
        mdname,
3613
47.4k
        sctx->propq);
3614
47.4k
    if (supported <= 0)
3615
0
        return 0;
3616
3617
    /*
3618
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3619
     * on the sigalg with which the certificate was signed (by its issuer).
3620
     */
3621
47.4k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3622
21.7k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3623
0
            return 0;
3624
121k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3625
100k
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3626
100k
            if (lu == NULL)
3627
72.3k
                continue;
3628
3629
            /*
3630
             * This does not differentiate between the
3631
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3632
             * have a chain here that lets us look at the key OID in the
3633
             * signing certificate.
3634
             */
3635
27.8k
            if (mdnid == lu->hash && pknid == lu->sig)
3636
52
                return 1;
3637
27.8k
        }
3638
21.7k
        return 0;
3639
21.7k
    }
3640
3641
    /*
3642
     * Without signat_algorithms_cert, any certificate for which we have
3643
     * a viable public key is permitted.
3644
     */
3645
25.6k
    return 1;
3646
47.4k
}
3647
3648
/*
3649
 * Returns true if |s| has a usable certificate configured for use
3650
 * with signature scheme |sig|.
3651
 * "Usable" includes a check for presence as well as applying
3652
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3653
 * Returns false if no usable certificate is found.
3654
 */
3655
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3656
47.7k
{
3657
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3658
47.7k
    if (idx == -1)
3659
7.21k
        idx = sig->sig_idx;
3660
47.7k
    if (!ssl_has_cert(s, idx))
3661
354
        return 0;
3662
3663
47.4k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3664
47.4k
        s->cert->pkeys[idx].privatekey);
3665
47.7k
}
3666
3667
/*
3668
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3669
 * specified signature scheme |sig|, or false otherwise.
3670
 */
3671
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3672
    EVP_PKEY *pkey)
3673
0
{
3674
0
    size_t idx;
3675
3676
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3677
0
        return 0;
3678
3679
    /* Check the key is consistent with the sig alg */
3680
0
    if ((int)idx != sig->sig_idx)
3681
0
        return 0;
3682
3683
0
    return check_cert_usable(s, sig, x, pkey);
3684
0
}
3685
3686
/*
3687
 * Find a signature scheme that works with the supplied certificate |x| and key
3688
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3689
 * available certs/keys to find one that works.
3690
 */
3691
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3692
    EVP_PKEY *pkey)
3693
1.85k
{
3694
1.85k
    const SIGALG_LOOKUP *lu = NULL;
3695
1.85k
    size_t i;
3696
1.85k
    int curve = -1;
3697
1.85k
    EVP_PKEY *tmppkey;
3698
1.85k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3699
3700
    /* Look for a shared sigalgs matching possible certificates */
3701
5.80k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3702
5.72k
        lu = s->shared_sigalgs[i];
3703
3704
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3705
5.72k
        if (lu->hash == NID_sha1
3706
4.85k
            || lu->hash == NID_sha224
3707
4.66k
            || lu->sig == EVP_PKEY_DSA
3708
4.66k
            || lu->sig == EVP_PKEY_RSA)
3709
2.21k
            continue;
3710
        /* Check that we have a cert, and signature_algorithms_cert */
3711
3.50k
        if (!tls1_lookup_md(sctx, lu, NULL))
3712
0
            continue;
3713
3.50k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3714
3.31k
            || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3715
199
            continue;
3716
3717
3.31k
        tmppkey = (pkey != NULL) ? pkey
3718
3.31k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3719
3720
3.31k
        if (lu->sig == EVP_PKEY_EC) {
3721
3.13k
            if (curve == -1)
3722
1.72k
                curve = ssl_get_EC_curve_nid(tmppkey);
3723
3.13k
            if (lu->curve != NID_undef && curve != lu->curve)
3724
1.53k
                continue;
3725
3.13k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3726
            /* validate that key is large enough for the signature algorithm */
3727
180
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3728
0
                continue;
3729
180
        }
3730
1.77k
        break;
3731
3.31k
    }
3732
3733
1.85k
    if (i == s->shared_sigalgslen)
3734
81
        return NULL;
3735
3736
1.77k
    return lu;
3737
1.85k
}
3738
3739
/*
3740
 * Choose an appropriate signature algorithm based on available certificates
3741
 * Sets chosen certificate and signature algorithm.
3742
 *
3743
 * For servers if we fail to find a required certificate it is a fatal error,
3744
 * an appropriate error code is set and a TLS alert is sent.
3745
 *
3746
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3747
 * a fatal error: we will either try another certificate or not present one
3748
 * to the server. In this case no error is set.
3749
 */
3750
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3751
11.5k
{
3752
11.5k
    const SIGALG_LOOKUP *lu = NULL;
3753
11.5k
    int sig_idx = -1;
3754
3755
11.5k
    s->s3.tmp.cert = NULL;
3756
11.5k
    s->s3.tmp.sigalg = NULL;
3757
3758
11.5k
    if (SSL_CONNECTION_IS_TLS13(s)) {
3759
1.17k
        lu = find_sig_alg(s, NULL, NULL);
3760
1.17k
        if (lu == NULL) {
3761
53
            if (!fatalerrs)
3762
0
                return 1;
3763
53
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3764
53
                SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3765
53
            return 0;
3766
53
        }
3767
10.3k
    } else {
3768
        /* If ciphersuite doesn't require a cert nothing to do */
3769
10.3k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3770
1.03k
            return 1;
3771
9.35k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3772
13
            return 1;
3773
3774
9.34k
        if (SSL_USE_SIGALGS(s)) {
3775
7.29k
            size_t i;
3776
7.29k
            if (s->s3.tmp.peer_sigalgs != NULL) {
3777
1.81k
                int curve = -1;
3778
1.81k
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3779
3780
                /* For Suite B need to match signature algorithm to curve */
3781
1.81k
                if (tls1_suiteb(s))
3782
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3783
0
                            .privatekey);
3784
3785
                /*
3786
                 * Find highest preference signature algorithm matching
3787
                 * cert type
3788
                 */
3789
12.1k
                for (i = 0; i < s->shared_sigalgslen; i++) {
3790
11.7k
                    lu = s->shared_sigalgs[i];
3791
3792
11.7k
                    if (s->server) {
3793
11.7k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3794
4.45k
                            continue;
3795
11.7k
                    } else {
3796
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3797
3798
0
                        sig_idx = lu->sig_idx;
3799
0
                        if (cc_idx != sig_idx)
3800
0
                            continue;
3801
0
                    }
3802
                    /* Check that we have a cert, and sig_algs_cert */
3803
7.32k
                    if (!has_usable_cert(s, lu, sig_idx))
3804
5.87k
                        continue;
3805
1.44k
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3806
                        /* validate that key is large enough for the signature algorithm */
3807
378
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3808
3809
378
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3810
0
                            continue;
3811
378
                    }
3812
1.44k
                    if (curve == -1 || lu->curve == curve)
3813
1.44k
                        break;
3814
1.44k
                }
3815
1.81k
#ifndef OPENSSL_NO_GOST
3816
                /*
3817
                 * Some Windows-based implementations do not send GOST algorithms indication
3818
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3819
                 * we have to assume GOST support.
3820
                 */
3821
1.81k
                if (i == s->shared_sigalgslen
3822
369
                    && (s->s3.tmp.new_cipher->algorithm_auth
3823
369
                           & (SSL_aGOST01 | SSL_aGOST12))
3824
369
                        != 0) {
3825
0
                    if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3826
0
                        if (!fatalerrs)
3827
0
                            return 1;
3828
0
                        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3829
0
                            SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3830
0
                        return 0;
3831
0
                    } else {
3832
0
                        i = 0;
3833
0
                        sig_idx = lu->sig_idx;
3834
0
                    }
3835
0
                }
3836
1.81k
#endif
3837
1.81k
                if (i == s->shared_sigalgslen) {
3838
369
                    if (!fatalerrs)
3839
0
                        return 1;
3840
369
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3841
369
                        SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3842
369
                    return 0;
3843
369
                }
3844
5.47k
            } else {
3845
                /*
3846
                 * If we have no sigalg use defaults
3847
                 */
3848
5.47k
                const uint16_t *sent_sigs;
3849
5.47k
                size_t sent_sigslen;
3850
3851
5.47k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3852
0
                    if (!fatalerrs)
3853
0
                        return 1;
3854
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3855
0
                        SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3856
0
                    return 0;
3857
0
                }
3858
3859
                /* Check signature matches a type we sent */
3860
5.47k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3861
113k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3862
113k
                    if (lu->sigalg == *sent_sigs
3863
5.47k
                        && has_usable_cert(s, lu, lu->sig_idx))
3864
5.47k
                        break;
3865
113k
                }
3866
5.47k
                if (i == sent_sigslen) {
3867
0
                    if (!fatalerrs)
3868
0
                        return 1;
3869
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3870
0
                        SSL_R_WRONG_SIGNATURE_TYPE);
3871
0
                    return 0;
3872
0
                }
3873
5.47k
            }
3874
7.29k
        } else {
3875
2.05k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3876
0
                if (!fatalerrs)
3877
0
                    return 1;
3878
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3879
0
                    SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3880
0
                return 0;
3881
0
            }
3882
2.05k
        }
3883
9.34k
    }
3884
10.0k
    if (sig_idx == -1)
3885
8.65k
        sig_idx = lu->sig_idx;
3886
10.0k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3887
10.0k
    s->cert->key = s->s3.tmp.cert;
3888
10.0k
    s->s3.tmp.sigalg = lu;
3889
10.0k
    return 1;
3890
11.5k
}
3891
3892
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3893
0
{
3894
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3895
0
        && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3896
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3897
0
        return 0;
3898
0
    }
3899
3900
0
    ctx->ext.max_fragment_len_mode = mode;
3901
0
    return 1;
3902
0
}
3903
3904
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3905
0
{
3906
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3907
3908
0
    if (sc == NULL
3909
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3910
0
        return 0;
3911
3912
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3913
0
        && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3914
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3915
0
        return 0;
3916
0
    }
3917
3918
0
    sc->ext.max_fragment_len_mode = mode;
3919
0
    return 1;
3920
0
}
3921
3922
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3923
0
{
3924
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
3925
0
        return TLSEXT_max_fragment_length_DISABLED;
3926
0
    return session->ext.max_fragment_len_mode;
3927
0
}
3928
3929
/*
3930
 * Helper functions for HMAC access with legacy support included.
3931
 */
3932
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3933
2.40k
{
3934
2.40k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3935
2.40k
    EVP_MAC *mac = NULL;
3936
3937
2.40k
    if (ret == NULL)
3938
0
        return NULL;
3939
2.40k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3940
2.40k
    if (ctx->ext.ticket_key_evp_cb == NULL
3941
2.40k
        && ctx->ext.ticket_key_cb != NULL) {
3942
0
        if (!ssl_hmac_old_new(ret))
3943
0
            goto err;
3944
0
        return ret;
3945
0
    }
3946
2.40k
#endif
3947
2.40k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3948
2.40k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3949
0
        goto err;
3950
2.40k
    EVP_MAC_free(mac);
3951
2.40k
    return ret;
3952
0
err:
3953
0
    EVP_MAC_CTX_free(ret->ctx);
3954
0
    EVP_MAC_free(mac);
3955
0
    OPENSSL_free(ret);
3956
0
    return NULL;
3957
2.40k
}
3958
3959
void ssl_hmac_free(SSL_HMAC *ctx)
3960
7.46k
{
3961
7.46k
    if (ctx != NULL) {
3962
2.40k
        EVP_MAC_CTX_free(ctx->ctx);
3963
2.40k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3964
2.40k
        ssl_hmac_old_free(ctx);
3965
2.40k
#endif
3966
2.40k
        OPENSSL_free(ctx);
3967
2.40k
    }
3968
7.46k
}
3969
3970
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3971
0
{
3972
0
    return ctx->ctx;
3973
0
}
3974
3975
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3976
1.42k
{
3977
1.42k
    OSSL_PARAM params[2], *p = params;
3978
3979
1.42k
    if (ctx->ctx != NULL) {
3980
1.42k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3981
1.42k
        *p = OSSL_PARAM_construct_end();
3982
1.42k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
3983
1.42k
            return 1;
3984
1.42k
    }
3985
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3986
0
    if (ctx->old_ctx != NULL)
3987
0
        return ssl_hmac_old_init(ctx, key, len, md);
3988
0
#endif
3989
0
    return 0;
3990
0
}
3991
3992
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3993
1.26k
{
3994
1.26k
    if (ctx->ctx != NULL)
3995
1.26k
        return EVP_MAC_update(ctx->ctx, data, len);
3996
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3997
0
    if (ctx->old_ctx != NULL)
3998
0
        return ssl_hmac_old_update(ctx, data, len);
3999
0
#endif
4000
0
    return 0;
4001
0
}
4002
4003
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4004
    size_t max_size)
4005
1.26k
{
4006
1.26k
    if (ctx->ctx != NULL)
4007
1.26k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4008
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4009
0
    if (ctx->old_ctx != NULL)
4010
0
        return ssl_hmac_old_final(ctx, md, len);
4011
0
#endif
4012
0
    return 0;
4013
0
}
4014
4015
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4016
1.38k
{
4017
1.38k
    if (ctx->ctx != NULL)
4018
1.38k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4019
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4020
0
    if (ctx->old_ctx != NULL)
4021
0
        return ssl_hmac_old_size(ctx);
4022
0
#endif
4023
0
    return 0;
4024
0
}
4025
4026
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4027
31.5k
{
4028
31.5k
    char gname[OSSL_MAX_NAME_SIZE];
4029
4030
31.5k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4031
31.5k
        return OBJ_txt2nid(gname);
4032
4033
0
    return NID_undef;
4034
31.5k
}
4035
4036
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4037
    const unsigned char *enckey,
4038
    size_t enckeylen)
4039
28.6k
{
4040
28.6k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4041
161
        int bits = EVP_PKEY_get_bits(pkey);
4042
4043
161
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4044
            /* the encoded key must be padded to the length of the p */
4045
12
            return 0;
4046
28.4k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4047
199
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4048
193
            || enckey[0] != 0x04)
4049
50
            return 0;
4050
199
    }
4051
4052
28.5k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4053
28.6k
}