Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl34/ssl/t1_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "ssl_local.h"
27
#include "quic/quic_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_setup_key_block,
35
    tls1_generate_master_secret,
36
    tls1_change_cipher_state,
37
    tls1_final_finish_mac,
38
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40
    tls1_alert_code,
41
    tls1_export_keying_material,
42
    0,
43
    ssl3_set_handshake_header,
44
    tls_close_construct_packet,
45
    ssl3_handshake_write
46
};
47
48
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49
    tls1_setup_key_block,
50
    tls1_generate_master_secret,
51
    tls1_change_cipher_state,
52
    tls1_final_finish_mac,
53
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55
    tls1_alert_code,
56
    tls1_export_keying_material,
57
    0,
58
    ssl3_set_handshake_header,
59
    tls_close_construct_packet,
60
    ssl3_handshake_write
61
};
62
63
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64
    tls1_setup_key_block,
65
    tls1_generate_master_secret,
66
    tls1_change_cipher_state,
67
    tls1_final_finish_mac,
68
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70
    tls1_alert_code,
71
    tls1_export_keying_material,
72
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74
    ssl3_set_handshake_header,
75
    tls_close_construct_packet,
76
    ssl3_handshake_write
77
};
78
79
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80
    tls13_setup_key_block,
81
    tls13_generate_master_secret,
82
    tls13_change_cipher_state,
83
    tls13_final_finish_mac,
84
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86
    tls13_alert_code,
87
    tls13_export_keying_material,
88
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89
    ssl3_set_handshake_header,
90
    tls_close_construct_packet,
91
    ssl3_handshake_write
92
};
93
94
OSSL_TIME tls1_default_timeout(void)
95
119k
{
96
    /*
97
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98
     * http, the cache would over fill
99
     */
100
119k
    return ossl_seconds2time(60 * 60 * 2);
101
119k
}
102
103
int tls1_new(SSL *s)
104
119k
{
105
119k
    if (!ssl3_new(s))
106
0
        return 0;
107
119k
    if (!s->method->ssl_clear(s))
108
0
        return 0;
109
110
119k
    return 1;
111
119k
}
112
113
void tls1_free(SSL *s)
114
43.8k
{
115
43.8k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117
43.8k
    if (sc == NULL)
118
0
        return;
119
120
43.8k
    OPENSSL_free(sc->ext.session_ticket);
121
43.8k
    ssl3_free(s);
122
43.8k
}
123
124
int tls1_clear(SSL *s)
125
175k
{
126
175k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128
175k
    if (sc == NULL)
129
0
        return 0;
130
131
175k
    if (!ssl3_clear(s))
132
0
        return 0;
133
134
175k
    if (s->method->version == TLS_ANY_VERSION)
135
175k
        sc->version = TLS_MAX_VERSION_INTERNAL;
136
0
    else
137
0
        sc->version = s->method->version;
138
139
175k
    return 1;
140
175k
}
141
142
/* Legacy NID to group_id mapping. Only works for groups we know about */
143
static const struct {
144
    int nid;
145
    uint16_t group_id;
146
} nid_to_group[] = {
147
    { NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1 },
148
    { NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1 },
149
    { NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2 },
150
    { NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1 },
151
    { NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2 },
152
    { NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1 },
153
    { NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1 },
154
    { NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1 },
155
    { NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1 },
156
    { NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1 },
157
    { NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1 },
158
    { NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1 },
159
    { NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1 },
160
    { NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1 },
161
    { NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1 },
162
    { NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1 },
163
    { NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2 },
164
    { NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1 },
165
    { NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1 },
166
    { NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1 },
167
    { NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1 },
168
    { NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1 },
169
    { NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1 },
170
    { NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1 },
171
    { NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1 },
172
    { NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1 },
173
    { NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1 },
174
    { NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1 },
175
    { EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519 },
176
    { EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448 },
177
    { NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13 },
178
    { NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13 },
179
    { NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13 },
180
    { NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A },
181
    { NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B },
182
    { NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C },
183
    { NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D },
184
    { NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A },
185
    { NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B },
186
    { NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C },
187
    { NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048 },
188
    { NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072 },
189
    { NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096 },
190
    { NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144 },
191
    { NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192 }
192
};
193
194
static const unsigned char ecformats_default[] = {
195
    TLSEXT_ECPOINTFORMAT_uncompressed,
196
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198
};
199
200
/* The default curves */
201
static const uint16_t supported_groups_default[] = {
202
    OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */
203
    OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */
204
    OSSL_TLS_GROUP_ID_x448, /* X448 (30) */
205
    OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */
206
    OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */
207
    OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */
208
    OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */
209
    OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */
210
    OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */
211
    OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */
212
    OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */
213
    OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */
214
    OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */
215
    OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */
216
    OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */
217
    OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */
218
    OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */
219
};
220
221
static const uint16_t suiteb_curves[] = {
222
    OSSL_TLS_GROUP_ID_secp256r1,
223
    OSSL_TLS_GROUP_ID_secp384r1,
224
};
225
226
struct provider_ctx_data_st {
227
    SSL_CTX *ctx;
228
    OSSL_PROVIDER *provider;
229
};
230
231
851k
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
232
static OSSL_CALLBACK add_provider_groups;
233
static int add_provider_groups(const OSSL_PARAM params[], void *data)
234
3.82M
{
235
3.82M
    struct provider_ctx_data_st *pgd = data;
236
3.82M
    SSL_CTX *ctx = pgd->ctx;
237
3.82M
    OSSL_PROVIDER *provider = pgd->provider;
238
3.82M
    const OSSL_PARAM *p;
239
3.82M
    TLS_GROUP_INFO *ginf = NULL;
240
3.82M
    EVP_KEYMGMT *keymgmt;
241
3.82M
    unsigned int gid;
242
3.82M
    unsigned int is_kem = 0;
243
3.82M
    int ret = 0;
244
245
3.82M
    if (ctx->group_list_max_len == ctx->group_list_len) {
246
425k
        TLS_GROUP_INFO *tmp = NULL;
247
248
425k
        if (ctx->group_list_max_len == 0)
249
72.8k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250
425k
                * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
352k
        else
252
352k
            tmp = OPENSSL_realloc(ctx->group_list,
253
425k
                (ctx->group_list_max_len
254
425k
                    + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255
425k
                    * sizeof(TLS_GROUP_INFO));
256
425k
        if (tmp == NULL)
257
0
            return 0;
258
425k
        ctx->group_list = tmp;
259
425k
        memset(tmp + ctx->group_list_max_len,
260
425k
            0,
261
425k
            sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262
425k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263
425k
    }
264
265
3.82M
    ginf = &ctx->group_list[ctx->group_list_len];
266
267
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268
3.82M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270
0
        goto err;
271
0
    }
272
3.82M
    ginf->tlsname = OPENSSL_strdup(p->data);
273
3.82M
    if (ginf->tlsname == NULL)
274
0
        goto err;
275
276
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277
3.82M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279
0
        goto err;
280
0
    }
281
3.82M
    ginf->realname = OPENSSL_strdup(p->data);
282
3.82M
    if (ginf->realname == NULL)
283
0
        goto err;
284
285
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286
3.82M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
3.82M
    ginf->group_id = (uint16_t)gid;
291
292
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293
3.82M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295
0
        goto err;
296
0
    }
297
3.82M
    ginf->algorithm = OPENSSL_strdup(p->data);
298
3.82M
    if (ginf->algorithm == NULL)
299
0
        goto err;
300
301
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302
3.82M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304
0
        goto err;
305
0
    }
306
307
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308
3.82M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
3.82M
    ginf->is_kem = 1 & is_kem;
313
314
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317
0
        goto err;
318
0
    }
319
320
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323
0
        goto err;
324
0
    }
325
326
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329
0
        goto err;
330
0
    }
331
332
3.82M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333
3.82M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335
0
        goto err;
336
0
    }
337
    /*
338
     * Now check that the algorithm is actually usable for our property query
339
     * string. Regardless of the result we still return success because we have
340
     * successfully processed this group, even though we may decide not to use
341
     * it.
342
     */
343
3.82M
    ret = 1;
344
3.82M
    ERR_set_mark();
345
3.82M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346
3.82M
    if (keymgmt != NULL) {
347
        /*
348
         * We have successfully fetched the algorithm - however if the provider
349
         * doesn't match this one then we ignore it.
350
         *
351
         * Note: We're cheating a little here. Technically if the same algorithm
352
         * is available from more than one provider then it is undefined which
353
         * implementation you will get back. Theoretically this could be
354
         * different every time...we assume here that you'll always get the
355
         * same one back if you repeat the exact same fetch. Is this a reasonable
356
         * assumption to make (in which case perhaps we should document this
357
         * behaviour)?
358
         */
359
3.82M
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360
            /* We have a match - so we will use this group */
361
3.82M
            ctx->group_list_len++;
362
3.82M
            ginf = NULL;
363
3.82M
        }
364
3.82M
        EVP_KEYMGMT_free(keymgmt);
365
3.82M
    }
366
3.82M
    ERR_pop_to_mark();
367
3.82M
err:
368
3.82M
    if (ginf != NULL) {
369
0
        OPENSSL_free(ginf->tlsname);
370
0
        OPENSSL_free(ginf->realname);
371
0
        OPENSSL_free(ginf->algorithm);
372
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373
0
    }
374
3.82M
    return ret;
375
3.82M
}
376
377
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378
327k
{
379
327k
    struct provider_ctx_data_st pgd;
380
381
327k
    pgd.ctx = vctx;
382
327k
    pgd.provider = provider;
383
327k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384
327k
        add_provider_groups, &pgd);
385
327k
}
386
387
int ssl_load_groups(SSL_CTX *ctx)
388
72.8k
{
389
72.8k
    size_t i, j, num_deflt_grps = 0;
390
72.8k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392
72.8k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393
0
        return 0;
394
395
1.31M
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396
60.3M
        for (j = 0; j < ctx->group_list_len; j++) {
397
59.7M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398
728k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399
728k
                break;
400
728k
            }
401
59.7M
        }
402
1.23M
    }
403
404
72.8k
    if (num_deflt_grps == 0)
405
0
        return 1;
406
407
72.8k
    ctx->ext.supported_groups_default
408
72.8k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410
72.8k
    if (ctx->ext.supported_groups_default == NULL)
411
0
        return 0;
412
413
72.8k
    memcpy(ctx->ext.supported_groups_default,
414
72.8k
        tmp_supp_groups,
415
72.8k
        num_deflt_grps * sizeof(tmp_supp_groups[0]));
416
72.8k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418
72.8k
    return 1;
419
72.8k
}
420
421
static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
422
544k
{
423
544k
    return (sinf->keytype != NULL
424
544k
            ? sinf->keytype
425
544k
            : (sinf->sig_name != NULL
426
544k
                      ? sinf->sig_name
427
544k
                      : sinf->sigalg_name));
428
544k
}
429
430
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
431
static OSSL_CALLBACK add_provider_sigalgs;
432
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
433
{
434
    struct provider_ctx_data_st *pgd = data;
435
    SSL_CTX *ctx = pgd->ctx;
436
    OSSL_PROVIDER *provider = pgd->provider;
437
    const OSSL_PARAM *p;
438
    TLS_SIGALG_INFO *sinf = NULL;
439
    EVP_KEYMGMT *keymgmt;
440
    const char *keytype;
441
    unsigned int code_point = 0;
442
    int ret = 0;
443
444
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
445
        TLS_SIGALG_INFO *tmp = NULL;
446
447
        if (ctx->sigalg_list_max_len == 0)
448
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
449
                * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
450
        else
451
            tmp = OPENSSL_realloc(ctx->sigalg_list,
452
                (ctx->sigalg_list_max_len
453
                    + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
454
                    * sizeof(TLS_SIGALG_INFO));
455
        if (tmp == NULL)
456
            return 0;
457
        ctx->sigalg_list = tmp;
458
        memset(tmp + ctx->sigalg_list_max_len, 0,
459
            sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
460
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
461
    }
462
463
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
464
465
    /* First, mandatory parameters */
466
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
467
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
468
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
469
        goto err;
470
    }
471
    OPENSSL_free(sinf->sigalg_name);
472
    sinf->sigalg_name = OPENSSL_strdup(p->data);
473
    if (sinf->sigalg_name == NULL)
474
        goto err;
475
476
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
477
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
478
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
479
        goto err;
480
    }
481
    OPENSSL_free(sinf->name);
482
    sinf->name = OPENSSL_strdup(p->data);
483
    if (sinf->name == NULL)
484
        goto err;
485
486
    p = OSSL_PARAM_locate_const(params,
487
        OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
488
    if (p == NULL
489
        || !OSSL_PARAM_get_uint(p, &code_point)
490
        || code_point > UINT16_MAX) {
491
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
492
        goto err;
493
    }
494
    sinf->code_point = (uint16_t)code_point;
495
496
    p = OSSL_PARAM_locate_const(params,
497
        OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
498
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
499
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
500
        goto err;
501
    }
502
503
    /* Now, optional parameters */
504
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
505
    if (p == NULL) {
506
        sinf->sigalg_oid = NULL;
507
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
508
        goto err;
509
    } else {
510
        OPENSSL_free(sinf->sigalg_oid);
511
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
512
        if (sinf->sigalg_oid == NULL)
513
            goto err;
514
    }
515
516
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
517
    if (p == NULL) {
518
        sinf->sig_name = NULL;
519
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
520
        goto err;
521
    } else {
522
        OPENSSL_free(sinf->sig_name);
523
        sinf->sig_name = OPENSSL_strdup(p->data);
524
        if (sinf->sig_name == NULL)
525
            goto err;
526
    }
527
528
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
529
    if (p == NULL) {
530
        sinf->sig_oid = NULL;
531
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
532
        goto err;
533
    } else {
534
        OPENSSL_free(sinf->sig_oid);
535
        sinf->sig_oid = OPENSSL_strdup(p->data);
536
        if (sinf->sig_oid == NULL)
537
            goto err;
538
    }
539
540
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
541
    if (p == NULL) {
542
        sinf->hash_name = NULL;
543
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
544
        goto err;
545
    } else {
546
        OPENSSL_free(sinf->hash_name);
547
        sinf->hash_name = OPENSSL_strdup(p->data);
548
        if (sinf->hash_name == NULL)
549
            goto err;
550
    }
551
552
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
553
    if (p == NULL) {
554
        sinf->hash_oid = NULL;
555
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
556
        goto err;
557
    } else {
558
        OPENSSL_free(sinf->hash_oid);
559
        sinf->hash_oid = OPENSSL_strdup(p->data);
560
        if (sinf->hash_oid == NULL)
561
            goto err;
562
    }
563
564
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
565
    if (p == NULL) {
566
        sinf->keytype = NULL;
567
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
568
        goto err;
569
    } else {
570
        OPENSSL_free(sinf->keytype);
571
        sinf->keytype = OPENSSL_strdup(p->data);
572
        if (sinf->keytype == NULL)
573
            goto err;
574
    }
575
576
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
577
    if (p == NULL) {
578
        sinf->keytype_oid = NULL;
579
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
580
        goto err;
581
    } else {
582
        OPENSSL_free(sinf->keytype_oid);
583
        sinf->keytype_oid = OPENSSL_strdup(p->data);
584
        if (sinf->keytype_oid == NULL)
585
            goto err;
586
    }
587
588
    /* The remaining parameters below are mandatory again */
589
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
590
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
591
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
592
        goto err;
593
    }
594
    if ((sinf->mintls != 0) && (sinf->mintls != -1) && ((sinf->mintls < TLS1_3_VERSION))) {
595
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
596
        ret = 1;
597
        goto err;
598
    }
599
600
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
601
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
602
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
603
        goto err;
604
    }
605
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < sinf->mintls))) {
606
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
607
        goto err;
608
    }
609
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < TLS1_3_VERSION))) {
610
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
611
        ret = 1;
612
        goto err;
613
    }
614
615
    /*
616
     * Now check that the algorithm is actually usable for our property query
617
     * string. Regardless of the result we still return success because we have
618
     * successfully processed this signature, even though we may decide not to
619
     * use it.
620
     */
621
    ret = 1;
622
    ERR_set_mark();
623
    keytype = inferred_keytype(sinf);
624
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
625
    if (keymgmt != NULL) {
626
        /*
627
         * We have successfully fetched the algorithm - however if the provider
628
         * doesn't match this one then we ignore it.
629
         *
630
         * Note: We're cheating a little here. Technically if the same algorithm
631
         * is available from more than one provider then it is undefined which
632
         * implementation you will get back. Theoretically this could be
633
         * different every time...we assume here that you'll always get the
634
         * same one back if you repeat the exact same fetch. Is this a reasonable
635
         * assumption to make (in which case perhaps we should document this
636
         * behaviour)?
637
         */
638
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
639
            /*
640
             * We have a match - so we could use this signature;
641
             * Check proper object registration first, though.
642
             * Don't care about return value as this may have been
643
             * done within providers or previous calls to
644
             * add_provider_sigalgs.
645
             */
646
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
647
            /* sanity check: Without successful registration don't use alg */
648
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) || (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
649
                ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
650
                goto err;
651
            }
652
            if (sinf->sig_name != NULL)
653
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
654
            if (sinf->keytype != NULL)
655
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
656
            if (sinf->hash_name != NULL)
657
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
658
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
659
                (sinf->hash_name != NULL
660
                        ? OBJ_txt2nid(sinf->hash_name)
661
                        : NID_undef),
662
                OBJ_txt2nid(keytype));
663
            ctx->sigalg_list_len++;
664
            sinf = NULL;
665
        }
666
        EVP_KEYMGMT_free(keymgmt);
667
    }
668
    ERR_pop_to_mark();
669
err:
670
    if (sinf != NULL) {
671
        OPENSSL_free(sinf->name);
672
        sinf->name = NULL;
673
        OPENSSL_free(sinf->sigalg_name);
674
        sinf->sigalg_name = NULL;
675
        OPENSSL_free(sinf->sigalg_oid);
676
        sinf->sigalg_oid = NULL;
677
        OPENSSL_free(sinf->sig_name);
678
        sinf->sig_name = NULL;
679
        OPENSSL_free(sinf->sig_oid);
680
        sinf->sig_oid = NULL;
681
        OPENSSL_free(sinf->hash_name);
682
        sinf->hash_name = NULL;
683
        OPENSSL_free(sinf->hash_oid);
684
        sinf->hash_oid = NULL;
685
        OPENSSL_free(sinf->keytype);
686
        sinf->keytype = NULL;
687
        OPENSSL_free(sinf->keytype_oid);
688
        sinf->keytype_oid = NULL;
689
    }
690
    return ret;
691
}
692
693
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
694
304k
{
695
304k
    struct provider_ctx_data_st pgd;
696
697
304k
    pgd.ctx = vctx;
698
304k
    pgd.provider = provider;
699
304k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
700
304k
        add_provider_sigalgs, &pgd);
701
    /*
702
     * Always OK, even if provider doesn't support the capability:
703
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
704
     */
705
304k
    return 1;
706
304k
}
707
708
int ssl_load_sigalgs(SSL_CTX *ctx)
709
152k
{
710
152k
    size_t i;
711
152k
    SSL_CERT_LOOKUP lu;
712
713
152k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
714
0
        return 0;
715
716
    /* now populate ctx->ssl_cert_info */
717
152k
    if (ctx->sigalg_list_len > 0) {
718
90.6k
        OPENSSL_free(ctx->ssl_cert_info);
719
90.6k
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
720
90.6k
        if (ctx->ssl_cert_info == NULL)
721
0
            return 0;
722
362k
        for (i = 0; i < ctx->sigalg_list_len; i++) {
723
272k
            const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
724
272k
            ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
725
272k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
726
272k
        }
727
90.6k
    }
728
729
    /*
730
     * For now, leave it at this: legacy sigalgs stay in their own
731
     * data structures until "legacy cleanup" occurs.
732
     */
733
734
152k
    return 1;
735
152k
}
736
737
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
738
725k
{
739
725k
    size_t i;
740
741
4.08M
    for (i = 0; i < ctx->group_list_len; i++) {
742
4.08M
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
743
3.35M
            || strcmp(ctx->group_list[i].realname, name) == 0)
744
725k
            return ctx->group_list[i].group_id;
745
4.08M
    }
746
747
0
    return 0;
748
725k
}
749
750
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
751
3.20M
{
752
3.20M
    size_t i;
753
754
69.8M
    for (i = 0; i < ctx->group_list_len; i++) {
755
69.8M
        if (ctx->group_list[i].group_id == group_id)
756
3.20M
            return &ctx->group_list[i];
757
69.8M
    }
758
759
0
    return NULL;
760
3.20M
}
761
762
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
763
0
{
764
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
765
766
0
    if (tls_group_info == NULL)
767
0
        return NULL;
768
769
0
    return tls_group_info->tlsname;
770
0
}
771
772
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
773
1.40M
{
774
1.40M
    size_t i;
775
776
1.40M
    if (group_id == 0)
777
0
        return NID_undef;
778
779
    /*
780
     * Return well known Group NIDs - for backwards compatibility. This won't
781
     * work for groups we don't know about.
782
     */
783
44.8M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
784
44.7M
        if (nid_to_group[i].group_id == group_id)
785
1.30M
            return nid_to_group[i].nid;
786
44.7M
    }
787
100k
    if (!include_unknown)
788
100k
        return NID_undef;
789
0
    return TLSEXT_nid_unknown | (int)group_id;
790
100k
}
791
792
uint16_t tls1_nid2group_id(int nid)
793
28.1k
{
794
28.1k
    size_t i;
795
796
    /*
797
     * Return well known Group ids - for backwards compatibility. This won't
798
     * work for groups we don't know about.
799
     */
800
647k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
801
647k
        if (nid_to_group[i].nid == nid)
802
28.1k
            return nid_to_group[i].group_id;
803
647k
    }
804
805
6
    return 0;
806
28.1k
}
807
808
/*
809
 * Set *pgroups to the supported groups list and *pgroupslen to
810
 * the number of groups supported.
811
 */
812
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
813
    size_t *pgroupslen)
814
460k
{
815
460k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
816
817
    /* For Suite B mode only include P-256, P-384 */
818
460k
    switch (tls1_suiteb(s)) {
819
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
820
0
        *pgroups = suiteb_curves;
821
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
822
0
        break;
823
824
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
825
0
        *pgroups = suiteb_curves;
826
0
        *pgroupslen = 1;
827
0
        break;
828
829
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
830
0
        *pgroups = suiteb_curves + 1;
831
0
        *pgroupslen = 1;
832
0
        break;
833
834
460k
    default:
835
460k
        if (s->ext.supportedgroups == NULL) {
836
231k
            *pgroups = sctx->ext.supported_groups_default;
837
231k
            *pgroupslen = sctx->ext.supported_groups_default_len;
838
231k
        } else {
839
228k
            *pgroups = s->ext.supportedgroups;
840
228k
            *pgroupslen = s->ext.supportedgroups_len;
841
228k
        }
842
460k
        break;
843
460k
    }
844
460k
}
845
846
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
847
    int minversion, int maxversion,
848
    int isec, int *okfortls13)
849
1.48M
{
850
1.48M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
851
1.48M
        group_id);
852
1.48M
    int ret;
853
1.48M
    int group_minversion, group_maxversion;
854
855
1.48M
    if (okfortls13 != NULL)
856
978k
        *okfortls13 = 0;
857
858
1.48M
    if (ginfo == NULL)
859
0
        return 0;
860
861
1.48M
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
862
1.48M
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
863
864
1.48M
    if (group_minversion < 0 || group_maxversion < 0)
865
131k
        return 0;
866
1.35M
    if (group_maxversion == 0)
867
1.35M
        ret = 1;
868
0
    else
869
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
870
1.35M
    if (group_minversion > 0)
871
1.35M
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
872
873
1.35M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
874
1.17M
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
875
737k
            *okfortls13 = (group_maxversion == 0)
876
0
                || (group_maxversion >= TLS1_3_VERSION);
877
1.17M
    }
878
1.35M
    ret &= !isec
879
324k
        || strcmp(ginfo->algorithm, "EC") == 0
880
323k
        || strcmp(ginfo->algorithm, "X25519") == 0
881
100k
        || strcmp(ginfo->algorithm, "X448") == 0;
882
883
1.35M
    return ret;
884
1.48M
}
885
886
/* See if group is allowed by security callback */
887
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
888
1.40M
{
889
1.40M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
890
1.40M
        group);
891
1.40M
    unsigned char gtmp[2];
892
893
1.40M
    if (ginfo == NULL)
894
0
        return 0;
895
896
1.40M
    gtmp[0] = group >> 8;
897
1.40M
    gtmp[1] = group & 0xff;
898
1.40M
    return ssl_security(s, op, ginfo->secbits,
899
1.40M
        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
900
1.40M
}
901
902
/* Return 1 if "id" is in "list" */
903
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
904
102k
{
905
102k
    size_t i;
906
687k
    for (i = 0; i < listlen; i++)
907
631k
        if (list[i] == id)
908
46.6k
            return 1;
909
55.5k
    return 0;
910
102k
}
911
912
/*-
913
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
914
 * if there is no match.
915
 * For nmatch == -1, return number of matches
916
 * For nmatch == -2, return the id of the group to use for
917
 * a tmp key, or 0 if there is no match.
918
 */
919
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
920
44.4k
{
921
44.4k
    const uint16_t *pref, *supp;
922
44.4k
    size_t num_pref, num_supp, i;
923
44.4k
    int k;
924
44.4k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
925
926
    /* Can't do anything on client side */
927
44.4k
    if (s->server == 0)
928
0
        return 0;
929
44.4k
    if (nmatch == -2) {
930
10.9k
        if (tls1_suiteb(s)) {
931
            /*
932
             * For Suite B ciphersuite determines curve: we already know
933
             * these are acceptable due to previous checks.
934
             */
935
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
936
937
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
938
0
                return OSSL_TLS_GROUP_ID_secp256r1;
939
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
940
0
                return OSSL_TLS_GROUP_ID_secp384r1;
941
            /* Should never happen */
942
0
            return 0;
943
0
        }
944
        /* If not Suite B just return first preference shared curve */
945
10.9k
        nmatch = 0;
946
10.9k
    }
947
    /*
948
     * If server preference set, our groups are the preference order
949
     * otherwise peer decides.
950
     */
951
44.4k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
952
0
        tls1_get_supported_groups(s, &pref, &num_pref);
953
0
        tls1_get_peer_groups(s, &supp, &num_supp);
954
44.4k
    } else {
955
44.4k
        tls1_get_peer_groups(s, &pref, &num_pref);
956
44.4k
        tls1_get_supported_groups(s, &supp, &num_supp);
957
44.4k
    }
958
959
94.2k
    for (k = 0, i = 0; i < num_pref; i++) {
960
72.1k
        uint16_t id = pref[i];
961
72.1k
        const TLS_GROUP_INFO *inf;
962
72.1k
        int minversion, maxversion;
963
964
72.1k
        if (!tls1_in_list(id, supp, num_supp)
965
28.4k
            || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
966
43.6k
            continue;
967
28.4k
        inf = tls1_group_id_lookup(ctx, id);
968
28.4k
        if (!ossl_assert(inf != NULL))
969
0
            return 0;
970
971
28.4k
        minversion = SSL_CONNECTION_IS_DTLS(s)
972
28.4k
            ? inf->mindtls
973
28.4k
            : inf->mintls;
974
28.4k
        maxversion = SSL_CONNECTION_IS_DTLS(s)
975
28.4k
            ? inf->maxdtls
976
28.4k
            : inf->maxtls;
977
28.4k
        if (maxversion == -1)
978
3.78k
            continue;
979
24.6k
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
980
22.2k
            || (maxversion != 0
981
0
                && ssl_version_cmp(s, s->version, maxversion) > 0))
982
2.43k
            continue;
983
984
22.2k
        if (nmatch == k)
985
22.2k
            return id;
986
0
        k++;
987
0
    }
988
22.1k
    if (nmatch == -1)
989
0
        return k;
990
    /* Out of range (nmatch > k). */
991
22.1k
    return 0;
992
22.1k
}
993
994
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
995
    int *groups, size_t ngroups)
996
0
{
997
0
    uint16_t *glist;
998
0
    size_t i;
999
    /*
1000
     * Bitmap of groups included to detect duplicates: two variables are added
1001
     * to detect duplicates as some values are more than 32.
1002
     */
1003
0
    unsigned long *dup_list = NULL;
1004
0
    unsigned long dup_list_egrp = 0;
1005
0
    unsigned long dup_list_dhgrp = 0;
1006
1007
0
    if (ngroups == 0) {
1008
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1009
0
        return 0;
1010
0
    }
1011
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1012
0
        return 0;
1013
0
    for (i = 0; i < ngroups; i++) {
1014
0
        unsigned long idmask;
1015
0
        uint16_t id;
1016
0
        id = tls1_nid2group_id(groups[i]);
1017
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1018
0
            goto err;
1019
0
        idmask = 1L << (id & 0x00FF);
1020
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1021
0
        if (!id || ((*dup_list) & idmask))
1022
0
            goto err;
1023
0
        *dup_list |= idmask;
1024
0
        glist[i] = id;
1025
0
    }
1026
0
    OPENSSL_free(*pext);
1027
0
    *pext = glist;
1028
0
    *pextlen = ngroups;
1029
0
    return 1;
1030
0
err:
1031
0
    OPENSSL_free(glist);
1032
0
    return 0;
1033
0
}
1034
1035
0
#define GROUPLIST_INCREMENT 40
1036
#define GROUP_NAME_BUFFER_LENGTH 64
1037
typedef struct {
1038
    SSL_CTX *ctx;
1039
    size_t gidcnt;
1040
    size_t gidmax;
1041
    uint16_t *gid_arr;
1042
} gid_cb_st;
1043
1044
static int gid_cb(const char *elem, int len, void *arg)
1045
{
1046
    gid_cb_st *garg = arg;
1047
    size_t i;
1048
    uint16_t gid = 0;
1049
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1050
    int ignore_unknown = 0;
1051
1052
    if (elem == NULL)
1053
        return 0;
1054
    if (elem[0] == '?') {
1055
        ignore_unknown = 1;
1056
        ++elem;
1057
        --len;
1058
    }
1059
    if (garg->gidcnt == garg->gidmax) {
1060
        uint16_t *tmp = OPENSSL_realloc(garg->gid_arr,
1061
            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1062
        if (tmp == NULL)
1063
            return 0;
1064
        garg->gidmax += GROUPLIST_INCREMENT;
1065
        garg->gid_arr = tmp;
1066
    }
1067
    if (len > (int)(sizeof(etmp) - 1))
1068
        return 0;
1069
    memcpy(etmp, elem, len);
1070
    etmp[len] = 0;
1071
1072
    gid = tls1_group_name2id(garg->ctx, etmp);
1073
    if (gid == 0) {
1074
        /* Unknown group - ignore, if ignore_unknown */
1075
        return ignore_unknown;
1076
    }
1077
    for (i = 0; i < garg->gidcnt; i++)
1078
        if (garg->gid_arr[i] == gid) {
1079
            /* Duplicate group - ignore */
1080
            return 1;
1081
        }
1082
    garg->gid_arr[garg->gidcnt++] = gid;
1083
    return 1;
1084
}
1085
1086
/* Set groups based on a colon separated list */
1087
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1088
    const char *str)
1089
0
{
1090
0
    gid_cb_st gcb;
1091
0
    uint16_t *tmparr;
1092
0
    int ret = 0;
1093
1094
0
    gcb.gidcnt = 0;
1095
0
    gcb.gidmax = GROUPLIST_INCREMENT;
1096
0
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1097
0
    if (gcb.gid_arr == NULL)
1098
0
        return 0;
1099
0
    gcb.ctx = ctx;
1100
0
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1101
0
        goto end;
1102
0
    if (gcb.gidcnt == 0) {
1103
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1104
0
            "No valid groups in '%s'", str);
1105
0
        goto end;
1106
0
    }
1107
0
    if (pext == NULL) {
1108
0
        ret = 1;
1109
0
        goto end;
1110
0
    }
1111
1112
    /*
1113
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
1114
     * the result
1115
     */
1116
0
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1117
0
    if (tmparr == NULL)
1118
0
        goto end;
1119
0
    OPENSSL_free(*pext);
1120
0
    *pext = tmparr;
1121
0
    *pextlen = gcb.gidcnt;
1122
0
    ret = 1;
1123
0
end:
1124
0
    OPENSSL_free(gcb.gid_arr);
1125
0
    return ret;
1126
0
}
1127
1128
/* Check a group id matches preferences */
1129
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1130
    int check_own_groups)
1131
36.6k
{
1132
36.6k
    const uint16_t *groups;
1133
36.6k
    size_t groups_len;
1134
1135
36.6k
    if (group_id == 0)
1136
16
        return 0;
1137
1138
    /* Check for Suite B compliance */
1139
36.5k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1140
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1141
1142
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1143
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1144
0
                return 0;
1145
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1146
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1147
0
                return 0;
1148
0
        } else {
1149
            /* Should never happen */
1150
0
            return 0;
1151
0
        }
1152
0
    }
1153
1154
36.5k
    if (check_own_groups) {
1155
        /* Check group is one of our preferences */
1156
8.91k
        tls1_get_supported_groups(s, &groups, &groups_len);
1157
8.91k
        if (!tls1_in_list(group_id, groups, groups_len))
1158
147
            return 0;
1159
8.91k
    }
1160
1161
36.4k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1162
0
        return 0;
1163
1164
    /* For clients, nothing more to check */
1165
36.4k
    if (!s->server)
1166
8.77k
        return 1;
1167
1168
    /* Check group is one of peers preferences */
1169
27.6k
    tls1_get_peer_groups(s, &groups, &groups_len);
1170
1171
    /*
1172
     * RFC 4492 does not require the supported elliptic curves extension
1173
     * so if it is not sent we can just choose any curve.
1174
     * It is invalid to send an empty list in the supported groups
1175
     * extension, so groups_len == 0 always means no extension.
1176
     */
1177
27.6k
    if (groups_len == 0)
1178
13.6k
        return 1;
1179
14.0k
    return tls1_in_list(group_id, groups, groups_len);
1180
27.6k
}
1181
1182
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1183
    size_t *num_formats)
1184
78.5k
{
1185
    /*
1186
     * If we have a custom point format list use it otherwise use default
1187
     */
1188
78.5k
    if (s->ext.ecpointformats) {
1189
0
        *pformats = s->ext.ecpointformats;
1190
0
        *num_formats = s->ext.ecpointformats_len;
1191
78.5k
    } else {
1192
78.5k
        *pformats = ecformats_default;
1193
        /* For Suite B we don't support char2 fields */
1194
78.5k
        if (tls1_suiteb(s))
1195
0
            *num_formats = sizeof(ecformats_default) - 1;
1196
78.5k
        else
1197
78.5k
            *num_formats = sizeof(ecformats_default);
1198
78.5k
    }
1199
78.5k
}
1200
1201
/* Check a key is compatible with compression extension */
1202
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1203
29.1k
{
1204
29.1k
    unsigned char comp_id;
1205
29.1k
    size_t i;
1206
29.1k
    int point_conv;
1207
1208
    /* If not an EC key nothing to check */
1209
29.1k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1210
0
        return 1;
1211
1212
    /* Get required compression id */
1213
29.1k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1214
29.1k
    if (point_conv == 0)
1215
0
        return 0;
1216
29.1k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1217
29.0k
        comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1218
29.0k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1219
        /*
1220
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1221
         * this check.
1222
         */
1223
0
        return 1;
1224
104
    } else {
1225
104
        int field_type = EVP_PKEY_get_field_type(pkey);
1226
1227
104
        if (field_type == NID_X9_62_prime_field)
1228
98
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1229
6
        else if (field_type == NID_X9_62_characteristic_two_field)
1230
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1231
6
        else
1232
6
            return 0;
1233
104
    }
1234
    /*
1235
     * If point formats extension present check it, otherwise everything is
1236
     * supported (see RFC4492).
1237
     */
1238
29.1k
    if (s->ext.peer_ecpointformats == NULL)
1239
23.1k
        return 1;
1240
1241
10.4k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1242
9.47k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1243
5.04k
            return 1;
1244
9.47k
    }
1245
987
    return 0;
1246
6.03k
}
1247
1248
/* Return group id of a key */
1249
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1250
28.1k
{
1251
28.1k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1252
1253
28.1k
    if (curve_nid == NID_undef)
1254
0
        return 0;
1255
28.1k
    return tls1_nid2group_id(curve_nid);
1256
28.1k
}
1257
1258
/*
1259
 * Check cert parameters compatible with extensions: currently just checks EC
1260
 * certificates have compatible curves and compression.
1261
 */
1262
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1263
85.8k
{
1264
85.8k
    uint16_t group_id;
1265
85.8k
    EVP_PKEY *pkey;
1266
85.8k
    pkey = X509_get0_pubkey(x);
1267
85.8k
    if (pkey == NULL)
1268
0
        return 0;
1269
    /* If not EC nothing to do */
1270
85.8k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1271
57.2k
        return 1;
1272
    /* Check compression */
1273
28.6k
    if (!tls1_check_pkey_comp(s, pkey))
1274
959
        return 0;
1275
27.6k
    group_id = tls1_get_group_id(pkey);
1276
    /*
1277
     * For a server we allow the certificate to not be in our list of supported
1278
     * groups.
1279
     */
1280
27.6k
    if (!tls1_check_group_id(s, group_id, !s->server))
1281
7.29k
        return 0;
1282
    /*
1283
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1284
     * SHA384+P-384.
1285
     */
1286
20.3k
    if (check_ee_md && tls1_suiteb(s)) {
1287
0
        int check_md;
1288
0
        size_t i;
1289
1290
        /* Check to see we have necessary signing algorithm */
1291
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1292
0
            check_md = NID_ecdsa_with_SHA256;
1293
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1294
0
            check_md = NID_ecdsa_with_SHA384;
1295
0
        else
1296
0
            return 0; /* Should never happen */
1297
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1298
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1299
0
                return 1;
1300
0
        }
1301
0
        return 0;
1302
0
    }
1303
20.3k
    return 1;
1304
20.3k
}
1305
1306
/*
1307
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1308
 * @s: SSL connection
1309
 * @cid: Cipher ID we're considering using
1310
 *
1311
 * Checks that the kECDHE cipher suite we're considering using
1312
 * is compatible with the client extensions.
1313
 *
1314
 * Returns 0 when the cipher can't be used or 1 when it can.
1315
 */
1316
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1317
36.5k
{
1318
    /* If not Suite B just need a shared group */
1319
36.5k
    if (!tls1_suiteb(s))
1320
36.5k
        return tls1_shared_group(s, 0) != 0;
1321
    /*
1322
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1323
     * curves permitted.
1324
     */
1325
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1326
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1327
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1328
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1329
1330
0
    return 0;
1331
0
}
1332
1333
/* Default sigalg schemes */
1334
static const uint16_t tls12_sigalgs[] = {
1335
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1336
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1337
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1338
    TLSEXT_SIGALG_ed25519,
1339
    TLSEXT_SIGALG_ed448,
1340
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1341
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1342
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1343
1344
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1345
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1346
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1347
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1348
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1349
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1350
1351
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1352
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1353
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1354
1355
    TLSEXT_SIGALG_ecdsa_sha224,
1356
    TLSEXT_SIGALG_ecdsa_sha1,
1357
1358
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1359
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1360
1361
    TLSEXT_SIGALG_dsa_sha224,
1362
    TLSEXT_SIGALG_dsa_sha1,
1363
1364
    TLSEXT_SIGALG_dsa_sha256,
1365
    TLSEXT_SIGALG_dsa_sha384,
1366
    TLSEXT_SIGALG_dsa_sha512,
1367
1368
#ifndef OPENSSL_NO_GOST
1369
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1370
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1371
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1372
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1373
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1374
#endif
1375
};
1376
1377
static const uint16_t suiteb_sigalgs[] = {
1378
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1379
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1380
};
1381
1382
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1383
    { TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name, TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1384
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1385
        NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1 },
1386
    { TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name, TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1387
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1388
        NID_ecdsa_with_SHA384, NID_secp384r1, 1 },
1389
    { TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name, TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1390
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1391
        NID_ecdsa_with_SHA512, NID_secp521r1, 1 },
1392
    { TLSEXT_SIGALG_ed25519_name, TLSEXT_SIGALG_ed25519,
1393
        NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1394
        NID_undef, NID_undef, 1 },
1395
    { TLSEXT_SIGALG_ed448_name, TLSEXT_SIGALG_ed448,
1396
        NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1397
        NID_undef, NID_undef, 1 },
1398
    { TLSEXT_SIGALG_ecdsa_sha224_name, TLSEXT_SIGALG_ecdsa_sha224,
1399
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1400
        NID_ecdsa_with_SHA224, NID_undef, 1 },
1401
    { TLSEXT_SIGALG_ecdsa_sha1_name, TLSEXT_SIGALG_ecdsa_sha1,
1402
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1403
        NID_ecdsa_with_SHA1, NID_undef, 1 },
1404
    { TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name, TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1405
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1406
        NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1 },
1407
    { TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name, TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1408
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1409
        NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1 },
1410
    { TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name, TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1411
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1412
        NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1 },
1413
    { TLSEXT_SIGALG_rsa_pss_rsae_sha256_name, TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1414
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1415
        NID_undef, NID_undef, 1 },
1416
    { TLSEXT_SIGALG_rsa_pss_rsae_sha384_name, TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1417
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1418
        NID_undef, NID_undef, 1 },
1419
    { TLSEXT_SIGALG_rsa_pss_rsae_sha512_name, TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1420
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1421
        NID_undef, NID_undef, 1 },
1422
    { TLSEXT_SIGALG_rsa_pss_pss_sha256_name, TLSEXT_SIGALG_rsa_pss_pss_sha256,
1423
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1424
        NID_undef, NID_undef, 1 },
1425
    { TLSEXT_SIGALG_rsa_pss_pss_sha384_name, TLSEXT_SIGALG_rsa_pss_pss_sha384,
1426
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1427
        NID_undef, NID_undef, 1 },
1428
    { TLSEXT_SIGALG_rsa_pss_pss_sha512_name, TLSEXT_SIGALG_rsa_pss_pss_sha512,
1429
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1430
        NID_undef, NID_undef, 1 },
1431
    { TLSEXT_SIGALG_rsa_pkcs1_sha256_name, TLSEXT_SIGALG_rsa_pkcs1_sha256,
1432
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1433
        NID_sha256WithRSAEncryption, NID_undef, 1 },
1434
    { TLSEXT_SIGALG_rsa_pkcs1_sha384_name, TLSEXT_SIGALG_rsa_pkcs1_sha384,
1435
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1436
        NID_sha384WithRSAEncryption, NID_undef, 1 },
1437
    { TLSEXT_SIGALG_rsa_pkcs1_sha512_name, TLSEXT_SIGALG_rsa_pkcs1_sha512,
1438
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1439
        NID_sha512WithRSAEncryption, NID_undef, 1 },
1440
    { TLSEXT_SIGALG_rsa_pkcs1_sha224_name, TLSEXT_SIGALG_rsa_pkcs1_sha224,
1441
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1442
        NID_sha224WithRSAEncryption, NID_undef, 1 },
1443
    { TLSEXT_SIGALG_rsa_pkcs1_sha1_name, TLSEXT_SIGALG_rsa_pkcs1_sha1,
1444
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1445
        NID_sha1WithRSAEncryption, NID_undef, 1 },
1446
    { TLSEXT_SIGALG_dsa_sha256_name, TLSEXT_SIGALG_dsa_sha256,
1447
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1448
        NID_dsa_with_SHA256, NID_undef, 1 },
1449
    { TLSEXT_SIGALG_dsa_sha384_name, TLSEXT_SIGALG_dsa_sha384,
1450
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1451
        NID_undef, NID_undef, 1 },
1452
    { TLSEXT_SIGALG_dsa_sha512_name, TLSEXT_SIGALG_dsa_sha512,
1453
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1454
        NID_undef, NID_undef, 1 },
1455
    { TLSEXT_SIGALG_dsa_sha224_name, TLSEXT_SIGALG_dsa_sha224,
1456
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1457
        NID_undef, NID_undef, 1 },
1458
    { TLSEXT_SIGALG_dsa_sha1_name, TLSEXT_SIGALG_dsa_sha1,
1459
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1460
        NID_dsaWithSHA1, NID_undef, 1 },
1461
#ifndef OPENSSL_NO_GOST
1462
    { TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1463
        NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1464
        NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1465
        NID_undef, NID_undef, 1 },
1466
    { TLSEXT_SIGALG_gostr34102012_512_intrinsic_name, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1467
        NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1468
        NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1469
        NID_undef, NID_undef, 1 },
1470
    { TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1471
        NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1472
        NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1473
        NID_undef, NID_undef, 1 },
1474
    { TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1475
        NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1476
        NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1477
        NID_undef, NID_undef, 1 },
1478
    { TLSEXT_SIGALG_gostr34102001_gostr3411_name, TLSEXT_SIGALG_gostr34102001_gostr3411,
1479
        NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1480
        NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1481
        NID_undef, NID_undef, 1 }
1482
#endif
1483
};
1484
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1485
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1486
    "rsa_pkcs1_md5_sha1", 0,
1487
    NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1488
    EVP_PKEY_RSA, SSL_PKEY_RSA,
1489
    NID_undef, NID_undef, 1
1490
};
1491
1492
/*
1493
 * Default signature algorithm values used if signature algorithms not present.
1494
 * From RFC5246. Note: order must match certificate index order.
1495
 */
1496
static const uint16_t tls_default_sigalg[] = {
1497
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1498
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1499
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1500
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1501
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1502
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1503
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1504
    0, /* SSL_PKEY_ED25519 */
1505
    0, /* SSL_PKEY_ED448 */
1506
};
1507
1508
int ssl_setup_sigalgs(SSL_CTX *ctx)
1509
61.4k
{
1510
61.4k
    size_t i, cache_idx, sigalgs_len;
1511
61.4k
    const SIGALG_LOOKUP *lu;
1512
61.4k
    SIGALG_LOOKUP *cache = NULL;
1513
61.4k
    uint16_t *tls12_sigalgs_list = NULL;
1514
61.4k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1515
61.4k
    int ret = 0;
1516
1517
61.4k
    if (ctx == NULL)
1518
0
        goto err;
1519
1520
61.4k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1521
1522
61.4k
    cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1523
61.4k
    if (cache == NULL || tmpkey == NULL)
1524
0
        goto err;
1525
1526
61.4k
    tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1527
61.4k
    if (tls12_sigalgs_list == NULL)
1528
0
        goto err;
1529
1530
61.4k
    ERR_set_mark();
1531
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1532
61.4k
    for (i = 0, lu = sigalg_lookup_tbl;
1533
1.96M
        i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1534
1.90M
        EVP_PKEY_CTX *pctx;
1535
1536
1.90M
        cache[i] = *lu;
1537
1.90M
        tls12_sigalgs_list[i] = tls12_sigalgs[i];
1538
1539
        /*
1540
         * Check hash is available.
1541
         * This test is not perfect. A provider could have support
1542
         * for a signature scheme, but not a particular hash. However the hash
1543
         * could be available from some other loaded provider. In that case it
1544
         * could be that the signature is available, and the hash is available
1545
         * independently - but not as a combination. We ignore this for now.
1546
         */
1547
1.90M
        if (lu->hash != NID_undef
1548
1.78M
            && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1549
307k
            cache[i].enabled = 0;
1550
307k
            continue;
1551
307k
        }
1552
1553
1.59M
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1554
0
            cache[i].enabled = 0;
1555
0
            continue;
1556
0
        }
1557
1.59M
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1558
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1559
1.59M
        if (pctx == NULL)
1560
0
            cache[i].enabled = 0;
1561
1.59M
        EVP_PKEY_CTX_free(pctx);
1562
1.59M
    }
1563
1564
    /* Now complete cache and tls12_sigalgs list with provider sig information */
1565
61.4k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1566
61.4k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
1567
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1568
0
        cache[cache_idx].name = si.name;
1569
0
        cache[cache_idx].sigalg = si.code_point;
1570
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
1571
0
        cache[cache_idx].hash = si.hash_name ? OBJ_txt2nid(si.hash_name) : NID_undef;
1572
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1573
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1574
0
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1575
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1576
0
        cache[cache_idx].curve = NID_undef;
1577
        /* all provided sigalgs are enabled by load */
1578
0
        cache[cache_idx].enabled = 1;
1579
0
        cache_idx++;
1580
0
    }
1581
61.4k
    ERR_pop_to_mark();
1582
61.4k
    ctx->sigalg_lookup_cache = cache;
1583
61.4k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
1584
61.4k
    ctx->tls12_sigalgs_len = sigalgs_len;
1585
61.4k
    cache = NULL;
1586
61.4k
    tls12_sigalgs_list = NULL;
1587
1588
61.4k
    ret = 1;
1589
61.4k
err:
1590
61.4k
    OPENSSL_free(cache);
1591
61.4k
    OPENSSL_free(tls12_sigalgs_list);
1592
61.4k
    EVP_PKEY_free(tmpkey);
1593
61.4k
    return ret;
1594
61.4k
}
1595
1596
0
#define SIGLEN_BUF_INCREMENT 100
1597
1598
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
1599
0
{
1600
0
    size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
1601
0
    const SIGALG_LOOKUP *lu;
1602
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1603
0
    char *retval = OPENSSL_malloc(maxretlen);
1604
1605
0
    if (retval == NULL)
1606
0
        return NULL;
1607
1608
    /* ensure retval string is NUL terminated */
1609
0
    retval[0] = (char)0;
1610
1611
0
    for (i = 0, lu = sigalg_lookup_tbl;
1612
0
        i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1613
0
        EVP_PKEY_CTX *pctx;
1614
0
        int enabled = 1;
1615
1616
0
        ERR_set_mark();
1617
        /* Check hash is available in some provider. */
1618
0
        if (lu->hash != NID_undef) {
1619
0
            EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
1620
1621
            /* If unable to create we assume the hash algorithm is unavailable */
1622
0
            if (hash == NULL) {
1623
0
                enabled = 0;
1624
0
                ERR_pop_to_mark();
1625
0
                continue;
1626
0
            }
1627
0
            EVP_MD_free(hash);
1628
0
        }
1629
1630
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1631
0
            enabled = 0;
1632
0
            ERR_pop_to_mark();
1633
0
            continue;
1634
0
        }
1635
0
        pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
1636
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1637
0
        if (pctx == NULL)
1638
0
            enabled = 0;
1639
0
        ERR_pop_to_mark();
1640
0
        EVP_PKEY_CTX_free(pctx);
1641
1642
0
        if (enabled) {
1643
0
            const char *sa = lu->name;
1644
1645
0
            if (sa != NULL) {
1646
0
                if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
1647
0
                    char *tmp;
1648
1649
0
                    maxretlen += SIGLEN_BUF_INCREMENT;
1650
0
                    tmp = OPENSSL_realloc(retval, maxretlen);
1651
0
                    if (tmp == NULL) {
1652
0
                        OPENSSL_free(retval);
1653
0
                        return NULL;
1654
0
                    }
1655
0
                    retval = tmp;
1656
0
                }
1657
0
                if (strlen(retval) > 0)
1658
0
                    OPENSSL_strlcat(retval, ":", maxretlen);
1659
0
                OPENSSL_strlcat(retval, sa, maxretlen);
1660
0
            } else {
1661
                /* lu->name must not be NULL */
1662
0
                ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1663
0
            }
1664
0
        }
1665
0
    }
1666
1667
0
    EVP_PKEY_free(tmpkey);
1668
0
    return retval;
1669
0
}
1670
1671
/* Lookup TLS signature algorithm */
1672
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1673
    uint16_t sigalg)
1674
14.5M
{
1675
14.5M
    size_t i;
1676
14.5M
    const SIGALG_LOOKUP *lu;
1677
1678
14.5M
    for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1679
232M
        i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1680
232M
        lu++, i++) {
1681
232M
        if (lu->sigalg == sigalg) {
1682
14.2M
            if (!lu->enabled)
1683
1.13M
                return NULL;
1684
13.0M
            return lu;
1685
14.2M
        }
1686
232M
    }
1687
377k
    return NULL;
1688
14.5M
}
1689
/* Lookup hash: return 0 if invalid or not enabled */
1690
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1691
4.10M
{
1692
4.10M
    const EVP_MD *md;
1693
1694
4.10M
    if (lu == NULL)
1695
0
        return 0;
1696
    /* lu->hash == NID_undef means no associated digest */
1697
4.10M
    if (lu->hash == NID_undef) {
1698
402k
        md = NULL;
1699
3.70M
    } else {
1700
3.70M
        md = ssl_md(ctx, lu->hash_idx);
1701
3.70M
        if (md == NULL)
1702
0
            return 0;
1703
3.70M
    }
1704
4.10M
    if (pmd)
1705
4.01M
        *pmd = md;
1706
4.10M
    return 1;
1707
4.10M
}
1708
1709
/*
1710
 * Check if key is large enough to generate RSA-PSS signature.
1711
 *
1712
 * The key must greater than or equal to 2 * hash length + 2.
1713
 * SHA512 has a hash length of 64 bytes, which is incompatible
1714
 * with a 128 byte (1024 bit) key.
1715
 */
1716
1.32k
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1717
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1718
    const SIGALG_LOOKUP *lu)
1719
1.32k
{
1720
1.32k
    const EVP_MD *md;
1721
1722
1.32k
    if (pkey == NULL)
1723
0
        return 0;
1724
1.32k
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1725
0
        return 0;
1726
1.32k
    if (EVP_MD_get_size(md) <= 0)
1727
0
        return 0;
1728
1.32k
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1729
0
        return 0;
1730
1.32k
    return 1;
1731
1.32k
}
1732
1733
/*
1734
 * Returns a signature algorithm when the peer did not send a list of supported
1735
 * signature algorithms. The signature algorithm is fixed for the certificate
1736
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1737
 * certificate type from |s| will be used.
1738
 * Returns the signature algorithm to use, or NULL on error.
1739
 */
1740
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1741
    int idx)
1742
276k
{
1743
276k
    if (idx == -1) {
1744
20.4k
        if (s->server) {
1745
20.4k
            size_t i;
1746
1747
            /* Work out index corresponding to ciphersuite */
1748
29.4k
            for (i = 0; i < s->ssl_pkey_num; i++) {
1749
29.4k
                const SSL_CERT_LOOKUP *clu
1750
29.4k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1751
1752
29.4k
                if (clu == NULL)
1753
0
                    continue;
1754
29.4k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1755
20.4k
                    idx = i;
1756
20.4k
                    break;
1757
20.4k
                }
1758
29.4k
            }
1759
1760
            /*
1761
             * Some GOST ciphersuites allow more than one signature algorithms
1762
             * */
1763
20.4k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1764
0
                int real_idx;
1765
1766
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1767
0
                    real_idx--) {
1768
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1769
0
                        idx = real_idx;
1770
0
                        break;
1771
0
                    }
1772
0
                }
1773
0
            }
1774
            /*
1775
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1776
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1777
             */
1778
20.4k
            else if (idx == SSL_PKEY_GOST12_256) {
1779
0
                int real_idx;
1780
1781
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1782
0
                    real_idx--) {
1783
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1784
0
                        idx = real_idx;
1785
0
                        break;
1786
0
                    }
1787
0
                }
1788
0
            }
1789
20.4k
        } else {
1790
0
            idx = s->cert->key - s->cert->pkeys;
1791
0
        }
1792
20.4k
    }
1793
276k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1794
38.9k
        return NULL;
1795
1796
237k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1797
227k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1798
1799
227k
        if (lu == NULL)
1800
143k
            return NULL;
1801
84.0k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1802
0
            return NULL;
1803
84.0k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1804
0
            return NULL;
1805
84.0k
        return lu;
1806
84.0k
    }
1807
9.94k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1808
0
        return NULL;
1809
9.94k
    return &legacy_rsa_sigalg;
1810
9.94k
}
1811
/* Set peer sigalg based key type */
1812
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1813
1.94k
{
1814
1.94k
    size_t idx;
1815
1.94k
    const SIGALG_LOOKUP *lu;
1816
1817
1.94k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1818
0
        return 0;
1819
1.94k
    lu = tls1_get_legacy_sigalg(s, idx);
1820
1.94k
    if (lu == NULL)
1821
9
        return 0;
1822
1.93k
    s->s3.tmp.peer_sigalg = lu;
1823
1.93k
    return 1;
1824
1.94k
}
1825
1826
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1827
538k
{
1828
    /*
1829
     * If Suite B mode use Suite B sigalgs only, ignore any other
1830
     * preferences.
1831
     */
1832
538k
    switch (tls1_suiteb(s)) {
1833
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1834
0
        *psigs = suiteb_sigalgs;
1835
0
        return OSSL_NELEM(suiteb_sigalgs);
1836
1837
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1838
0
        *psigs = suiteb_sigalgs;
1839
0
        return 1;
1840
1841
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1842
0
        *psigs = suiteb_sigalgs + 1;
1843
0
        return 1;
1844
538k
    }
1845
    /*
1846
     *  We use client_sigalgs (if not NULL) if we're a server
1847
     *  and sending a certificate request or if we're a client and
1848
     *  determining which shared algorithm to use.
1849
     */
1850
538k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1851
0
        *psigs = s->cert->client_sigalgs;
1852
0
        return s->cert->client_sigalgslen;
1853
538k
    } else if (s->cert->conf_sigalgs) {
1854
0
        *psigs = s->cert->conf_sigalgs;
1855
0
        return s->cert->conf_sigalgslen;
1856
538k
    } else {
1857
538k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1858
538k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1859
538k
    }
1860
538k
}
1861
1862
/*
1863
 * Called by servers only. Checks that we have a sig alg that supports the
1864
 * specified EC curve.
1865
 */
1866
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1867
0
{
1868
0
    const uint16_t *sigs;
1869
0
    size_t siglen, i;
1870
1871
0
    if (s->cert->conf_sigalgs) {
1872
0
        sigs = s->cert->conf_sigalgs;
1873
0
        siglen = s->cert->conf_sigalgslen;
1874
0
    } else {
1875
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1876
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1877
0
    }
1878
1879
0
    for (i = 0; i < siglen; i++) {
1880
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1881
1882
0
        if (lu == NULL)
1883
0
            continue;
1884
0
        if (lu->sig == EVP_PKEY_EC
1885
0
            && lu->curve != NID_undef
1886
0
            && curve == lu->curve)
1887
0
            return 1;
1888
0
    }
1889
1890
0
    return 0;
1891
0
}
1892
1893
/*
1894
 * Return the number of security bits for the signature algorithm, or 0 on
1895
 * error.
1896
 */
1897
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1898
2.97M
{
1899
2.97M
    const EVP_MD *md = NULL;
1900
2.97M
    int secbits = 0;
1901
1902
2.97M
    if (!tls1_lookup_md(ctx, lu, &md))
1903
0
        return 0;
1904
2.97M
    if (md != NULL) {
1905
2.63M
        int md_type = EVP_MD_get_type(md);
1906
1907
        /* Security bits: half digest bits */
1908
2.63M
        secbits = EVP_MD_get_size(md) * 4;
1909
2.63M
        if (secbits <= 0)
1910
0
            return 0;
1911
        /*
1912
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1913
         * they're no longer accepted at security level 1. The real values don't
1914
         * really matter as long as they're lower than 80, which is our
1915
         * security level 1.
1916
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1917
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1918
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1919
         * puts a chosen-prefix attack for MD5 at 2^39.
1920
         */
1921
2.63M
        if (md_type == NID_sha1)
1922
247k
            secbits = 64;
1923
2.38M
        else if (md_type == NID_md5_sha1)
1924
7.63k
            secbits = 67;
1925
2.37M
        else if (md_type == NID_md5)
1926
0
            secbits = 39;
1927
2.63M
    } else {
1928
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1929
339k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1930
89.1k
            secbits = 128;
1931
250k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1932
101k
            secbits = 224;
1933
339k
    }
1934
    /*
1935
     * For provider-based sigalgs we have secbits information available
1936
     * in the (provider-loaded) sigalg_list structure
1937
     */
1938
2.97M
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1939
148k
        && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1940
148k
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1941
148k
    }
1942
2.97M
    return secbits;
1943
2.97M
}
1944
1945
/*
1946
 * Check signature algorithm is consistent with sent supported signature
1947
 * algorithms and if so set relevant digest and signature scheme in
1948
 * s.
1949
 */
1950
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1951
7.77k
{
1952
7.77k
    const uint16_t *sent_sigs;
1953
7.77k
    const EVP_MD *md = NULL;
1954
7.77k
    char sigalgstr[2];
1955
7.77k
    size_t sent_sigslen, i, cidx;
1956
7.77k
    int pkeyid = -1;
1957
7.77k
    const SIGALG_LOOKUP *lu;
1958
7.77k
    int secbits = 0;
1959
1960
7.77k
    pkeyid = EVP_PKEY_get_id(pkey);
1961
1962
7.77k
    if (SSL_CONNECTION_IS_TLS13(s)) {
1963
        /* Disallow DSA for TLS 1.3 */
1964
6.76k
        if (pkeyid == EVP_PKEY_DSA) {
1965
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1966
0
            return 0;
1967
0
        }
1968
        /* Only allow PSS for TLS 1.3 */
1969
6.76k
        if (pkeyid == EVP_PKEY_RSA)
1970
6.75k
            pkeyid = EVP_PKEY_RSA_PSS;
1971
6.76k
    }
1972
7.77k
    lu = tls1_lookup_sigalg(s, sig);
1973
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1974
7.77k
    if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1975
0
        pkeyid = lu->sig;
1976
1977
    /* Should never happen */
1978
7.77k
    if (pkeyid == -1)
1979
0
        return -1;
1980
1981
    /*
1982
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1983
     * is consistent with signature: RSA keys can be used for RSA-PSS
1984
     */
1985
7.77k
    if (lu == NULL
1986
7.73k
        || (SSL_CONNECTION_IS_TLS13(s)
1987
6.74k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1988
7.73k
        || (pkeyid != lu->sig
1989
145
            && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1990
65
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1991
65
        return 0;
1992
65
    }
1993
    /* Check the sigalg is consistent with the key OID */
1994
7.70k
    if (!ssl_cert_lookup_by_nid(
1995
7.70k
            (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1996
7.70k
            &cidx, SSL_CONNECTION_GET_CTX(s))
1997
7.70k
        || lu->sig_idx != (int)cidx) {
1998
5
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1999
5
        return 0;
2000
5
    }
2001
2002
7.70k
    if (pkeyid == EVP_PKEY_EC) {
2003
2004
        /* Check point compression is permitted */
2005
144
        if (!tls1_check_pkey_comp(s, pkey)) {
2006
11
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2007
11
                SSL_R_ILLEGAL_POINT_COMPRESSION);
2008
11
            return 0;
2009
11
        }
2010
2011
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2012
133
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2013
0
            int curve = ssl_get_EC_curve_nid(pkey);
2014
2015
0
            if (lu->curve != NID_undef && curve != lu->curve) {
2016
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2017
0
                return 0;
2018
0
            }
2019
0
        }
2020
133
        if (!SSL_CONNECTION_IS_TLS13(s)) {
2021
            /* Check curve matches extensions */
2022
133
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2023
3
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2024
3
                return 0;
2025
3
            }
2026
130
            if (tls1_suiteb(s)) {
2027
                /* Check sigalg matches a permissible Suite B value */
2028
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2029
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2030
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2031
0
                        SSL_R_WRONG_SIGNATURE_TYPE);
2032
0
                    return 0;
2033
0
                }
2034
0
            }
2035
130
        }
2036
7.55k
    } else if (tls1_suiteb(s)) {
2037
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2038
0
        return 0;
2039
0
    }
2040
2041
    /* Check signature matches a type we sent */
2042
7.68k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2043
99.9k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2044
99.9k
        if (sig == *sent_sigs)
2045
7.68k
            break;
2046
99.9k
    }
2047
    /* Allow fallback to SHA1 if not strict mode */
2048
7.68k
    if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2049
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2050
0
        return 0;
2051
0
    }
2052
7.68k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2053
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2054
0
        return 0;
2055
0
    }
2056
    /*
2057
     * Make sure security callback allows algorithm. For historical
2058
     * reasons we have to pass the sigalg as a two byte char array.
2059
     */
2060
7.68k
    sigalgstr[0] = (sig >> 8) & 0xff;
2061
7.68k
    sigalgstr[1] = sig & 0xff;
2062
7.68k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2063
7.68k
    if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_get_type(md) : NID_undef, (void *)sigalgstr)) {
2064
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2065
0
        return 0;
2066
0
    }
2067
    /* Store the sigalg the peer uses */
2068
7.68k
    s->s3.tmp.peer_sigalg = lu;
2069
7.68k
    return 1;
2070
7.68k
}
2071
2072
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2073
0
{
2074
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2075
2076
0
    if (sc == NULL)
2077
0
        return 0;
2078
2079
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2080
0
        return 0;
2081
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2082
0
    return 1;
2083
0
}
2084
2085
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2086
0
{
2087
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2088
2089
0
    if (sc == NULL)
2090
0
        return 0;
2091
2092
0
    if (sc->s3.tmp.sigalg == NULL)
2093
0
        return 0;
2094
0
    *pnid = sc->s3.tmp.sigalg->sig;
2095
0
    return 1;
2096
0
}
2097
2098
/*
2099
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2100
 * supported, doesn't appear in supported signature algorithms, isn't supported
2101
 * by the enabled protocol versions or by the security level.
2102
 *
2103
 * This function should only be used for checking which ciphers are supported
2104
 * by the client.
2105
 *
2106
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2107
 */
2108
int ssl_set_client_disabled(SSL_CONNECTION *s)
2109
353k
{
2110
353k
    s->s3.tmp.mask_a = 0;
2111
353k
    s->s3.tmp.mask_k = 0;
2112
353k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2113
353k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2114
353k
            &s->s3.tmp.max_ver, NULL)
2115
353k
        != 0)
2116
0
        return 0;
2117
353k
#ifndef OPENSSL_NO_PSK
2118
    /* with PSK there must be client callback set */
2119
353k
    if (!s->psk_client_callback) {
2120
353k
        s->s3.tmp.mask_a |= SSL_aPSK;
2121
353k
        s->s3.tmp.mask_k |= SSL_PSK;
2122
353k
    }
2123
353k
#endif /* OPENSSL_NO_PSK */
2124
353k
#ifndef OPENSSL_NO_SRP
2125
353k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2126
353k
        s->s3.tmp.mask_a |= SSL_aSRP;
2127
353k
        s->s3.tmp.mask_k |= SSL_kSRP;
2128
353k
    }
2129
353k
#endif
2130
353k
    return 1;
2131
353k
}
2132
2133
/*
2134
 * ssl_cipher_disabled - check that a cipher is disabled or not
2135
 * @s: SSL connection that you want to use the cipher on
2136
 * @c: cipher to check
2137
 * @op: Security check that you want to do
2138
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2139
 *
2140
 * Returns 1 when it's disabled, 0 when enabled.
2141
 */
2142
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2143
    int op, int ecdhe)
2144
31.8M
{
2145
31.8M
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2146
31.8M
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2147
2148
31.8M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2149
18.5M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2150
13.2M
        return 1;
2151
18.5M
    if (s->s3.tmp.max_ver == 0)
2152
0
        return 1;
2153
2154
18.5M
    if (SSL_IS_QUIC_HANDSHAKE(s))
2155
        /* For QUIC, only allow these ciphersuites. */
2156
479k
        switch (SSL_CIPHER_get_id(c)) {
2157
152k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2158
325k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2159
479k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2160
479k
            break;
2161
34
        default:
2162
34
            return 1;
2163
479k
        }
2164
2165
    /*
2166
     * For historical reasons we will allow ECHDE to be selected by a server
2167
     * in SSLv3 if we are a client
2168
     */
2169
18.5M
    if (minversion == TLS1_VERSION
2170
1.24M
        && ecdhe
2171
5.47k
        && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2172
5.46k
        minversion = SSL3_VERSION;
2173
2174
18.5M
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2175
18.0M
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2176
453k
        return 1;
2177
2178
18.0M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2179
18.5M
}
2180
2181
int tls_use_ticket(SSL_CONNECTION *s)
2182
165k
{
2183
165k
    if ((s->options & SSL_OP_NO_TICKET))
2184
0
        return 0;
2185
165k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2186
165k
}
2187
2188
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2189
29.6k
{
2190
29.6k
    size_t i;
2191
2192
    /* Clear any shared signature algorithms */
2193
29.6k
    OPENSSL_free(s->shared_sigalgs);
2194
29.6k
    s->shared_sigalgs = NULL;
2195
29.6k
    s->shared_sigalgslen = 0;
2196
2197
    /* Clear certificate validity flags */
2198
29.6k
    if (s->s3.tmp.valid_flags)
2199
113
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2200
29.5k
    else
2201
29.5k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2202
29.6k
    if (s->s3.tmp.valid_flags == NULL)
2203
0
        return 0;
2204
    /*
2205
     * If peer sent no signature algorithms check to see if we support
2206
     * the default algorithm for each certificate type
2207
     */
2208
29.6k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2209
28.9k
        && s->s3.tmp.peer_sigalgs == NULL) {
2210
21.9k
        const uint16_t *sent_sigs;
2211
21.9k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2212
2213
258k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2214
236k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2215
236k
            size_t j;
2216
2217
236k
            if (lu == NULL)
2218
170k
                continue;
2219
            /* Check default matches a type we sent */
2220
1.48M
            for (j = 0; j < sent_sigslen; j++) {
2221
1.47M
                if (lu->sigalg == sent_sigs[j]) {
2222
60.4k
                    s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2223
60.4k
                    break;
2224
60.4k
                }
2225
1.47M
            }
2226
65.8k
        }
2227
21.9k
        return 1;
2228
21.9k
    }
2229
2230
7.68k
    if (!tls1_process_sigalgs(s)) {
2231
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2232
0
        return 0;
2233
0
    }
2234
7.68k
    if (s->shared_sigalgs != NULL)
2235
7.57k
        return 1;
2236
2237
    /* Fatal error if no shared signature algorithms */
2238
7.68k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2239
108
        SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2240
108
    return 0;
2241
7.68k
}
2242
2243
/*-
2244
 * Gets the ticket information supplied by the client if any.
2245
 *
2246
 *   hello: The parsed ClientHello data
2247
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2248
 *       point to the resulting session.
2249
 */
2250
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2251
    CLIENTHELLO_MSG *hello,
2252
    SSL_SESSION **ret)
2253
30.3k
{
2254
30.3k
    size_t size;
2255
30.3k
    RAW_EXTENSION *ticketext;
2256
2257
30.3k
    *ret = NULL;
2258
30.3k
    s->ext.ticket_expected = 0;
2259
2260
    /*
2261
     * If tickets disabled or not supported by the protocol version
2262
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2263
     * resumption.
2264
     */
2265
30.3k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2266
0
        return SSL_TICKET_NONE;
2267
2268
30.3k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2269
30.3k
    if (!ticketext->present)
2270
23.9k
        return SSL_TICKET_NONE;
2271
2272
6.47k
    size = PACKET_remaining(&ticketext->data);
2273
2274
6.47k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2275
6.47k
        hello->session_id, hello->session_id_len, ret);
2276
30.3k
}
2277
2278
/*-
2279
 * tls_decrypt_ticket attempts to decrypt a session ticket.
2280
 *
2281
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2282
 * expecting a pre-shared key ciphersuite, in which case we have no use for
2283
 * session tickets and one will never be decrypted, nor will
2284
 * s->ext.ticket_expected be set to 1.
2285
 *
2286
 * Side effects:
2287
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
2288
 *   a new session ticket to the client because the client indicated support
2289
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2290
 *   a session ticket or we couldn't use the one it gave us, or if
2291
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2292
 *   Otherwise, s->ext.ticket_expected is set to 0.
2293
 *
2294
 *   etick: points to the body of the session ticket extension.
2295
 *   eticklen: the length of the session tickets extension.
2296
 *   sess_id: points at the session ID.
2297
 *   sesslen: the length of the session ID.
2298
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
2299
 *       point to the resulting session.
2300
 */
2301
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2302
    const unsigned char *etick,
2303
    size_t eticklen,
2304
    const unsigned char *sess_id,
2305
    size_t sesslen, SSL_SESSION **psess)
2306
7.43k
{
2307
7.43k
    SSL_SESSION *sess = NULL;
2308
7.43k
    unsigned char *sdec;
2309
7.43k
    const unsigned char *p;
2310
7.43k
    int slen, ivlen, renew_ticket = 0, declen;
2311
7.43k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2312
7.43k
    size_t mlen;
2313
7.43k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2314
7.43k
    SSL_HMAC *hctx = NULL;
2315
7.43k
    EVP_CIPHER_CTX *ctx = NULL;
2316
7.43k
    SSL_CTX *tctx = s->session_ctx;
2317
7.43k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2318
2319
7.43k
    if (eticklen == 0) {
2320
        /*
2321
         * The client will accept a ticket but doesn't currently have
2322
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2323
         */
2324
4.04k
        ret = SSL_TICKET_EMPTY;
2325
4.04k
        goto end;
2326
4.04k
    }
2327
3.38k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2328
        /*
2329
         * Indicate that the ticket couldn't be decrypted rather than
2330
         * generating the session from ticket now, trigger
2331
         * abbreviated handshake based on external mechanism to
2332
         * calculate the master secret later.
2333
         */
2334
0
        ret = SSL_TICKET_NO_DECRYPT;
2335
0
        goto end;
2336
0
    }
2337
2338
    /* Need at least keyname + iv */
2339
3.38k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2340
1.01k
        ret = SSL_TICKET_NO_DECRYPT;
2341
1.01k
        goto end;
2342
1.01k
    }
2343
2344
    /* Initialize session ticket encryption and HMAC contexts */
2345
2.36k
    hctx = ssl_hmac_new(tctx);
2346
2.36k
    if (hctx == NULL) {
2347
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2348
0
        goto end;
2349
0
    }
2350
2.36k
    ctx = EVP_CIPHER_CTX_new();
2351
2.36k
    if (ctx == NULL) {
2352
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2353
0
        goto end;
2354
0
    }
2355
2.36k
#ifndef OPENSSL_NO_DEPRECATED_3_0
2356
2.36k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2357
#else
2358
    if (tctx->ext.ticket_key_evp_cb != NULL)
2359
#endif
2360
0
    {
2361
0
        unsigned char *nctick = (unsigned char *)etick;
2362
0
        int rv = 0;
2363
2364
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
2365
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
2366
0
                nctick,
2367
0
                nctick + TLSEXT_KEYNAME_LENGTH,
2368
0
                ctx,
2369
0
                ssl_hmac_get0_EVP_MAC_CTX(hctx),
2370
0
                0);
2371
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
2372
0
        else if (tctx->ext.ticket_key_cb != NULL)
2373
            /* if 0 is returned, write an empty ticket */
2374
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
2375
0
                nctick + TLSEXT_KEYNAME_LENGTH,
2376
0
                ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2377
0
#endif
2378
0
        if (rv < 0) {
2379
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2380
0
            goto end;
2381
0
        }
2382
0
        if (rv == 0) {
2383
0
            ret = SSL_TICKET_NO_DECRYPT;
2384
0
            goto end;
2385
0
        }
2386
0
        if (rv == 2)
2387
0
            renew_ticket = 1;
2388
2.36k
    } else {
2389
2.36k
        EVP_CIPHER *aes256cbc = NULL;
2390
2391
        /* Check key name matches */
2392
2.36k
        if (memcmp(etick, tctx->ext.tick_key_name,
2393
2.36k
                TLSEXT_KEYNAME_LENGTH)
2394
2.36k
            != 0) {
2395
980
            ret = SSL_TICKET_NO_DECRYPT;
2396
980
            goto end;
2397
980
        }
2398
2399
1.38k
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2400
1.38k
            sctx->propq);
2401
1.38k
        if (aes256cbc == NULL
2402
1.38k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2403
1.38k
                   sizeof(tctx->ext.secure->tick_hmac_key),
2404
1.38k
                   "SHA256")
2405
1.38k
                <= 0
2406
1.38k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2407
1.38k
                   tctx->ext.secure->tick_aes_key,
2408
1.38k
                   etick + TLSEXT_KEYNAME_LENGTH)
2409
1.38k
                <= 0) {
2410
0
            EVP_CIPHER_free(aes256cbc);
2411
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2412
0
            goto end;
2413
0
        }
2414
1.38k
        EVP_CIPHER_free(aes256cbc);
2415
1.38k
        if (SSL_CONNECTION_IS_TLS13(s))
2416
626
            renew_ticket = 1;
2417
1.38k
    }
2418
    /*
2419
     * Attempt to process session ticket, first conduct sanity and integrity
2420
     * checks on ticket.
2421
     */
2422
1.38k
    mlen = ssl_hmac_size(hctx);
2423
1.38k
    if (mlen == 0) {
2424
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2425
0
        goto end;
2426
0
    }
2427
2428
1.38k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2429
1.38k
    if (ivlen < 0) {
2430
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2431
0
        goto end;
2432
0
    }
2433
2434
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2435
1.38k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2436
159
        ret = SSL_TICKET_NO_DECRYPT;
2437
159
        goto end;
2438
159
    }
2439
1.23k
    eticklen -= mlen;
2440
    /* Check HMAC of encrypted ticket */
2441
1.23k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2442
1.23k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2443
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2444
0
        goto end;
2445
0
    }
2446
2447
1.23k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2448
193
        ret = SSL_TICKET_NO_DECRYPT;
2449
193
        goto end;
2450
193
    }
2451
    /* Attempt to decrypt session data */
2452
    /* Move p after IV to start of encrypted ticket, update length */
2453
1.03k
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2454
1.03k
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2455
1.03k
    sdec = OPENSSL_malloc(eticklen);
2456
1.03k
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) {
2457
0
        OPENSSL_free(sdec);
2458
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2459
0
        goto end;
2460
0
    }
2461
1.03k
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2462
66
        OPENSSL_free(sdec);
2463
66
        ret = SSL_TICKET_NO_DECRYPT;
2464
66
        goto end;
2465
66
    }
2466
971
    slen += declen;
2467
971
    p = sdec;
2468
2469
971
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2470
971
    slen -= p - sdec;
2471
971
    OPENSSL_free(sdec);
2472
971
    if (sess) {
2473
        /* Some additional consistency checks */
2474
816
        if (slen != 0) {
2475
12
            SSL_SESSION_free(sess);
2476
12
            sess = NULL;
2477
12
            ret = SSL_TICKET_NO_DECRYPT;
2478
12
            goto end;
2479
12
        }
2480
        /*
2481
         * The session ID, if non-empty, is used by some clients to detect
2482
         * that the ticket has been accepted. So we copy it to the session
2483
         * structure. If it is empty set length to zero as required by
2484
         * standard.
2485
         */
2486
804
        if (sesslen) {
2487
289
            memcpy(sess->session_id, sess_id, sesslen);
2488
289
            sess->session_id_length = sesslen;
2489
289
        }
2490
804
        if (renew_ticket)
2491
493
            ret = SSL_TICKET_SUCCESS_RENEW;
2492
311
        else
2493
311
            ret = SSL_TICKET_SUCCESS;
2494
804
        goto end;
2495
816
    }
2496
155
    ERR_clear_error();
2497
    /*
2498
     * For session parse failure, indicate that we need to send a new ticket.
2499
     */
2500
155
    ret = SSL_TICKET_NO_DECRYPT;
2501
2502
7.43k
end:
2503
7.43k
    EVP_CIPHER_CTX_free(ctx);
2504
7.43k
    ssl_hmac_free(hctx);
2505
2506
    /*
2507
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2508
     * detected above. The callback is responsible for checking |ret| before it
2509
     * performs any action
2510
     */
2511
7.43k
    if (s->session_ctx->decrypt_ticket_cb != NULL
2512
0
        && (ret == SSL_TICKET_EMPTY
2513
0
            || ret == SSL_TICKET_NO_DECRYPT
2514
0
            || ret == SSL_TICKET_SUCCESS
2515
0
            || ret == SSL_TICKET_SUCCESS_RENEW)) {
2516
0
        size_t keyname_len = eticklen;
2517
0
        int retcb;
2518
2519
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2520
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2521
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2522
0
            sess, etick, keyname_len,
2523
0
            ret,
2524
0
            s->session_ctx->ticket_cb_data);
2525
0
        switch (retcb) {
2526
0
        case SSL_TICKET_RETURN_ABORT:
2527
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2528
0
            break;
2529
2530
0
        case SSL_TICKET_RETURN_IGNORE:
2531
0
            ret = SSL_TICKET_NONE;
2532
0
            SSL_SESSION_free(sess);
2533
0
            sess = NULL;
2534
0
            break;
2535
2536
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2537
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2538
0
                ret = SSL_TICKET_NO_DECRYPT;
2539
            /* else the value of |ret| will already do the right thing */
2540
0
            SSL_SESSION_free(sess);
2541
0
            sess = NULL;
2542
0
            break;
2543
2544
0
        case SSL_TICKET_RETURN_USE:
2545
0
        case SSL_TICKET_RETURN_USE_RENEW:
2546
0
            if (ret != SSL_TICKET_SUCCESS
2547
0
                && ret != SSL_TICKET_SUCCESS_RENEW)
2548
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2549
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2550
0
                ret = SSL_TICKET_SUCCESS;
2551
0
            else
2552
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2553
0
            break;
2554
2555
0
        default:
2556
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2557
0
        }
2558
0
    }
2559
2560
7.43k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2561
7.43k
        switch (ret) {
2562
2.58k
        case SSL_TICKET_NO_DECRYPT:
2563
3.07k
        case SSL_TICKET_SUCCESS_RENEW:
2564
7.11k
        case SSL_TICKET_EMPTY:
2565
7.11k
            s->ext.ticket_expected = 1;
2566
7.43k
        }
2567
7.43k
    }
2568
2569
7.43k
    *psess = sess;
2570
2571
7.43k
    return ret;
2572
7.43k
}
2573
2574
/* Check to see if a signature algorithm is allowed */
2575
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2576
    const SIGALG_LOOKUP *lu)
2577
4.64M
{
2578
4.64M
    unsigned char sigalgstr[2];
2579
4.64M
    int secbits;
2580
2581
4.64M
    if (lu == NULL || !lu->enabled)
2582
0
        return 0;
2583
    /* DSA is not allowed in TLS 1.3 */
2584
4.64M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2585
9.95k
        return 0;
2586
    /*
2587
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2588
     * spec
2589
     */
2590
4.63M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2591
3.50M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
2592
1.85M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2593
1.19M
            || lu->hash_idx == SSL_MD_MD5_IDX
2594
1.19M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2595
693k
        return 0;
2596
2597
    /* See if public key algorithm allowed */
2598
3.93M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2599
0
        return 0;
2600
2601
3.93M
    if (lu->sig == NID_id_GostR3410_2012_256
2602
3.93M
        || lu->sig == NID_id_GostR3410_2012_512
2603
3.93M
        || lu->sig == NID_id_GostR3410_2001) {
2604
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2605
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
2606
0
            return 0;
2607
0
        if (!s->server
2608
0
            && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2609
0
            && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2610
0
            int i, num;
2611
0
            STACK_OF(SSL_CIPHER) *sk;
2612
2613
            /*
2614
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2615
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2616
             * ciphersuites enabled.
2617
             */
2618
2619
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2620
0
                return 0;
2621
2622
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2623
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2624
0
            for (i = 0; i < num; i++) {
2625
0
                const SSL_CIPHER *c;
2626
2627
0
                c = sk_SSL_CIPHER_value(sk, i);
2628
                /* Skip disabled ciphers */
2629
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2630
0
                    continue;
2631
2632
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2633
0
                    break;
2634
0
            }
2635
0
            if (i == num)
2636
0
                return 0;
2637
0
        }
2638
0
    }
2639
2640
    /* Finally see if security callback allows it */
2641
3.93M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2642
3.93M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2643
3.93M
    sigalgstr[1] = lu->sigalg & 0xff;
2644
3.93M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2645
3.93M
}
2646
2647
/*
2648
 * Get a mask of disabled public key algorithms based on supported signature
2649
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2650
 * disabled.
2651
 */
2652
2653
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2654
353k
{
2655
353k
    const uint16_t *sigalgs;
2656
353k
    size_t i, sigalgslen;
2657
353k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2658
    /*
2659
     * Go through all signature algorithms seeing if we support any
2660
     * in disabled_mask.
2661
     */
2662
353k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2663
10.7M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2664
10.3M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2665
10.3M
        const SSL_CERT_LOOKUP *clu;
2666
2667
10.3M
        if (lu == NULL)
2668
790k
            continue;
2669
2670
9.58M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2671
9.58M
            SSL_CONNECTION_GET_CTX(s));
2672
9.58M
        if (clu == NULL)
2673
0
            continue;
2674
2675
        /* If algorithm is disabled see if we can enable it */
2676
9.58M
        if ((clu->amask & disabled_mask) != 0
2677
1.46M
            && tls12_sigalg_allowed(s, op, lu))
2678
959k
            disabled_mask &= ~clu->amask;
2679
9.58M
    }
2680
353k
    *pmask_a |= disabled_mask;
2681
353k
}
2682
2683
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2684
    const uint16_t *psig, size_t psiglen)
2685
116k
{
2686
116k
    size_t i;
2687
116k
    int rv = 0;
2688
2689
3.54M
    for (i = 0; i < psiglen; i++, psig++) {
2690
3.42M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2691
2692
3.42M
        if (lu == NULL
2693
3.16M
            || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2694
762k
            continue;
2695
2.66M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2696
0
            return 0;
2697
        /*
2698
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2699
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2700
         */
2701
2.66M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224)))
2702
116k
            rv = 1;
2703
2.66M
    }
2704
116k
    if (rv == 0)
2705
116k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2706
116k
    return rv;
2707
116k
}
2708
2709
/* Given preference and allowed sigalgs set shared sigalgs */
2710
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2711
    const SIGALG_LOOKUP **shsig,
2712
    const uint16_t *pref, size_t preflen,
2713
    const uint16_t *allow, size_t allowlen)
2714
18.5k
{
2715
18.5k
    const uint16_t *ptmp, *atmp;
2716
18.5k
    size_t i, j, nmatch = 0;
2717
457k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2718
439k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2719
2720
        /* Skip disabled hashes or signature algorithms */
2721
439k
        if (lu == NULL
2722
193k
            || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2723
255k
            continue;
2724
2.87M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2725
2.87M
            if (*ptmp == *atmp) {
2726
184k
                nmatch++;
2727
184k
                if (shsig)
2728
92.0k
                    *shsig++ = lu;
2729
184k
                break;
2730
184k
            }
2731
2.87M
        }
2732
184k
    }
2733
18.5k
    return nmatch;
2734
18.5k
}
2735
2736
/* Set shared signature algorithms for SSL structures */
2737
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2738
9.36k
{
2739
9.36k
    const uint16_t *pref, *allow, *conf;
2740
9.36k
    size_t preflen, allowlen, conflen;
2741
9.36k
    size_t nmatch;
2742
9.36k
    const SIGALG_LOOKUP **salgs = NULL;
2743
9.36k
    CERT *c = s->cert;
2744
9.36k
    unsigned int is_suiteb = tls1_suiteb(s);
2745
2746
9.36k
    OPENSSL_free(s->shared_sigalgs);
2747
9.36k
    s->shared_sigalgs = NULL;
2748
9.36k
    s->shared_sigalgslen = 0;
2749
    /* If client use client signature algorithms if not NULL */
2750
9.36k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2751
0
        conf = c->client_sigalgs;
2752
0
        conflen = c->client_sigalgslen;
2753
9.36k
    } else if (c->conf_sigalgs && !is_suiteb) {
2754
0
        conf = c->conf_sigalgs;
2755
0
        conflen = c->conf_sigalgslen;
2756
0
    } else
2757
9.36k
        conflen = tls12_get_psigalgs(s, 0, &conf);
2758
9.36k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2759
0
        pref = conf;
2760
0
        preflen = conflen;
2761
0
        allow = s->s3.tmp.peer_sigalgs;
2762
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2763
9.36k
    } else {
2764
9.36k
        allow = conf;
2765
9.36k
        allowlen = conflen;
2766
9.36k
        pref = s->s3.tmp.peer_sigalgs;
2767
9.36k
        preflen = s->s3.tmp.peer_sigalgslen;
2768
9.36k
    }
2769
9.36k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2770
9.36k
    if (nmatch) {
2771
9.15k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2772
0
            return 0;
2773
9.15k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2774
9.15k
    } else {
2775
219
        salgs = NULL;
2776
219
    }
2777
9.36k
    s->shared_sigalgs = salgs;
2778
9.36k
    s->shared_sigalgslen = nmatch;
2779
9.36k
    return 1;
2780
9.36k
}
2781
2782
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2783
30.7k
{
2784
30.7k
    unsigned int stmp;
2785
30.7k
    size_t size, i;
2786
30.7k
    uint16_t *buf;
2787
2788
30.7k
    size = PACKET_remaining(pkt);
2789
2790
    /* Invalid data length */
2791
30.7k
    if (size == 0 || (size & 1) != 0)
2792
68
        return 0;
2793
2794
30.6k
    size >>= 1;
2795
2796
30.6k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2797
0
        return 0;
2798
334k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2799
303k
        buf[i] = stmp;
2800
2801
30.6k
    if (i != size) {
2802
0
        OPENSSL_free(buf);
2803
0
        return 0;
2804
0
    }
2805
2806
30.6k
    OPENSSL_free(*pdest);
2807
30.6k
    *pdest = buf;
2808
30.6k
    *pdestlen = size;
2809
2810
30.6k
    return 1;
2811
30.6k
}
2812
2813
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2814
11.3k
{
2815
    /* Extension ignored for inappropriate versions */
2816
11.3k
    if (!SSL_USE_SIGALGS(s))
2817
273
        return 1;
2818
    /* Should never happen */
2819
11.0k
    if (s->cert == NULL)
2820
0
        return 0;
2821
2822
11.0k
    if (cert)
2823
950
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2824
950
            &s->s3.tmp.peer_cert_sigalgslen);
2825
10.1k
    else
2826
10.1k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2827
10.1k
            &s->s3.tmp.peer_sigalgslen);
2828
11.0k
}
2829
2830
/* Set preferred digest for each key type */
2831
2832
int tls1_process_sigalgs(SSL_CONNECTION *s)
2833
9.36k
{
2834
9.36k
    size_t i;
2835
9.36k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2836
2837
9.36k
    if (!tls1_set_shared_sigalgs(s))
2838
0
        return 0;
2839
2840
108k
    for (i = 0; i < s->ssl_pkey_num; i++)
2841
99.0k
        pvalid[i] = 0;
2842
2843
101k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2844
92.0k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2845
92.0k
        int idx = sigptr->sig_idx;
2846
2847
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2848
92.0k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2849
2.76k
            continue;
2850
        /* If not disabled indicate we can explicitly sign */
2851
89.2k
        if (pvalid[idx] == 0
2852
17.2k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2853
17.2k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2854
89.2k
    }
2855
9.36k
    return 1;
2856
9.36k
}
2857
2858
int SSL_get_sigalgs(SSL *s, int idx,
2859
    int *psign, int *phash, int *psignhash,
2860
    unsigned char *rsig, unsigned char *rhash)
2861
0
{
2862
0
    uint16_t *psig;
2863
0
    size_t numsigalgs;
2864
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2865
2866
0
    if (sc == NULL)
2867
0
        return 0;
2868
2869
0
    psig = sc->s3.tmp.peer_sigalgs;
2870
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
2871
2872
0
    if (psig == NULL || numsigalgs > INT_MAX)
2873
0
        return 0;
2874
0
    if (idx >= 0) {
2875
0
        const SIGALG_LOOKUP *lu;
2876
2877
0
        if (idx >= (int)numsigalgs)
2878
0
            return 0;
2879
0
        psig += idx;
2880
0
        if (rhash != NULL)
2881
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2882
0
        if (rsig != NULL)
2883
0
            *rsig = (unsigned char)(*psig & 0xff);
2884
0
        lu = tls1_lookup_sigalg(sc, *psig);
2885
0
        if (psign != NULL)
2886
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2887
0
        if (phash != NULL)
2888
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2889
0
        if (psignhash != NULL)
2890
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2891
0
    }
2892
0
    return (int)numsigalgs;
2893
0
}
2894
2895
int SSL_get_shared_sigalgs(SSL *s, int idx,
2896
    int *psign, int *phash, int *psignhash,
2897
    unsigned char *rsig, unsigned char *rhash)
2898
0
{
2899
0
    const SIGALG_LOOKUP *shsigalgs;
2900
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2901
2902
0
    if (sc == NULL)
2903
0
        return 0;
2904
2905
0
    if (sc->shared_sigalgs == NULL
2906
0
        || idx < 0
2907
0
        || idx >= (int)sc->shared_sigalgslen
2908
0
        || sc->shared_sigalgslen > INT_MAX)
2909
0
        return 0;
2910
0
    shsigalgs = sc->shared_sigalgs[idx];
2911
0
    if (phash != NULL)
2912
0
        *phash = shsigalgs->hash;
2913
0
    if (psign != NULL)
2914
0
        *psign = shsigalgs->sig;
2915
0
    if (psignhash != NULL)
2916
0
        *psignhash = shsigalgs->sigandhash;
2917
0
    if (rsig != NULL)
2918
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2919
0
    if (rhash != NULL)
2920
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2921
0
    return (int)sc->shared_sigalgslen;
2922
0
}
2923
2924
/* Maximum possible number of unique entries in sigalgs array */
2925
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2926
2927
typedef struct {
2928
    size_t sigalgcnt;
2929
    /* TLSEXT_SIGALG_XXX values */
2930
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2931
    SSL_CTX *ctx;
2932
} sig_cb_st;
2933
2934
static void get_sigorhash(int *psig, int *phash, const char *str)
2935
0
{
2936
0
    if (strcmp(str, "RSA") == 0) {
2937
0
        *psig = EVP_PKEY_RSA;
2938
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2939
0
        *psig = EVP_PKEY_RSA_PSS;
2940
0
    } else if (strcmp(str, "DSA") == 0) {
2941
0
        *psig = EVP_PKEY_DSA;
2942
0
    } else if (strcmp(str, "ECDSA") == 0) {
2943
0
        *psig = EVP_PKEY_EC;
2944
0
    } else {
2945
0
        *phash = OBJ_sn2nid(str);
2946
0
        if (*phash == NID_undef)
2947
0
            *phash = OBJ_ln2nid(str);
2948
0
    }
2949
0
}
2950
/* Maximum length of a signature algorithm string component */
2951
#define TLS_MAX_SIGSTRING_LEN 40
2952
2953
static int sig_cb(const char *elem, int len, void *arg)
2954
0
{
2955
0
    sig_cb_st *sarg = arg;
2956
0
    size_t i = 0;
2957
0
    const SIGALG_LOOKUP *s;
2958
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2959
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2960
0
    int ignore_unknown = 0;
2961
2962
0
    if (elem == NULL)
2963
0
        return 0;
2964
0
    if (elem[0] == '?') {
2965
0
        ignore_unknown = 1;
2966
0
        ++elem;
2967
0
        --len;
2968
0
    }
2969
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2970
0
        return 0;
2971
0
    if (len > (int)(sizeof(etmp) - 1))
2972
0
        return 0;
2973
0
    memcpy(etmp, elem, len);
2974
0
    etmp[len] = 0;
2975
0
    p = strchr(etmp, '+');
2976
    /*
2977
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2978
     * if there's no '+' in the provided name, look for the new-style combined
2979
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2980
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2981
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2982
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2983
     * in the table.
2984
     */
2985
0
    if (p == NULL) {
2986
        /* Load provider sigalgs */
2987
0
        if (sarg->ctx != NULL) {
2988
            /* Check if a provider supports the sigalg */
2989
0
            for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
2990
0
                if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
2991
0
                    && strcmp(etmp,
2992
0
                           sarg->ctx->sigalg_list[i].sigalg_name)
2993
0
                        == 0) {
2994
0
                    sarg->sigalgs[sarg->sigalgcnt++] = sarg->ctx->sigalg_list[i].code_point;
2995
0
                    break;
2996
0
                }
2997
0
            }
2998
0
        }
2999
        /* Check the built-in sigalgs */
3000
0
        if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
3001
0
            for (i = 0, s = sigalg_lookup_tbl;
3002
0
                i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3003
0
                if (s->name != NULL && strcmp(etmp, s->name) == 0) {
3004
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3005
0
                    break;
3006
0
                }
3007
0
            }
3008
0
            if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
3009
                /* Ignore unknown algorithms if ignore_unknown */
3010
0
                return ignore_unknown;
3011
0
            }
3012
0
        }
3013
0
    } else {
3014
0
        *p = 0;
3015
0
        p++;
3016
0
        if (*p == 0)
3017
0
            return 0;
3018
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
3019
0
        get_sigorhash(&sig_alg, &hash_alg, p);
3020
0
        if (sig_alg == NID_undef || hash_alg == NID_undef) {
3021
            /* Ignore unknown algorithms if ignore_unknown */
3022
0
            return ignore_unknown;
3023
0
        }
3024
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
3025
0
            i++, s++) {
3026
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
3027
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3028
0
                break;
3029
0
            }
3030
0
        }
3031
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
3032
            /* Ignore unknown algorithms if ignore_unknown */
3033
0
            return ignore_unknown;
3034
0
        }
3035
0
    }
3036
3037
    /* Ignore duplicates */
3038
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3039
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3040
0
            sarg->sigalgcnt--;
3041
0
            return 1;
3042
0
        }
3043
0
    }
3044
0
    return 1;
3045
0
}
3046
3047
/*
3048
 * Set supported signature algorithms based on a colon separated list of the
3049
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3050
 */
3051
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3052
0
{
3053
0
    sig_cb_st sig;
3054
0
    sig.sigalgcnt = 0;
3055
3056
0
    if (ctx != NULL)
3057
0
        sig.ctx = ctx;
3058
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3059
0
        return 0;
3060
0
    if (sig.sigalgcnt == 0) {
3061
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3062
0
            "No valid signature algorithms in '%s'", str);
3063
0
        return 0;
3064
0
    }
3065
0
    if (c == NULL)
3066
0
        return 1;
3067
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3068
0
}
3069
3070
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3071
    int client)
3072
0
{
3073
0
    uint16_t *sigalgs;
3074
3075
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3076
0
        return 0;
3077
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3078
3079
0
    if (client) {
3080
0
        OPENSSL_free(c->client_sigalgs);
3081
0
        c->client_sigalgs = sigalgs;
3082
0
        c->client_sigalgslen = salglen;
3083
0
    } else {
3084
0
        OPENSSL_free(c->conf_sigalgs);
3085
0
        c->conf_sigalgs = sigalgs;
3086
0
        c->conf_sigalgslen = salglen;
3087
0
    }
3088
3089
0
    return 1;
3090
0
}
3091
3092
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3093
0
{
3094
0
    uint16_t *sigalgs, *sptr;
3095
0
    size_t i;
3096
3097
0
    if (salglen & 1)
3098
0
        return 0;
3099
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3100
0
        return 0;
3101
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3102
0
        size_t j;
3103
0
        const SIGALG_LOOKUP *curr;
3104
0
        int md_id = *psig_nids++;
3105
0
        int sig_id = *psig_nids++;
3106
3107
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3108
0
            j++, curr++) {
3109
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3110
0
                *sptr++ = curr->sigalg;
3111
0
                break;
3112
0
            }
3113
0
        }
3114
3115
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3116
0
            goto err;
3117
0
    }
3118
3119
0
    if (client) {
3120
0
        OPENSSL_free(c->client_sigalgs);
3121
0
        c->client_sigalgs = sigalgs;
3122
0
        c->client_sigalgslen = salglen / 2;
3123
0
    } else {
3124
0
        OPENSSL_free(c->conf_sigalgs);
3125
0
        c->conf_sigalgs = sigalgs;
3126
0
        c->conf_sigalgslen = salglen / 2;
3127
0
    }
3128
3129
0
    return 1;
3130
3131
0
err:
3132
0
    OPENSSL_free(sigalgs);
3133
0
    return 0;
3134
0
}
3135
3136
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3137
0
{
3138
0
    int sig_nid, use_pc_sigalgs = 0;
3139
0
    size_t i;
3140
0
    const SIGALG_LOOKUP *sigalg;
3141
0
    size_t sigalgslen;
3142
3143
0
    if (default_nid == -1)
3144
0
        return 1;
3145
0
    sig_nid = X509_get_signature_nid(x);
3146
0
    if (default_nid)
3147
0
        return sig_nid == default_nid ? 1 : 0;
3148
3149
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3150
        /*
3151
         * If we're in TLSv1.3 then we only get here if we're checking the
3152
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3153
         * otherwise we default to normal sigalgs.
3154
         */
3155
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3156
0
        use_pc_sigalgs = 1;
3157
0
    } else {
3158
0
        sigalgslen = s->shared_sigalgslen;
3159
0
    }
3160
0
    for (i = 0; i < sigalgslen; i++) {
3161
0
        sigalg = use_pc_sigalgs
3162
0
            ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3163
0
            : s->shared_sigalgs[i];
3164
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3165
0
            return 1;
3166
0
    }
3167
0
    return 0;
3168
0
}
3169
3170
/* Check to see if a certificate issuer name matches list of CA names */
3171
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3172
0
{
3173
0
    const X509_NAME *nm;
3174
0
    int i;
3175
0
    nm = X509_get_issuer_name(x);
3176
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3177
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3178
0
            return 1;
3179
0
    }
3180
0
    return 0;
3181
0
}
3182
3183
/*
3184
 * Check certificate chain is consistent with TLS extensions and is usable by
3185
 * server. This servers two purposes: it allows users to check chains before
3186
 * passing them to the server and it allows the server to check chains before
3187
 * attempting to use them.
3188
 */
3189
3190
/* Flags which need to be set for a certificate when strict mode not set */
3191
3192
#define CERT_PKEY_VALID_FLAGS \
3193
0
    (CERT_PKEY_EE_SIGNATURE | CERT_PKEY_EE_PARAM)
3194
/* Strict mode flags */
3195
#define CERT_PKEY_STRICT_FLAGS                                           \
3196
0
    (CERT_PKEY_VALID_FLAGS | CERT_PKEY_CA_SIGNATURE | CERT_PKEY_CA_PARAM \
3197
0
        | CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE)
3198
3199
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3200
    STACK_OF(X509) *chain, int idx)
3201
236k
{
3202
236k
    int i;
3203
236k
    int rv = 0;
3204
236k
    int check_flags = 0, strict_mode;
3205
236k
    CERT_PKEY *cpk = NULL;
3206
236k
    CERT *c = s->cert;
3207
236k
    uint32_t *pvalid;
3208
236k
    unsigned int suiteb_flags = tls1_suiteb(s);
3209
3210
    /*
3211
     * Meaning of idx:
3212
     * idx == -1 means SSL_check_chain() invocation
3213
     * idx == -2 means checking client certificate chains
3214
     * idx >= 0 means checking SSL_PKEY index
3215
     *
3216
     * For RPK, where there may be no cert, we ignore -1
3217
     */
3218
236k
    if (idx != -1) {
3219
236k
        if (idx == -2) {
3220
0
            cpk = c->key;
3221
0
            idx = (int)(cpk - c->pkeys);
3222
0
        } else
3223
236k
            cpk = c->pkeys + idx;
3224
236k
        pvalid = s->s3.tmp.valid_flags + idx;
3225
236k
        x = cpk->x509;
3226
236k
        pk = cpk->privatekey;
3227
236k
        chain = cpk->chain;
3228
236k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3229
236k
        if (tls12_rpk_and_privkey(s, idx)) {
3230
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3231
0
                return 0;
3232
0
            *pvalid = rv = CERT_PKEY_RPK;
3233
0
            return rv;
3234
0
        }
3235
        /* If no cert or key, forget it */
3236
236k
        if (x == NULL || pk == NULL)
3237
157k
            goto end;
3238
236k
    } else {
3239
0
        size_t certidx;
3240
3241
0
        if (x == NULL || pk == NULL)
3242
0
            return 0;
3243
3244
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
3245
0
                SSL_CONNECTION_GET_CTX(s))
3246
0
            == NULL)
3247
0
            return 0;
3248
0
        idx = certidx;
3249
0
        pvalid = s->s3.tmp.valid_flags + idx;
3250
3251
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3252
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
3253
0
        else
3254
0
            check_flags = CERT_PKEY_VALID_FLAGS;
3255
0
        strict_mode = 1;
3256
0
    }
3257
3258
78.8k
    if (suiteb_flags) {
3259
0
        int ok;
3260
0
        if (check_flags)
3261
0
            check_flags |= CERT_PKEY_SUITEB;
3262
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3263
0
        if (ok == X509_V_OK)
3264
0
            rv |= CERT_PKEY_SUITEB;
3265
0
        else if (!check_flags)
3266
0
            goto end;
3267
0
    }
3268
3269
    /*
3270
     * Check all signature algorithms are consistent with signature
3271
     * algorithms extension if TLS 1.2 or later and strict mode.
3272
     */
3273
78.8k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3274
32.3k
        && strict_mode) {
3275
0
        int default_nid;
3276
0
        int rsign = 0;
3277
3278
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
3279
0
            || s->s3.tmp.peer_sigalgs != NULL) {
3280
0
            default_nid = 0;
3281
            /* If no sigalgs extension use defaults from RFC5246 */
3282
0
        } else {
3283
0
            switch (idx) {
3284
0
            case SSL_PKEY_RSA:
3285
0
                rsign = EVP_PKEY_RSA;
3286
0
                default_nid = NID_sha1WithRSAEncryption;
3287
0
                break;
3288
3289
0
            case SSL_PKEY_DSA_SIGN:
3290
0
                rsign = EVP_PKEY_DSA;
3291
0
                default_nid = NID_dsaWithSHA1;
3292
0
                break;
3293
3294
0
            case SSL_PKEY_ECC:
3295
0
                rsign = EVP_PKEY_EC;
3296
0
                default_nid = NID_ecdsa_with_SHA1;
3297
0
                break;
3298
3299
0
            case SSL_PKEY_GOST01:
3300
0
                rsign = NID_id_GostR3410_2001;
3301
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3302
0
                break;
3303
3304
0
            case SSL_PKEY_GOST12_256:
3305
0
                rsign = NID_id_GostR3410_2012_256;
3306
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3307
0
                break;
3308
3309
0
            case SSL_PKEY_GOST12_512:
3310
0
                rsign = NID_id_GostR3410_2012_512;
3311
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3312
0
                break;
3313
3314
0
            default:
3315
0
                default_nid = -1;
3316
0
                break;
3317
0
            }
3318
0
        }
3319
        /*
3320
         * If peer sent no signature algorithms extension and we have set
3321
         * preferred signature algorithms check we support sha1.
3322
         */
3323
0
        if (default_nid > 0 && c->conf_sigalgs) {
3324
0
            size_t j;
3325
0
            const uint16_t *p = c->conf_sigalgs;
3326
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3327
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3328
3329
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3330
0
                    break;
3331
0
            }
3332
0
            if (j == c->conf_sigalgslen) {
3333
0
                if (check_flags)
3334
0
                    goto skip_sigs;
3335
0
                else
3336
0
                    goto end;
3337
0
            }
3338
0
        }
3339
        /* Check signature algorithm of each cert in chain */
3340
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
3341
            /*
3342
             * We only get here if the application has called SSL_check_chain(),
3343
             * so check_flags is always set.
3344
             */
3345
0
            if (find_sig_alg(s, x, pk) != NULL)
3346
0
                rv |= CERT_PKEY_EE_SIGNATURE;
3347
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3348
0
            if (!check_flags)
3349
0
                goto end;
3350
0
        } else
3351
0
            rv |= CERT_PKEY_EE_SIGNATURE;
3352
0
        rv |= CERT_PKEY_CA_SIGNATURE;
3353
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3354
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3355
0
                if (check_flags) {
3356
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
3357
0
                    break;
3358
0
                } else
3359
0
                    goto end;
3360
0
            }
3361
0
        }
3362
0
    }
3363
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3364
78.8k
    else if (check_flags)
3365
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3366
78.8k
skip_sigs:
3367
    /* Check cert parameters are consistent */
3368
78.8k
    if (tls1_check_cert_param(s, x, 1))
3369
71.1k
        rv |= CERT_PKEY_EE_PARAM;
3370
7.63k
    else if (!check_flags)
3371
7.63k
        goto end;
3372
71.1k
    if (!s->server)
3373
0
        rv |= CERT_PKEY_CA_PARAM;
3374
    /* In strict mode check rest of chain too */
3375
71.1k
    else if (strict_mode) {
3376
0
        rv |= CERT_PKEY_CA_PARAM;
3377
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3378
0
            X509 *ca = sk_X509_value(chain, i);
3379
0
            if (!tls1_check_cert_param(s, ca, 0)) {
3380
0
                if (check_flags) {
3381
0
                    rv &= ~CERT_PKEY_CA_PARAM;
3382
0
                    break;
3383
0
                } else
3384
0
                    goto end;
3385
0
            }
3386
0
        }
3387
0
    }
3388
71.1k
    if (!s->server && strict_mode) {
3389
0
        STACK_OF(X509_NAME) *ca_dn;
3390
0
        int check_type = 0;
3391
3392
0
        if (EVP_PKEY_is_a(pk, "RSA"))
3393
0
            check_type = TLS_CT_RSA_SIGN;
3394
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
3395
0
            check_type = TLS_CT_DSS_SIGN;
3396
0
        else if (EVP_PKEY_is_a(pk, "EC"))
3397
0
            check_type = TLS_CT_ECDSA_SIGN;
3398
3399
0
        if (check_type) {
3400
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
3401
0
            size_t j;
3402
3403
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3404
0
                if (*ctypes == check_type) {
3405
0
                    rv |= CERT_PKEY_CERT_TYPE;
3406
0
                    break;
3407
0
                }
3408
0
            }
3409
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3410
0
                goto end;
3411
0
        } else {
3412
0
            rv |= CERT_PKEY_CERT_TYPE;
3413
0
        }
3414
3415
0
        ca_dn = s->s3.tmp.peer_ca_names;
3416
3417
0
        if (ca_dn == NULL
3418
0
            || sk_X509_NAME_num(ca_dn) == 0
3419
0
            || ssl_check_ca_name(ca_dn, x))
3420
0
            rv |= CERT_PKEY_ISSUER_NAME;
3421
0
        else
3422
0
            for (i = 0; i < sk_X509_num(chain); i++) {
3423
0
                X509 *xtmp = sk_X509_value(chain, i);
3424
3425
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
3426
0
                    rv |= CERT_PKEY_ISSUER_NAME;
3427
0
                    break;
3428
0
                }
3429
0
            }
3430
3431
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3432
0
            goto end;
3433
0
    } else
3434
71.1k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3435
3436
71.1k
    if (!check_flags || (rv & check_flags) == check_flags)
3437
71.1k
        rv |= CERT_PKEY_VALID;
3438
3439
236k
end:
3440
3441
236k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3442
97.0k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3443
139k
    else
3444
139k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3445
3446
    /*
3447
     * When checking a CERT_PKEY structure all flags are irrelevant if the
3448
     * chain is invalid.
3449
     */
3450
236k
    if (!check_flags) {
3451
236k
        if (rv & CERT_PKEY_VALID) {
3452
71.1k
            *pvalid = rv;
3453
165k
        } else {
3454
            /* Preserve sign and explicit sign flag, clear rest */
3455
165k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3456
165k
            return 0;
3457
165k
        }
3458
236k
    }
3459
71.1k
    return rv;
3460
236k
}
3461
3462
/* Set validity of certificates in an SSL structure */
3463
void tls1_set_cert_validity(SSL_CONNECTION *s)
3464
28.6k
{
3465
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3466
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3467
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3468
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3469
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3470
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3471
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3472
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3473
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3474
28.6k
}
3475
3476
/* User level utility function to check a chain is suitable */
3477
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3478
0
{
3479
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3480
3481
0
    if (sc == NULL)
3482
0
        return 0;
3483
3484
0
    return tls1_check_chain(sc, x, pk, chain, -1);
3485
0
}
3486
3487
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3488
0
{
3489
0
    EVP_PKEY *dhp = NULL;
3490
0
    BIGNUM *p;
3491
0
    int dh_secbits = 80, sec_level_bits;
3492
0
    EVP_PKEY_CTX *pctx = NULL;
3493
0
    OSSL_PARAM_BLD *tmpl = NULL;
3494
0
    OSSL_PARAM *params = NULL;
3495
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3496
3497
0
    if (s->cert->dh_tmp_auto != 2) {
3498
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3499
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
3500
0
                dh_secbits = 128;
3501
0
            else
3502
0
                dh_secbits = 80;
3503
0
        } else {
3504
0
            if (s->s3.tmp.cert == NULL)
3505
0
                return NULL;
3506
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3507
0
        }
3508
0
    }
3509
3510
    /* Do not pick a prime that is too weak for the current security level */
3511
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3512
0
        NULL, NULL);
3513
0
    if (dh_secbits < sec_level_bits)
3514
0
        dh_secbits = sec_level_bits;
3515
3516
0
    if (dh_secbits >= 192)
3517
0
        p = BN_get_rfc3526_prime_8192(NULL);
3518
0
    else if (dh_secbits >= 152)
3519
0
        p = BN_get_rfc3526_prime_4096(NULL);
3520
0
    else if (dh_secbits >= 128)
3521
0
        p = BN_get_rfc3526_prime_3072(NULL);
3522
0
    else if (dh_secbits >= 112)
3523
0
        p = BN_get_rfc3526_prime_2048(NULL);
3524
0
    else
3525
0
        p = BN_get_rfc2409_prime_1024(NULL);
3526
0
    if (p == NULL)
3527
0
        goto err;
3528
3529
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3530
0
    if (pctx == NULL
3531
0
        || EVP_PKEY_fromdata_init(pctx) != 1)
3532
0
        goto err;
3533
3534
0
    tmpl = OSSL_PARAM_BLD_new();
3535
0
    if (tmpl == NULL
3536
0
        || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3537
0
        || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3538
0
        goto err;
3539
3540
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
3541
0
    if (params == NULL
3542
0
        || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3543
0
        goto err;
3544
3545
0
err:
3546
0
    OSSL_PARAM_free(params);
3547
0
    OSSL_PARAM_BLD_free(tmpl);
3548
0
    EVP_PKEY_CTX_free(pctx);
3549
0
    BN_free(p);
3550
0
    return dhp;
3551
0
}
3552
3553
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3554
    int op)
3555
164k
{
3556
164k
    int secbits = -1;
3557
164k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
3558
3559
164k
    if (pkey) {
3560
        /*
3561
         * If no parameters this will return -1 and fail using the default
3562
         * security callback for any non-zero security level. This will
3563
         * reject keys which omit parameters but this only affects DSA and
3564
         * omission of parameters is never (?) done in practice.
3565
         */
3566
164k
        secbits = EVP_PKEY_get_security_bits(pkey);
3567
164k
    }
3568
164k
    if (s != NULL)
3569
24.5k
        return ssl_security(s, op, secbits, 0, x);
3570
140k
    else
3571
140k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
3572
164k
}
3573
3574
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3575
    int op)
3576
164k
{
3577
    /* Lookup signature algorithm digest */
3578
164k
    int secbits, nid, pknid;
3579
3580
    /* Don't check signature if self signed */
3581
164k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3582
164k
        return 1;
3583
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3584
0
        secbits = -1;
3585
    /* If digest NID not defined use signature NID */
3586
0
    if (nid == NID_undef)
3587
0
        nid = pknid;
3588
0
    if (s != NULL)
3589
0
        return ssl_security(s, op, secbits, nid, x);
3590
0
    else
3591
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3592
0
}
3593
3594
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3595
    int is_ee)
3596
181k
{
3597
181k
    if (vfy)
3598
0
        vfy = SSL_SECOP_PEER;
3599
181k
    if (is_ee) {
3600
181k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3601
0
            return SSL_R_EE_KEY_TOO_SMALL;
3602
181k
    } else {
3603
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3604
0
            return SSL_R_CA_KEY_TOO_SMALL;
3605
0
    }
3606
181k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3607
0
        return SSL_R_CA_MD_TOO_WEAK;
3608
181k
    return 1;
3609
181k
}
3610
3611
/*
3612
 * Check security of a chain, if |sk| includes the end entity certificate then
3613
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3614
 * one to the peer. Return values: 1 if ok otherwise error code to use
3615
 */
3616
3617
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3618
    X509 *x, int vfy)
3619
26.7k
{
3620
26.7k
    int rv, start_idx, i;
3621
3622
26.7k
    if (x == NULL) {
3623
26.7k
        x = sk_X509_value(sk, 0);
3624
26.7k
        if (x == NULL)
3625
0
            return ERR_R_INTERNAL_ERROR;
3626
26.7k
        start_idx = 1;
3627
26.7k
    } else
3628
0
        start_idx = 0;
3629
3630
26.7k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3631
26.7k
    if (rv != 1)
3632
0
        return rv;
3633
3634
26.7k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3635
0
        x = sk_X509_value(sk, i);
3636
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3637
0
        if (rv != 1)
3638
0
            return rv;
3639
0
    }
3640
26.7k
    return 1;
3641
26.7k
}
3642
3643
/*
3644
 * For TLS 1.2 servers check if we have a certificate which can be used
3645
 * with the signature algorithm "lu" and return index of certificate.
3646
 */
3647
3648
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3649
    const SIGALG_LOOKUP *lu)
3650
29.3k
{
3651
29.3k
    int sig_idx = lu->sig_idx;
3652
29.3k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3653
29.3k
        SSL_CONNECTION_GET_CTX(s));
3654
3655
    /* If not recognised or not supported by cipher mask it is not suitable */
3656
29.3k
    if (clu == NULL
3657
29.3k
        || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3658
18.4k
        || (clu->pkey_nid == EVP_PKEY_RSA_PSS
3659
1.22k
            && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3660
11.5k
        return -1;
3661
3662
    /* If doing RPK, the CERT_PKEY won't be "valid" */
3663
17.7k
    if (tls12_rpk_and_privkey(s, sig_idx))
3664
0
        return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3665
3666
17.7k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3667
17.7k
}
3668
3669
/*
3670
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3671
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3672
 * the key.
3673
 * Returns true if the cert is usable and false otherwise.
3674
 */
3675
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3676
    X509 *x, EVP_PKEY *pkey)
3677
47.4k
{
3678
47.4k
    const SIGALG_LOOKUP *lu;
3679
47.4k
    int mdnid, pknid, supported;
3680
47.4k
    size_t i;
3681
47.4k
    const char *mdname = NULL;
3682
47.4k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3683
3684
    /*
3685
     * If the given EVP_PKEY cannot support signing with this digest,
3686
     * the answer is simply 'no'.
3687
     */
3688
47.4k
    if (sig->hash != NID_undef)
3689
47.4k
        mdname = OBJ_nid2sn(sig->hash);
3690
47.4k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3691
47.4k
        mdname,
3692
47.4k
        sctx->propq);
3693
47.4k
    if (supported <= 0)
3694
0
        return 0;
3695
3696
    /*
3697
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3698
     * on the sigalg with which the certificate was signed (by its issuer).
3699
     */
3700
47.4k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3701
21.7k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3702
0
            return 0;
3703
121k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3704
100k
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3705
100k
            if (lu == NULL)
3706
72.3k
                continue;
3707
3708
            /*
3709
             * This does not differentiate between the
3710
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3711
             * have a chain here that lets us look at the key OID in the
3712
             * signing certificate.
3713
             */
3714
27.8k
            if (mdnid == lu->hash && pknid == lu->sig)
3715
52
                return 1;
3716
27.8k
        }
3717
21.7k
        return 0;
3718
21.7k
    }
3719
3720
    /*
3721
     * Without signat_algorithms_cert, any certificate for which we have
3722
     * a viable public key is permitted.
3723
     */
3724
25.6k
    return 1;
3725
47.4k
}
3726
3727
/*
3728
 * Returns true if |s| has a usable certificate configured for use
3729
 * with signature scheme |sig|.
3730
 * "Usable" includes a check for presence as well as applying
3731
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3732
 * Returns false if no usable certificate is found.
3733
 */
3734
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3735
47.7k
{
3736
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3737
47.7k
    if (idx == -1)
3738
7.21k
        idx = sig->sig_idx;
3739
47.7k
    if (!ssl_has_cert(s, idx))
3740
354
        return 0;
3741
3742
47.4k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3743
47.4k
        s->cert->pkeys[idx].privatekey);
3744
47.7k
}
3745
3746
/*
3747
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3748
 * specified signature scheme |sig|, or false otherwise.
3749
 */
3750
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3751
    EVP_PKEY *pkey)
3752
0
{
3753
0
    size_t idx;
3754
3755
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3756
0
        return 0;
3757
3758
    /* Check the key is consistent with the sig alg */
3759
0
    if ((int)idx != sig->sig_idx)
3760
0
        return 0;
3761
3762
0
    return check_cert_usable(s, sig, x, pkey);
3763
0
}
3764
3765
/*
3766
 * Find a signature scheme that works with the supplied certificate |x| and key
3767
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3768
 * available certs/keys to find one that works.
3769
 */
3770
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3771
    EVP_PKEY *pkey)
3772
1.85k
{
3773
1.85k
    const SIGALG_LOOKUP *lu = NULL;
3774
1.85k
    size_t i;
3775
1.85k
    int curve = -1;
3776
1.85k
    EVP_PKEY *tmppkey;
3777
1.85k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3778
3779
    /* Look for a shared sigalgs matching possible certificates */
3780
5.80k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3781
5.72k
        lu = s->shared_sigalgs[i];
3782
3783
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3784
5.72k
        if (lu->hash == NID_sha1
3785
4.85k
            || lu->hash == NID_sha224
3786
4.66k
            || lu->sig == EVP_PKEY_DSA
3787
4.66k
            || lu->sig == EVP_PKEY_RSA)
3788
2.21k
            continue;
3789
        /* Check that we have a cert, and signature_algorithms_cert */
3790
3.50k
        if (!tls1_lookup_md(sctx, lu, NULL))
3791
0
            continue;
3792
3.50k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3793
3.31k
            || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3794
199
            continue;
3795
3796
3.31k
        tmppkey = (pkey != NULL) ? pkey
3797
3.31k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3798
3799
3.31k
        if (lu->sig == EVP_PKEY_EC) {
3800
3.13k
            if (curve == -1)
3801
1.72k
                curve = ssl_get_EC_curve_nid(tmppkey);
3802
3.13k
            if (lu->curve != NID_undef && curve != lu->curve)
3803
1.53k
                continue;
3804
3.13k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3805
            /* validate that key is large enough for the signature algorithm */
3806
180
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3807
0
                continue;
3808
180
        }
3809
1.77k
        break;
3810
3.31k
    }
3811
3812
1.85k
    if (i == s->shared_sigalgslen)
3813
81
        return NULL;
3814
3815
1.77k
    return lu;
3816
1.85k
}
3817
3818
/*
3819
 * Choose an appropriate signature algorithm based on available certificates
3820
 * Sets chosen certificate and signature algorithm.
3821
 *
3822
 * For servers if we fail to find a required certificate it is a fatal error,
3823
 * an appropriate error code is set and a TLS alert is sent.
3824
 *
3825
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3826
 * a fatal error: we will either try another certificate or not present one
3827
 * to the server. In this case no error is set.
3828
 */
3829
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3830
11.5k
{
3831
11.5k
    const SIGALG_LOOKUP *lu = NULL;
3832
11.5k
    int sig_idx = -1;
3833
3834
11.5k
    s->s3.tmp.cert = NULL;
3835
11.5k
    s->s3.tmp.sigalg = NULL;
3836
3837
11.5k
    if (SSL_CONNECTION_IS_TLS13(s)) {
3838
1.17k
        lu = find_sig_alg(s, NULL, NULL);
3839
1.17k
        if (lu == NULL) {
3840
53
            if (!fatalerrs)
3841
0
                return 1;
3842
53
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3843
53
                SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3844
53
            return 0;
3845
53
        }
3846
10.3k
    } else {
3847
        /* If ciphersuite doesn't require a cert nothing to do */
3848
10.3k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3849
1.03k
            return 1;
3850
9.35k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3851
13
            return 1;
3852
3853
9.34k
        if (SSL_USE_SIGALGS(s)) {
3854
7.29k
            size_t i;
3855
7.29k
            if (s->s3.tmp.peer_sigalgs != NULL) {
3856
1.81k
                int curve = -1;
3857
1.81k
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3858
3859
                /* For Suite B need to match signature algorithm to curve */
3860
1.81k
                if (tls1_suiteb(s))
3861
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3862
0
                            .privatekey);
3863
3864
                /*
3865
                 * Find highest preference signature algorithm matching
3866
                 * cert type
3867
                 */
3868
12.1k
                for (i = 0; i < s->shared_sigalgslen; i++) {
3869
11.7k
                    lu = s->shared_sigalgs[i];
3870
3871
11.7k
                    if (s->server) {
3872
11.7k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3873
4.45k
                            continue;
3874
11.7k
                    } else {
3875
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3876
3877
0
                        sig_idx = lu->sig_idx;
3878
0
                        if (cc_idx != sig_idx)
3879
0
                            continue;
3880
0
                    }
3881
                    /* Check that we have a cert, and sig_algs_cert */
3882
7.32k
                    if (!has_usable_cert(s, lu, sig_idx))
3883
5.87k
                        continue;
3884
1.44k
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3885
                        /* validate that key is large enough for the signature algorithm */
3886
378
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3887
3888
378
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3889
0
                            continue;
3890
378
                    }
3891
1.44k
                    if (curve == -1 || lu->curve == curve)
3892
1.44k
                        break;
3893
1.44k
                }
3894
1.81k
#ifndef OPENSSL_NO_GOST
3895
                /*
3896
                 * Some Windows-based implementations do not send GOST algorithms indication
3897
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3898
                 * we have to assume GOST support.
3899
                 */
3900
1.81k
                if (i == s->shared_sigalgslen
3901
369
                    && (s->s3.tmp.new_cipher->algorithm_auth
3902
369
                           & (SSL_aGOST01 | SSL_aGOST12))
3903
369
                        != 0) {
3904
0
                    if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3905
0
                        if (!fatalerrs)
3906
0
                            return 1;
3907
0
                        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3908
0
                            SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3909
0
                        return 0;
3910
0
                    } else {
3911
0
                        i = 0;
3912
0
                        sig_idx = lu->sig_idx;
3913
0
                    }
3914
0
                }
3915
1.81k
#endif
3916
1.81k
                if (i == s->shared_sigalgslen) {
3917
369
                    if (!fatalerrs)
3918
0
                        return 1;
3919
369
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3920
369
                        SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3921
369
                    return 0;
3922
369
                }
3923
5.47k
            } else {
3924
                /*
3925
                 * If we have no sigalg use defaults
3926
                 */
3927
5.47k
                const uint16_t *sent_sigs;
3928
5.47k
                size_t sent_sigslen;
3929
3930
5.47k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3931
0
                    if (!fatalerrs)
3932
0
                        return 1;
3933
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3934
0
                        SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3935
0
                    return 0;
3936
0
                }
3937
3938
                /* Check signature matches a type we sent */
3939
5.47k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3940
113k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3941
113k
                    if (lu->sigalg == *sent_sigs
3942
5.47k
                        && has_usable_cert(s, lu, lu->sig_idx))
3943
5.47k
                        break;
3944
113k
                }
3945
5.47k
                if (i == sent_sigslen) {
3946
0
                    if (!fatalerrs)
3947
0
                        return 1;
3948
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3949
0
                        SSL_R_WRONG_SIGNATURE_TYPE);
3950
0
                    return 0;
3951
0
                }
3952
5.47k
            }
3953
7.29k
        } else {
3954
2.05k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3955
0
                if (!fatalerrs)
3956
0
                    return 1;
3957
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3958
0
                    SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3959
0
                return 0;
3960
0
            }
3961
2.05k
        }
3962
9.34k
    }
3963
10.0k
    if (sig_idx == -1)
3964
8.65k
        sig_idx = lu->sig_idx;
3965
10.0k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3966
10.0k
    s->cert->key = s->s3.tmp.cert;
3967
10.0k
    s->s3.tmp.sigalg = lu;
3968
10.0k
    return 1;
3969
11.5k
}
3970
3971
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3972
0
{
3973
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3974
0
        && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3975
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3976
0
        return 0;
3977
0
    }
3978
3979
0
    ctx->ext.max_fragment_len_mode = mode;
3980
0
    return 1;
3981
0
}
3982
3983
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3984
0
{
3985
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3986
3987
0
    if (sc == NULL
3988
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3989
0
        return 0;
3990
3991
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3992
0
        && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3993
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3994
0
        return 0;
3995
0
    }
3996
3997
0
    sc->ext.max_fragment_len_mode = mode;
3998
0
    return 1;
3999
0
}
4000
4001
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4002
0
{
4003
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4004
0
        return TLSEXT_max_fragment_length_DISABLED;
4005
0
    return session->ext.max_fragment_len_mode;
4006
0
}
4007
4008
/*
4009
 * Helper functions for HMAC access with legacy support included.
4010
 */
4011
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4012
2.40k
{
4013
2.40k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4014
2.40k
    EVP_MAC *mac = NULL;
4015
4016
2.40k
    if (ret == NULL)
4017
0
        return NULL;
4018
2.40k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4019
2.40k
    if (ctx->ext.ticket_key_evp_cb == NULL
4020
2.40k
        && ctx->ext.ticket_key_cb != NULL) {
4021
0
        if (!ssl_hmac_old_new(ret))
4022
0
            goto err;
4023
0
        return ret;
4024
0
    }
4025
2.40k
#endif
4026
2.40k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4027
2.40k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4028
0
        goto err;
4029
2.40k
    EVP_MAC_free(mac);
4030
2.40k
    return ret;
4031
0
err:
4032
0
    EVP_MAC_CTX_free(ret->ctx);
4033
0
    EVP_MAC_free(mac);
4034
0
    OPENSSL_free(ret);
4035
0
    return NULL;
4036
2.40k
}
4037
4038
void ssl_hmac_free(SSL_HMAC *ctx)
4039
7.46k
{
4040
7.46k
    if (ctx != NULL) {
4041
2.40k
        EVP_MAC_CTX_free(ctx->ctx);
4042
2.40k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4043
2.40k
        ssl_hmac_old_free(ctx);
4044
2.40k
#endif
4045
2.40k
        OPENSSL_free(ctx);
4046
2.40k
    }
4047
7.46k
}
4048
4049
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4050
0
{
4051
0
    return ctx->ctx;
4052
0
}
4053
4054
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4055
1.42k
{
4056
1.42k
    OSSL_PARAM params[2], *p = params;
4057
4058
1.42k
    if (ctx->ctx != NULL) {
4059
1.42k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4060
1.42k
        *p = OSSL_PARAM_construct_end();
4061
1.42k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
4062
1.42k
            return 1;
4063
1.42k
    }
4064
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4065
0
    if (ctx->old_ctx != NULL)
4066
0
        return ssl_hmac_old_init(ctx, key, len, md);
4067
0
#endif
4068
0
    return 0;
4069
0
}
4070
4071
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4072
1.26k
{
4073
1.26k
    if (ctx->ctx != NULL)
4074
1.26k
        return EVP_MAC_update(ctx->ctx, data, len);
4075
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4076
0
    if (ctx->old_ctx != NULL)
4077
0
        return ssl_hmac_old_update(ctx, data, len);
4078
0
#endif
4079
0
    return 0;
4080
0
}
4081
4082
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4083
    size_t max_size)
4084
1.26k
{
4085
1.26k
    if (ctx->ctx != NULL)
4086
1.26k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4087
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4088
0
    if (ctx->old_ctx != NULL)
4089
0
        return ssl_hmac_old_final(ctx, md, len);
4090
0
#endif
4091
0
    return 0;
4092
0
}
4093
4094
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4095
1.38k
{
4096
1.38k
    if (ctx->ctx != NULL)
4097
1.38k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4098
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4099
0
    if (ctx->old_ctx != NULL)
4100
0
        return ssl_hmac_old_size(ctx);
4101
0
#endif
4102
0
    return 0;
4103
0
}
4104
4105
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4106
31.5k
{
4107
31.5k
    char gname[OSSL_MAX_NAME_SIZE];
4108
4109
31.5k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4110
31.5k
        return OBJ_txt2nid(gname);
4111
4112
0
    return NID_undef;
4113
31.5k
}
4114
4115
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4116
    const unsigned char *enckey,
4117
    size_t enckeylen)
4118
28.6k
{
4119
28.6k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4120
161
        int bits = EVP_PKEY_get_bits(pkey);
4121
4122
161
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4123
            /* the encoded key must be padded to the length of the p */
4124
12
            return 0;
4125
28.4k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4126
199
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4127
193
            || enckey[0] != 0x04)
4128
50
            return 0;
4129
199
    }
4130
4131
28.5k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4132
28.6k
}