/src/openssl34/crypto/threads_pthread.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* We need to use the OPENSSL_fork_*() deprecated APIs */ |
11 | | #define OPENSSL_SUPPRESS_DEPRECATED |
12 | | |
13 | | #include <openssl/crypto.h> |
14 | | #include <crypto/cryptlib.h> |
15 | | #include "internal/cryptlib.h" |
16 | | #include "internal/rcu.h" |
17 | | #include "rcu_internal.h" |
18 | | |
19 | | #if defined(__clang__) && defined(__has_feature) |
20 | | #if __has_feature(thread_sanitizer) |
21 | | #define __SANITIZE_THREAD__ |
22 | | #endif |
23 | | #endif |
24 | | |
25 | | #if defined(__SANITIZE_THREAD__) |
26 | | #include <sanitizer/tsan_interface.h> |
27 | | #define TSAN_FAKE_UNLOCK(x) \ |
28 | | __tsan_mutex_pre_unlock((x), 0); \ |
29 | | __tsan_mutex_post_unlock((x), 0) |
30 | | |
31 | | #define TSAN_FAKE_LOCK(x) \ |
32 | | __tsan_mutex_pre_lock((x), 0); \ |
33 | | __tsan_mutex_post_lock((x), 0, 0) |
34 | | #else |
35 | | #define TSAN_FAKE_UNLOCK(x) |
36 | | #define TSAN_FAKE_LOCK(x) |
37 | | #endif |
38 | | |
39 | | #if defined(__sun) |
40 | | #include <atomic.h> |
41 | | #endif |
42 | | |
43 | | #if defined(__apple_build_version__) && __apple_build_version__ < 6000000 |
44 | | /* |
45 | | * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and |
46 | | * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free() |
47 | | * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))). |
48 | | * All of this makes impossible to use __atomic_is_lock_free here. |
49 | | * |
50 | | * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760 |
51 | | */ |
52 | | #define BROKEN_CLANG_ATOMICS |
53 | | #endif |
54 | | |
55 | | #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS) |
56 | | |
57 | | #if defined(OPENSSL_SYS_UNIX) |
58 | | #include <sys/types.h> |
59 | | #include <unistd.h> |
60 | | #endif |
61 | | |
62 | | #include <assert.h> |
63 | | |
64 | | /* |
65 | | * The Non-Stop KLT thread model currently seems broken in its rwlock |
66 | | * implementation |
67 | | * Likewise is there a problem with the glibc implementation on riscv. |
68 | | */ |
69 | | #if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_) \ |
70 | | && !defined(__riscv) |
71 | | #define USE_RWLOCK |
72 | | #endif |
73 | | |
74 | | /* |
75 | | * For all GNU/clang atomic builtins, we also need fallbacks, to cover all |
76 | | * other compilers. |
77 | | |
78 | | * Unfortunately, we can't do that with some "generic type", because there's no |
79 | | * guarantee that the chosen generic type is large enough to cover all cases. |
80 | | * Therefore, we implement fallbacks for each applicable type, with composed |
81 | | * names that include the type they handle. |
82 | | * |
83 | | * (an anecdote: we previously tried to use |void *| as the generic type, with |
84 | | * the thought that the pointer itself is the largest type. However, this is |
85 | | * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large) |
86 | | * |
87 | | * All applicable ATOMIC_ macros take the intended type as first parameter, so |
88 | | * they can map to the correct fallback function. In the GNU/clang case, that |
89 | | * parameter is simply ignored. |
90 | | */ |
91 | | |
92 | | /* |
93 | | * Internal types used with the ATOMIC_ macros, to make it possible to compose |
94 | | * fallback function names. |
95 | | */ |
96 | | typedef void *pvoid; |
97 | | |
98 | | #if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \ |
99 | | && !defined(USE_ATOMIC_FALLBACKS) |
100 | 76.6M | #define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o) |
101 | 934 | #define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o) |
102 | 39.4k | #define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o) |
103 | 998 | #define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o) |
104 | 64 | #define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o) |
105 | | #else |
106 | | static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER; |
107 | | |
108 | | #define IMPL_fallback_atomic_load_n(t) \ |
109 | | static ossl_inline t fallback_atomic_load_n_##t(t *p) \ |
110 | | { \ |
111 | | t ret; \ |
112 | | \ |
113 | | pthread_mutex_lock(&atomic_sim_lock); \ |
114 | | ret = *p; \ |
115 | | pthread_mutex_unlock(&atomic_sim_lock); \ |
116 | | return ret; \ |
117 | | } |
118 | | IMPL_fallback_atomic_load_n(uint32_t) |
119 | | IMPL_fallback_atomic_load_n(uint64_t) |
120 | | IMPL_fallback_atomic_load_n(pvoid) |
121 | | |
122 | | #define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p) |
123 | | |
124 | | #define IMPL_fallback_atomic_store_n(t) \ |
125 | | static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \ |
126 | | { \ |
127 | | t ret; \ |
128 | | \ |
129 | | pthread_mutex_lock(&atomic_sim_lock); \ |
130 | | ret = *p; \ |
131 | | *p = v; \ |
132 | | pthread_mutex_unlock(&atomic_sim_lock); \ |
133 | | return ret; \ |
134 | | } |
135 | | IMPL_fallback_atomic_store_n(uint32_t) |
136 | | |
137 | | #define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v) |
138 | | |
139 | | #define IMPL_fallback_atomic_store(t) \ |
140 | | static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \ |
141 | | { \ |
142 | | pthread_mutex_lock(&atomic_sim_lock); \ |
143 | | *p = *v; \ |
144 | | pthread_mutex_unlock(&atomic_sim_lock); \ |
145 | | } |
146 | | IMPL_fallback_atomic_store(pvoid) |
147 | | |
148 | | #define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v) |
149 | | |
150 | | /* |
151 | | * The fallbacks that follow don't need any per type implementation, as |
152 | | * they are designed for uint64_t only. If there comes a time when multiple |
153 | | * types need to be covered, it's relatively easy to refactor them the same |
154 | | * way as the fallbacks above. |
155 | | */ |
156 | | |
157 | | static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v) |
158 | | { |
159 | | uint64_t ret; |
160 | | |
161 | | pthread_mutex_lock(&atomic_sim_lock); |
162 | | *p += v; |
163 | | ret = *p; |
164 | | pthread_mutex_unlock(&atomic_sim_lock); |
165 | | return ret; |
166 | | } |
167 | | |
168 | | #define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v) |
169 | | |
170 | | static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v) |
171 | | { |
172 | | uint64_t ret; |
173 | | |
174 | | pthread_mutex_lock(&atomic_sim_lock); |
175 | | *p -= v; |
176 | | ret = *p; |
177 | | pthread_mutex_unlock(&atomic_sim_lock); |
178 | | return ret; |
179 | | } |
180 | | |
181 | | #define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v) |
182 | | #endif |
183 | | |
184 | | /* |
185 | | * This is the core of an rcu lock. It tracks the readers and writers for the |
186 | | * current quiescence point for a given lock. Users is the 64 bit value that |
187 | | * stores the READERS/ID as defined above |
188 | | * |
189 | | */ |
190 | | struct rcu_qp { |
191 | | uint64_t users; |
192 | | }; |
193 | | |
194 | | struct thread_qp { |
195 | | struct rcu_qp *qp; |
196 | | unsigned int depth; |
197 | | CRYPTO_RCU_LOCK *lock; |
198 | | }; |
199 | | |
200 | 372 | #define MAX_QPS 10 |
201 | | /* |
202 | | * This is the per thread tracking data |
203 | | * that is assigned to each thread participating |
204 | | * in an rcu qp |
205 | | * |
206 | | * qp points to the qp that it last acquired |
207 | | * |
208 | | */ |
209 | | struct rcu_thr_data { |
210 | | struct thread_qp thread_qps[MAX_QPS]; |
211 | | }; |
212 | | |
213 | | /* |
214 | | * This is the internal version of a CRYPTO_RCU_LOCK |
215 | | * it is cast from CRYPTO_RCU_LOCK |
216 | | */ |
217 | | struct rcu_lock_st { |
218 | | /* Callbacks to call for next ossl_synchronize_rcu */ |
219 | | struct rcu_cb_item *cb_items; |
220 | | |
221 | | /* The context we are being created against */ |
222 | | OSSL_LIB_CTX *ctx; |
223 | | |
224 | | /* Array of quiescent points for synchronization */ |
225 | | struct rcu_qp *qp_group; |
226 | | |
227 | | /* rcu generation counter for in-order retirement */ |
228 | | uint32_t id_ctr; |
229 | | |
230 | | /* Number of elements in qp_group array */ |
231 | | uint32_t group_count; |
232 | | |
233 | | /* Index of the current qp in the qp_group array */ |
234 | | uint32_t reader_idx; |
235 | | |
236 | | /* value of the next id_ctr value to be retired */ |
237 | | uint32_t next_to_retire; |
238 | | |
239 | | /* index of the next free rcu_qp in the qp_group */ |
240 | | uint32_t current_alloc_idx; |
241 | | |
242 | | /* number of qp's in qp_group array currently being retired */ |
243 | | uint32_t writers_alloced; |
244 | | |
245 | | /* lock protecting write side operations */ |
246 | | pthread_mutex_t write_lock; |
247 | | |
248 | | /* lock protecting updates to writers_alloced/current_alloc_idx */ |
249 | | pthread_mutex_t alloc_lock; |
250 | | |
251 | | /* signal to wake threads waiting on alloc_lock */ |
252 | | pthread_cond_t alloc_signal; |
253 | | |
254 | | /* lock to enforce in-order retirement */ |
255 | | pthread_mutex_t prior_lock; |
256 | | |
257 | | /* signal to wake threads waiting on prior_lock */ |
258 | | pthread_cond_t prior_signal; |
259 | | }; |
260 | | |
261 | | /* Read side acquisition of the current qp */ |
262 | | static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock) |
263 | 64 | { |
264 | 64 | uint32_t qp_idx; |
265 | | |
266 | | /* get the current qp index */ |
267 | 64 | for (;;) { |
268 | 64 | qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED); |
269 | | |
270 | | /* |
271 | | * Notes on use of __ATOMIC_ACQUIRE |
272 | | * We need to ensure the following: |
273 | | * 1) That subsequent operations aren't optimized by hoisting them above |
274 | | * this operation. Specifically, we don't want the below re-load of |
275 | | * qp_idx to get optimized away |
276 | | * 2) We want to ensure that any updating of reader_idx on the write side |
277 | | * of the lock is flushed from a local cpu cache so that we see any |
278 | | * updates prior to the load. This is a non-issue on cache coherent |
279 | | * systems like x86, but is relevant on other arches |
280 | | */ |
281 | 64 | ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1, |
282 | 64 | __ATOMIC_ACQUIRE); |
283 | | |
284 | | /* if the idx hasn't changed, we're good, else try again */ |
285 | 64 | if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_ACQUIRE)) |
286 | 64 | break; |
287 | | |
288 | 0 | ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1, |
289 | 0 | __ATOMIC_RELAXED); |
290 | 0 | } |
291 | | |
292 | 64 | return &lock->qp_group[qp_idx]; |
293 | 64 | } |
294 | | |
295 | | static void ossl_rcu_free_local_data(void *arg) |
296 | 3 | { |
297 | 3 | OSSL_LIB_CTX *ctx = arg; |
298 | 3 | CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx); |
299 | 3 | struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey); |
300 | | |
301 | 3 | OPENSSL_free(data); |
302 | 3 | CRYPTO_THREAD_set_local(lkey, NULL); |
303 | 3 | } |
304 | | |
305 | | void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock) |
306 | 28 | { |
307 | 28 | struct rcu_thr_data *data; |
308 | 28 | int i, available_qp = -1; |
309 | 28 | CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx); |
310 | | |
311 | | /* |
312 | | * we're going to access current_qp here so ask the |
313 | | * processor to fetch it |
314 | | */ |
315 | 28 | data = CRYPTO_THREAD_get_local(lkey); |
316 | | |
317 | 28 | if (data == NULL) { |
318 | 2 | data = OPENSSL_zalloc(sizeof(*data)); |
319 | 2 | OPENSSL_assert(data != NULL); |
320 | 2 | CRYPTO_THREAD_set_local(lkey, data); |
321 | 2 | ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data); |
322 | 2 | } |
323 | | |
324 | 308 | for (i = 0; i < MAX_QPS; i++) { |
325 | 280 | if (data->thread_qps[i].qp == NULL && available_qp == -1) |
326 | 28 | available_qp = i; |
327 | | /* If we have a hold on this lock already, we're good */ |
328 | 280 | if (data->thread_qps[i].lock == lock) { |
329 | 0 | data->thread_qps[i].depth++; |
330 | 0 | return; |
331 | 0 | } |
332 | 280 | } |
333 | | |
334 | | /* |
335 | | * if we get here, then we don't have a hold on this lock yet |
336 | | */ |
337 | 28 | assert(available_qp != -1); |
338 | | |
339 | 28 | data->thread_qps[available_qp].qp = get_hold_current_qp(lock); |
340 | 28 | data->thread_qps[available_qp].depth = 1; |
341 | 28 | data->thread_qps[available_qp].lock = lock; |
342 | 28 | } |
343 | | |
344 | | void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock) |
345 | 64 | { |
346 | 64 | int i; |
347 | 64 | CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx); |
348 | 64 | struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey); |
349 | 64 | uint64_t ret; |
350 | | |
351 | 64 | assert(data != NULL); |
352 | | |
353 | 64 | for (i = 0; i < MAX_QPS; i++) { |
354 | 64 | if (data->thread_qps[i].lock == lock) { |
355 | | /* |
356 | | * we have to use __ATOMIC_RELEASE here |
357 | | * to ensure that all preceding read instructions complete |
358 | | * before the decrement is visible to ossl_synchronize_rcu |
359 | | */ |
360 | 64 | data->thread_qps[i].depth--; |
361 | 64 | if (data->thread_qps[i].depth == 0) { |
362 | 64 | ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users, |
363 | 64 | (uint64_t)1, __ATOMIC_RELEASE); |
364 | 64 | OPENSSL_assert(ret != UINT64_MAX); |
365 | 64 | data->thread_qps[i].qp = NULL; |
366 | 64 | data->thread_qps[i].lock = NULL; |
367 | 64 | } |
368 | 64 | return; |
369 | 64 | } |
370 | 64 | } |
371 | | /* |
372 | | * If we get here, we're trying to unlock a lock that we never acquired - |
373 | | * that's fatal. |
374 | | */ |
375 | 64 | assert(0); |
376 | 0 | } |
377 | | |
378 | | /* |
379 | | * Write side allocation routine to get the current qp |
380 | | * and replace it with a new one |
381 | | */ |
382 | | static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id) |
383 | 934 | { |
384 | 934 | uint32_t current_idx; |
385 | | |
386 | 934 | pthread_mutex_lock(&lock->alloc_lock); |
387 | | |
388 | | /* |
389 | | * we need at least one qp to be available with one |
390 | | * left over, so that readers can start working on |
391 | | * one that isn't yet being waited on |
392 | | */ |
393 | 934 | while (lock->group_count - lock->writers_alloced < 2) |
394 | | /* we have to wait for one to be free */ |
395 | 0 | pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock); |
396 | | |
397 | 934 | current_idx = lock->current_alloc_idx; |
398 | | |
399 | | /* Allocate the qp */ |
400 | 934 | lock->writers_alloced++; |
401 | | |
402 | | /* increment the allocation index */ |
403 | 934 | lock->current_alloc_idx = (lock->current_alloc_idx + 1) % lock->group_count; |
404 | | |
405 | 934 | *curr_id = lock->id_ctr; |
406 | 934 | lock->id_ctr++; |
407 | | |
408 | | /* |
409 | | * make the current state of everything visible by this release |
410 | | * when get_hold_current_qp acquires the next qp |
411 | | */ |
412 | 934 | ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx, |
413 | 934 | __ATOMIC_RELEASE); |
414 | | |
415 | | /* |
416 | | * this should make sure that the new value of reader_idx is visible in |
417 | | * get_hold_current_qp, directly after incrementing the users count |
418 | | */ |
419 | 934 | ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0, |
420 | 934 | __ATOMIC_RELEASE); |
421 | | |
422 | | /* wake up any waiters */ |
423 | 934 | pthread_cond_signal(&lock->alloc_signal); |
424 | 934 | pthread_mutex_unlock(&lock->alloc_lock); |
425 | 934 | return &lock->qp_group[current_idx]; |
426 | 934 | } |
427 | | |
428 | | static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp) |
429 | 934 | { |
430 | 934 | pthread_mutex_lock(&lock->alloc_lock); |
431 | 934 | lock->writers_alloced--; |
432 | 934 | pthread_cond_signal(&lock->alloc_signal); |
433 | 934 | pthread_mutex_unlock(&lock->alloc_lock); |
434 | 934 | } |
435 | | |
436 | | static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock, |
437 | | uint32_t count) |
438 | 516 | { |
439 | 516 | struct rcu_qp *new = OPENSSL_zalloc(sizeof(*new) * count); |
440 | | |
441 | 516 | lock->group_count = count; |
442 | 516 | return new; |
443 | 516 | } |
444 | | |
445 | | void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock) |
446 | 710 | { |
447 | 710 | pthread_mutex_lock(&lock->write_lock); |
448 | 710 | TSAN_FAKE_UNLOCK(&lock->write_lock); |
449 | 710 | } |
450 | | |
451 | | void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock) |
452 | 710 | { |
453 | 710 | TSAN_FAKE_LOCK(&lock->write_lock); |
454 | 710 | pthread_mutex_unlock(&lock->write_lock); |
455 | 710 | } |
456 | | |
457 | | void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock) |
458 | 934 | { |
459 | 934 | struct rcu_qp *qp; |
460 | 934 | uint64_t count; |
461 | 934 | uint32_t curr_id; |
462 | 934 | struct rcu_cb_item *cb_items, *tmpcb; |
463 | | |
464 | 934 | pthread_mutex_lock(&lock->write_lock); |
465 | 934 | cb_items = lock->cb_items; |
466 | 934 | lock->cb_items = NULL; |
467 | 934 | pthread_mutex_unlock(&lock->write_lock); |
468 | | |
469 | 934 | qp = update_qp(lock, &curr_id); |
470 | | |
471 | | /* retire in order */ |
472 | 934 | pthread_mutex_lock(&lock->prior_lock); |
473 | 934 | while (lock->next_to_retire != curr_id) |
474 | 0 | pthread_cond_wait(&lock->prior_signal, &lock->prior_lock); |
475 | | |
476 | | /* |
477 | | * wait for the reader count to reach zero |
478 | | * Note the use of __ATOMIC_ACQUIRE here to ensure that any |
479 | | * prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock |
480 | | * is visible prior to our read |
481 | | * however this is likely just necessary to silence a tsan warning |
482 | | * because the read side should not do any write operation |
483 | | * outside the atomic itself |
484 | | */ |
485 | 934 | do { |
486 | 934 | count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE); |
487 | 934 | } while (count != (uint64_t)0); |
488 | | |
489 | 934 | lock->next_to_retire++; |
490 | 934 | pthread_cond_broadcast(&lock->prior_signal); |
491 | 934 | pthread_mutex_unlock(&lock->prior_lock); |
492 | | |
493 | 934 | retire_qp(lock, qp); |
494 | | |
495 | | /* handle any callbacks that we have */ |
496 | 1.13k | while (cb_items != NULL) { |
497 | 200 | tmpcb = cb_items; |
498 | 200 | cb_items = cb_items->next; |
499 | 200 | tmpcb->fn(tmpcb->data); |
500 | 200 | OPENSSL_free(tmpcb); |
501 | 200 | } |
502 | 934 | } |
503 | | |
504 | | /* |
505 | | * Note: This call assumes its made under the protection of |
506 | | * ossl_rcu_write_lock |
507 | | */ |
508 | | int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data) |
509 | 200 | { |
510 | 200 | struct rcu_cb_item *new = OPENSSL_zalloc(sizeof(*new)); |
511 | | |
512 | 200 | if (new == NULL) |
513 | 0 | return 0; |
514 | | |
515 | 200 | new->data = data; |
516 | 200 | new->fn = cb; |
517 | | |
518 | 200 | new->next = lock->cb_items; |
519 | 200 | lock->cb_items = new; |
520 | | |
521 | 200 | return 1; |
522 | 200 | } |
523 | | |
524 | | void *ossl_rcu_uptr_deref(void **p) |
525 | 76.6M | { |
526 | 76.6M | return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE); |
527 | 76.6M | } |
528 | | |
529 | | void ossl_rcu_assign_uptr(void **p, void **v) |
530 | 39.4k | { |
531 | 39.4k | ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE); |
532 | 39.4k | } |
533 | | |
534 | | CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx) |
535 | 516 | { |
536 | 516 | struct rcu_lock_st *new; |
537 | | |
538 | | /* |
539 | | * We need a minimum of 2 qp's |
540 | | */ |
541 | 516 | if (num_writers < 2) |
542 | 516 | num_writers = 2; |
543 | | |
544 | 516 | ctx = ossl_lib_ctx_get_concrete(ctx); |
545 | 516 | if (ctx == NULL) |
546 | 0 | return 0; |
547 | | |
548 | 516 | new = OPENSSL_zalloc(sizeof(*new)); |
549 | 516 | if (new == NULL) |
550 | 0 | return NULL; |
551 | | |
552 | 516 | new->ctx = ctx; |
553 | 516 | pthread_mutex_init(&new->write_lock, NULL); |
554 | 516 | pthread_mutex_init(&new->prior_lock, NULL); |
555 | 516 | pthread_mutex_init(&new->alloc_lock, NULL); |
556 | 516 | pthread_cond_init(&new->prior_signal, NULL); |
557 | 516 | pthread_cond_init(&new->alloc_signal, NULL); |
558 | | |
559 | 516 | new->qp_group = allocate_new_qp_group(new, num_writers); |
560 | 516 | if (new->qp_group == NULL) { |
561 | 0 | OPENSSL_free(new); |
562 | 0 | new = NULL; |
563 | 0 | } |
564 | | |
565 | 516 | return new; |
566 | 516 | } |
567 | | |
568 | | void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock) |
569 | 350 | { |
570 | 350 | struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock; |
571 | | |
572 | 350 | if (lock == NULL) |
573 | 0 | return; |
574 | | |
575 | | /* make sure we're synchronized */ |
576 | 350 | ossl_synchronize_rcu(rlock); |
577 | | |
578 | 350 | OPENSSL_free(rlock->qp_group); |
579 | | /* There should only be a single qp left now */ |
580 | 350 | OPENSSL_free(rlock); |
581 | 350 | } |
582 | | |
583 | | CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void) |
584 | 10.3M | { |
585 | 10.3M | #ifdef USE_RWLOCK |
586 | 10.3M | CRYPTO_RWLOCK *lock; |
587 | | |
588 | 10.3M | if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL) |
589 | | /* Don't set error, to avoid recursion blowup. */ |
590 | 0 | return NULL; |
591 | | |
592 | 10.3M | if (pthread_rwlock_init(lock, NULL) != 0) { |
593 | 0 | OPENSSL_free(lock); |
594 | 0 | return NULL; |
595 | 0 | } |
596 | | #else |
597 | | pthread_mutexattr_t attr; |
598 | | CRYPTO_RWLOCK *lock; |
599 | | |
600 | | if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL) |
601 | | /* Don't set error, to avoid recursion blowup. */ |
602 | | return NULL; |
603 | | |
604 | | /* |
605 | | * We don't use recursive mutexes, but try to catch errors if we do. |
606 | | */ |
607 | | pthread_mutexattr_init(&attr); |
608 | | #if !defined(__TANDEM) && !defined(_SPT_MODEL_) |
609 | | #if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK) |
610 | | pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK); |
611 | | #endif |
612 | | #else |
613 | | /* The SPT Thread Library does not define MUTEX attributes. */ |
614 | | #endif |
615 | | |
616 | | if (pthread_mutex_init(lock, &attr) != 0) { |
617 | | pthread_mutexattr_destroy(&attr); |
618 | | OPENSSL_free(lock); |
619 | | return NULL; |
620 | | } |
621 | | |
622 | | pthread_mutexattr_destroy(&attr); |
623 | | #endif |
624 | | |
625 | 10.3M | return lock; |
626 | 10.3M | } |
627 | | |
628 | | __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock) |
629 | 1.11G | { |
630 | 1.11G | #ifdef USE_RWLOCK |
631 | 1.11G | if (pthread_rwlock_rdlock(lock) != 0) |
632 | 0 | return 0; |
633 | | #else |
634 | | if (pthread_mutex_lock(lock) != 0) { |
635 | | assert(errno != EDEADLK && errno != EBUSY); |
636 | | return 0; |
637 | | } |
638 | | #endif |
639 | | |
640 | 1.11G | return 1; |
641 | 1.11G | } |
642 | | |
643 | | __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock) |
644 | 57.1M | { |
645 | 57.1M | #ifdef USE_RWLOCK |
646 | 57.1M | if (pthread_rwlock_wrlock(lock) != 0) |
647 | 0 | return 0; |
648 | | #else |
649 | | if (pthread_mutex_lock(lock) != 0) { |
650 | | assert(errno != EDEADLK && errno != EBUSY); |
651 | | return 0; |
652 | | } |
653 | | #endif |
654 | | |
655 | 57.1M | return 1; |
656 | 57.1M | } |
657 | | |
658 | | int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock) |
659 | 1.31G | { |
660 | 1.31G | #ifdef USE_RWLOCK |
661 | 1.31G | if (pthread_rwlock_unlock(lock) != 0) |
662 | 0 | return 0; |
663 | | #else |
664 | | if (pthread_mutex_unlock(lock) != 0) { |
665 | | assert(errno != EPERM); |
666 | | return 0; |
667 | | } |
668 | | #endif |
669 | | |
670 | 1.31G | return 1; |
671 | 1.31G | } |
672 | | |
673 | | void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock) |
674 | 10.3M | { |
675 | 10.3M | if (lock == NULL) |
676 | 2.35k | return; |
677 | | |
678 | 10.3M | #ifdef USE_RWLOCK |
679 | 10.3M | pthread_rwlock_destroy(lock); |
680 | | #else |
681 | | pthread_mutex_destroy(lock); |
682 | | #endif |
683 | 10.3M | OPENSSL_free(lock); |
684 | | |
685 | 10.3M | return; |
686 | 10.3M | } |
687 | | |
688 | | int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void)) |
689 | 2.67G | { |
690 | 2.67G | if (pthread_once(once, init) != 0) |
691 | 0 | return 0; |
692 | | |
693 | 2.67G | return 1; |
694 | 2.67G | } |
695 | | |
696 | | int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *)) |
697 | 1.54k | { |
698 | | |
699 | 1.54k | #ifndef FIPS_MODULE |
700 | 1.54k | if (!ossl_init_thread()) |
701 | 0 | return 0; |
702 | 1.54k | #endif |
703 | | |
704 | 1.54k | if (pthread_key_create(key, cleanup) != 0) |
705 | 0 | return 0; |
706 | | |
707 | 1.54k | return 1; |
708 | 1.54k | } |
709 | | |
710 | | void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key) |
711 | 2.30G | { |
712 | 2.30G | return pthread_getspecific(*key); |
713 | 2.30G | } |
714 | | |
715 | | int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val) |
716 | 1.78k | { |
717 | 1.78k | if (pthread_setspecific(*key, val) != 0) |
718 | 0 | return 0; |
719 | | |
720 | 1.78k | return 1; |
721 | 1.78k | } |
722 | | |
723 | | int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key) |
724 | 1.38k | { |
725 | 1.38k | if (pthread_key_delete(*key) != 0) |
726 | 0 | return 0; |
727 | | |
728 | 1.38k | return 1; |
729 | 1.38k | } |
730 | | |
731 | | CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void) |
732 | 208k | { |
733 | 208k | return pthread_self(); |
734 | 208k | } |
735 | | |
736 | | int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b) |
737 | 12.5k | { |
738 | 12.5k | return pthread_equal(a, b); |
739 | 12.5k | } |
740 | | |
741 | | int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock) |
742 | 11.7M | { |
743 | 11.7M | #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
744 | 11.7M | if (__atomic_is_lock_free(sizeof(*val), val)) { |
745 | 11.7M | *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL); |
746 | 11.7M | return 1; |
747 | 11.7M | } |
748 | | #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
749 | | /* This will work for all future Solaris versions. */ |
750 | | if (ret != NULL) { |
751 | | *ret = atomic_add_int_nv((volatile unsigned int *)val, amount); |
752 | | return 1; |
753 | | } |
754 | | #endif |
755 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
756 | 0 | return 0; |
757 | | |
758 | 0 | *val += amount; |
759 | 0 | *ret = *val; |
760 | |
|
761 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
762 | 0 | return 0; |
763 | | |
764 | 0 | return 1; |
765 | 0 | } |
766 | | |
767 | | int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret, |
768 | | CRYPTO_RWLOCK *lock) |
769 | 0 | { |
770 | 0 | #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
771 | 0 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
772 | 0 | *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL); |
773 | 0 | return 1; |
774 | 0 | } |
775 | | #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
776 | | /* This will work for all future Solaris versions. */ |
777 | | if (ret != NULL) { |
778 | | *ret = atomic_add_64_nv(val, op); |
779 | | return 1; |
780 | | } |
781 | | #endif |
782 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
783 | 0 | return 0; |
784 | 0 | *val += op; |
785 | 0 | *ret = *val; |
786 | |
|
787 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
788 | 0 | return 0; |
789 | | |
790 | 0 | return 1; |
791 | 0 | } |
792 | | |
793 | | int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret, |
794 | | CRYPTO_RWLOCK *lock) |
795 | 0 | { |
796 | 0 | #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
797 | 0 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
798 | 0 | *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL); |
799 | 0 | return 1; |
800 | 0 | } |
801 | | #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
802 | | /* This will work for all future Solaris versions. */ |
803 | | if (ret != NULL) { |
804 | | *ret = atomic_and_64_nv(val, op); |
805 | | return 1; |
806 | | } |
807 | | #endif |
808 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
809 | 0 | return 0; |
810 | 0 | *val &= op; |
811 | 0 | *ret = *val; |
812 | |
|
813 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
814 | 0 | return 0; |
815 | | |
816 | 0 | return 1; |
817 | 0 | } |
818 | | |
819 | | int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret, |
820 | | CRYPTO_RWLOCK *lock) |
821 | 712 | { |
822 | 712 | #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
823 | 712 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
824 | 712 | *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL); |
825 | 712 | return 1; |
826 | 712 | } |
827 | | #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
828 | | /* This will work for all future Solaris versions. */ |
829 | | if (ret != NULL) { |
830 | | *ret = atomic_or_64_nv(val, op); |
831 | | return 1; |
832 | | } |
833 | | #endif |
834 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
835 | 0 | return 0; |
836 | 0 | *val |= op; |
837 | 0 | *ret = *val; |
838 | |
|
839 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
840 | 0 | return 0; |
841 | | |
842 | 0 | return 1; |
843 | 0 | } |
844 | | |
845 | | int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock) |
846 | 3.12G | { |
847 | 3.12G | #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
848 | 3.12G | if (__atomic_is_lock_free(sizeof(*val), val)) { |
849 | 3.12G | __atomic_load(val, ret, __ATOMIC_ACQUIRE); |
850 | 3.12G | return 1; |
851 | 3.12G | } |
852 | | #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
853 | | /* This will work for all future Solaris versions. */ |
854 | | if (ret != NULL) { |
855 | | *ret = atomic_or_64_nv(val, 0); |
856 | | return 1; |
857 | | } |
858 | | #endif |
859 | 0 | if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
860 | 0 | return 0; |
861 | 0 | *ret = *val; |
862 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
863 | 0 | return 0; |
864 | | |
865 | 0 | return 1; |
866 | 0 | } |
867 | | |
868 | | int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock) |
869 | 38.9k | { |
870 | 38.9k | #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
871 | 38.9k | if (__atomic_is_lock_free(sizeof(*dst), dst)) { |
872 | 38.9k | __atomic_store(dst, &val, __ATOMIC_RELEASE); |
873 | 38.9k | return 1; |
874 | 38.9k | } |
875 | | #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
876 | | /* This will work for all future Solaris versions. */ |
877 | | if (dst != NULL) { |
878 | | atomic_swap_64(dst, val); |
879 | | return 1; |
880 | | } |
881 | | #endif |
882 | 0 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
883 | 0 | return 0; |
884 | 0 | *dst = val; |
885 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
886 | 0 | return 0; |
887 | | |
888 | 0 | return 1; |
889 | 0 | } |
890 | | |
891 | | int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock) |
892 | 0 | { |
893 | 0 | #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
894 | 0 | if (__atomic_is_lock_free(sizeof(*val), val)) { |
895 | 0 | __atomic_load(val, ret, __ATOMIC_ACQUIRE); |
896 | 0 | return 1; |
897 | 0 | } |
898 | | #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
899 | | /* This will work for all future Solaris versions. */ |
900 | | if (ret != NULL) { |
901 | | *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0); |
902 | | return 1; |
903 | | } |
904 | | #endif |
905 | 0 | if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
906 | 0 | return 0; |
907 | 0 | *ret = *val; |
908 | 0 | if (!CRYPTO_THREAD_unlock(lock)) |
909 | 0 | return 0; |
910 | | |
911 | 0 | return 1; |
912 | 0 | } |
913 | | |
914 | | #ifndef FIPS_MODULE |
915 | | int openssl_init_fork_handlers(void) |
916 | 0 | { |
917 | 0 | return 1; |
918 | 0 | } |
919 | | #endif /* FIPS_MODULE */ |
920 | | |
921 | | int openssl_get_fork_id(void) |
922 | 116k | { |
923 | 116k | return getpid(); |
924 | 116k | } |
925 | | #endif |