Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl34/crypto/ec/ecp_nistp256.c
Line
Count
Source
1
/*
2
 * Copyright 2011-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/opensslconf.h>
41
42
#include <stdint.h>
43
#include <string.h>
44
#include <openssl/err.h>
45
#include "ec_local.h"
46
47
#include "internal/numbers.h"
48
49
#ifndef INT128_MAX
50
#error "Your compiler doesn't appear to support 128-bit integer types"
51
#endif
52
53
typedef uint8_t u8;
54
typedef uint32_t u32;
55
typedef uint64_t u64;
56
57
/*
58
 * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
59
 * can serialize an element of this field into 32 bytes. We call this an
60
 * felem_bytearray.
61
 */
62
63
typedef u8 felem_bytearray[32];
64
65
/*
66
 * These are the parameters of P256, taken from FIPS 186-3, page 86. These
67
 * values are big-endian.
68
 */
69
static const felem_bytearray nistp256_curve_params[5] = {
70
    { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
71
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
72
        0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
73
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
74
    { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
75
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
76
        0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
77
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc },
78
    { 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */
79
        0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
80
        0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
81
        0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b },
82
    { 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
83
        0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
84
        0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
85
        0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96 },
86
    { 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
87
        0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
88
        0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
89
        0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5 }
90
};
91
92
/*-
93
 * The representation of field elements.
94
 * ------------------------------------
95
 *
96
 * We represent field elements with either four 128-bit values, eight 128-bit
97
 * values, or four 64-bit values. The field element represented is:
98
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192  (mod p)
99
 * or:
100
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[7]*2^448  (mod p)
101
 *
102
 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
103
 * apart, but are 128-bits wide, the most significant bits of each limb overlap
104
 * with the least significant bits of the next.
105
 *
106
 * A field element with four limbs is an 'felem'. One with eight limbs is a
107
 * 'longfelem'
108
 *
109
 * A field element with four, 64-bit values is called a 'smallfelem'. Small
110
 * values are used as intermediate values before multiplication.
111
 */
112
113
0
#define NLIMBS 4
114
115
typedef uint128_t limb;
116
typedef limb felem[NLIMBS];
117
typedef limb longfelem[NLIMBS * 2];
118
typedef u64 smallfelem[NLIMBS];
119
120
/* This is the value of the prime as four 64-bit words, little-endian. */
121
static const u64 kPrime[4] = {
122
    0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul
123
};
124
static const u64 bottom63bits = 0x7ffffffffffffffful;
125
126
/*
127
 * bin32_to_felem takes a little-endian byte array and converts it into felem
128
 * form. This assumes that the CPU is little-endian.
129
 */
130
static void bin32_to_felem(felem out, const u8 in[32])
131
0
{
132
0
    out[0] = *((u64 *)&in[0]);
133
0
    out[1] = *((u64 *)&in[8]);
134
0
    out[2] = *((u64 *)&in[16]);
135
0
    out[3] = *((u64 *)&in[24]);
136
0
}
137
138
/*
139
 * smallfelem_to_bin32 takes a smallfelem and serializes into a little
140
 * endian, 32 byte array. This assumes that the CPU is little-endian.
141
 */
142
static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
143
0
{
144
0
    *((u64 *)&out[0]) = in[0];
145
0
    *((u64 *)&out[8]) = in[1];
146
0
    *((u64 *)&out[16]) = in[2];
147
0
    *((u64 *)&out[24]) = in[3];
148
0
}
149
150
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
151
static int BN_to_felem(felem out, const BIGNUM *bn)
152
0
{
153
0
    felem_bytearray b_out;
154
0
    int num_bytes;
155
156
0
    if (BN_is_negative(bn)) {
157
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
158
0
        return 0;
159
0
    }
160
0
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
161
0
    if (num_bytes < 0) {
162
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
163
0
        return 0;
164
0
    }
165
0
    bin32_to_felem(out, b_out);
166
0
    return 1;
167
0
}
168
169
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
170
static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
171
0
{
172
0
    felem_bytearray b_out;
173
0
    smallfelem_to_bin32(b_out, in);
174
0
    return BN_lebin2bn(b_out, sizeof(b_out), out);
175
0
}
176
177
/*-
178
 * Field operations
179
 * ----------------
180
 */
181
182
static void smallfelem_one(smallfelem out)
183
0
{
184
0
    out[0] = 1;
185
0
    out[1] = 0;
186
0
    out[2] = 0;
187
0
    out[3] = 0;
188
0
}
189
190
static void smallfelem_assign(smallfelem out, const smallfelem in)
191
0
{
192
0
    out[0] = in[0];
193
0
    out[1] = in[1];
194
0
    out[2] = in[2];
195
0
    out[3] = in[3];
196
0
}
197
198
static void felem_assign(felem out, const felem in)
199
0
{
200
0
    out[0] = in[0];
201
0
    out[1] = in[1];
202
0
    out[2] = in[2];
203
0
    out[3] = in[3];
204
0
}
205
206
/* felem_sum sets out = out + in. */
207
static void felem_sum(felem out, const felem in)
208
0
{
209
0
    out[0] += in[0];
210
0
    out[1] += in[1];
211
0
    out[2] += in[2];
212
0
    out[3] += in[3];
213
0
}
214
215
/* felem_small_sum sets out = out + in. */
216
static void felem_small_sum(felem out, const smallfelem in)
217
0
{
218
0
    out[0] += in[0];
219
0
    out[1] += in[1];
220
0
    out[2] += in[2];
221
0
    out[3] += in[3];
222
0
}
223
224
/* felem_scalar sets out = out * scalar */
225
static void felem_scalar(felem out, const u64 scalar)
226
0
{
227
0
    out[0] *= scalar;
228
0
    out[1] *= scalar;
229
0
    out[2] *= scalar;
230
0
    out[3] *= scalar;
231
0
}
232
233
/* longfelem_scalar sets out = out * scalar */
234
static void longfelem_scalar(longfelem out, const u64 scalar)
235
0
{
236
0
    out[0] *= scalar;
237
0
    out[1] *= scalar;
238
0
    out[2] *= scalar;
239
0
    out[3] *= scalar;
240
0
    out[4] *= scalar;
241
0
    out[5] *= scalar;
242
0
    out[6] *= scalar;
243
0
    out[7] *= scalar;
244
0
}
245
246
#define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
247
#define two105 (((limb)1) << 105)
248
#define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
249
250
/* zero105 is 0 mod p */
251
static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 };
252
253
/*-
254
 * smallfelem_neg sets |out| to |-small|
255
 * On exit:
256
 *   out[i] < out[i] + 2^105
257
 */
258
static void smallfelem_neg(felem out, const smallfelem small)
259
0
{
260
    /* In order to prevent underflow, we subtract from 0 mod p. */
261
0
    out[0] = zero105[0] - small[0];
262
0
    out[1] = zero105[1] - small[1];
263
0
    out[2] = zero105[2] - small[2];
264
0
    out[3] = zero105[3] - small[3];
265
0
}
266
267
/*-
268
 * felem_diff subtracts |in| from |out|
269
 * On entry:
270
 *   in[i] < 2^104
271
 * On exit:
272
 *   out[i] < out[i] + 2^105
273
 */
274
static void felem_diff(felem out, const felem in)
275
0
{
276
    /*
277
     * In order to prevent underflow, we add 0 mod p before subtracting.
278
     */
279
0
    out[0] += zero105[0];
280
0
    out[1] += zero105[1];
281
0
    out[2] += zero105[2];
282
0
    out[3] += zero105[3];
283
284
0
    out[0] -= in[0];
285
0
    out[1] -= in[1];
286
0
    out[2] -= in[2];
287
0
    out[3] -= in[3];
288
0
}
289
290
#define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
291
#define two107 (((limb)1) << 107)
292
#define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
293
294
/* zero107 is 0 mod p */
295
static const felem zero107 = {
296
    two107m43m11, two107, two107m43p11, two107m43p11
297
};
298
299
/*-
300
 * An alternative felem_diff for larger inputs |in|
301
 * felem_diff_zero107 subtracts |in| from |out|
302
 * On entry:
303
 *   in[i] < 2^106
304
 * On exit:
305
 *   out[i] < out[i] + 2^107
306
 */
307
static void felem_diff_zero107(felem out, const felem in)
308
0
{
309
    /*
310
     * In order to prevent underflow, we add 0 mod p before subtracting.
311
     */
312
0
    out[0] += zero107[0];
313
0
    out[1] += zero107[1];
314
0
    out[2] += zero107[2];
315
0
    out[3] += zero107[3];
316
317
0
    out[0] -= in[0];
318
0
    out[1] -= in[1];
319
0
    out[2] -= in[2];
320
0
    out[3] -= in[3];
321
0
}
322
323
/*-
324
 * longfelem_diff subtracts |in| from |out|
325
 * On entry:
326
 *   in[i] < 7*2^67
327
 * On exit:
328
 *   out[i] < out[i] + 2^70 + 2^40
329
 */
330
static void longfelem_diff(longfelem out, const longfelem in)
331
0
{
332
0
    static const limb two70m8p6 = (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
333
0
    static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
334
0
    static const limb two70 = (((limb)1) << 70);
335
0
    static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) - (((limb)1) << 38) + (((limb)1) << 6);
336
0
    static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
337
338
    /* add 0 mod p to avoid underflow */
339
0
    out[0] += two70m8p6;
340
0
    out[1] += two70p40;
341
0
    out[2] += two70;
342
0
    out[3] += two70m40m38p6;
343
0
    out[4] += two70m6;
344
0
    out[5] += two70m6;
345
0
    out[6] += two70m6;
346
0
    out[7] += two70m6;
347
348
    /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
349
0
    out[0] -= in[0];
350
0
    out[1] -= in[1];
351
0
    out[2] -= in[2];
352
0
    out[3] -= in[3];
353
0
    out[4] -= in[4];
354
0
    out[5] -= in[5];
355
0
    out[6] -= in[6];
356
0
    out[7] -= in[7];
357
0
}
358
359
#define two64m0 (((limb)1) << 64) - 1
360
#define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
361
#define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
362
#define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
363
364
/* zero110 is 0 mod p */
365
static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
366
367
/*-
368
 * felem_shrink converts an felem into a smallfelem. The result isn't quite
369
 * minimal as the value may be greater than p.
370
 *
371
 * On entry:
372
 *   in[i] < 2^109
373
 * On exit:
374
 *   out[i] < 2^64
375
 */
376
static void felem_shrink(smallfelem out, const felem in)
377
0
{
378
0
    felem tmp;
379
0
    u64 a, b, mask;
380
0
    u64 high, low;
381
0
    static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
382
383
    /* Carry 2->3 */
384
0
    tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
385
    /* tmp[3] < 2^110 */
386
387
0
    tmp[2] = zero110[2] + (u64)in[2];
388
0
    tmp[0] = zero110[0] + in[0];
389
0
    tmp[1] = zero110[1] + in[1];
390
    /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
391
392
    /*
393
     * We perform two partial reductions where we eliminate the high-word of
394
     * tmp[3]. We don't update the other words till the end.
395
     */
396
0
    a = tmp[3] >> 64; /* a < 2^46 */
397
0
    tmp[3] = (u64)tmp[3];
398
0
    tmp[3] -= a;
399
0
    tmp[3] += ((limb)a) << 32;
400
    /* tmp[3] < 2^79 */
401
402
0
    b = a;
403
0
    a = tmp[3] >> 64; /* a < 2^15 */
404
0
    b += a; /* b < 2^46 + 2^15 < 2^47 */
405
0
    tmp[3] = (u64)tmp[3];
406
0
    tmp[3] -= a;
407
0
    tmp[3] += ((limb)a) << 32;
408
    /* tmp[3] < 2^64 + 2^47 */
409
410
    /*
411
     * This adjusts the other two words to complete the two partial
412
     * reductions.
413
     */
414
0
    tmp[0] += b;
415
0
    tmp[1] -= (((limb)b) << 32);
416
417
    /*
418
     * In order to make space in tmp[3] for the carry from 2 -> 3, we
419
     * conditionally subtract kPrime if tmp[3] is large enough.
420
     */
421
0
    high = (u64)(tmp[3] >> 64);
422
    /* As tmp[3] < 2^65, high is either 1 or 0 */
423
0
    high = 0 - high;
424
    /*-
425
     * high is:
426
     *   all ones   if the high word of tmp[3] is 1
427
     *   all zeros  if the high word of tmp[3] if 0
428
     */
429
0
    low = (u64)tmp[3];
430
0
    mask = 0 - (low >> 63);
431
    /*-
432
     * mask is:
433
     *   all ones   if the MSB of low is 1
434
     *   all zeros  if the MSB of low if 0
435
     */
436
0
    low &= bottom63bits;
437
0
    low -= kPrime3Test;
438
    /* if low was greater than kPrime3Test then the MSB is zero */
439
0
    low = ~low;
440
0
    low = 0 - (low >> 63);
441
    /*-
442
     * low is:
443
     *   all ones   if low was > kPrime3Test
444
     *   all zeros  if low was <= kPrime3Test
445
     */
446
0
    mask = (mask & low) | high;
447
0
    tmp[0] -= mask & kPrime[0];
448
0
    tmp[1] -= mask & kPrime[1];
449
    /* kPrime[2] is zero, so omitted */
450
0
    tmp[3] -= mask & kPrime[3];
451
    /* tmp[3] < 2**64 - 2**32 + 1 */
452
453
0
    tmp[1] += ((u64)(tmp[0] >> 64));
454
0
    tmp[0] = (u64)tmp[0];
455
0
    tmp[2] += ((u64)(tmp[1] >> 64));
456
0
    tmp[1] = (u64)tmp[1];
457
0
    tmp[3] += ((u64)(tmp[2] >> 64));
458
0
    tmp[2] = (u64)tmp[2];
459
    /* tmp[i] < 2^64 */
460
461
0
    out[0] = tmp[0];
462
0
    out[1] = tmp[1];
463
0
    out[2] = tmp[2];
464
0
    out[3] = tmp[3];
465
0
}
466
467
/* smallfelem_expand converts a smallfelem to an felem */
468
static void smallfelem_expand(felem out, const smallfelem in)
469
0
{
470
0
    out[0] = in[0];
471
0
    out[1] = in[1];
472
0
    out[2] = in[2];
473
0
    out[3] = in[3];
474
0
}
475
476
/*-
477
 * smallfelem_square sets |out| = |small|^2
478
 * On entry:
479
 *   small[i] < 2^64
480
 * On exit:
481
 *   out[i] < 7 * 2^64 < 2^67
482
 */
483
static void smallfelem_square(longfelem out, const smallfelem small)
484
0
{
485
0
    limb a;
486
0
    u64 high, low;
487
488
0
    a = ((uint128_t)small[0]) * small[0];
489
0
    low = a;
490
0
    high = a >> 64;
491
0
    out[0] = low;
492
0
    out[1] = high;
493
494
0
    a = ((uint128_t)small[0]) * small[1];
495
0
    low = a;
496
0
    high = a >> 64;
497
0
    out[1] += low;
498
0
    out[1] += low;
499
0
    out[2] = high;
500
501
0
    a = ((uint128_t)small[0]) * small[2];
502
0
    low = a;
503
0
    high = a >> 64;
504
0
    out[2] += low;
505
0
    out[2] *= 2;
506
0
    out[3] = high;
507
508
0
    a = ((uint128_t)small[0]) * small[3];
509
0
    low = a;
510
0
    high = a >> 64;
511
0
    out[3] += low;
512
0
    out[4] = high;
513
514
0
    a = ((uint128_t)small[1]) * small[2];
515
0
    low = a;
516
0
    high = a >> 64;
517
0
    out[3] += low;
518
0
    out[3] *= 2;
519
0
    out[4] += high;
520
521
0
    a = ((uint128_t)small[1]) * small[1];
522
0
    low = a;
523
0
    high = a >> 64;
524
0
    out[2] += low;
525
0
    out[3] += high;
526
527
0
    a = ((uint128_t)small[1]) * small[3];
528
0
    low = a;
529
0
    high = a >> 64;
530
0
    out[4] += low;
531
0
    out[4] *= 2;
532
0
    out[5] = high;
533
534
0
    a = ((uint128_t)small[2]) * small[3];
535
0
    low = a;
536
0
    high = a >> 64;
537
0
    out[5] += low;
538
0
    out[5] *= 2;
539
0
    out[6] = high;
540
0
    out[6] += high;
541
542
0
    a = ((uint128_t)small[2]) * small[2];
543
0
    low = a;
544
0
    high = a >> 64;
545
0
    out[4] += low;
546
0
    out[5] += high;
547
548
0
    a = ((uint128_t)small[3]) * small[3];
549
0
    low = a;
550
0
    high = a >> 64;
551
0
    out[6] += low;
552
0
    out[7] = high;
553
0
}
554
555
/*-
556
 * felem_square sets |out| = |in|^2
557
 * On entry:
558
 *   in[i] < 2^109
559
 * On exit:
560
 *   out[i] < 7 * 2^64 < 2^67
561
 */
562
static void felem_square(longfelem out, const felem in)
563
0
{
564
0
    u64 small[4];
565
0
    felem_shrink(small, in);
566
0
    smallfelem_square(out, small);
567
0
}
568
569
/*-
570
 * smallfelem_mul sets |out| = |small1| * |small2|
571
 * On entry:
572
 *   small1[i] < 2^64
573
 *   small2[i] < 2^64
574
 * On exit:
575
 *   out[i] < 7 * 2^64 < 2^67
576
 */
577
static void smallfelem_mul(longfelem out, const smallfelem small1,
578
    const smallfelem small2)
579
0
{
580
0
    limb a;
581
0
    u64 high, low;
582
583
0
    a = ((uint128_t)small1[0]) * small2[0];
584
0
    low = a;
585
0
    high = a >> 64;
586
0
    out[0] = low;
587
0
    out[1] = high;
588
589
0
    a = ((uint128_t)small1[0]) * small2[1];
590
0
    low = a;
591
0
    high = a >> 64;
592
0
    out[1] += low;
593
0
    out[2] = high;
594
595
0
    a = ((uint128_t)small1[1]) * small2[0];
596
0
    low = a;
597
0
    high = a >> 64;
598
0
    out[1] += low;
599
0
    out[2] += high;
600
601
0
    a = ((uint128_t)small1[0]) * small2[2];
602
0
    low = a;
603
0
    high = a >> 64;
604
0
    out[2] += low;
605
0
    out[3] = high;
606
607
0
    a = ((uint128_t)small1[1]) * small2[1];
608
0
    low = a;
609
0
    high = a >> 64;
610
0
    out[2] += low;
611
0
    out[3] += high;
612
613
0
    a = ((uint128_t)small1[2]) * small2[0];
614
0
    low = a;
615
0
    high = a >> 64;
616
0
    out[2] += low;
617
0
    out[3] += high;
618
619
0
    a = ((uint128_t)small1[0]) * small2[3];
620
0
    low = a;
621
0
    high = a >> 64;
622
0
    out[3] += low;
623
0
    out[4] = high;
624
625
0
    a = ((uint128_t)small1[1]) * small2[2];
626
0
    low = a;
627
0
    high = a >> 64;
628
0
    out[3] += low;
629
0
    out[4] += high;
630
631
0
    a = ((uint128_t)small1[2]) * small2[1];
632
0
    low = a;
633
0
    high = a >> 64;
634
0
    out[3] += low;
635
0
    out[4] += high;
636
637
0
    a = ((uint128_t)small1[3]) * small2[0];
638
0
    low = a;
639
0
    high = a >> 64;
640
0
    out[3] += low;
641
0
    out[4] += high;
642
643
0
    a = ((uint128_t)small1[1]) * small2[3];
644
0
    low = a;
645
0
    high = a >> 64;
646
0
    out[4] += low;
647
0
    out[5] = high;
648
649
0
    a = ((uint128_t)small1[2]) * small2[2];
650
0
    low = a;
651
0
    high = a >> 64;
652
0
    out[4] += low;
653
0
    out[5] += high;
654
655
0
    a = ((uint128_t)small1[3]) * small2[1];
656
0
    low = a;
657
0
    high = a >> 64;
658
0
    out[4] += low;
659
0
    out[5] += high;
660
661
0
    a = ((uint128_t)small1[2]) * small2[3];
662
0
    low = a;
663
0
    high = a >> 64;
664
0
    out[5] += low;
665
0
    out[6] = high;
666
667
0
    a = ((uint128_t)small1[3]) * small2[2];
668
0
    low = a;
669
0
    high = a >> 64;
670
0
    out[5] += low;
671
0
    out[6] += high;
672
673
0
    a = ((uint128_t)small1[3]) * small2[3];
674
0
    low = a;
675
0
    high = a >> 64;
676
0
    out[6] += low;
677
0
    out[7] = high;
678
0
}
679
680
/*-
681
 * felem_mul sets |out| = |in1| * |in2|
682
 * On entry:
683
 *   in1[i] < 2^109
684
 *   in2[i] < 2^109
685
 * On exit:
686
 *   out[i] < 7 * 2^64 < 2^67
687
 */
688
static void felem_mul(longfelem out, const felem in1, const felem in2)
689
0
{
690
0
    smallfelem small1, small2;
691
0
    felem_shrink(small1, in1);
692
0
    felem_shrink(small2, in2);
693
0
    smallfelem_mul(out, small1, small2);
694
0
}
695
696
/*-
697
 * felem_small_mul sets |out| = |small1| * |in2|
698
 * On entry:
699
 *   small1[i] < 2^64
700
 *   in2[i] < 2^109
701
 * On exit:
702
 *   out[i] < 7 * 2^64 < 2^67
703
 */
704
static void felem_small_mul(longfelem out, const smallfelem small1,
705
    const felem in2)
706
0
{
707
0
    smallfelem small2;
708
0
    felem_shrink(small2, in2);
709
0
    smallfelem_mul(out, small1, small2);
710
0
}
711
712
#define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
713
#define two100 (((limb)1) << 100)
714
#define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
715
/* zero100 is 0 mod p */
716
static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 };
717
718
/*-
719
 * Internal function for the different flavours of felem_reduce.
720
 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
721
 * On entry:
722
 *   out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
723
 *   out[1] >= in[7] + 2^32*in[4]
724
 *   out[2] >= in[5] + 2^32*in[5]
725
 *   out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
726
 * On exit:
727
 *   out[0] <= out[0] + in[4] + 2^32*in[5]
728
 *   out[1] <= out[1] + in[5] + 2^33*in[6]
729
 *   out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
730
 *   out[3] <= out[3] + 2^32*in[4] + 3*in[7]
731
 */
732
static void felem_reduce_(felem out, const longfelem in)
733
0
{
734
0
    int128_t c;
735
    /* combine common terms from below */
736
0
    c = in[4] + (in[5] << 32);
737
0
    out[0] += c;
738
0
    out[3] -= c;
739
740
0
    c = in[5] - in[7];
741
0
    out[1] += c;
742
0
    out[2] -= c;
743
744
    /* the remaining terms */
745
    /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
746
0
    out[1] -= (in[4] << 32);
747
0
    out[3] += (in[4] << 32);
748
749
    /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
750
0
    out[2] -= (in[5] << 32);
751
752
    /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
753
0
    out[0] -= in[6];
754
0
    out[0] -= (in[6] << 32);
755
0
    out[1] += (in[6] << 33);
756
0
    out[2] += (in[6] * 2);
757
0
    out[3] -= (in[6] << 32);
758
759
    /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
760
0
    out[0] -= in[7];
761
0
    out[0] -= (in[7] << 32);
762
0
    out[2] += (in[7] << 33);
763
0
    out[3] += (in[7] * 3);
764
0
}
765
766
/*-
767
 * felem_reduce converts a longfelem into an felem.
768
 * To be called directly after felem_square or felem_mul.
769
 * On entry:
770
 *   in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
771
 *   in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
772
 * On exit:
773
 *   out[i] < 2^101
774
 */
775
static void felem_reduce(felem out, const longfelem in)
776
0
{
777
0
    out[0] = zero100[0] + in[0];
778
0
    out[1] = zero100[1] + in[1];
779
0
    out[2] = zero100[2] + in[2];
780
0
    out[3] = zero100[3] + in[3];
781
782
0
    felem_reduce_(out, in);
783
784
    /*-
785
     * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
786
     * out[1] > 2^100 - 2^64 - 7*2^96 > 0
787
     * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
788
     * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
789
     *
790
     * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
791
     * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
792
     * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
793
     * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
794
     */
795
0
}
796
797
/*-
798
 * felem_reduce_zero105 converts a larger longfelem into an felem.
799
 * On entry:
800
 *   in[0] < 2^71
801
 * On exit:
802
 *   out[i] < 2^106
803
 */
804
static void felem_reduce_zero105(felem out, const longfelem in)
805
0
{
806
0
    out[0] = zero105[0] + in[0];
807
0
    out[1] = zero105[1] + in[1];
808
0
    out[2] = zero105[2] + in[2];
809
0
    out[3] = zero105[3] + in[3];
810
811
0
    felem_reduce_(out, in);
812
813
    /*-
814
     * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
815
     * out[1] > 2^105 - 2^71 - 2^103 > 0
816
     * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
817
     * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
818
     *
819
     * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
820
     * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
821
     * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
822
     * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
823
     */
824
0
}
825
826
/*
827
 * subtract_u64 sets *result = *result - v and *carry to one if the
828
 * subtraction underflowed.
829
 */
830
static void subtract_u64(u64 *result, u64 *carry, u64 v)
831
0
{
832
0
    uint128_t r = *result;
833
0
    r -= v;
834
0
    *carry = (r >> 64) & 1;
835
0
    *result = (u64)r;
836
0
}
837
838
/*
839
 * felem_contract converts |in| to its unique, minimal representation. On
840
 * entry: in[i] < 2^109
841
 */
842
static void felem_contract(smallfelem out, const felem in)
843
0
{
844
0
    unsigned i;
845
0
    u64 all_equal_so_far = 0, result = 0, carry;
846
847
0
    felem_shrink(out, in);
848
    /* small is minimal except that the value might be > p */
849
850
0
    all_equal_so_far--;
851
    /*
852
     * We are doing a constant time test if out >= kPrime. We need to compare
853
     * each u64, from most-significant to least significant. For each one, if
854
     * all words so far have been equal (m is all ones) then a non-equal
855
     * result is the answer. Otherwise we continue.
856
     */
857
0
    for (i = 3; i < 4; i--) {
858
0
        u64 equal;
859
0
        uint128_t a = ((uint128_t)kPrime[i]) - out[i];
860
        /*
861
         * if out[i] > kPrime[i] then a will underflow and the high 64-bits
862
         * will all be set.
863
         */
864
0
        result |= all_equal_so_far & ((u64)(a >> 64));
865
866
        /*
867
         * if kPrime[i] == out[i] then |equal| will be all zeros and the
868
         * decrement will make it all ones.
869
         */
870
0
        equal = kPrime[i] ^ out[i];
871
0
        equal--;
872
0
        equal &= equal << 32;
873
0
        equal &= equal << 16;
874
0
        equal &= equal << 8;
875
0
        equal &= equal << 4;
876
0
        equal &= equal << 2;
877
0
        equal &= equal << 1;
878
0
        equal = 0 - (equal >> 63);
879
880
0
        all_equal_so_far &= equal;
881
0
    }
882
883
    /*
884
     * if all_equal_so_far is still all ones then the two values are equal
885
     * and so out >= kPrime is true.
886
     */
887
0
    result |= all_equal_so_far;
888
889
    /* if out >= kPrime then we subtract kPrime. */
890
0
    subtract_u64(&out[0], &carry, result & kPrime[0]);
891
0
    subtract_u64(&out[1], &carry, carry);
892
0
    subtract_u64(&out[2], &carry, carry);
893
0
    subtract_u64(&out[3], &carry, carry);
894
895
0
    subtract_u64(&out[1], &carry, result & kPrime[1]);
896
0
    subtract_u64(&out[2], &carry, carry);
897
0
    subtract_u64(&out[3], &carry, carry);
898
899
0
    subtract_u64(&out[2], &carry, result & kPrime[2]);
900
0
    subtract_u64(&out[3], &carry, carry);
901
902
0
    subtract_u64(&out[3], &carry, result & kPrime[3]);
903
0
}
904
905
static void smallfelem_square_contract(smallfelem out, const smallfelem in)
906
0
{
907
0
    longfelem longtmp;
908
0
    felem tmp;
909
910
0
    smallfelem_square(longtmp, in);
911
0
    felem_reduce(tmp, longtmp);
912
0
    felem_contract(out, tmp);
913
0
}
914
915
static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
916
    const smallfelem in2)
917
0
{
918
0
    longfelem longtmp;
919
0
    felem tmp;
920
921
0
    smallfelem_mul(longtmp, in1, in2);
922
0
    felem_reduce(tmp, longtmp);
923
0
    felem_contract(out, tmp);
924
0
}
925
926
/*-
927
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
928
 * otherwise.
929
 * On entry:
930
 *   small[i] < 2^64
931
 */
932
static limb smallfelem_is_zero(const smallfelem small)
933
0
{
934
0
    limb result;
935
0
    u64 is_p;
936
937
0
    u64 is_zero = small[0] | small[1] | small[2] | small[3];
938
0
    is_zero--;
939
0
    is_zero &= is_zero << 32;
940
0
    is_zero &= is_zero << 16;
941
0
    is_zero &= is_zero << 8;
942
0
    is_zero &= is_zero << 4;
943
0
    is_zero &= is_zero << 2;
944
0
    is_zero &= is_zero << 1;
945
0
    is_zero = 0 - (is_zero >> 63);
946
947
0
    is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) | (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
948
0
    is_p--;
949
0
    is_p &= is_p << 32;
950
0
    is_p &= is_p << 16;
951
0
    is_p &= is_p << 8;
952
0
    is_p &= is_p << 4;
953
0
    is_p &= is_p << 2;
954
0
    is_p &= is_p << 1;
955
0
    is_p = 0 - (is_p >> 63);
956
957
0
    is_zero |= is_p;
958
959
0
    result = is_zero;
960
0
    result |= ((limb)is_zero) << 64;
961
0
    return result;
962
0
}
963
964
static int smallfelem_is_zero_int(const void *small)
965
0
{
966
0
    return (int)(smallfelem_is_zero(small) & ((limb)1));
967
0
}
968
969
/*-
970
 * felem_inv calculates |out| = |in|^{-1}
971
 *
972
 * Based on Fermat's Little Theorem:
973
 *   a^p = a (mod p)
974
 *   a^{p-1} = 1 (mod p)
975
 *   a^{p-2} = a^{-1} (mod p)
976
 */
977
static void felem_inv(felem out, const felem in)
978
0
{
979
0
    felem ftmp, ftmp2;
980
    /* each e_I will hold |in|^{2^I - 1} */
981
0
    felem e2, e4, e8, e16, e32, e64;
982
0
    longfelem tmp;
983
0
    unsigned i;
984
985
0
    felem_square(tmp, in);
986
0
    felem_reduce(ftmp, tmp); /* 2^1 */
987
0
    felem_mul(tmp, in, ftmp);
988
0
    felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
989
0
    felem_assign(e2, ftmp);
990
0
    felem_square(tmp, ftmp);
991
0
    felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
992
0
    felem_square(tmp, ftmp);
993
0
    felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
994
0
    felem_mul(tmp, ftmp, e2);
995
0
    felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
996
0
    felem_assign(e4, ftmp);
997
0
    felem_square(tmp, ftmp);
998
0
    felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
999
0
    felem_square(tmp, ftmp);
1000
0
    felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
1001
0
    felem_square(tmp, ftmp);
1002
0
    felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
1003
0
    felem_square(tmp, ftmp);
1004
0
    felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
1005
0
    felem_mul(tmp, ftmp, e4);
1006
0
    felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
1007
0
    felem_assign(e8, ftmp);
1008
0
    for (i = 0; i < 8; i++) {
1009
0
        felem_square(tmp, ftmp);
1010
0
        felem_reduce(ftmp, tmp);
1011
0
    } /* 2^16 - 2^8 */
1012
0
    felem_mul(tmp, ftmp, e8);
1013
0
    felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
1014
0
    felem_assign(e16, ftmp);
1015
0
    for (i = 0; i < 16; i++) {
1016
0
        felem_square(tmp, ftmp);
1017
0
        felem_reduce(ftmp, tmp);
1018
0
    } /* 2^32 - 2^16 */
1019
0
    felem_mul(tmp, ftmp, e16);
1020
0
    felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
1021
0
    felem_assign(e32, ftmp);
1022
0
    for (i = 0; i < 32; i++) {
1023
0
        felem_square(tmp, ftmp);
1024
0
        felem_reduce(ftmp, tmp);
1025
0
    } /* 2^64 - 2^32 */
1026
0
    felem_assign(e64, ftmp);
1027
0
    felem_mul(tmp, ftmp, in);
1028
0
    felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
1029
0
    for (i = 0; i < 192; i++) {
1030
0
        felem_square(tmp, ftmp);
1031
0
        felem_reduce(ftmp, tmp);
1032
0
    } /* 2^256 - 2^224 + 2^192 */
1033
1034
0
    felem_mul(tmp, e64, e32);
1035
0
    felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
1036
0
    for (i = 0; i < 16; i++) {
1037
0
        felem_square(tmp, ftmp2);
1038
0
        felem_reduce(ftmp2, tmp);
1039
0
    } /* 2^80 - 2^16 */
1040
0
    felem_mul(tmp, ftmp2, e16);
1041
0
    felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
1042
0
    for (i = 0; i < 8; i++) {
1043
0
        felem_square(tmp, ftmp2);
1044
0
        felem_reduce(ftmp2, tmp);
1045
0
    } /* 2^88 - 2^8 */
1046
0
    felem_mul(tmp, ftmp2, e8);
1047
0
    felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
1048
0
    for (i = 0; i < 4; i++) {
1049
0
        felem_square(tmp, ftmp2);
1050
0
        felem_reduce(ftmp2, tmp);
1051
0
    } /* 2^92 - 2^4 */
1052
0
    felem_mul(tmp, ftmp2, e4);
1053
0
    felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
1054
0
    felem_square(tmp, ftmp2);
1055
0
    felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
1056
0
    felem_square(tmp, ftmp2);
1057
0
    felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
1058
0
    felem_mul(tmp, ftmp2, e2);
1059
0
    felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
1060
0
    felem_square(tmp, ftmp2);
1061
0
    felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
1062
0
    felem_square(tmp, ftmp2);
1063
0
    felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
1064
0
    felem_mul(tmp, ftmp2, in);
1065
0
    felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
1066
1067
0
    felem_mul(tmp, ftmp2, ftmp);
1068
0
    felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1069
0
}
1070
1071
static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1072
0
{
1073
0
    felem tmp;
1074
1075
0
    smallfelem_expand(tmp, in);
1076
0
    felem_inv(tmp, tmp);
1077
0
    felem_contract(out, tmp);
1078
0
}
1079
1080
/*-
1081
 * Group operations
1082
 * ----------------
1083
 *
1084
 * Building on top of the field operations we have the operations on the
1085
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1086
 * coordinates
1087
 */
1088
1089
/*-
1090
 * point_double calculates 2*(x_in, y_in, z_in)
1091
 *
1092
 * The method is taken from:
1093
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1094
 *
1095
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1096
 * while x_out == y_in is not (maybe this works, but it's not tested).
1097
 */
1098
static void
1099
point_double(felem x_out, felem y_out, felem z_out,
1100
    const felem x_in, const felem y_in, const felem z_in)
1101
0
{
1102
0
    longfelem tmp, tmp2;
1103
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1104
0
    smallfelem small1, small2;
1105
1106
0
    felem_assign(ftmp, x_in);
1107
    /* ftmp[i] < 2^106 */
1108
0
    felem_assign(ftmp2, x_in);
1109
    /* ftmp2[i] < 2^106 */
1110
1111
    /* delta = z^2 */
1112
0
    felem_square(tmp, z_in);
1113
0
    felem_reduce(delta, tmp);
1114
    /* delta[i] < 2^101 */
1115
1116
    /* gamma = y^2 */
1117
0
    felem_square(tmp, y_in);
1118
0
    felem_reduce(gamma, tmp);
1119
    /* gamma[i] < 2^101 */
1120
0
    felem_shrink(small1, gamma);
1121
1122
    /* beta = x*gamma */
1123
0
    felem_small_mul(tmp, small1, x_in);
1124
0
    felem_reduce(beta, tmp);
1125
    /* beta[i] < 2^101 */
1126
1127
    /* alpha = 3*(x-delta)*(x+delta) */
1128
0
    felem_diff(ftmp, delta);
1129
    /* ftmp[i] < 2^105 + 2^106 < 2^107 */
1130
0
    felem_sum(ftmp2, delta);
1131
    /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1132
0
    felem_scalar(ftmp2, 3);
1133
    /* ftmp2[i] < 3 * 2^107 < 2^109 */
1134
0
    felem_mul(tmp, ftmp, ftmp2);
1135
0
    felem_reduce(alpha, tmp);
1136
    /* alpha[i] < 2^101 */
1137
0
    felem_shrink(small2, alpha);
1138
1139
    /* x' = alpha^2 - 8*beta */
1140
0
    smallfelem_square(tmp, small2);
1141
0
    felem_reduce(x_out, tmp);
1142
0
    felem_assign(ftmp, beta);
1143
0
    felem_scalar(ftmp, 8);
1144
    /* ftmp[i] < 8 * 2^101 = 2^104 */
1145
0
    felem_diff(x_out, ftmp);
1146
    /* x_out[i] < 2^105 + 2^101 < 2^106 */
1147
1148
    /* z' = (y + z)^2 - gamma - delta */
1149
0
    felem_sum(delta, gamma);
1150
    /* delta[i] < 2^101 + 2^101 = 2^102 */
1151
0
    felem_assign(ftmp, y_in);
1152
0
    felem_sum(ftmp, z_in);
1153
    /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1154
0
    felem_square(tmp, ftmp);
1155
0
    felem_reduce(z_out, tmp);
1156
0
    felem_diff(z_out, delta);
1157
    /* z_out[i] < 2^105 + 2^101 < 2^106 */
1158
1159
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1160
0
    felem_scalar(beta, 4);
1161
    /* beta[i] < 4 * 2^101 = 2^103 */
1162
0
    felem_diff_zero107(beta, x_out);
1163
    /* beta[i] < 2^107 + 2^103 < 2^108 */
1164
0
    felem_small_mul(tmp, small2, beta);
1165
    /* tmp[i] < 7 * 2^64 < 2^67 */
1166
0
    smallfelem_square(tmp2, small1);
1167
    /* tmp2[i] < 7 * 2^64 */
1168
0
    longfelem_scalar(tmp2, 8);
1169
    /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1170
0
    longfelem_diff(tmp, tmp2);
1171
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1172
0
    felem_reduce_zero105(y_out, tmp);
1173
    /* y_out[i] < 2^106 */
1174
0
}
1175
1176
/*
1177
 * point_double_small is the same as point_double, except that it operates on
1178
 * smallfelems
1179
 */
1180
static void
1181
point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1182
    const smallfelem x_in, const smallfelem y_in,
1183
    const smallfelem z_in)
1184
0
{
1185
0
    felem felem_x_out, felem_y_out, felem_z_out;
1186
0
    felem felem_x_in, felem_y_in, felem_z_in;
1187
1188
0
    smallfelem_expand(felem_x_in, x_in);
1189
0
    smallfelem_expand(felem_y_in, y_in);
1190
0
    smallfelem_expand(felem_z_in, z_in);
1191
0
    point_double(felem_x_out, felem_y_out, felem_z_out,
1192
0
        felem_x_in, felem_y_in, felem_z_in);
1193
0
    felem_shrink(x_out, felem_x_out);
1194
0
    felem_shrink(y_out, felem_y_out);
1195
0
    felem_shrink(z_out, felem_z_out);
1196
0
}
1197
1198
/* copy_conditional copies in to out iff mask is all ones. */
1199
static void copy_conditional(felem out, const felem in, limb mask)
1200
0
{
1201
0
    unsigned i;
1202
0
    for (i = 0; i < NLIMBS; ++i) {
1203
0
        const limb tmp = mask & (in[i] ^ out[i]);
1204
0
        out[i] ^= tmp;
1205
0
    }
1206
0
}
1207
1208
/* copy_small_conditional copies in to out iff mask is all ones. */
1209
static void copy_small_conditional(felem out, const smallfelem in, limb mask)
1210
0
{
1211
0
    unsigned i;
1212
0
    const u64 mask64 = mask;
1213
0
    for (i = 0; i < NLIMBS; ++i) {
1214
0
        out[i] = ((limb)(in[i] & mask64)) | (out[i] & ~mask);
1215
0
    }
1216
0
}
1217
1218
/*-
1219
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1220
 *
1221
 * The method is taken from:
1222
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1223
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1224
 *
1225
 * This function includes a branch for checking whether the two input points
1226
 * are equal, (while not equal to the point at infinity). This case never
1227
 * happens during single point multiplication, so there is no timing leak for
1228
 * ECDH or ECDSA signing.
1229
 */
1230
static void point_add(felem x3, felem y3, felem z3,
1231
    const felem x1, const felem y1, const felem z1,
1232
    const int mixed, const smallfelem x2,
1233
    const smallfelem y2, const smallfelem z2)
1234
0
{
1235
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1236
0
    longfelem tmp, tmp2;
1237
0
    smallfelem small1, small2, small3, small4, small5;
1238
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1239
0
    limb points_equal;
1240
1241
0
    felem_shrink(small3, z1);
1242
1243
0
    z1_is_zero = smallfelem_is_zero(small3);
1244
0
    z2_is_zero = smallfelem_is_zero(z2);
1245
1246
    /* ftmp = z1z1 = z1**2 */
1247
0
    smallfelem_square(tmp, small3);
1248
0
    felem_reduce(ftmp, tmp);
1249
    /* ftmp[i] < 2^101 */
1250
0
    felem_shrink(small1, ftmp);
1251
1252
0
    if (!mixed) {
1253
        /* ftmp2 = z2z2 = z2**2 */
1254
0
        smallfelem_square(tmp, z2);
1255
0
        felem_reduce(ftmp2, tmp);
1256
        /* ftmp2[i] < 2^101 */
1257
0
        felem_shrink(small2, ftmp2);
1258
1259
0
        felem_shrink(small5, x1);
1260
1261
        /* u1 = ftmp3 = x1*z2z2 */
1262
0
        smallfelem_mul(tmp, small5, small2);
1263
0
        felem_reduce(ftmp3, tmp);
1264
        /* ftmp3[i] < 2^101 */
1265
1266
        /* ftmp5 = z1 + z2 */
1267
0
        felem_assign(ftmp5, z1);
1268
0
        felem_small_sum(ftmp5, z2);
1269
        /* ftmp5[i] < 2^107 */
1270
1271
        /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1272
0
        felem_square(tmp, ftmp5);
1273
0
        felem_reduce(ftmp5, tmp);
1274
        /* ftmp2 = z2z2 + z1z1 */
1275
0
        felem_sum(ftmp2, ftmp);
1276
        /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1277
0
        felem_diff(ftmp5, ftmp2);
1278
        /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1279
1280
        /* ftmp2 = z2 * z2z2 */
1281
0
        smallfelem_mul(tmp, small2, z2);
1282
0
        felem_reduce(ftmp2, tmp);
1283
1284
        /* s1 = ftmp2 = y1 * z2**3 */
1285
0
        felem_mul(tmp, y1, ftmp2);
1286
0
        felem_reduce(ftmp6, tmp);
1287
        /* ftmp6[i] < 2^101 */
1288
0
    } else {
1289
        /*
1290
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1291
         */
1292
1293
        /* u1 = ftmp3 = x1*z2z2 */
1294
0
        felem_assign(ftmp3, x1);
1295
        /* ftmp3[i] < 2^106 */
1296
1297
        /* ftmp5 = 2z1z2 */
1298
0
        felem_assign(ftmp5, z1);
1299
0
        felem_scalar(ftmp5, 2);
1300
        /* ftmp5[i] < 2*2^106 = 2^107 */
1301
1302
        /* s1 = ftmp2 = y1 * z2**3 */
1303
0
        felem_assign(ftmp6, y1);
1304
        /* ftmp6[i] < 2^106 */
1305
0
    }
1306
1307
    /* u2 = x2*z1z1 */
1308
0
    smallfelem_mul(tmp, x2, small1);
1309
0
    felem_reduce(ftmp4, tmp);
1310
1311
    /* h = ftmp4 = u2 - u1 */
1312
0
    felem_diff_zero107(ftmp4, ftmp3);
1313
    /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1314
0
    felem_shrink(small4, ftmp4);
1315
1316
0
    x_equal = smallfelem_is_zero(small4);
1317
1318
    /* z_out = ftmp5 * h */
1319
0
    felem_small_mul(tmp, small4, ftmp5);
1320
0
    felem_reduce(z_out, tmp);
1321
    /* z_out[i] < 2^101 */
1322
1323
    /* ftmp = z1 * z1z1 */
1324
0
    smallfelem_mul(tmp, small1, small3);
1325
0
    felem_reduce(ftmp, tmp);
1326
1327
    /* s2 = tmp = y2 * z1**3 */
1328
0
    felem_small_mul(tmp, y2, ftmp);
1329
0
    felem_reduce(ftmp5, tmp);
1330
1331
    /* r = ftmp5 = (s2 - s1)*2 */
1332
0
    felem_diff_zero107(ftmp5, ftmp6);
1333
    /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
1334
0
    felem_scalar(ftmp5, 2);
1335
    /* ftmp5[i] < 2^109 */
1336
0
    felem_shrink(small1, ftmp5);
1337
0
    y_equal = smallfelem_is_zero(small1);
1338
1339
    /*
1340
     * The formulae are incorrect if the points are equal, in affine coordinates
1341
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1342
     * happens.
1343
     *
1344
     * We use bitwise operations to avoid potential side-channels introduced by
1345
     * the short-circuiting behaviour of boolean operators.
1346
     *
1347
     * The special case of either point being the point at infinity (z1 and/or
1348
     * z2 are zero), is handled separately later on in this function, so we
1349
     * avoid jumping to point_double here in those special cases.
1350
     */
1351
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1352
1353
0
    if (points_equal) {
1354
        /*
1355
         * This is obviously not constant-time but, as mentioned before, this
1356
         * case never happens during single point multiplication, so there is no
1357
         * timing leak for ECDH or ECDSA signing.
1358
         */
1359
0
        point_double(x3, y3, z3, x1, y1, z1);
1360
0
        return;
1361
0
    }
1362
1363
    /* I = ftmp = (2h)**2 */
1364
0
    felem_assign(ftmp, ftmp4);
1365
0
    felem_scalar(ftmp, 2);
1366
    /* ftmp[i] < 2*2^108 = 2^109 */
1367
0
    felem_square(tmp, ftmp);
1368
0
    felem_reduce(ftmp, tmp);
1369
1370
    /* J = ftmp2 = h * I */
1371
0
    felem_mul(tmp, ftmp4, ftmp);
1372
0
    felem_reduce(ftmp2, tmp);
1373
1374
    /* V = ftmp4 = U1 * I */
1375
0
    felem_mul(tmp, ftmp3, ftmp);
1376
0
    felem_reduce(ftmp4, tmp);
1377
1378
    /* x_out = r**2 - J - 2V */
1379
0
    smallfelem_square(tmp, small1);
1380
0
    felem_reduce(x_out, tmp);
1381
0
    felem_assign(ftmp3, ftmp4);
1382
0
    felem_scalar(ftmp4, 2);
1383
0
    felem_sum(ftmp4, ftmp2);
1384
    /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1385
0
    felem_diff(x_out, ftmp4);
1386
    /* x_out[i] < 2^105 + 2^101 */
1387
1388
    /* y_out = r(V-x_out) - 2 * s1 * J */
1389
0
    felem_diff_zero107(ftmp3, x_out);
1390
    /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1391
0
    felem_small_mul(tmp, small1, ftmp3);
1392
0
    felem_mul(tmp2, ftmp6, ftmp2);
1393
0
    longfelem_scalar(tmp2, 2);
1394
    /* tmp2[i] < 2*2^67 = 2^68 */
1395
0
    longfelem_diff(tmp, tmp2);
1396
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1397
0
    felem_reduce_zero105(y_out, tmp);
1398
    /* y_out[i] < 2^106 */
1399
1400
0
    copy_small_conditional(x_out, x2, z1_is_zero);
1401
0
    copy_conditional(x_out, x1, z2_is_zero);
1402
0
    copy_small_conditional(y_out, y2, z1_is_zero);
1403
0
    copy_conditional(y_out, y1, z2_is_zero);
1404
0
    copy_small_conditional(z_out, z2, z1_is_zero);
1405
0
    copy_conditional(z_out, z1, z2_is_zero);
1406
0
    felem_assign(x3, x_out);
1407
0
    felem_assign(y3, y_out);
1408
0
    felem_assign(z3, z_out);
1409
0
}
1410
1411
/*
1412
 * point_add_small is the same as point_add, except that it operates on
1413
 * smallfelems
1414
 */
1415
static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1416
    smallfelem x1, smallfelem y1, smallfelem z1,
1417
    smallfelem x2, smallfelem y2, smallfelem z2)
1418
0
{
1419
0
    felem felem_x3, felem_y3, felem_z3;
1420
0
    felem felem_x1, felem_y1, felem_z1;
1421
0
    smallfelem_expand(felem_x1, x1);
1422
0
    smallfelem_expand(felem_y1, y1);
1423
0
    smallfelem_expand(felem_z1, z1);
1424
0
    point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0,
1425
0
        x2, y2, z2);
1426
0
    felem_shrink(x3, felem_x3);
1427
0
    felem_shrink(y3, felem_y3);
1428
0
    felem_shrink(z3, felem_z3);
1429
0
}
1430
1431
/*-
1432
 * Base point pre computation
1433
 * --------------------------
1434
 *
1435
 * Two different sorts of precomputed tables are used in the following code.
1436
 * Each contain various points on the curve, where each point is three field
1437
 * elements (x, y, z).
1438
 *
1439
 * For the base point table, z is usually 1 (0 for the point at infinity).
1440
 * This table has 2 * 16 elements, starting with the following:
1441
 * index | bits    | point
1442
 * ------+---------+------------------------------
1443
 *     0 | 0 0 0 0 | 0G
1444
 *     1 | 0 0 0 1 | 1G
1445
 *     2 | 0 0 1 0 | 2^64G
1446
 *     3 | 0 0 1 1 | (2^64 + 1)G
1447
 *     4 | 0 1 0 0 | 2^128G
1448
 *     5 | 0 1 0 1 | (2^128 + 1)G
1449
 *     6 | 0 1 1 0 | (2^128 + 2^64)G
1450
 *     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1451
 *     8 | 1 0 0 0 | 2^192G
1452
 *     9 | 1 0 0 1 | (2^192 + 1)G
1453
 *    10 | 1 0 1 0 | (2^192 + 2^64)G
1454
 *    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1455
 *    12 | 1 1 0 0 | (2^192 + 2^128)G
1456
 *    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1457
 *    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1458
 *    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1459
 * followed by a copy of this with each element multiplied by 2^32.
1460
 *
1461
 * The reason for this is so that we can clock bits into four different
1462
 * locations when doing simple scalar multiplies against the base point,
1463
 * and then another four locations using the second 16 elements.
1464
 *
1465
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1466
1467
/* gmul is the table of precomputed base points */
1468
static const smallfelem gmul[2][16][3] = {
1469
    { { { 0, 0, 0, 0 },
1470
          { 0, 0, 0, 0 },
1471
          { 0, 0, 0, 0 } },
1472
        { { 0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
1473
              0x6b17d1f2e12c4247 },
1474
            { 0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
1475
                0x4fe342e2fe1a7f9b },
1476
            { 1, 0, 0, 0 } },
1477
        { { 0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
1478
              0x0fa822bc2811aaa5 },
1479
            { 0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
1480
                0xbff44ae8f5dba80d },
1481
            { 1, 0, 0, 0 } },
1482
        { { 0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
1483
              0x300a4bbc89d6726f },
1484
            { 0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
1485
                0x72aac7e0d09b4644 },
1486
            { 1, 0, 0, 0 } },
1487
        { { 0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
1488
              0x447d739beedb5e67 },
1489
            { 0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
1490
                0x2d4825ab834131ee },
1491
            { 1, 0, 0, 0 } },
1492
        { { 0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
1493
              0xef9519328a9c72ff },
1494
            { 0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
1495
                0x611e9fc37dbb2c9b },
1496
            { 1, 0, 0, 0 } },
1497
        { { 0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
1498
              0x550663797b51f5d8 },
1499
            { 0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
1500
                0x157164848aecb851 },
1501
            { 1, 0, 0, 0 } },
1502
        { { 0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
1503
              0xeb5d7745b21141ea },
1504
            { 0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
1505
                0xeafd72ebdbecc17b },
1506
            { 1, 0, 0, 0 } },
1507
        { { 0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
1508
              0xa6d39677a7849276 },
1509
            { 0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
1510
                0x674f84749b0b8816 },
1511
            { 1, 0, 0, 0 } },
1512
        { { 0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
1513
              0x4e769e7672c9ddad },
1514
            { 0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
1515
                0x42b99082de830663 },
1516
            { 1, 0, 0, 0 } },
1517
        { { 0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
1518
              0x78878ef61c6ce04d },
1519
            { 0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
1520
                0xb6cb3f5d7b72c321 },
1521
            { 1, 0, 0, 0 } },
1522
        { { 0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
1523
              0x0c88bc4d716b1287 },
1524
            { 0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
1525
                0xdd5ddea3f3901dc6 },
1526
            { 1, 0, 0, 0 } },
1527
        { { 0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
1528
              0x68f344af6b317466 },
1529
            { 0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
1530
                0x31b9c405f8540a20 },
1531
            { 1, 0, 0, 0 } },
1532
        { { 0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
1533
              0x4052bf4b6f461db9 },
1534
            { 0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
1535
                0xfecf4d5190b0fc61 },
1536
            { 1, 0, 0, 0 } },
1537
        { { 0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
1538
              0x1eddbae2c802e41a },
1539
            { 0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
1540
                0x43104d86560ebcfc },
1541
            { 1, 0, 0, 0 } },
1542
        { { 0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
1543
              0xb48e26b484f7a21c },
1544
            { 0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
1545
                0xfac015404d4d3dab },
1546
            { 1, 0, 0, 0 } } },
1547
    { { { 0, 0, 0, 0 },
1548
          { 0, 0, 0, 0 },
1549
          { 0, 0, 0, 0 } },
1550
        { { 0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
1551
              0x7fe36b40af22af89 },
1552
            { 0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
1553
                0xe697d45825b63624 },
1554
            { 1, 0, 0, 0 } },
1555
        { { 0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
1556
              0x4a5b506612a677a6 },
1557
            { 0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
1558
                0xeb13461ceac089f1 },
1559
            { 1, 0, 0, 0 } },
1560
        { { 0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
1561
              0x0781b8291c6a220a },
1562
            { 0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
1563
                0x690cde8df0151593 },
1564
            { 1, 0, 0, 0 } },
1565
        { { 0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
1566
              0x8a535f566ec73617 },
1567
            { 0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
1568
                0x0455c08468b08bd7 },
1569
            { 1, 0, 0, 0 } },
1570
        { { 0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
1571
              0x06bada7ab77f8276 },
1572
            { 0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
1573
                0x5b476dfd0e6cb18a },
1574
            { 1, 0, 0, 0 } },
1575
        { { 0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
1576
              0x3e29864e8a2ec908 },
1577
            { 0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
1578
                0x239b90ea3dc31e7e },
1579
            { 1, 0, 0, 0 } },
1580
        { { 0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
1581
              0x820f4dd949f72ff7 },
1582
            { 0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
1583
                0x140406ec783a05ec },
1584
            { 1, 0, 0, 0 } },
1585
        { { 0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
1586
              0x68f6b8542783dfee },
1587
            { 0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
1588
                0xcbe1feba92e40ce6 },
1589
            { 1, 0, 0, 0 } },
1590
        { { 0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
1591
              0xd0b2f94d2f420109 },
1592
            { 0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
1593
                0x971459828b0719e5 },
1594
            { 1, 0, 0, 0 } },
1595
        { { 0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
1596
              0x961610004a866aba },
1597
            { 0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
1598
                0x7acb9fadcee75e44 },
1599
            { 1, 0, 0, 0 } },
1600
        { { 0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
1601
              0x24eb9acca333bf5b },
1602
            { 0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
1603
                0x69f891c5acd079cc },
1604
            { 1, 0, 0, 0 } },
1605
        { { 0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
1606
              0xe51f547c5972a107 },
1607
            { 0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
1608
                0x1c309a2b25bb1387 },
1609
            { 1, 0, 0, 0 } },
1610
        { { 0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
1611
              0x20b87b8aa2c4e503 },
1612
            { 0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
1613
                0xf5c6fa49919776be },
1614
            { 1, 0, 0, 0 } },
1615
        { { 0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
1616
              0x1ed7d1b9332010b9 },
1617
            { 0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
1618
                0x3a2b03f03217257a },
1619
            { 1, 0, 0, 0 } },
1620
        { { 0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
1621
              0x15fee545c78dd9f6 },
1622
            { 0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
1623
                0x4ab5b6b2b8753f81 },
1624
            { 1, 0, 0, 0 } } }
1625
};
1626
1627
/*
1628
 * select_point selects the |idx|th point from a precomputation table and
1629
 * copies it to out.
1630
 */
1631
static void select_point(const u64 idx, unsigned int size,
1632
    const smallfelem pre_comp[16][3], smallfelem out[3])
1633
0
{
1634
0
    unsigned i, j;
1635
0
    u64 *outlimbs = &out[0][0];
1636
1637
0
    memset(out, 0, sizeof(*out) * 3);
1638
1639
0
    for (i = 0; i < size; i++) {
1640
0
        const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
1641
0
        u64 mask = i ^ idx;
1642
0
        mask |= mask >> 4;
1643
0
        mask |= mask >> 2;
1644
0
        mask |= mask >> 1;
1645
0
        mask &= 1;
1646
0
        mask--;
1647
0
        for (j = 0; j < NLIMBS * 3; j++)
1648
0
            outlimbs[j] |= inlimbs[j] & mask;
1649
0
    }
1650
0
}
1651
1652
/* get_bit returns the |i|th bit in |in| */
1653
static char get_bit(const felem_bytearray in, int i)
1654
0
{
1655
0
    if ((i < 0) || (i >= 256))
1656
0
        return 0;
1657
0
    return (in[i >> 3] >> (i & 7)) & 1;
1658
0
}
1659
1660
/*
1661
 * Interleaved point multiplication using precomputed point multiples: The
1662
 * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
1663
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1664
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1665
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1666
 */
1667
static void batch_mul(felem x_out, felem y_out, felem z_out,
1668
    const felem_bytearray scalars[],
1669
    const unsigned num_points, const u8 *g_scalar,
1670
    const int mixed, const smallfelem pre_comp[][17][3],
1671
    const smallfelem g_pre_comp[2][16][3])
1672
0
{
1673
0
    int i, skip;
1674
0
    unsigned num, gen_mul = (g_scalar != NULL);
1675
0
    felem nq[3], ftmp;
1676
0
    smallfelem tmp[3];
1677
0
    u64 bits;
1678
0
    u8 sign, digit;
1679
1680
    /* set nq to the point at infinity */
1681
0
    memset(nq, 0, sizeof(nq));
1682
1683
    /*
1684
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1685
     * of the generator (two in each of the last 32 rounds) and additions of
1686
     * other points multiples (every 5th round).
1687
     */
1688
0
    skip = 1; /* save two point operations in the first
1689
               * round */
1690
0
    for (i = (num_points ? 255 : 31); i >= 0; --i) {
1691
        /* double */
1692
0
        if (!skip)
1693
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1694
1695
        /* add multiples of the generator */
1696
0
        if (gen_mul && (i <= 31)) {
1697
            /* first, look 32 bits upwards */
1698
0
            bits = get_bit(g_scalar, i + 224) << 3;
1699
0
            bits |= get_bit(g_scalar, i + 160) << 2;
1700
0
            bits |= get_bit(g_scalar, i + 96) << 1;
1701
0
            bits |= get_bit(g_scalar, i + 32);
1702
            /* select the point to add, in constant time */
1703
0
            select_point(bits, 16, g_pre_comp[1], tmp);
1704
1705
0
            if (!skip) {
1706
                /* Arg 1 below is for "mixed" */
1707
0
                point_add(nq[0], nq[1], nq[2],
1708
0
                    nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1709
0
            } else {
1710
0
                smallfelem_expand(nq[0], tmp[0]);
1711
0
                smallfelem_expand(nq[1], tmp[1]);
1712
0
                smallfelem_expand(nq[2], tmp[2]);
1713
0
                skip = 0;
1714
0
            }
1715
1716
            /* second, look at the current position */
1717
0
            bits = get_bit(g_scalar, i + 192) << 3;
1718
0
            bits |= get_bit(g_scalar, i + 128) << 2;
1719
0
            bits |= get_bit(g_scalar, i + 64) << 1;
1720
0
            bits |= get_bit(g_scalar, i);
1721
            /* select the point to add, in constant time */
1722
0
            select_point(bits, 16, g_pre_comp[0], tmp);
1723
            /* Arg 1 below is for "mixed" */
1724
0
            point_add(nq[0], nq[1], nq[2],
1725
0
                nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1726
0
        }
1727
1728
        /* do other additions every 5 doublings */
1729
0
        if (num_points && (i % 5 == 0)) {
1730
            /* loop over all scalars */
1731
0
            for (num = 0; num < num_points; ++num) {
1732
0
                bits = get_bit(scalars[num], i + 4) << 5;
1733
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1734
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1735
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1736
0
                bits |= get_bit(scalars[num], i) << 1;
1737
0
                bits |= get_bit(scalars[num], i - 1);
1738
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1739
1740
                /*
1741
                 * select the point to add or subtract, in constant time
1742
                 */
1743
0
                select_point(digit, 17, pre_comp[num], tmp);
1744
0
                smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
1745
                                               * point */
1746
0
                copy_small_conditional(ftmp, tmp[1], (((limb)sign) - 1));
1747
0
                felem_contract(tmp[1], ftmp);
1748
1749
0
                if (!skip) {
1750
0
                    point_add(nq[0], nq[1], nq[2],
1751
0
                        nq[0], nq[1], nq[2],
1752
0
                        mixed, tmp[0], tmp[1], tmp[2]);
1753
0
                } else {
1754
0
                    smallfelem_expand(nq[0], tmp[0]);
1755
0
                    smallfelem_expand(nq[1], tmp[1]);
1756
0
                    smallfelem_expand(nq[2], tmp[2]);
1757
0
                    skip = 0;
1758
0
                }
1759
0
            }
1760
0
        }
1761
0
    }
1762
0
    felem_assign(x_out, nq[0]);
1763
0
    felem_assign(y_out, nq[1]);
1764
0
    felem_assign(z_out, nq[2]);
1765
0
}
1766
1767
/* Precomputation for the group generator. */
1768
struct nistp256_pre_comp_st {
1769
    smallfelem g_pre_comp[2][16][3];
1770
    CRYPTO_REF_COUNT references;
1771
};
1772
1773
const EC_METHOD *EC_GFp_nistp256_method(void)
1774
0
{
1775
0
    static const EC_METHOD ret = {
1776
0
        EC_FLAGS_DEFAULT_OCT,
1777
0
        NID_X9_62_prime_field,
1778
0
        ossl_ec_GFp_nistp256_group_init,
1779
0
        ossl_ec_GFp_simple_group_finish,
1780
0
        ossl_ec_GFp_simple_group_clear_finish,
1781
0
        ossl_ec_GFp_nist_group_copy,
1782
0
        ossl_ec_GFp_nistp256_group_set_curve,
1783
0
        ossl_ec_GFp_simple_group_get_curve,
1784
0
        ossl_ec_GFp_simple_group_get_degree,
1785
0
        ossl_ec_group_simple_order_bits,
1786
0
        ossl_ec_GFp_simple_group_check_discriminant,
1787
0
        ossl_ec_GFp_simple_point_init,
1788
0
        ossl_ec_GFp_simple_point_finish,
1789
0
        ossl_ec_GFp_simple_point_clear_finish,
1790
0
        ossl_ec_GFp_simple_point_copy,
1791
0
        ossl_ec_GFp_simple_point_set_to_infinity,
1792
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1793
0
        ossl_ec_GFp_nistp256_point_get_affine_coordinates,
1794
0
        0 /* point_set_compressed_coordinates */,
1795
0
        0 /* point2oct */,
1796
0
        0 /* oct2point */,
1797
0
        ossl_ec_GFp_simple_add,
1798
0
        ossl_ec_GFp_simple_dbl,
1799
0
        ossl_ec_GFp_simple_invert,
1800
0
        ossl_ec_GFp_simple_is_at_infinity,
1801
0
        ossl_ec_GFp_simple_is_on_curve,
1802
0
        ossl_ec_GFp_simple_cmp,
1803
0
        ossl_ec_GFp_simple_make_affine,
1804
0
        ossl_ec_GFp_simple_points_make_affine,
1805
0
        ossl_ec_GFp_nistp256_points_mul,
1806
0
        ossl_ec_GFp_nistp256_precompute_mult,
1807
0
        ossl_ec_GFp_nistp256_have_precompute_mult,
1808
0
        ossl_ec_GFp_nist_field_mul,
1809
0
        ossl_ec_GFp_nist_field_sqr,
1810
0
        0 /* field_div */,
1811
0
        ossl_ec_GFp_simple_field_inv,
1812
0
        0 /* field_encode */,
1813
0
        0 /* field_decode */,
1814
0
        0, /* field_set_to_one */
1815
0
        ossl_ec_key_simple_priv2oct,
1816
0
        ossl_ec_key_simple_oct2priv,
1817
0
        0, /* set private */
1818
0
        ossl_ec_key_simple_generate_key,
1819
0
        ossl_ec_key_simple_check_key,
1820
0
        ossl_ec_key_simple_generate_public_key,
1821
0
        0, /* keycopy */
1822
0
        0, /* keyfinish */
1823
0
        ossl_ecdh_simple_compute_key,
1824
0
        ossl_ecdsa_simple_sign_setup,
1825
0
        ossl_ecdsa_simple_sign_sig,
1826
0
        ossl_ecdsa_simple_verify_sig,
1827
0
        0, /* field_inverse_mod_ord */
1828
0
        0, /* blind_coordinates */
1829
0
        0, /* ladder_pre */
1830
0
        0, /* ladder_step */
1831
0
        0 /* ladder_post */
1832
0
    };
1833
1834
0
    return &ret;
1835
0
}
1836
1837
/******************************************************************************/
1838
/*
1839
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1840
 */
1841
1842
static NISTP256_PRE_COMP *nistp256_pre_comp_new(void)
1843
0
{
1844
0
    NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1845
1846
0
    if (ret == NULL)
1847
0
        return ret;
1848
1849
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1850
0
        OPENSSL_free(ret);
1851
0
        return NULL;
1852
0
    }
1853
0
    return ret;
1854
0
}
1855
1856
NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p)
1857
0
{
1858
0
    int i;
1859
0
    if (p != NULL)
1860
0
        CRYPTO_UP_REF(&p->references, &i);
1861
0
    return p;
1862
0
}
1863
1864
void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre)
1865
0
{
1866
0
    int i;
1867
1868
0
    if (pre == NULL)
1869
0
        return;
1870
1871
0
    CRYPTO_DOWN_REF(&pre->references, &i);
1872
0
    REF_PRINT_COUNT("EC_nistp256", i, pre);
1873
0
    if (i > 0)
1874
0
        return;
1875
0
    REF_ASSERT_ISNT(i < 0);
1876
1877
0
    CRYPTO_FREE_REF(&pre->references);
1878
0
    OPENSSL_free(pre);
1879
0
}
1880
1881
/******************************************************************************/
1882
/*
1883
 * OPENSSL EC_METHOD FUNCTIONS
1884
 */
1885
1886
int ossl_ec_GFp_nistp256_group_init(EC_GROUP *group)
1887
0
{
1888
0
    int ret;
1889
0
    ret = ossl_ec_GFp_simple_group_init(group);
1890
0
    group->a_is_minus3 = 1;
1891
0
    return ret;
1892
0
}
1893
1894
int ossl_ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1895
    const BIGNUM *a, const BIGNUM *b,
1896
    BN_CTX *ctx)
1897
0
{
1898
0
    int ret = 0;
1899
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1900
0
#ifndef FIPS_MODULE
1901
0
    BN_CTX *new_ctx = NULL;
1902
1903
0
    if (ctx == NULL)
1904
0
        ctx = new_ctx = BN_CTX_new();
1905
0
#endif
1906
0
    if (ctx == NULL)
1907
0
        return 0;
1908
1909
0
    BN_CTX_start(ctx);
1910
0
    curve_p = BN_CTX_get(ctx);
1911
0
    curve_a = BN_CTX_get(ctx);
1912
0
    curve_b = BN_CTX_get(ctx);
1913
0
    if (curve_b == NULL)
1914
0
        goto err;
1915
0
    BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1916
0
    BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1917
0
    BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1918
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1919
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1920
0
        goto err;
1921
0
    }
1922
0
    group->field_mod_func = BN_nist_mod_256;
1923
0
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1924
0
err:
1925
0
    BN_CTX_end(ctx);
1926
0
#ifndef FIPS_MODULE
1927
0
    BN_CTX_free(new_ctx);
1928
0
#endif
1929
0
    return ret;
1930
0
}
1931
1932
/*
1933
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1934
 * (X/Z^2, Y/Z^3)
1935
 */
1936
int ossl_ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1937
    const EC_POINT *point,
1938
    BIGNUM *x, BIGNUM *y,
1939
    BN_CTX *ctx)
1940
0
{
1941
0
    felem z1, z2, x_in, y_in;
1942
0
    smallfelem x_out, y_out;
1943
0
    longfelem tmp;
1944
1945
0
    if (EC_POINT_is_at_infinity(group, point)) {
1946
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1947
0
        return 0;
1948
0
    }
1949
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z)))
1950
0
        return 0;
1951
0
    felem_inv(z2, z1);
1952
0
    felem_square(tmp, z2);
1953
0
    felem_reduce(z1, tmp);
1954
0
    felem_mul(tmp, x_in, z1);
1955
0
    felem_reduce(x_in, tmp);
1956
0
    felem_contract(x_out, x_in);
1957
0
    if (x != NULL) {
1958
0
        if (!smallfelem_to_BN(x, x_out)) {
1959
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1960
0
            return 0;
1961
0
        }
1962
0
    }
1963
0
    felem_mul(tmp, z1, z2);
1964
0
    felem_reduce(z1, tmp);
1965
0
    felem_mul(tmp, y_in, z1);
1966
0
    felem_reduce(y_in, tmp);
1967
0
    felem_contract(y_out, y_in);
1968
0
    if (y != NULL) {
1969
0
        if (!smallfelem_to_BN(y, y_out)) {
1970
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1971
0
            return 0;
1972
0
        }
1973
0
    }
1974
0
    return 1;
1975
0
}
1976
1977
/* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
1978
static void make_points_affine(size_t num, smallfelem points[][3],
1979
    smallfelem tmp_smallfelems[])
1980
0
{
1981
    /*
1982
     * Runs in constant time, unless an input is the point at infinity (which
1983
     * normally shouldn't happen).
1984
     */
1985
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1986
0
        points,
1987
0
        sizeof(smallfelem),
1988
0
        tmp_smallfelems,
1989
0
        (void (*)(void *))smallfelem_one,
1990
0
        smallfelem_is_zero_int,
1991
0
        (void (*)(void *, const void *))
1992
0
            smallfelem_assign,
1993
0
        (void (*)(void *, const void *))
1994
0
            smallfelem_square_contract,
1995
0
        (void (*)(void *, const void *,
1996
0
            const void *))
1997
0
            smallfelem_mul_contract,
1998
0
        (void (*)(void *, const void *))
1999
0
            smallfelem_inv_contract,
2000
        /* nothing to contract */
2001
0
        (void (*)(void *, const void *))
2002
0
            smallfelem_assign);
2003
0
}
2004
2005
/*
2006
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
2007
 * values Result is stored in r (r can equal one of the inputs).
2008
 */
2009
int ossl_ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
2010
    const BIGNUM *scalar, size_t num,
2011
    const EC_POINT *points[],
2012
    const BIGNUM *scalars[], BN_CTX *ctx)
2013
0
{
2014
0
    int ret = 0;
2015
0
    int j;
2016
0
    int mixed = 0;
2017
0
    BIGNUM *x, *y, *z, *tmp_scalar;
2018
0
    felem_bytearray g_secret;
2019
0
    felem_bytearray *secrets = NULL;
2020
0
    smallfelem(*pre_comp)[17][3] = NULL;
2021
0
    smallfelem *tmp_smallfelems = NULL;
2022
0
    unsigned i;
2023
0
    int num_bytes;
2024
0
    int have_pre_comp = 0;
2025
0
    size_t num_points = num;
2026
0
    smallfelem x_in, y_in, z_in;
2027
0
    felem x_out, y_out, z_out;
2028
0
    NISTP256_PRE_COMP *pre = NULL;
2029
0
    const smallfelem(*g_pre_comp)[16][3] = NULL;
2030
0
    EC_POINT *generator = NULL;
2031
0
    const EC_POINT *p = NULL;
2032
0
    const BIGNUM *p_scalar = NULL;
2033
2034
0
    BN_CTX_start(ctx);
2035
0
    x = BN_CTX_get(ctx);
2036
0
    y = BN_CTX_get(ctx);
2037
0
    z = BN_CTX_get(ctx);
2038
0
    tmp_scalar = BN_CTX_get(ctx);
2039
0
    if (tmp_scalar == NULL)
2040
0
        goto err;
2041
2042
0
    if (scalar != NULL) {
2043
0
        pre = group->pre_comp.nistp256;
2044
0
        if (pre)
2045
            /* we have precomputation, try to use it */
2046
0
            g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp;
2047
0
        else
2048
            /* try to use the standard precomputation */
2049
0
            g_pre_comp = &gmul[0];
2050
0
        generator = EC_POINT_new(group);
2051
0
        if (generator == NULL)
2052
0
            goto err;
2053
        /* get the generator from precomputation */
2054
0
        if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) || !smallfelem_to_BN(y, g_pre_comp[0][1][1]) || !smallfelem_to_BN(z, g_pre_comp[0][1][2])) {
2055
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2056
0
            goto err;
2057
0
        }
2058
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
2059
0
                generator,
2060
0
                x, y, z, ctx))
2061
0
            goto err;
2062
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2063
            /* precomputation matches generator */
2064
0
            have_pre_comp = 1;
2065
0
        else
2066
            /*
2067
             * we don't have valid precomputation: treat the generator as a
2068
             * random point
2069
             */
2070
0
            num_points++;
2071
0
    }
2072
0
    if (num_points > 0) {
2073
0
        if (num_points >= 3) {
2074
            /*
2075
             * unless we precompute multiples for just one or two points,
2076
             * converting those into affine form is time well spent
2077
             */
2078
0
            mixed = 1;
2079
0
        }
2080
0
        secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
2081
0
        pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
2082
0
        if (mixed)
2083
0
            tmp_smallfelems = OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1));
2084
0
        if ((secrets == NULL) || (pre_comp == NULL)
2085
0
            || (mixed && (tmp_smallfelems == NULL)))
2086
0
            goto err;
2087
2088
        /*
2089
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2090
         * i.e., they contribute nothing to the linear combination
2091
         */
2092
0
        memset(secrets, 0, sizeof(*secrets) * num_points);
2093
0
        memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
2094
0
        for (i = 0; i < num_points; ++i) {
2095
0
            if (i == num) {
2096
                /*
2097
                 * we didn't have a valid precomputation, so we pick the
2098
                 * generator
2099
                 */
2100
0
                p = EC_GROUP_get0_generator(group);
2101
0
                p_scalar = scalar;
2102
0
            } else {
2103
                /* the i^th point */
2104
0
                p = points[i];
2105
0
                p_scalar = scalars[i];
2106
0
            }
2107
0
            if ((p_scalar != NULL) && (p != NULL)) {
2108
                /* reduce scalar to 0 <= scalar < 2^256 */
2109
0
                if ((BN_num_bits(p_scalar) > 256)
2110
0
                    || (BN_is_negative(p_scalar))) {
2111
                    /*
2112
                     * this is an unusual input, and we don't guarantee
2113
                     * constant-timeness
2114
                     */
2115
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2116
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2117
0
                        goto err;
2118
0
                    }
2119
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2120
0
                        secrets[i], sizeof(secrets[i]));
2121
0
                } else {
2122
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
2123
0
                        secrets[i], sizeof(secrets[i]));
2124
0
                }
2125
0
                if (num_bytes < 0) {
2126
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2127
0
                    goto err;
2128
0
                }
2129
                /* precompute multiples */
2130
0
                if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z)))
2131
0
                    goto err;
2132
0
                felem_shrink(pre_comp[i][1][0], x_out);
2133
0
                felem_shrink(pre_comp[i][1][1], y_out);
2134
0
                felem_shrink(pre_comp[i][1][2], z_out);
2135
0
                for (j = 2; j <= 16; ++j) {
2136
0
                    if (j & 1) {
2137
0
                        point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
2138
0
                            pre_comp[i][j][2], pre_comp[i][1][0],
2139
0
                            pre_comp[i][1][1], pre_comp[i][1][2],
2140
0
                            pre_comp[i][j - 1][0],
2141
0
                            pre_comp[i][j - 1][1],
2142
0
                            pre_comp[i][j - 1][2]);
2143
0
                    } else {
2144
0
                        point_double_small(pre_comp[i][j][0],
2145
0
                            pre_comp[i][j][1],
2146
0
                            pre_comp[i][j][2],
2147
0
                            pre_comp[i][j / 2][0],
2148
0
                            pre_comp[i][j / 2][1],
2149
0
                            pre_comp[i][j / 2][2]);
2150
0
                    }
2151
0
                }
2152
0
            }
2153
0
        }
2154
0
        if (mixed)
2155
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
2156
0
    }
2157
2158
    /* the scalar for the generator */
2159
0
    if ((scalar != NULL) && (have_pre_comp)) {
2160
0
        memset(g_secret, 0, sizeof(g_secret));
2161
        /* reduce scalar to 0 <= scalar < 2^256 */
2162
0
        if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) {
2163
            /*
2164
             * this is an unusual input, and we don't guarantee
2165
             * constant-timeness
2166
             */
2167
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2168
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2169
0
                goto err;
2170
0
            }
2171
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2172
0
        } else {
2173
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2174
0
        }
2175
        /* do the multiplication with generator precomputation */
2176
0
        batch_mul(x_out, y_out, z_out,
2177
0
            (const felem_bytearray(*))secrets, num_points,
2178
0
            g_secret,
2179
0
            mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
2180
0
    } else {
2181
        /* do the multiplication without generator precomputation */
2182
0
        batch_mul(x_out, y_out, z_out,
2183
0
            (const felem_bytearray(*))secrets, num_points,
2184
0
            NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
2185
0
    }
2186
    /* reduce the output to its unique minimal representation */
2187
0
    felem_contract(x_in, x_out);
2188
0
    felem_contract(y_in, y_out);
2189
0
    felem_contract(z_in, z_out);
2190
0
    if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) || (!smallfelem_to_BN(z, z_in))) {
2191
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2192
0
        goto err;
2193
0
    }
2194
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2195
0
        ctx);
2196
2197
0
err:
2198
0
    BN_CTX_end(ctx);
2199
0
    EC_POINT_free(generator);
2200
0
    OPENSSL_free(secrets);
2201
0
    OPENSSL_free(pre_comp);
2202
0
    OPENSSL_free(tmp_smallfelems);
2203
0
    return ret;
2204
0
}
2205
2206
int ossl_ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2207
0
{
2208
0
    int ret = 0;
2209
0
    NISTP256_PRE_COMP *pre = NULL;
2210
0
    int i, j;
2211
0
    BIGNUM *x, *y;
2212
0
    EC_POINT *generator = NULL;
2213
0
    smallfelem tmp_smallfelems[32];
2214
0
    felem x_tmp, y_tmp, z_tmp;
2215
0
#ifndef FIPS_MODULE
2216
0
    BN_CTX *new_ctx = NULL;
2217
0
#endif
2218
2219
    /* throw away old precomputation */
2220
0
    EC_pre_comp_free(group);
2221
2222
0
#ifndef FIPS_MODULE
2223
0
    if (ctx == NULL)
2224
0
        ctx = new_ctx = BN_CTX_new();
2225
0
#endif
2226
0
    if (ctx == NULL)
2227
0
        return 0;
2228
2229
0
    BN_CTX_start(ctx);
2230
0
    x = BN_CTX_get(ctx);
2231
0
    y = BN_CTX_get(ctx);
2232
0
    if (y == NULL)
2233
0
        goto err;
2234
    /* get the generator */
2235
0
    if (group->generator == NULL)
2236
0
        goto err;
2237
0
    generator = EC_POINT_new(group);
2238
0
    if (generator == NULL)
2239
0
        goto err;
2240
0
    BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x);
2241
0
    BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y);
2242
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2243
0
        goto err;
2244
0
    if ((pre = nistp256_pre_comp_new()) == NULL)
2245
0
        goto err;
2246
    /*
2247
     * if the generator is the standard one, use built-in precomputation
2248
     */
2249
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2250
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2251
0
        goto done;
2252
0
    }
2253
0
    if ((!BN_to_felem(x_tmp, group->generator->X)) || (!BN_to_felem(y_tmp, group->generator->Y)) || (!BN_to_felem(z_tmp, group->generator->Z)))
2254
0
        goto err;
2255
0
    felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2256
0
    felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2257
0
    felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2258
    /*
2259
     * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G,
2260
     * 2^160*G, 2^224*G for the second one
2261
     */
2262
0
    for (i = 1; i <= 8; i <<= 1) {
2263
0
        point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2264
0
            pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
2265
0
            pre->g_pre_comp[0][i][1],
2266
0
            pre->g_pre_comp[0][i][2]);
2267
0
        for (j = 0; j < 31; ++j) {
2268
0
            point_double_small(pre->g_pre_comp[1][i][0],
2269
0
                pre->g_pre_comp[1][i][1],
2270
0
                pre->g_pre_comp[1][i][2],
2271
0
                pre->g_pre_comp[1][i][0],
2272
0
                pre->g_pre_comp[1][i][1],
2273
0
                pre->g_pre_comp[1][i][2]);
2274
0
        }
2275
0
        if (i == 8)
2276
0
            break;
2277
0
        point_double_small(pre->g_pre_comp[0][2 * i][0],
2278
0
            pre->g_pre_comp[0][2 * i][1],
2279
0
            pre->g_pre_comp[0][2 * i][2],
2280
0
            pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2281
0
            pre->g_pre_comp[1][i][2]);
2282
0
        for (j = 0; j < 31; ++j) {
2283
0
            point_double_small(pre->g_pre_comp[0][2 * i][0],
2284
0
                pre->g_pre_comp[0][2 * i][1],
2285
0
                pre->g_pre_comp[0][2 * i][2],
2286
0
                pre->g_pre_comp[0][2 * i][0],
2287
0
                pre->g_pre_comp[0][2 * i][1],
2288
0
                pre->g_pre_comp[0][2 * i][2]);
2289
0
        }
2290
0
    }
2291
0
    for (i = 0; i < 2; i++) {
2292
        /* g_pre_comp[i][0] is the point at infinity */
2293
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2294
        /* the remaining multiples */
2295
        /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2296
0
        point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
2297
0
            pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
2298
0
            pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2299
0
            pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2300
0
            pre->g_pre_comp[i][2][2]);
2301
        /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2302
0
        point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
2303
0
            pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
2304
0
            pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2305
0
            pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2306
0
            pre->g_pre_comp[i][2][2]);
2307
        /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2308
0
        point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
2309
0
            pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
2310
0
            pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2311
0
            pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
2312
0
            pre->g_pre_comp[i][4][2]);
2313
        /*
2314
         * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G
2315
         */
2316
0
        point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
2317
0
            pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
2318
0
            pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2319
0
            pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2320
0
            pre->g_pre_comp[i][2][2]);
2321
0
        for (j = 1; j < 8; ++j) {
2322
            /* odd multiples: add G resp. 2^32*G */
2323
0
            point_add_small(pre->g_pre_comp[i][2 * j + 1][0],
2324
0
                pre->g_pre_comp[i][2 * j + 1][1],
2325
0
                pre->g_pre_comp[i][2 * j + 1][2],
2326
0
                pre->g_pre_comp[i][2 * j][0],
2327
0
                pre->g_pre_comp[i][2 * j][1],
2328
0
                pre->g_pre_comp[i][2 * j][2],
2329
0
                pre->g_pre_comp[i][1][0],
2330
0
                pre->g_pre_comp[i][1][1],
2331
0
                pre->g_pre_comp[i][1][2]);
2332
0
        }
2333
0
    }
2334
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2335
2336
0
done:
2337
0
    SETPRECOMP(group, nistp256, pre);
2338
0
    pre = NULL;
2339
0
    ret = 1;
2340
2341
0
err:
2342
0
    BN_CTX_end(ctx);
2343
0
    EC_POINT_free(generator);
2344
0
#ifndef FIPS_MODULE
2345
0
    BN_CTX_free(new_ctx);
2346
0
#endif
2347
0
    EC_nistp256_pre_comp_free(pre);
2348
0
    return ret;
2349
0
}
2350
2351
int ossl_ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
2352
0
{
2353
    return HAVEPRECOMP(group, nistp256);
2354
0
}