/src/openssl35/crypto/ml_kem/ml_kem.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <openssl/byteorder.h> |
11 | | #include <openssl/rand.h> |
12 | | #include <openssl/proverr.h> |
13 | | #include "crypto/ml_kem.h" |
14 | | #include "internal/common.h" |
15 | | #include "internal/constant_time.h" |
16 | | #include "internal/sha3.h" |
17 | | |
18 | | #if defined(OPENSSL_CONSTANT_TIME_VALIDATION) |
19 | | #include <valgrind/memcheck.h> |
20 | | #endif |
21 | | |
22 | | #if ML_KEM_SEED_BYTES != ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES |
23 | | #error "ML-KEM keygen seed length != shared secret + random bytes length" |
24 | | #endif |
25 | | #if ML_KEM_SHARED_SECRET_BYTES != ML_KEM_RANDOM_BYTES |
26 | | #error "Invalid unequal lengths of ML-KEM shared secret and random inputs" |
27 | | #endif |
28 | | |
29 | | #if UINT_MAX < UINT32_MAX |
30 | | #error "Unsupported compiler: sizeof(unsigned int) < sizeof(uint32_t)" |
31 | | #endif |
32 | | |
33 | | /* Handy function-like bit-extraction macros */ |
34 | 38.5M | #define bit0(b) ((b) & 1) |
35 | 269M | #define bitn(n, b) (((b) >> n) & 1) |
36 | | |
37 | | /* |
38 | | * 12 bits are sufficient to losslessly represent values in [0, q-1]. |
39 | | * INVERSE_DEGREE is (n/2)^-1 mod q; used in inverse NTT. |
40 | | */ |
41 | 2.89M | #define DEGREE ML_KEM_DEGREE |
42 | | #define INVERSE_DEGREE (ML_KEM_PRIME - 2 * 13) |
43 | | #define LOG2PRIME 12 |
44 | | #define BARRETT_SHIFT (2 * LOG2PRIME) |
45 | | |
46 | | #ifdef SHA3_BLOCKSIZE |
47 | | #define SHAKE128_BLOCKSIZE SHA3_BLOCKSIZE(128) |
48 | | #endif |
49 | | |
50 | | /* |
51 | | * Return whether a value that can only be 0 or 1 is non-zero, in constant time |
52 | | * in practice! The return value is a mask that is all ones if true, and all |
53 | | * zeros otherwise (twos-complement arithmetic assumed for unsigned values). |
54 | | * |
55 | | * Although this is used in constant-time selects, we omit a value barrier |
56 | | * here. Value barriers impede auto-vectorization (likely because it forces |
57 | | * the value to transit through a general-purpose register). On AArch64, this |
58 | | * is a difference of 2x. |
59 | | * |
60 | | * We usually add value barriers to selects because Clang turns consecutive |
61 | | * selects with the same condition into a branch instead of CMOV/CSEL. This |
62 | | * condition does not occur in Kyber, so omitting it seems to be safe so far, |
63 | | * but see |cbd_2|, |cbd_3|, where reduction needs to be specialised to the |
64 | | * sign of the input, rather than adding |q| in advance, and using the generic |
65 | | * |reduce_once|. (David Benjamin, Chromium) |
66 | | */ |
67 | | #if 0 |
68 | | #define constish_time_non_zero(b) (~constant_time_is_zero(b)); |
69 | | #else |
70 | 1.05G | #define constish_time_non_zero(b) (0u - (b)) |
71 | | #endif |
72 | | |
73 | | /* |
74 | | * The scalar rejection-sampling buffer size needs to be a multiple of 12, but |
75 | | * is otherwise arbitrary, the preferred block size matches the internal buffer |
76 | | * size of SHAKE128, avoiding internal buffering and copying in SHAKE128. That |
77 | | * block size of (1600 - 256)/8 bytes, or 168, just happens to divide by 12! |
78 | | * |
79 | | * If the blocksize is unknown, or is not divisible by 12, 168 is used as a |
80 | | * fallback. |
81 | | */ |
82 | | #if defined(SHAKE128_BLOCKSIZE) && (SHAKE128_BLOCKSIZE) % 12 == 0 |
83 | | #define SCALAR_SAMPLING_BUFSIZE (SHAKE128_BLOCKSIZE) |
84 | | #else |
85 | | #define SCALAR_SAMPLING_BUFSIZE 168 |
86 | | #endif |
87 | | |
88 | | /* |
89 | | * Structure of keys |
90 | | */ |
91 | | typedef struct ossl_ml_kem_scalar_st { |
92 | | /* On every function entry and exit, 0 <= c[i] < ML_KEM_PRIME. */ |
93 | | uint16_t c[ML_KEM_DEGREE]; |
94 | | } scalar; |
95 | | |
96 | | /* Key material allocation layout */ |
97 | | #define DECLARE_ML_KEM_KEYDATA(name, rank, private_sz) \ |
98 | | struct name##_alloc { \ |
99 | | /* Public vector |t| */ \ |
100 | | scalar tbuf[(rank)]; \ |
101 | | /* Pre-computed matrix |m| (FIPS 203 |A| transpose) */ \ |
102 | | scalar mbuf[(rank) * (rank)] /* optional private key data */ \ |
103 | | private_sz \ |
104 | | } |
105 | | |
106 | | /* Declare variant-specific public and private storage */ |
107 | | #define DECLARE_ML_KEM_VARIANT_KEYDATA(bits) \ |
108 | | DECLARE_ML_KEM_KEYDATA(pubkey_##bits, ML_KEM_##bits##_RANK, ;); \ |
109 | | DECLARE_ML_KEM_KEYDATA(prvkey_##bits, ML_KEM_##bits##_RANK, ; scalar sbuf[ML_KEM_##bits##_RANK]; uint8_t zbuf[2 * ML_KEM_RANDOM_BYTES];) |
110 | | DECLARE_ML_KEM_VARIANT_KEYDATA(512); |
111 | | DECLARE_ML_KEM_VARIANT_KEYDATA(768); |
112 | | DECLARE_ML_KEM_VARIANT_KEYDATA(1024); |
113 | | #undef DECLARE_ML_KEM_VARIANT_KEYDATA |
114 | | #undef DECLARE_ML_KEM_KEYDATA |
115 | | |
116 | | typedef __owur int (*CBD_FUNC)(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1], |
117 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key); |
118 | | static void scalar_encode(uint8_t *out, const scalar *s, int bits); |
119 | | |
120 | | /* |
121 | | * The wire-form of a losslessly encoded vector uses 12-bits per element. |
122 | | * |
123 | | * The wire-form public key consists of the lossless encoding of the public |
124 | | * vector |t|, followed by the public seed |rho|. |
125 | | * |
126 | | * Our serialised private key concatenates serialisations of the private vector |
127 | | * |s|, the public key, the public key hash, and the failure secret |z|. |
128 | | */ |
129 | | #define VECTOR_BYTES(b) ((3 * DEGREE / 2) * ML_KEM_##b##_RANK) |
130 | | #define PUBKEY_BYTES(b) (VECTOR_BYTES(b) + ML_KEM_RANDOM_BYTES) |
131 | | #define PRVKEY_BYTES(b) (2 * PUBKEY_BYTES(b) + ML_KEM_PKHASH_BYTES) |
132 | | |
133 | | /* |
134 | | * Encapsulation produces a vector "u" and a scalar "v", whose coordinates |
135 | | * (numbers modulo the ML-KEM prime "q") are lossily encoded using as "du" and |
136 | | * "dv" bits, respectively. This encoding is the ciphertext input for |
137 | | * decapsulation. |
138 | | */ |
139 | | #define U_VECTOR_BYTES(b) ((DEGREE / 8) * ML_KEM_##b##_DU * ML_KEM_##b##_RANK) |
140 | | #define V_SCALAR_BYTES(b) ((DEGREE / 8) * ML_KEM_##b##_DV) |
141 | | #define CTEXT_BYTES(b) (U_VECTOR_BYTES(b) + V_SCALAR_BYTES(b)) |
142 | | |
143 | | #if defined(OPENSSL_CONSTANT_TIME_VALIDATION) |
144 | | |
145 | | /* |
146 | | * CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region |
147 | | * of memory as secret. Secret data is tracked as it flows to registers and |
148 | | * other parts of a memory. If secret data is used as a condition for a branch, |
149 | | * or as a memory index, it will trigger warnings in valgrind. |
150 | | */ |
151 | | #define CONSTTIME_SECRET(ptr, len) VALGRIND_MAKE_MEM_UNDEFINED(ptr, len) |
152 | | |
153 | | /* |
154 | | * CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that |
155 | | * region of memory as public. Public data is not subject to constant-time |
156 | | * rules. |
157 | | */ |
158 | | #define CONSTTIME_DECLASSIFY(ptr, len) VALGRIND_MAKE_MEM_DEFINED(ptr, len) |
159 | | |
160 | | #else |
161 | | |
162 | | #define CONSTTIME_SECRET(ptr, len) |
163 | | #define CONSTTIME_DECLASSIFY(ptr, len) |
164 | | |
165 | | #endif |
166 | | |
167 | | /* |
168 | | * Indices of slots in the vinfo tables below |
169 | | */ |
170 | 57.3k | #define ML_KEM_512_VINFO 0 |
171 | 158k | #define ML_KEM_768_VINFO 1 |
172 | 59.7k | #define ML_KEM_1024_VINFO 2 |
173 | | |
174 | | /* |
175 | | * Per-variant fixed parameters |
176 | | */ |
177 | | static const ML_KEM_VINFO vinfo_map[3] = { |
178 | | { "ML-KEM-512", |
179 | | PRVKEY_BYTES(512), |
180 | | sizeof(struct prvkey_512_alloc), |
181 | | PUBKEY_BYTES(512), |
182 | | sizeof(struct pubkey_512_alloc), |
183 | | CTEXT_BYTES(512), |
184 | | VECTOR_BYTES(512), |
185 | | U_VECTOR_BYTES(512), |
186 | | EVP_PKEY_ML_KEM_512, |
187 | | ML_KEM_512_BITS, |
188 | | ML_KEM_512_RANK, |
189 | | ML_KEM_512_DU, |
190 | | ML_KEM_512_DV, |
191 | | ML_KEM_512_SECBITS }, |
192 | | { "ML-KEM-768", |
193 | | PRVKEY_BYTES(768), |
194 | | sizeof(struct prvkey_768_alloc), |
195 | | PUBKEY_BYTES(768), |
196 | | sizeof(struct pubkey_768_alloc), |
197 | | CTEXT_BYTES(768), |
198 | | VECTOR_BYTES(768), |
199 | | U_VECTOR_BYTES(768), |
200 | | EVP_PKEY_ML_KEM_768, |
201 | | ML_KEM_768_BITS, |
202 | | ML_KEM_768_RANK, |
203 | | ML_KEM_768_DU, |
204 | | ML_KEM_768_DV, |
205 | | ML_KEM_768_SECBITS }, |
206 | | { "ML-KEM-1024", |
207 | | PRVKEY_BYTES(1024), |
208 | | sizeof(struct prvkey_1024_alloc), |
209 | | PUBKEY_BYTES(1024), |
210 | | sizeof(struct pubkey_1024_alloc), |
211 | | CTEXT_BYTES(1024), |
212 | | VECTOR_BYTES(1024), |
213 | | U_VECTOR_BYTES(1024), |
214 | | EVP_PKEY_ML_KEM_1024, |
215 | | ML_KEM_1024_BITS, |
216 | | ML_KEM_1024_RANK, |
217 | | ML_KEM_1024_DU, |
218 | | ML_KEM_1024_DV, |
219 | | ML_KEM_1024_SECBITS } |
220 | | }; |
221 | | |
222 | | /* |
223 | | * Remainders modulo `kPrime`, for sufficiently small inputs, are computed in |
224 | | * constant time via Barrett reduction, and a final call to reduce_once(), |
225 | | * which reduces inputs that are at most 2*kPrime and is also constant-time. |
226 | | */ |
227 | | static const int kPrime = ML_KEM_PRIME; |
228 | | static const unsigned int kBarrettShift = BARRETT_SHIFT; |
229 | | static const size_t kBarrettMultiplier = (1 << BARRETT_SHIFT) / ML_KEM_PRIME; |
230 | | static const uint16_t kHalfPrime = (ML_KEM_PRIME - 1) / 2; |
231 | | static const uint16_t kInverseDegree = INVERSE_DEGREE; |
232 | | |
233 | | /* |
234 | | * Python helper: |
235 | | * |
236 | | * p = 3329 |
237 | | * def bitreverse(i): |
238 | | * ret = 0 |
239 | | * for n in range(7): |
240 | | * bit = i & 1 |
241 | | * ret <<= 1 |
242 | | * ret |= bit |
243 | | * i >>= 1 |
244 | | * return ret |
245 | | */ |
246 | | |
247 | | /*- |
248 | | * First precomputed array from Appendix A of FIPS 203, or else Python: |
249 | | * kNTTRoots = [pow(17, bitreverse(i), p) for i in range(128)] |
250 | | */ |
251 | | static const uint16_t kNTTRoots[128] = { |
252 | | 1, |
253 | | 1729, |
254 | | 2580, |
255 | | 3289, |
256 | | 2642, |
257 | | 630, |
258 | | 1897, |
259 | | 848, |
260 | | 1062, |
261 | | 1919, |
262 | | 193, |
263 | | 797, |
264 | | 2786, |
265 | | 3260, |
266 | | 569, |
267 | | 1746, |
268 | | 296, |
269 | | 2447, |
270 | | 1339, |
271 | | 1476, |
272 | | 3046, |
273 | | 56, |
274 | | 2240, |
275 | | 1333, |
276 | | 1426, |
277 | | 2094, |
278 | | 535, |
279 | | 2882, |
280 | | 2393, |
281 | | 2879, |
282 | | 1974, |
283 | | 821, |
284 | | 289, |
285 | | 331, |
286 | | 3253, |
287 | | 1756, |
288 | | 1197, |
289 | | 2304, |
290 | | 2277, |
291 | | 2055, |
292 | | 650, |
293 | | 1977, |
294 | | 2513, |
295 | | 632, |
296 | | 2865, |
297 | | 33, |
298 | | 1320, |
299 | | 1915, |
300 | | 2319, |
301 | | 1435, |
302 | | 807, |
303 | | 452, |
304 | | 1438, |
305 | | 2868, |
306 | | 1534, |
307 | | 2402, |
308 | | 2647, |
309 | | 2617, |
310 | | 1481, |
311 | | 648, |
312 | | 2474, |
313 | | 3110, |
314 | | 1227, |
315 | | 910, |
316 | | 17, |
317 | | 2761, |
318 | | 583, |
319 | | 2649, |
320 | | 1637, |
321 | | 723, |
322 | | 2288, |
323 | | 1100, |
324 | | 1409, |
325 | | 2662, |
326 | | 3281, |
327 | | 233, |
328 | | 756, |
329 | | 2156, |
330 | | 3015, |
331 | | 3050, |
332 | | 1703, |
333 | | 1651, |
334 | | 2789, |
335 | | 1789, |
336 | | 1847, |
337 | | 952, |
338 | | 1461, |
339 | | 2687, |
340 | | 939, |
341 | | 2308, |
342 | | 2437, |
343 | | 2388, |
344 | | 733, |
345 | | 2337, |
346 | | 268, |
347 | | 641, |
348 | | 1584, |
349 | | 2298, |
350 | | 2037, |
351 | | 3220, |
352 | | 375, |
353 | | 2549, |
354 | | 2090, |
355 | | 1645, |
356 | | 1063, |
357 | | 319, |
358 | | 2773, |
359 | | 757, |
360 | | 2099, |
361 | | 561, |
362 | | 2466, |
363 | | 2594, |
364 | | 2804, |
365 | | 1092, |
366 | | 403, |
367 | | 1026, |
368 | | 1143, |
369 | | 2150, |
370 | | 2775, |
371 | | 886, |
372 | | 1722, |
373 | | 1212, |
374 | | 1874, |
375 | | 1029, |
376 | | 2110, |
377 | | 2935, |
378 | | 885, |
379 | | 2154, |
380 | | }; |
381 | | |
382 | | /* |
383 | | * InverseNTTRoots = [pow(17, -bitreverse(i), p) for i in range(128)] |
384 | | * Listed in order of use in the inverse NTT loop (index 0 is skipped): |
385 | | * |
386 | | * 0, 64, 65, ..., 127, 32, 33, ..., 63, 16, 17, ..., 31, 8, 9, ... |
387 | | */ |
388 | | static const uint16_t kInverseNTTRoots[128] = { |
389 | | 1, |
390 | | 1175, |
391 | | 2444, |
392 | | 394, |
393 | | 1219, |
394 | | 2300, |
395 | | 1455, |
396 | | 2117, |
397 | | 1607, |
398 | | 2443, |
399 | | 554, |
400 | | 1179, |
401 | | 2186, |
402 | | 2303, |
403 | | 2926, |
404 | | 2237, |
405 | | 525, |
406 | | 735, |
407 | | 863, |
408 | | 2768, |
409 | | 1230, |
410 | | 2572, |
411 | | 556, |
412 | | 3010, |
413 | | 2266, |
414 | | 1684, |
415 | | 1239, |
416 | | 780, |
417 | | 2954, |
418 | | 109, |
419 | | 1292, |
420 | | 1031, |
421 | | 1745, |
422 | | 2688, |
423 | | 3061, |
424 | | 992, |
425 | | 2596, |
426 | | 941, |
427 | | 892, |
428 | | 1021, |
429 | | 2390, |
430 | | 642, |
431 | | 1868, |
432 | | 2377, |
433 | | 1482, |
434 | | 1540, |
435 | | 540, |
436 | | 1678, |
437 | | 1626, |
438 | | 279, |
439 | | 314, |
440 | | 1173, |
441 | | 2573, |
442 | | 3096, |
443 | | 48, |
444 | | 667, |
445 | | 1920, |
446 | | 2229, |
447 | | 1041, |
448 | | 2606, |
449 | | 1692, |
450 | | 680, |
451 | | 2746, |
452 | | 568, |
453 | | 3312, |
454 | | 2419, |
455 | | 2102, |
456 | | 219, |
457 | | 855, |
458 | | 2681, |
459 | | 1848, |
460 | | 712, |
461 | | 682, |
462 | | 927, |
463 | | 1795, |
464 | | 461, |
465 | | 1891, |
466 | | 2877, |
467 | | 2522, |
468 | | 1894, |
469 | | 1010, |
470 | | 1414, |
471 | | 2009, |
472 | | 3296, |
473 | | 464, |
474 | | 2697, |
475 | | 816, |
476 | | 1352, |
477 | | 2679, |
478 | | 1274, |
479 | | 1052, |
480 | | 1025, |
481 | | 2132, |
482 | | 1573, |
483 | | 76, |
484 | | 2998, |
485 | | 3040, |
486 | | 2508, |
487 | | 1355, |
488 | | 450, |
489 | | 936, |
490 | | 447, |
491 | | 2794, |
492 | | 1235, |
493 | | 1903, |
494 | | 1996, |
495 | | 1089, |
496 | | 3273, |
497 | | 283, |
498 | | 1853, |
499 | | 1990, |
500 | | 882, |
501 | | 3033, |
502 | | 1583, |
503 | | 2760, |
504 | | 69, |
505 | | 543, |
506 | | 2532, |
507 | | 3136, |
508 | | 1410, |
509 | | 2267, |
510 | | 2481, |
511 | | 1432, |
512 | | 2699, |
513 | | 687, |
514 | | 40, |
515 | | 749, |
516 | | 1600, |
517 | | }; |
518 | | |
519 | | /* |
520 | | * Second precomputed array from Appendix A of FIPS 203 (normalised positive), |
521 | | * or else Python: |
522 | | * ModRoots = [pow(17, 2*bitreverse(i) + 1, p) for i in range(128)] |
523 | | */ |
524 | | static const uint16_t kModRoots[128] = { |
525 | | 17, |
526 | | 3312, |
527 | | 2761, |
528 | | 568, |
529 | | 583, |
530 | | 2746, |
531 | | 2649, |
532 | | 680, |
533 | | 1637, |
534 | | 1692, |
535 | | 723, |
536 | | 2606, |
537 | | 2288, |
538 | | 1041, |
539 | | 1100, |
540 | | 2229, |
541 | | 1409, |
542 | | 1920, |
543 | | 2662, |
544 | | 667, |
545 | | 3281, |
546 | | 48, |
547 | | 233, |
548 | | 3096, |
549 | | 756, |
550 | | 2573, |
551 | | 2156, |
552 | | 1173, |
553 | | 3015, |
554 | | 314, |
555 | | 3050, |
556 | | 279, |
557 | | 1703, |
558 | | 1626, |
559 | | 1651, |
560 | | 1678, |
561 | | 2789, |
562 | | 540, |
563 | | 1789, |
564 | | 1540, |
565 | | 1847, |
566 | | 1482, |
567 | | 952, |
568 | | 2377, |
569 | | 1461, |
570 | | 1868, |
571 | | 2687, |
572 | | 642, |
573 | | 939, |
574 | | 2390, |
575 | | 2308, |
576 | | 1021, |
577 | | 2437, |
578 | | 892, |
579 | | 2388, |
580 | | 941, |
581 | | 733, |
582 | | 2596, |
583 | | 2337, |
584 | | 992, |
585 | | 268, |
586 | | 3061, |
587 | | 641, |
588 | | 2688, |
589 | | 1584, |
590 | | 1745, |
591 | | 2298, |
592 | | 1031, |
593 | | 2037, |
594 | | 1292, |
595 | | 3220, |
596 | | 109, |
597 | | 375, |
598 | | 2954, |
599 | | 2549, |
600 | | 780, |
601 | | 2090, |
602 | | 1239, |
603 | | 1645, |
604 | | 1684, |
605 | | 1063, |
606 | | 2266, |
607 | | 319, |
608 | | 3010, |
609 | | 2773, |
610 | | 556, |
611 | | 757, |
612 | | 2572, |
613 | | 2099, |
614 | | 1230, |
615 | | 561, |
616 | | 2768, |
617 | | 2466, |
618 | | 863, |
619 | | 2594, |
620 | | 735, |
621 | | 2804, |
622 | | 525, |
623 | | 1092, |
624 | | 2237, |
625 | | 403, |
626 | | 2926, |
627 | | 1026, |
628 | | 2303, |
629 | | 1143, |
630 | | 2186, |
631 | | 2150, |
632 | | 1179, |
633 | | 2775, |
634 | | 554, |
635 | | 886, |
636 | | 2443, |
637 | | 1722, |
638 | | 1607, |
639 | | 1212, |
640 | | 2117, |
641 | | 1874, |
642 | | 1455, |
643 | | 1029, |
644 | | 2300, |
645 | | 2110, |
646 | | 1219, |
647 | | 2935, |
648 | | 394, |
649 | | 885, |
650 | | 2444, |
651 | | 2154, |
652 | | 1175, |
653 | | }; |
654 | | |
655 | | /* |
656 | | * single_keccak hashes |inlen| bytes from |in| and writes |outlen| bytes of |
657 | | * output to |out|. If the |md| specifies a fixed-output function, like |
658 | | * SHA3-256, then |outlen| must be the correct length for that function. |
659 | | */ |
660 | | static __owur int single_keccak(uint8_t *out, size_t outlen, const uint8_t *in, size_t inlen, |
661 | | EVP_MD_CTX *mdctx) |
662 | 350k | { |
663 | 350k | unsigned int sz = (unsigned int)outlen; |
664 | | |
665 | 350k | if (!EVP_DigestUpdate(mdctx, in, inlen)) |
666 | 0 | return 0; |
667 | 350k | if (EVP_MD_xof(EVP_MD_CTX_get0_md(mdctx))) |
668 | 300k | return EVP_DigestFinalXOF(mdctx, out, outlen); |
669 | 50.3k | return EVP_DigestFinal_ex(mdctx, out, &sz) |
670 | 50.3k | && ossl_assert((size_t)sz == outlen); |
671 | 350k | } |
672 | | |
673 | | /* |
674 | | * FIPS 203, Section 4.1, equation (4.3): PRF. Takes 32+1 input bytes, and uses |
675 | | * SHAKE256 to produce the input to SamplePolyCBD_eta: FIPS 203, algorithm 8. |
676 | | */ |
677 | | static __owur int prf(uint8_t *out, size_t len, const uint8_t in[ML_KEM_RANDOM_BYTES + 1], |
678 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
679 | 300k | { |
680 | 300k | return EVP_DigestInit_ex(mdctx, key->shake256_md, NULL) |
681 | 300k | && single_keccak(out, len, in, ML_KEM_RANDOM_BYTES + 1, mdctx); |
682 | 300k | } |
683 | | |
684 | | /* |
685 | | * FIPS 203, Section 4.1, equation (4.4): H. SHA3-256 hash of a variable |
686 | | * length input, producing 32 bytes of output. |
687 | | */ |
688 | | static __owur int hash_h(uint8_t out[ML_KEM_PKHASH_BYTES], const uint8_t *in, size_t len, |
689 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
690 | 293 | { |
691 | 293 | return EVP_DigestInit_ex(mdctx, key->sha3_256_md, NULL) |
692 | 293 | && single_keccak(out, ML_KEM_PKHASH_BYTES, in, len, mdctx); |
693 | 293 | } |
694 | | |
695 | | /* Incremental hash_h of expanded public key */ |
696 | | static int |
697 | | hash_h_pubkey(uint8_t pkhash[ML_KEM_PKHASH_BYTES], |
698 | | EVP_MD_CTX *mdctx, ML_KEM_KEY *key) |
699 | 49.8k | { |
700 | 49.8k | const ML_KEM_VINFO *vinfo = key->vinfo; |
701 | 49.8k | const scalar *t = key->t, *end = t + vinfo->rank; |
702 | 49.8k | unsigned int sz; |
703 | | |
704 | 49.8k | if (!EVP_DigestInit_ex(mdctx, key->sha3_256_md, NULL)) |
705 | 0 | return 0; |
706 | | |
707 | 149k | do { |
708 | 149k | uint8_t buf[3 * DEGREE / 2]; |
709 | | |
710 | 149k | scalar_encode(buf, t++, 12); |
711 | 149k | if (!EVP_DigestUpdate(mdctx, buf, sizeof(buf))) |
712 | 0 | return 0; |
713 | 149k | } while (t < end); |
714 | | |
715 | 49.8k | if (!EVP_DigestUpdate(mdctx, key->rho, ML_KEM_RANDOM_BYTES)) |
716 | 0 | return 0; |
717 | 49.8k | return EVP_DigestFinal_ex(mdctx, pkhash, &sz) |
718 | 49.8k | && ossl_assert(sz == ML_KEM_PKHASH_BYTES); |
719 | 49.8k | } |
720 | | |
721 | | /* |
722 | | * FIPS 203, Section 4.1, equation (4.5): G. SHA3-512 hash of a variable |
723 | | * length input, producing 64 bytes of output, in particular the seeds |
724 | | * (d,z) for key generation. |
725 | | */ |
726 | | static __owur int hash_g(uint8_t out[ML_KEM_SEED_BYTES], const uint8_t *in, size_t len, |
727 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
728 | 50.0k | { |
729 | 50.0k | return EVP_DigestInit_ex(mdctx, key->sha3_512_md, NULL) |
730 | 50.0k | && single_keccak(out, ML_KEM_SEED_BYTES, in, len, mdctx); |
731 | 50.0k | } |
732 | | |
733 | | /* |
734 | | * FIPS 203, Section 4.1, equation (4.4): J. SHAKE256 taking a variable length |
735 | | * input to compute a 32-byte implicit rejection shared secret, of the same |
736 | | * length as the expected shared secret. (Computed even on success to avoid |
737 | | * side-channel leaks). |
738 | | */ |
739 | | static __owur int kdf(uint8_t out[ML_KEM_SHARED_SECRET_BYTES], |
740 | | const uint8_t z[ML_KEM_RANDOM_BYTES], |
741 | | const uint8_t *ctext, size_t len, |
742 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
743 | 100 | { |
744 | 100 | return EVP_DigestInit_ex(mdctx, key->shake256_md, NULL) |
745 | 100 | && EVP_DigestUpdate(mdctx, z, ML_KEM_RANDOM_BYTES) |
746 | 100 | && EVP_DigestUpdate(mdctx, ctext, len) |
747 | 100 | && EVP_DigestFinalXOF(mdctx, out, ML_KEM_SHARED_SECRET_BYTES); |
748 | 100 | } |
749 | | |
750 | | /* |
751 | | * FIPS 203, Section 4.2.2, Algorithm 7: "SampleNTT" (steps 3-17, steps 1, 2 |
752 | | * are performed by the caller). Rejection-samples a Keccak stream to get |
753 | | * uniformly distributed elements in the range [0,q). This is used for matrix |
754 | | * expansion and only operates on public inputs. |
755 | | */ |
756 | | static __owur int sample_scalar(scalar *out, EVP_MD_CTX *mdctx) |
757 | 450k | { |
758 | 450k | uint16_t *curr = out->c, *endout = curr + DEGREE; |
759 | 450k | uint8_t buf[SCALAR_SAMPLING_BUFSIZE], *in; |
760 | 450k | uint8_t *endin = buf + sizeof(buf); |
761 | 450k | uint16_t d; |
762 | 450k | uint8_t b1, b2, b3; |
763 | | |
764 | 1.35M | do { |
765 | 1.35M | if (!EVP_DigestSqueeze(mdctx, in = buf, sizeof(buf))) |
766 | 0 | return 0; |
767 | 70.6M | do { |
768 | 70.6M | b1 = *in++; |
769 | 70.6M | b2 = *in++; |
770 | 70.6M | b3 = *in++; |
771 | | |
772 | 70.6M | if (curr >= endout) |
773 | 151k | break; |
774 | 70.4M | if ((d = ((b2 & 0x0f) << 8) + b1) < kPrime) |
775 | 58.1M | *curr++ = d; |
776 | 70.4M | if (curr >= endout) |
777 | 299k | break; |
778 | 70.1M | if ((d = (b3 << 4) + (b2 >> 4)) < kPrime) |
779 | 57.1M | *curr++ = d; |
780 | 70.1M | } while (in < endin); |
781 | 1.35M | } while (curr < endout); |
782 | 450k | return 1; |
783 | 450k | } |
784 | | |
785 | | /*- |
786 | | * reduce_once reduces 0 <= x < 2*kPrime, mod kPrime. |
787 | | * |
788 | | * Subtract |q| if the input is larger, without exposing a side-channel, |
789 | | * avoiding the "clangover" attack. See |constish_time_non_zero| for a |
790 | | * discussion on why the value barrier is by default omitted. |
791 | | */ |
792 | | static __owur uint16_t reduce_once(uint16_t x) |
793 | 980M | { |
794 | 980M | const uint16_t subtracted = x - kPrime; |
795 | 980M | uint16_t mask = constish_time_non_zero(subtracted >> 15); |
796 | | |
797 | 980M | return (mask & x) | (~mask & subtracted); |
798 | 980M | } |
799 | | |
800 | | /* |
801 | | * Constant-time reduce x mod kPrime using Barrett reduction. x must be less |
802 | | * than kPrime + 2 * kPrime^2. This is sufficient to reduce a product of |
803 | | * two already reduced u_int16 values, in fact it is sufficient for each |
804 | | * to be less than 2^12, because (kPrime * (2 * kPrime + 1)) > 2^24. |
805 | | */ |
806 | | static __owur uint16_t reduce(uint32_t x) |
807 | 442M | { |
808 | 442M | uint64_t product = (uint64_t)x * kBarrettMultiplier; |
809 | 442M | uint32_t quotient = (uint32_t)(product >> kBarrettShift); |
810 | 442M | uint32_t remainder = x - quotient * kPrime; |
811 | | |
812 | 442M | return reduce_once(remainder); |
813 | 442M | } |
814 | | |
815 | | /* Multiply a scalar by a constant. */ |
816 | | static void scalar_mult_const(scalar *s, uint16_t a) |
817 | 1.00k | { |
818 | 1.00k | uint16_t *curr = s->c, *end = curr + DEGREE, tmp; |
819 | | |
820 | 256k | do { |
821 | 256k | tmp = reduce(*curr * a); |
822 | 256k | *curr++ = tmp; |
823 | 256k | } while (curr < end); |
824 | 1.00k | } |
825 | | |
826 | | /*- |
827 | | * FIPS 203, Section 4.3, Algorithm 9: "NTT". |
828 | | * In-place number theoretic transform of a given scalar. Note that ML-KEM's |
829 | | * kPrime 3329 does not have a 512th root of unity, so this transform leaves |
830 | | * off the last iteration of the usual FFT code, with the 128 relevant roots of |
831 | | * unity being stored in NTTRoots. This means the output should be seen as 128 |
832 | | * elements in GF(3329^2), with the coefficients of the elements being |
833 | | * consecutive entries in |s->c|. |
834 | | */ |
835 | | static void scalar_ntt(scalar *s) |
836 | 299k | { |
837 | 299k | const uint16_t *roots = kNTTRoots; |
838 | 299k | uint16_t *end = s->c + DEGREE; |
839 | 299k | int offset = DEGREE / 2; |
840 | | |
841 | 2.09M | do { |
842 | 2.09M | uint16_t *curr = s->c, *peer; |
843 | | |
844 | 38.0M | do { |
845 | 38.0M | uint16_t *pause = curr + offset, even, odd; |
846 | 38.0M | uint32_t zeta = *++roots; |
847 | | |
848 | 38.0M | peer = pause; |
849 | 268M | do { |
850 | 268M | even = *curr; |
851 | 268M | odd = reduce(*peer * zeta); |
852 | 268M | *peer++ = reduce_once(even - odd + kPrime); |
853 | 268M | *curr++ = reduce_once(odd + even); |
854 | 268M | } while (curr < pause); |
855 | 38.0M | } while ((curr = peer) < end); |
856 | 2.09M | } while ((offset >>= 1) >= 2); |
857 | 299k | } |
858 | | |
859 | | /*- |
860 | | * FIPS 203, Section 4.3, Algorithm 10: "NTT^(-1)". |
861 | | * In-place inverse number theoretic transform of a given scalar, with pairs of |
862 | | * entries of s->v being interpreted as elements of GF(3329^2). Just as with |
863 | | * the number theoretic transform, this leaves off the first step of the normal |
864 | | * iFFT to account for the fact that 3329 does not have a 512th root of unity, |
865 | | * using the precomputed 128 roots of unity stored in InverseNTTRoots. |
866 | | */ |
867 | | static void scalar_inverse_ntt(scalar *s) |
868 | 1.00k | { |
869 | 1.00k | const uint16_t *roots = kInverseNTTRoots; |
870 | 1.00k | uint16_t *end = s->c + DEGREE; |
871 | 1.00k | int offset = 2; |
872 | | |
873 | 7.00k | do { |
874 | 7.00k | uint16_t *curr = s->c, *peer; |
875 | | |
876 | 127k | do { |
877 | 127k | uint16_t *pause = curr + offset, even, odd; |
878 | 127k | uint32_t zeta = *++roots; |
879 | | |
880 | 127k | peer = pause; |
881 | 896k | do { |
882 | 896k | even = *curr; |
883 | 896k | odd = *peer; |
884 | 896k | *peer++ = reduce(zeta * (even - odd + kPrime)); |
885 | 896k | *curr++ = reduce_once(odd + even); |
886 | 896k | } while (curr < pause); |
887 | 127k | } while ((curr = peer) < end); |
888 | 7.00k | } while ((offset <<= 1) < DEGREE); |
889 | 1.00k | scalar_mult_const(s, kInverseDegree); |
890 | 1.00k | } |
891 | | |
892 | | /* Addition updating the LHS scalar in-place. */ |
893 | | static void scalar_add(scalar *lhs, const scalar *rhs) |
894 | 900 | { |
895 | 900 | int i; |
896 | | |
897 | 231k | for (i = 0; i < DEGREE; i++) |
898 | 230k | lhs->c[i] = reduce_once(lhs->c[i] + rhs->c[i]); |
899 | 900 | } |
900 | | |
901 | | /* Subtraction updating the LHS scalar in-place. */ |
902 | | static void scalar_sub(scalar *lhs, const scalar *rhs) |
903 | 100 | { |
904 | 100 | int i; |
905 | | |
906 | 25.7k | for (i = 0; i < DEGREE; i++) |
907 | 25.6k | lhs->c[i] = reduce_once(lhs->c[i] - rhs->c[i] + kPrime); |
908 | 100 | } |
909 | | |
910 | | /* |
911 | | * Multiplying two scalars in the number theoretically transformed state. Since |
912 | | * 3329 does not have a 512th root of unity, this means we have to interpret |
913 | | * the 2*ith and (2*i+1)th entries of the scalar as elements of |
914 | | * GF(3329)[X]/(X^2 - 17^(2*bitreverse(i)+1)). |
915 | | * |
916 | | * The value of 17^(2*bitreverse(i)+1) mod 3329 is stored in the precomputed |
917 | | * ModRoots table. Note that our Barrett transform only allows us to multiply |
918 | | * two reduced numbers together, so we need some intermediate reduction steps, |
919 | | * even if an uint64_t could hold 3 multiplied numbers. |
920 | | */ |
921 | | static void scalar_mult(scalar *out, const scalar *lhs, |
922 | | const scalar *rhs) |
923 | 1.00k | { |
924 | 1.00k | uint16_t *curr = out->c, *end = curr + DEGREE; |
925 | 1.00k | const uint16_t *lc = lhs->c, *rc = rhs->c; |
926 | 1.00k | const uint16_t *roots = kModRoots; |
927 | | |
928 | 128k | do { |
929 | 128k | uint32_t l0 = *lc++, r0 = *rc++; |
930 | 128k | uint32_t l1 = *lc++, r1 = *rc++; |
931 | 128k | uint32_t zetapow = *roots++; |
932 | | |
933 | 128k | *curr++ = reduce(l0 * r0 + reduce(l1 * r1) * zetapow); |
934 | 128k | *curr++ = reduce(l0 * r1 + l1 * r0); |
935 | 128k | } while (curr < end); |
936 | 1.00k | } |
937 | | |
938 | | /* Above, but add the result to an existing scalar */ |
939 | | static ossl_inline void scalar_mult_add(scalar *out, const scalar *lhs, |
940 | | const scalar *rhs) |
941 | 450k | { |
942 | 450k | uint16_t *curr = out->c, *end = curr + DEGREE; |
943 | 450k | const uint16_t *lc = lhs->c, *rc = rhs->c; |
944 | 450k | const uint16_t *roots = kModRoots; |
945 | | |
946 | 57.6M | do { |
947 | 57.6M | uint32_t l0 = *lc++, r0 = *rc++; |
948 | 57.6M | uint32_t l1 = *lc++, r1 = *rc++; |
949 | 57.6M | uint16_t *c0 = curr++; |
950 | 57.6M | uint16_t *c1 = curr++; |
951 | 57.6M | uint32_t zetapow = *roots++; |
952 | | |
953 | 57.6M | *c0 = reduce(*c0 + l0 * r0 + reduce(l1 * r1) * zetapow); |
954 | 57.6M | *c1 = reduce(*c1 + l0 * r1 + l1 * r0); |
955 | 57.6M | } while (curr < end); |
956 | 450k | } |
957 | | |
958 | | /*- |
959 | | * FIPS 203, Section 4.2.1, Algorithm 5: "ByteEncode_d", for 2<=d<=12. |
960 | | * Here |bits| is |d|. For efficiency, we handle the d=1 case separately. |
961 | | */ |
962 | | static void scalar_encode(uint8_t *out, const scalar *s, int bits) |
963 | 299k | { |
964 | 299k | const uint16_t *curr = s->c, *end = curr + DEGREE; |
965 | 299k | uint64_t accum = 0, element; |
966 | 299k | int used = 0; |
967 | | |
968 | 76.6M | do { |
969 | 76.6M | element = *curr++; |
970 | 76.6M | if (used + bits < 64) { |
971 | 62.2M | accum |= element << used; |
972 | 62.2M | used += bits; |
973 | 62.2M | } else if (used + bits > 64) { |
974 | 9.57M | out = OPENSSL_store_u64_le(out, accum | (element << used)); |
975 | 9.57M | accum = element >> (64 - used); |
976 | 9.57M | used = (used + bits) - 64; |
977 | 9.57M | } else { |
978 | 4.78M | out = OPENSSL_store_u64_le(out, accum | (element << used)); |
979 | 4.78M | accum = 0; |
980 | 4.78M | used = 0; |
981 | 4.78M | } |
982 | 76.6M | } while (curr < end); |
983 | 299k | } |
984 | | |
985 | | /* |
986 | | * scalar_encode_1 is |scalar_encode| specialised for |bits| == 1. |
987 | | */ |
988 | | static void scalar_encode_1(uint8_t out[DEGREE / 8], const scalar *s) |
989 | 100 | { |
990 | 100 | int i, j; |
991 | 100 | uint8_t out_byte; |
992 | | |
993 | 3.30k | for (i = 0; i < DEGREE; i += 8) { |
994 | 3.20k | out_byte = 0; |
995 | 28.8k | for (j = 0; j < 8; j++) |
996 | 25.6k | out_byte |= bit0(s->c[i + j]) << j; |
997 | 3.20k | *out = out_byte; |
998 | 3.20k | out++; |
999 | 3.20k | } |
1000 | 100 | } |
1001 | | |
1002 | | /*- |
1003 | | * FIPS 203, Section 4.2.1, Algorithm 6: "ByteDecode_d", for 2<=d<12. |
1004 | | * Here |bits| is |d|. For efficiency, we handle the d=1 and d=12 cases |
1005 | | * separately. |
1006 | | * |
1007 | | * scalar_decode parses |DEGREE * bits| bits from |in| into |DEGREE| values in |
1008 | | * |out|. |
1009 | | */ |
1010 | | static void scalar_decode(scalar *out, const uint8_t *in, int bits) |
1011 | 394 | { |
1012 | 394 | uint16_t *curr = out->c, *end = curr + DEGREE; |
1013 | 394 | uint64_t accum = 0; |
1014 | 394 | int accum_bits = 0, todo = bits; |
1015 | 394 | uint16_t bitmask = (((uint16_t)1) << bits) - 1, mask = bitmask; |
1016 | 394 | uint16_t element = 0; |
1017 | | |
1018 | 111k | do { |
1019 | 111k | if (accum_bits == 0) { |
1020 | 14.0k | in = OPENSSL_load_u64_le(&accum, in); |
1021 | 14.0k | accum_bits = 64; |
1022 | 14.0k | } |
1023 | 111k | if (todo == bits && accum_bits >= bits) { |
1024 | | /* No partial "element", and all the required bits available */ |
1025 | 89.7k | *curr++ = ((uint16_t)accum) & mask; |
1026 | 89.7k | accum >>= bits; |
1027 | 89.7k | accum_bits -= bits; |
1028 | 89.7k | } else if (accum_bits >= todo) { |
1029 | | /* A partial "element", and all the required bits available */ |
1030 | 11.0k | *curr++ = element | ((((uint16_t)accum) & mask) << (bits - todo)); |
1031 | 11.0k | accum >>= todo; |
1032 | 11.0k | accum_bits -= todo; |
1033 | 11.0k | element = 0; |
1034 | 11.0k | todo = bits; |
1035 | 11.0k | mask = bitmask; |
1036 | 11.0k | } else { |
1037 | | /* |
1038 | | * Only some of the requisite bits accumulated, store |accum_bits| |
1039 | | * of these in |element|. The accumulated bitcount becomes 0, but |
1040 | | * as soon as we have more bits we'll want to merge accum_bits |
1041 | | * fewer of them into the final |element|. |
1042 | | * |
1043 | | * Note that with a 64-bit accumulator and |bits| always 12 or |
1044 | | * less, if we're here, the previous iteration had all the |
1045 | | * requisite bits, and so there are no kept bits in |element|. |
1046 | | */ |
1047 | 11.0k | element = ((uint16_t)accum) & mask; |
1048 | 11.0k | todo -= accum_bits; |
1049 | 11.0k | mask = bitmask >> accum_bits; |
1050 | 11.0k | accum_bits = 0; |
1051 | 11.0k | } |
1052 | 111k | } while (curr < end); |
1053 | 394 | } |
1054 | | |
1055 | | static __owur int scalar_decode_12(scalar *out, const uint8_t in[3 * DEGREE / 2]) |
1056 | 1.12k | { |
1057 | 1.12k | int i; |
1058 | 1.12k | uint16_t *c = out->c; |
1059 | | |
1060 | 117k | for (i = 0; i < DEGREE / 2; ++i) { |
1061 | 116k | uint8_t b1 = *in++; |
1062 | 116k | uint8_t b2 = *in++; |
1063 | 116k | uint8_t b3 = *in++; |
1064 | 116k | int outOfRange1 = (*c++ = b1 | ((b2 & 0x0f) << 8)) >= kPrime; |
1065 | 116k | int outOfRange2 = (*c++ = (b2 >> 4) | (b3 << 4)) >= kPrime; |
1066 | | |
1067 | 116k | if (outOfRange1 | outOfRange2) |
1068 | 259 | return 0; |
1069 | 116k | } |
1070 | 865 | return 1; |
1071 | 1.12k | } |
1072 | | |
1073 | | /*- |
1074 | | * scalar_decode_decompress_add is a combination of decoding and decompression |
1075 | | * both specialised for |bits| == 1, with the result added (and sum reduced) to |
1076 | | * the output scalar. |
1077 | | * |
1078 | | * NOTE: this function MUST not leak an input-data-depedennt timing signal. |
1079 | | * A timing leak in a related function in the reference Kyber implementation |
1080 | | * made the "clangover" attack (CVE-2024-37880) possible, giving key recovery |
1081 | | * for ML-KEM-512 in minutes, provided the attacker has access to precise |
1082 | | * timing of a CPU performing chosen-ciphertext decap. Admittedly this is only |
1083 | | * a risk when private keys are reused (perhaps KEMTLS servers). |
1084 | | */ |
1085 | | static void |
1086 | | scalar_decode_decompress_add(scalar *out, const uint8_t in[DEGREE / 8]) |
1087 | 228 | { |
1088 | 228 | static const uint16_t half_q_plus_1 = (ML_KEM_PRIME >> 1) + 1; |
1089 | 228 | uint16_t *curr = out->c, *end = curr + DEGREE; |
1090 | 228 | uint16_t mask; |
1091 | 228 | uint8_t b; |
1092 | | |
1093 | | /* |
1094 | | * Add |half_q_plus_1| if the bit is set, without exposing a side-channel, |
1095 | | * avoiding the "clangover" attack. See |constish_time_non_zero| for a |
1096 | | * discussion on why the value barrier is by default omitted. |
1097 | | */ |
1098 | 228 | #define decode_decompress_add_bit \ |
1099 | 58.3k | mask = constish_time_non_zero(bit0(b)); \ |
1100 | 58.3k | *curr = reduce_once(*curr + (mask & half_q_plus_1)); \ |
1101 | 58.3k | curr++; \ |
1102 | 58.3k | b >>= 1 |
1103 | | |
1104 | | /* Unrolled to process each byte in one iteration */ |
1105 | 7.29k | do { |
1106 | 7.29k | b = *in++; |
1107 | 7.29k | decode_decompress_add_bit; |
1108 | 7.29k | decode_decompress_add_bit; |
1109 | 7.29k | decode_decompress_add_bit; |
1110 | 7.29k | decode_decompress_add_bit; |
1111 | | |
1112 | 7.29k | decode_decompress_add_bit; |
1113 | 7.29k | decode_decompress_add_bit; |
1114 | 7.29k | decode_decompress_add_bit; |
1115 | 7.29k | decode_decompress_add_bit; |
1116 | 7.29k | } while (curr < end); |
1117 | 228 | #undef decode_decompress_add_bit |
1118 | 228 | } |
1119 | | |
1120 | | /* |
1121 | | * FIPS 203, Section 4.2.1, Equation (4.7): Compress_d. |
1122 | | * |
1123 | | * Compresses (lossily) an input |x| mod 3329 into |bits| many bits by grouping |
1124 | | * numbers close to each other together. The formula used is |
1125 | | * round(2^|bits|/kPrime*x) mod 2^|bits|. |
1126 | | * Uses Barrett reduction to achieve constant time. Since we need both the |
1127 | | * remainder (for rounding) and the quotient (as the result), we cannot use |
1128 | | * |reduce| here, but need to do the Barrett reduction directly. |
1129 | | */ |
1130 | | static __owur uint16_t compress(uint16_t x, int bits) |
1131 | 256k | { |
1132 | 256k | uint32_t shifted = (uint32_t)x << bits; |
1133 | 256k | uint64_t product = (uint64_t)shifted * kBarrettMultiplier; |
1134 | 256k | uint32_t quotient = (uint32_t)(product >> kBarrettShift); |
1135 | 256k | uint32_t remainder = shifted - quotient * kPrime; |
1136 | | |
1137 | | /* |
1138 | | * Adjust the quotient to round correctly: |
1139 | | * 0 <= remainder <= kHalfPrime round to 0 |
1140 | | * kHalfPrime < remainder <= kPrime + kHalfPrime round to 1 |
1141 | | * kPrime + kHalfPrime < remainder < 2 * kPrime round to 2 |
1142 | | */ |
1143 | 256k | quotient += 1 & constant_time_lt_32(kHalfPrime, remainder); |
1144 | 256k | quotient += 1 & constant_time_lt_32(kPrime + kHalfPrime, remainder); |
1145 | 256k | return quotient & ((1 << bits) - 1); |
1146 | 256k | } |
1147 | | |
1148 | | /* |
1149 | | * FIPS 203, Section 4.2.1, Equation (4.8): Decompress_d. |
1150 | | |
1151 | | * Decompresses |x| by using a close equi-distant representative. The formula |
1152 | | * is round(kPrime/2^|bits|*x). Note that 2^|bits| being the divisor allows us |
1153 | | * to implement this logic using only bit operations. |
1154 | | */ |
1155 | | static __owur uint16_t decompress(uint16_t x, int bits) |
1156 | 100k | { |
1157 | 100k | uint32_t product = (uint32_t)x * kPrime; |
1158 | 100k | uint32_t power = 1 << bits; |
1159 | | /* This is |product| % power, since |power| is a power of 2. */ |
1160 | 100k | uint32_t remainder = product & (power - 1); |
1161 | | /* This is |product| / power, since |power| is a power of 2. */ |
1162 | 100k | uint32_t lower = product >> bits; |
1163 | | |
1164 | | /* |
1165 | | * The rounding logic works since the first half of numbers mod |power| |
1166 | | * have a 0 as first bit, and the second half has a 1 as first bit, since |
1167 | | * |power| is a power of 2. As a 12 bit number, |remainder| is always |
1168 | | * positive, so we will shift in 0s for a right shift. |
1169 | | */ |
1170 | 100k | return lower + (remainder >> (bits - 1)); |
1171 | 100k | } |
1172 | | |
1173 | | /*- |
1174 | | * FIPS 203, Section 4.2.1, Equation (4.7): "Compress_d". |
1175 | | * In-place lossy rounding of scalars to 2^d bits. |
1176 | | */ |
1177 | | static void scalar_compress(scalar *s, int bits) |
1178 | 1.00k | { |
1179 | 1.00k | int i; |
1180 | | |
1181 | 257k | for (i = 0; i < DEGREE; i++) |
1182 | 256k | s->c[i] = compress(s->c[i], bits); |
1183 | 1.00k | } |
1184 | | |
1185 | | /* |
1186 | | * FIPS 203, Section 4.2.1, Equation (4.8): "Decompress_d". |
1187 | | * In-place approximate recovery of scalars from 2^d bit compression. |
1188 | | */ |
1189 | | static void scalar_decompress(scalar *s, int bits) |
1190 | 394 | { |
1191 | 394 | int i; |
1192 | | |
1193 | 101k | for (i = 0; i < DEGREE; i++) |
1194 | 100k | s->c[i] = decompress(s->c[i], bits); |
1195 | 394 | } |
1196 | | |
1197 | | /* Addition updating the LHS vector in-place. */ |
1198 | | static void vector_add(scalar *lhs, const scalar *rhs, int rank) |
1199 | 228 | { |
1200 | 672 | do { |
1201 | 672 | scalar_add(lhs++, rhs++); |
1202 | 672 | } while (--rank > 0); |
1203 | 228 | } |
1204 | | |
1205 | | /* |
1206 | | * Encodes an entire vector into 32*|rank|*|bits| bytes. Note that since 256 |
1207 | | * (DEGREE) is divisible by 8, the individual vector entries will always fill a |
1208 | | * whole number of bytes, so we do not need to worry about bit packing here. |
1209 | | */ |
1210 | | static void vector_encode(uint8_t *out, const scalar *a, int bits, int rank) |
1211 | 50.0k | { |
1212 | 50.0k | int stride = bits * DEGREE / 8; |
1213 | | |
1214 | 199k | for (; rank-- > 0; out += stride) |
1215 | 149k | scalar_encode(out, a++, bits); |
1216 | 50.0k | } |
1217 | | |
1218 | | /* |
1219 | | * Decodes 32*|rank|*|bits| bytes from |in| into |out|. It returns early |
1220 | | * if any parsed value is >= |ML_KEM_PRIME|. The resulting scalars are |
1221 | | * then decompressed and transformed via the NTT. |
1222 | | * |
1223 | | * Note: Used only in decrypt_cpa(), which returns void and so does not check |
1224 | | * the return value of this function. Side-channels are fine when the input |
1225 | | * ciphertext to decap() is simply syntactically invalid. |
1226 | | */ |
1227 | | static void |
1228 | | vector_decode_decompress_ntt(scalar *out, const uint8_t *in, int bits, int rank) |
1229 | 100 | { |
1230 | 100 | int stride = bits * DEGREE / 8; |
1231 | | |
1232 | 394 | for (; rank-- > 0; in += stride, ++out) { |
1233 | 294 | scalar_decode(out, in, bits); |
1234 | 294 | scalar_decompress(out, bits); |
1235 | 294 | scalar_ntt(out); |
1236 | 294 | } |
1237 | 100 | } |
1238 | | |
1239 | | /* vector_decode(), specialised to bits == 12. */ |
1240 | | static __owur int vector_decode_12(scalar *out, const uint8_t in[3 * DEGREE / 2], int rank) |
1241 | 552 | { |
1242 | 552 | int stride = 3 * DEGREE / 2; |
1243 | | |
1244 | 1.41k | for (; rank-- > 0; in += stride) |
1245 | 1.12k | if (!scalar_decode_12(out++, in)) |
1246 | 259 | return 0; |
1247 | 293 | return 1; |
1248 | 552 | } |
1249 | | |
1250 | | /* In-place compression of each scalar component */ |
1251 | | static void vector_compress(scalar *a, int bits, int rank) |
1252 | 228 | { |
1253 | 672 | do { |
1254 | 672 | scalar_compress(a++, bits); |
1255 | 672 | } while (--rank > 0); |
1256 | 228 | } |
1257 | | |
1258 | | /* The output scalar must not overlap with the inputs */ |
1259 | | static void inner_product(scalar *out, const scalar *lhs, const scalar *rhs, |
1260 | | int rank) |
1261 | 328 | { |
1262 | 328 | scalar_mult(out, lhs, rhs); |
1263 | 966 | while (--rank > 0) |
1264 | 638 | scalar_mult_add(out, ++lhs, ++rhs); |
1265 | 328 | } |
1266 | | |
1267 | | /* |
1268 | | * Here, the output vector must not overlap with the inputs, the result is |
1269 | | * directly subjected to inverse NTT. |
1270 | | */ |
1271 | | static void |
1272 | | matrix_mult_intt(scalar *out, const scalar *m, const scalar *a, int rank) |
1273 | 228 | { |
1274 | 228 | const scalar *ar; |
1275 | 228 | int i, j; |
1276 | | |
1277 | 900 | for (i = rank; i-- > 0; ++out) { |
1278 | 672 | scalar_mult(out, m++, ar = a); |
1279 | 2.13k | for (j = rank - 1; j > 0; --j) |
1280 | 1.46k | scalar_mult_add(out, m++, ++ar); |
1281 | 672 | scalar_inverse_ntt(out); |
1282 | 672 | } |
1283 | 228 | } |
1284 | | |
1285 | | /* Here, the output vector must not overlap with the inputs */ |
1286 | | static void |
1287 | | matrix_mult_transpose_add(scalar *out, const scalar *m, const scalar *a, int rank) |
1288 | 49.8k | { |
1289 | 49.8k | const scalar *mc = m, *mr, *ar; |
1290 | 49.8k | int i, j; |
1291 | | |
1292 | 199k | for (i = rank; i-- > 0; ++out) { |
1293 | 149k | scalar_mult_add(out, mr = mc++, ar = a); |
1294 | 447k | for (j = rank; --j > 0;) |
1295 | 298k | scalar_mult_add(out, (mr += rank), ++ar); |
1296 | 149k | } |
1297 | 49.8k | } |
1298 | | |
1299 | | /*- |
1300 | | * Expands the matrix from a seed for key generation and for encaps-CPA. |
1301 | | * NOTE: FIPS 203 matrix "A" is the transpose of this matrix, computed |
1302 | | * by appending the (i,j) indices to the seed in the opposite order! |
1303 | | * |
1304 | | * Where FIPS 203 computes t = A * s + e, we use the transpose of "m". |
1305 | | */ |
1306 | | static __owur int matrix_expand(EVP_MD_CTX *mdctx, ML_KEM_KEY *key) |
1307 | 50.0k | { |
1308 | 50.0k | scalar *out = key->m; |
1309 | 50.0k | uint8_t input[ML_KEM_RANDOM_BYTES + 2]; |
1310 | 50.0k | int rank = key->vinfo->rank; |
1311 | 50.0k | int i, j; |
1312 | | |
1313 | 50.0k | memcpy(input, key->rho, ML_KEM_RANDOM_BYTES); |
1314 | 200k | for (i = 0; i < rank; i++) { |
1315 | 600k | for (j = 0; j < rank; j++) { |
1316 | 450k | input[ML_KEM_RANDOM_BYTES] = i; |
1317 | 450k | input[ML_KEM_RANDOM_BYTES + 1] = j; |
1318 | 450k | if (!EVP_DigestInit_ex(mdctx, key->shake128_md, NULL) |
1319 | 450k | || !EVP_DigestUpdate(mdctx, input, sizeof(input)) |
1320 | 450k | || !sample_scalar(out++, mdctx)) |
1321 | 0 | return 0; |
1322 | 450k | } |
1323 | 150k | } |
1324 | 50.0k | return 1; |
1325 | 50.0k | } |
1326 | | |
1327 | | /* |
1328 | | * Algorithm 7 from the spec, with eta fixed to two and the PRF call |
1329 | | * included. Creates binominally distributed elements by sampling 2*|eta| bits, |
1330 | | * and setting the coefficient to the count of the first bits minus the count of |
1331 | | * the second bits, resulting in a centered binomial distribution. Since eta is |
1332 | | * two this gives -2/2 with a probability of 1/16, -1/1 with probability 1/4, |
1333 | | * and 0 with probability 3/8. |
1334 | | */ |
1335 | | static __owur int cbd_2(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1], |
1336 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
1337 | 299k | { |
1338 | 299k | uint16_t *curr = out->c, *end = curr + DEGREE; |
1339 | 299k | uint8_t randbuf[4 * DEGREE / 8], *r = randbuf; /* 64 * eta slots */ |
1340 | 299k | uint16_t value, mask; |
1341 | 299k | uint8_t b; |
1342 | | |
1343 | 299k | if (!prf(randbuf, sizeof(randbuf), in, mdctx, key)) |
1344 | 0 | return 0; |
1345 | | |
1346 | 38.2M | do { |
1347 | 38.2M | b = *r++; |
1348 | | |
1349 | | /* |
1350 | | * Add |kPrime| if |value| underflowed. See |constish_time_non_zero| |
1351 | | * for a discussion on why the value barrier is by default omitted. |
1352 | | * While this could have been written reduce_once(value + kPrime), this |
1353 | | * is one extra addition and small range of |value| tempts some |
1354 | | * versions of Clang to emit a branch. |
1355 | | */ |
1356 | 38.2M | value = bit0(b) + bitn(1, b); |
1357 | 38.2M | value -= bitn(2, b) + bitn(3, b); |
1358 | 38.2M | mask = constish_time_non_zero(value >> 15); |
1359 | 38.2M | *curr++ = value + (kPrime & mask); |
1360 | | |
1361 | 38.2M | value = bitn(4, b) + bitn(5, b); |
1362 | 38.2M | value -= bitn(6, b) + bitn(7, b); |
1363 | 38.2M | mask = constish_time_non_zero(value >> 15); |
1364 | 38.2M | *curr++ = value + (kPrime & mask); |
1365 | 38.2M | } while (curr < end); |
1366 | 299k | return 1; |
1367 | 299k | } |
1368 | | |
1369 | | /* |
1370 | | * Algorithm 7 from the spec, with eta fixed to three and the PRF call |
1371 | | * included. Creates binominally distributed elements by sampling 3*|eta| bits, |
1372 | | * and setting the coefficient to the count of the first bits minus the count of |
1373 | | * the second bits, resulting in a centered binomial distribution. |
1374 | | */ |
1375 | | static __owur int cbd_3(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1], |
1376 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
1377 | 1.06k | { |
1378 | 1.06k | uint16_t *curr = out->c, *end = curr + DEGREE; |
1379 | 1.06k | uint8_t randbuf[6 * DEGREE / 8], *r = randbuf; /* 64 * eta slots */ |
1380 | 1.06k | uint8_t b1, b2, b3; |
1381 | 1.06k | uint16_t value, mask; |
1382 | | |
1383 | 1.06k | if (!prf(randbuf, sizeof(randbuf), in, mdctx, key)) |
1384 | 0 | return 0; |
1385 | | |
1386 | 68.3k | do { |
1387 | 68.3k | b1 = *r++; |
1388 | 68.3k | b2 = *r++; |
1389 | 68.3k | b3 = *r++; |
1390 | | |
1391 | | /* |
1392 | | * Add |kPrime| if |value| underflowed. See |constish_time_non_zero| |
1393 | | * for a discussion on why the value barrier is by default omitted. |
1394 | | * While this could have been written reduce_once(value + kPrime), this |
1395 | | * is one extra addition and small range of |value| tempts some |
1396 | | * versions of Clang to emit a branch. |
1397 | | */ |
1398 | 68.3k | value = bit0(b1) + bitn(1, b1) + bitn(2, b1); |
1399 | 68.3k | value -= bitn(3, b1) + bitn(4, b1) + bitn(5, b1); |
1400 | 68.3k | mask = constish_time_non_zero(value >> 15); |
1401 | 68.3k | *curr++ = value + (kPrime & mask); |
1402 | | |
1403 | 68.3k | value = bitn(6, b1) + bitn(7, b1) + bit0(b2); |
1404 | 68.3k | value -= bitn(1, b2) + bitn(2, b2) + bitn(3, b2); |
1405 | 68.3k | mask = constish_time_non_zero(value >> 15); |
1406 | 68.3k | *curr++ = value + (kPrime & mask); |
1407 | | |
1408 | 68.3k | value = bitn(4, b2) + bitn(5, b2) + bitn(6, b2); |
1409 | 68.3k | value -= bitn(7, b2) + bit0(b3) + bitn(1, b3); |
1410 | 68.3k | mask = constish_time_non_zero(value >> 15); |
1411 | 68.3k | *curr++ = value + (kPrime & mask); |
1412 | | |
1413 | 68.3k | value = bitn(2, b3) + bitn(3, b3) + bitn(4, b3); |
1414 | 68.3k | value -= bitn(5, b3) + bitn(6, b3) + bitn(7, b3); |
1415 | 68.3k | mask = constish_time_non_zero(value >> 15); |
1416 | 68.3k | *curr++ = value + (kPrime & mask); |
1417 | 68.3k | } while (curr < end); |
1418 | 1.06k | return 1; |
1419 | 1.06k | } |
1420 | | |
1421 | | /* |
1422 | | * Generates a secret vector by using |cbd| with the given seed to generate |
1423 | | * scalar elements and incrementing |counter| for each slot of the vector. |
1424 | | */ |
1425 | | static __owur int gencbd_vector(scalar *out, CBD_FUNC cbd, uint8_t *counter, |
1426 | | const uint8_t seed[ML_KEM_RANDOM_BYTES], int rank, |
1427 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
1428 | 228 | { |
1429 | 228 | uint8_t input[ML_KEM_RANDOM_BYTES + 1]; |
1430 | | |
1431 | 228 | memcpy(input, seed, ML_KEM_RANDOM_BYTES); |
1432 | 672 | do { |
1433 | 672 | input[ML_KEM_RANDOM_BYTES] = (*counter)++; |
1434 | 672 | if (!cbd(out++, input, mdctx, key)) |
1435 | 0 | return 0; |
1436 | 672 | } while (--rank > 0); |
1437 | 228 | return 1; |
1438 | 228 | } |
1439 | | |
1440 | | /* |
1441 | | * As above plus NTT transform. |
1442 | | */ |
1443 | | static __owur int gencbd_vector_ntt(scalar *out, CBD_FUNC cbd, uint8_t *counter, |
1444 | | const uint8_t seed[ML_KEM_RANDOM_BYTES], int rank, |
1445 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
1446 | 99.8k | { |
1447 | 99.8k | uint8_t input[ML_KEM_RANDOM_BYTES + 1]; |
1448 | | |
1449 | 99.8k | memcpy(input, seed, ML_KEM_RANDOM_BYTES); |
1450 | 299k | do { |
1451 | 299k | input[ML_KEM_RANDOM_BYTES] = (*counter)++; |
1452 | 299k | if (!cbd(out, input, mdctx, key)) |
1453 | 0 | return 0; |
1454 | 299k | scalar_ntt(out++); |
1455 | 299k | } while (--rank > 0); |
1456 | 99.8k | return 1; |
1457 | 99.8k | } |
1458 | | |
1459 | | /* The |ETA1| value for ML-KEM-512 is 3, the rest and all ETA2 values are 2. */ |
1460 | 33.5k | #define CBD1(evp_type) ((evp_type) == EVP_PKEY_ML_KEM_512 ? cbd_3 : cbd_2) |
1461 | | |
1462 | | /* |
1463 | | * FIPS 203, Section 5.2, Algorithm 14: K-PKE.Encrypt. |
1464 | | * |
1465 | | * Encrypts a message with given randomness to the ciphertext in |out|. Without |
1466 | | * applying the Fujisaki-Okamoto transform this would not result in a CCA |
1467 | | * secure scheme, since lattice schemes are vulnerable to decryption failure |
1468 | | * oracles. |
1469 | | * |
1470 | | * The steps are re-ordered to make more efficient/localised use of storage. |
1471 | | * |
1472 | | * Note also that the input public key is assumed to hold a precomputed matrix |
1473 | | * |A| (our key->m, with the public key holding an expanded (16-bit per scalar |
1474 | | * coefficient) key->t vector). |
1475 | | * |
1476 | | * Caller passes storage in |tmp| for for two temporary vectors. |
1477 | | */ |
1478 | | static __owur int encrypt_cpa(uint8_t out[ML_KEM_SHARED_SECRET_BYTES], |
1479 | | const uint8_t message[DEGREE / 8], |
1480 | | const uint8_t r[ML_KEM_RANDOM_BYTES], scalar *tmp, |
1481 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
1482 | 228 | { |
1483 | 228 | const ML_KEM_VINFO *vinfo = key->vinfo; |
1484 | 228 | CBD_FUNC cbd_1 = CBD1(vinfo->evp_type); |
1485 | 228 | int rank = vinfo->rank; |
1486 | | /* We can use tmp[0..rank-1] as storage for |y|, then |e1|, ... */ |
1487 | 228 | scalar *y = &tmp[0], *e1 = y, *e2 = y; |
1488 | | /* We can use tmp[rank]..tmp[2*rank - 1] for |u| */ |
1489 | 228 | scalar *u = &tmp[rank]; |
1490 | 228 | scalar v; |
1491 | 228 | uint8_t input[ML_KEM_RANDOM_BYTES + 1]; |
1492 | 228 | uint8_t counter = 0; |
1493 | 228 | int du = vinfo->du; |
1494 | 228 | int dv = vinfo->dv; |
1495 | | |
1496 | | /* FIPS 203 "y" vector */ |
1497 | 228 | if (!gencbd_vector_ntt(y, cbd_1, &counter, r, rank, mdctx, key)) |
1498 | 0 | return 0; |
1499 | | /* FIPS 203 "v" scalar */ |
1500 | 228 | inner_product(&v, key->t, y, rank); |
1501 | 228 | scalar_inverse_ntt(&v); |
1502 | | /* FIPS 203 "u" vector */ |
1503 | 228 | matrix_mult_intt(u, key->m, y, rank); |
1504 | | |
1505 | | /* All done with |y|, now free to reuse tmp[0] for FIPS 203 |e1| */ |
1506 | 228 | if (!gencbd_vector(e1, cbd_2, &counter, r, rank, mdctx, key)) |
1507 | 0 | return 0; |
1508 | 228 | vector_add(u, e1, rank); |
1509 | 228 | vector_compress(u, du, rank); |
1510 | 228 | vector_encode(out, u, du, rank); |
1511 | | |
1512 | | /* All done with |e1|, now free to reuse tmp[0] for FIPS 203 |e2| */ |
1513 | 228 | memcpy(input, r, ML_KEM_RANDOM_BYTES); |
1514 | 228 | input[ML_KEM_RANDOM_BYTES] = counter; |
1515 | 228 | if (!cbd_2(e2, input, mdctx, key)) |
1516 | 0 | return 0; |
1517 | 228 | scalar_add(&v, e2); |
1518 | | |
1519 | | /* Combine message with |v| */ |
1520 | 228 | scalar_decode_decompress_add(&v, message); |
1521 | 228 | scalar_compress(&v, dv); |
1522 | 228 | scalar_encode(out + vinfo->u_vector_bytes, &v, dv); |
1523 | 228 | return 1; |
1524 | 228 | } |
1525 | | |
1526 | | /* |
1527 | | * FIPS 203, Section 5.3, Algorithm 15: K-PKE.Decrypt. |
1528 | | */ |
1529 | | static void |
1530 | | decrypt_cpa(uint8_t out[ML_KEM_SHARED_SECRET_BYTES], |
1531 | | const uint8_t *ctext, scalar *u, const ML_KEM_KEY *key) |
1532 | 100 | { |
1533 | 100 | const ML_KEM_VINFO *vinfo = key->vinfo; |
1534 | 100 | scalar v, mask; |
1535 | 100 | int rank = vinfo->rank; |
1536 | 100 | int du = vinfo->du; |
1537 | 100 | int dv = vinfo->dv; |
1538 | | |
1539 | 100 | vector_decode_decompress_ntt(u, ctext, du, rank); |
1540 | 100 | scalar_decode(&v, ctext + vinfo->u_vector_bytes, dv); |
1541 | 100 | scalar_decompress(&v, dv); |
1542 | 100 | inner_product(&mask, key->s, u, rank); |
1543 | 100 | scalar_inverse_ntt(&mask); |
1544 | 100 | scalar_sub(&v, &mask); |
1545 | 100 | scalar_compress(&v, 1); |
1546 | 100 | scalar_encode_1(out, &v); |
1547 | 100 | } |
1548 | | |
1549 | | /*- |
1550 | | * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen". |
1551 | | * FIPS 203, Section 7.2, Algorithm 20: "ML-KEM.Encaps". |
1552 | | * |
1553 | | * Fills the |out| buffer with the |ek| output of "ML-KEM.KeyGen", or, |
1554 | | * equivalently, the |ek| input of "ML-KEM.Encaps", i.e. returns the |
1555 | | * wire-format of an ML-KEM public key. |
1556 | | */ |
1557 | | static void encode_pubkey(uint8_t *out, const ML_KEM_KEY *key) |
1558 | 49.6k | { |
1559 | 49.6k | const uint8_t *rho = key->rho; |
1560 | 49.6k | const ML_KEM_VINFO *vinfo = key->vinfo; |
1561 | | |
1562 | 49.6k | vector_encode(out, key->t, 12, vinfo->rank); |
1563 | 49.6k | memcpy(out + vinfo->vector_bytes, rho, ML_KEM_RANDOM_BYTES); |
1564 | 49.6k | } |
1565 | | |
1566 | | /*- |
1567 | | * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen". |
1568 | | * |
1569 | | * Fills the |out| buffer with the |dk| output of "ML-KEM.KeyGen". |
1570 | | * This matches the input format of parse_prvkey() below. |
1571 | | */ |
1572 | | static void encode_prvkey(uint8_t *out, const ML_KEM_KEY *key) |
1573 | 74 | { |
1574 | 74 | const ML_KEM_VINFO *vinfo = key->vinfo; |
1575 | | |
1576 | 74 | vector_encode(out, key->s, 12, vinfo->rank); |
1577 | 74 | out += vinfo->vector_bytes; |
1578 | 74 | encode_pubkey(out, key); |
1579 | 74 | out += vinfo->pubkey_bytes; |
1580 | 74 | memcpy(out, key->pkhash, ML_KEM_PKHASH_BYTES); |
1581 | 74 | out += ML_KEM_PKHASH_BYTES; |
1582 | 74 | memcpy(out, key->z, ML_KEM_RANDOM_BYTES); |
1583 | 74 | } |
1584 | | |
1585 | | /*- |
1586 | | * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen". |
1587 | | * FIPS 203, Section 7.2, Algorithm 20: "ML-KEM.Encaps". |
1588 | | * |
1589 | | * This function parses the |in| buffer as the |ek| output of "ML-KEM.KeyGen", |
1590 | | * or, equivalently, the |ek| input of "ML-KEM.Encaps", i.e. decodes the |
1591 | | * wire-format of the ML-KEM public key. |
1592 | | */ |
1593 | | static int parse_pubkey(const uint8_t *in, EVP_MD_CTX *mdctx, ML_KEM_KEY *key) |
1594 | 497 | { |
1595 | 497 | const ML_KEM_VINFO *vinfo = key->vinfo; |
1596 | | |
1597 | | /* Decode and check |t| */ |
1598 | 497 | if (!vector_decode_12(key->t, in, vinfo->rank)) { |
1599 | 204 | ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, |
1600 | 204 | "%s invalid public 't' vector", |
1601 | 204 | vinfo->algorithm_name); |
1602 | 204 | return 0; |
1603 | 204 | } |
1604 | | /* Save the matrix |m| recovery seed |rho| */ |
1605 | 293 | memcpy(key->rho, in + vinfo->vector_bytes, ML_KEM_RANDOM_BYTES); |
1606 | | /* |
1607 | | * Pre-compute the public key hash, needed for both encap and decap. |
1608 | | * Also pre-compute the matrix expansion, stored with the public key. |
1609 | | */ |
1610 | 293 | if (!hash_h(key->pkhash, in, vinfo->pubkey_bytes, mdctx, key) |
1611 | 293 | || !matrix_expand(mdctx, key)) { |
1612 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR, |
1613 | 0 | "internal error while parsing %s public key", |
1614 | 0 | vinfo->algorithm_name); |
1615 | 0 | return 0; |
1616 | 0 | } |
1617 | 293 | return 1; |
1618 | 293 | } |
1619 | | |
1620 | | /* |
1621 | | * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen". |
1622 | | * |
1623 | | * Parses the |in| buffer as a |dk| output of "ML-KEM.KeyGen". |
1624 | | * This matches the output format of encode_prvkey() above. |
1625 | | */ |
1626 | | static int parse_prvkey(const uint8_t *in, EVP_MD_CTX *mdctx, ML_KEM_KEY *key) |
1627 | 55 | { |
1628 | 55 | const ML_KEM_VINFO *vinfo = key->vinfo; |
1629 | | |
1630 | | /* Decode and check |s|. */ |
1631 | 55 | if (!vector_decode_12(key->s, in, vinfo->rank)) { |
1632 | 55 | ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, |
1633 | 55 | "%s invalid private 's' vector", |
1634 | 55 | vinfo->algorithm_name); |
1635 | 55 | return 0; |
1636 | 55 | } |
1637 | 0 | in += vinfo->vector_bytes; |
1638 | |
|
1639 | 0 | if (!parse_pubkey(in, mdctx, key)) |
1640 | 0 | return 0; |
1641 | 0 | in += vinfo->pubkey_bytes; |
1642 | | |
1643 | | /* Check public key hash. */ |
1644 | 0 | if (memcmp(key->pkhash, in, ML_KEM_PKHASH_BYTES) != 0) { |
1645 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, |
1646 | 0 | "%s public key hash mismatch", |
1647 | 0 | vinfo->algorithm_name); |
1648 | 0 | return 0; |
1649 | 0 | } |
1650 | 0 | in += ML_KEM_PKHASH_BYTES; |
1651 | |
|
1652 | 0 | memcpy(key->z, in, ML_KEM_RANDOM_BYTES); |
1653 | 0 | return 1; |
1654 | 0 | } |
1655 | | |
1656 | | /* |
1657 | | * FIPS 203, Section 6.1, Algorithm 16: "ML-KEM.KeyGen_internal". |
1658 | | * |
1659 | | * The implementation of Section 5.1, Algorithm 13, "K-PKE.KeyGen(d)" is |
1660 | | * inlined. |
1661 | | * |
1662 | | * The caller MUST pass a pre-allocated digest context that is not shared with |
1663 | | * any concurrent computation. |
1664 | | * |
1665 | | * This function optionally outputs the serialised wire-form |ek| public key |
1666 | | * into the provided |pubenc| buffer, and generates the content of the |rho|, |
1667 | | * |pkhash|, |t|, |m|, |s| and |z| components of the private |key| (which must |
1668 | | * have preallocated space for these). |
1669 | | * |
1670 | | * Keys are computed from a 32-byte random |d| plus the 1 byte rank for |
1671 | | * domain separation. These are concatenated and hashed to produce a pair of |
1672 | | * 32-byte seeds public "rho", used to generate the matrix, and private "sigma", |
1673 | | * used to generate the secret vector |s|. |
1674 | | * |
1675 | | * The second random input |z| is copied verbatim into the Fujisaki-Okamoto |
1676 | | * (FO) transform "implicit-rejection" secret (the |z| component of the private |
1677 | | * key), which thwarts chosen-ciphertext attacks, provided decap() runs in |
1678 | | * constant time, with no side channel leaks, on all well-formed (valid length, |
1679 | | * and correctly encoded) ciphertext inputs. |
1680 | | */ |
1681 | | static __owur int genkey(const uint8_t seed[ML_KEM_SEED_BYTES], |
1682 | | EVP_MD_CTX *mdctx, uint8_t *pubenc, ML_KEM_KEY *key) |
1683 | 33.2k | { |
1684 | 33.2k | uint8_t hashed[2 * ML_KEM_RANDOM_BYTES]; |
1685 | 33.2k | const uint8_t *const sigma = hashed + ML_KEM_RANDOM_BYTES; |
1686 | 33.2k | uint8_t augmented_seed[ML_KEM_RANDOM_BYTES + 1]; |
1687 | 33.2k | const ML_KEM_VINFO *vinfo = key->vinfo; |
1688 | 33.2k | CBD_FUNC cbd_1 = CBD1(vinfo->evp_type); |
1689 | 33.2k | int rank = vinfo->rank; |
1690 | 33.2k | uint8_t counter = 0; |
1691 | 33.2k | int ret = 0; |
1692 | | |
1693 | | /* |
1694 | | * Use the "d" seed salted with the rank to derive the public and private |
1695 | | * seeds rho and sigma. |
1696 | | */ |
1697 | 33.2k | memcpy(augmented_seed, seed, ML_KEM_RANDOM_BYTES); |
1698 | 33.2k | augmented_seed[ML_KEM_RANDOM_BYTES] = (uint8_t)rank; |
1699 | 33.2k | if (!hash_g(hashed, augmented_seed, sizeof(augmented_seed), mdctx, key)) |
1700 | 0 | goto end; |
1701 | 33.2k | memcpy(key->rho, hashed, ML_KEM_RANDOM_BYTES); |
1702 | | /* The |rho| matrix seed is public */ |
1703 | 33.2k | CONSTTIME_DECLASSIFY(key->rho, ML_KEM_RANDOM_BYTES); |
1704 | | |
1705 | | /* FIPS 203 |e| vector is initial value of key->t */ |
1706 | 33.2k | if (!matrix_expand(mdctx, key) |
1707 | 33.2k | || !gencbd_vector_ntt(key->s, cbd_1, &counter, sigma, rank, mdctx, key) |
1708 | 33.2k | || !gencbd_vector_ntt(key->t, cbd_1, &counter, sigma, rank, mdctx, key)) |
1709 | 0 | goto end; |
1710 | | |
1711 | | /* To |e| we now add the product of transpose |m| and |s|, giving |t|. */ |
1712 | 33.2k | matrix_mult_transpose_add(key->t, key->m, key->s, rank); |
1713 | | /* The |t| vector is public */ |
1714 | 33.2k | CONSTTIME_DECLASSIFY(key->t, vinfo->rank * sizeof(scalar)); |
1715 | | |
1716 | 33.2k | if (pubenc == NULL) { |
1717 | | /* Incremental digest of public key without in-full serialisation. */ |
1718 | 33.2k | if (!hash_h_pubkey(key->pkhash, mdctx, key)) |
1719 | 0 | goto end; |
1720 | 33.2k | } else { |
1721 | 0 | encode_pubkey(pubenc, key); |
1722 | 0 | if (!hash_h(key->pkhash, pubenc, vinfo->pubkey_bytes, mdctx, key)) |
1723 | 0 | goto end; |
1724 | 0 | } |
1725 | | |
1726 | | /* Save |z| portion of seed for "implicit rejection" on failure. */ |
1727 | 33.2k | memcpy(key->z, seed + ML_KEM_RANDOM_BYTES, ML_KEM_RANDOM_BYTES); |
1728 | | |
1729 | | /* Optionally save the |d| portion of the seed */ |
1730 | 33.2k | key->d = key->z + ML_KEM_RANDOM_BYTES; |
1731 | 33.2k | if (key->prov_flags & ML_KEM_KEY_RETAIN_SEED) { |
1732 | 33.2k | memcpy(key->d, seed, ML_KEM_RANDOM_BYTES); |
1733 | 33.2k | } else { |
1734 | 0 | OPENSSL_cleanse(key->d, ML_KEM_RANDOM_BYTES); |
1735 | 0 | key->d = NULL; |
1736 | 0 | } |
1737 | | |
1738 | 33.2k | ret = 1; |
1739 | 33.2k | end: |
1740 | 33.2k | OPENSSL_cleanse((void *)augmented_seed, ML_KEM_RANDOM_BYTES); |
1741 | 33.2k | OPENSSL_cleanse((void *)sigma, ML_KEM_RANDOM_BYTES); |
1742 | 33.2k | if (ret == 0) { |
1743 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR, |
1744 | 0 | "internal error while generating %s private key", |
1745 | 0 | vinfo->algorithm_name); |
1746 | 0 | } |
1747 | 33.2k | return ret; |
1748 | 33.2k | } |
1749 | | |
1750 | | /*- |
1751 | | * FIPS 203, Section 6.2, Algorithm 17: "ML-KEM.Encaps_internal". |
1752 | | * This is the deterministic version with randomness supplied externally. |
1753 | | * |
1754 | | * The caller must pass space for two vectors in |tmp|. |
1755 | | * The |ctext| buffer have space for the ciphertext of the ML-KEM variant |
1756 | | * of the provided key. |
1757 | | */ |
1758 | | static int encap(uint8_t *ctext, uint8_t secret[ML_KEM_SHARED_SECRET_BYTES], |
1759 | | const uint8_t entropy[ML_KEM_RANDOM_BYTES], |
1760 | | scalar *tmp, EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
1761 | 128 | { |
1762 | 128 | uint8_t input[ML_KEM_RANDOM_BYTES + ML_KEM_PKHASH_BYTES]; |
1763 | 128 | uint8_t Kr[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES]; |
1764 | 128 | uint8_t *r = Kr + ML_KEM_SHARED_SECRET_BYTES; |
1765 | 128 | int ret; |
1766 | | |
1767 | 128 | memcpy(input, entropy, ML_KEM_RANDOM_BYTES); |
1768 | 128 | memcpy(input + ML_KEM_RANDOM_BYTES, key->pkhash, ML_KEM_PKHASH_BYTES); |
1769 | 128 | ret = hash_g(Kr, input, sizeof(input), mdctx, key) |
1770 | 128 | && encrypt_cpa(ctext, entropy, r, tmp, mdctx, key); |
1771 | 128 | OPENSSL_cleanse((void *)input, sizeof(input)); |
1772 | | |
1773 | 128 | if (ret) |
1774 | 128 | memcpy(secret, Kr, ML_KEM_SHARED_SECRET_BYTES); |
1775 | 0 | else |
1776 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR, |
1777 | 0 | "internal error while performing %s encapsulation", |
1778 | 0 | key->vinfo->algorithm_name); |
1779 | 128 | return ret; |
1780 | 128 | } |
1781 | | |
1782 | | /* |
1783 | | * FIPS 203, Section 6.3, Algorithm 18: ML-KEM.Decaps_internal |
1784 | | * |
1785 | | * Barring failure of the supporting SHA3/SHAKE primitives, this is fully |
1786 | | * deterministic, the randomness for the FO transform is extracted during |
1787 | | * private key generation. |
1788 | | * |
1789 | | * The caller must pass space for two vectors in |tmp|. |
1790 | | * The |ctext| and |tmp_ctext| buffers must each have space for the ciphertext |
1791 | | * of the key's ML-KEM variant. |
1792 | | */ |
1793 | | static int decap(uint8_t secret[ML_KEM_SHARED_SECRET_BYTES], |
1794 | | const uint8_t *ctext, uint8_t *tmp_ctext, scalar *tmp, |
1795 | | EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) |
1796 | 100 | { |
1797 | 100 | uint8_t decrypted[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_PKHASH_BYTES]; |
1798 | 100 | uint8_t failure_key[ML_KEM_RANDOM_BYTES]; |
1799 | 100 | uint8_t Kr[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES]; |
1800 | 100 | uint8_t *r = Kr + ML_KEM_SHARED_SECRET_BYTES; |
1801 | 100 | const uint8_t *pkhash = key->pkhash; |
1802 | 100 | const ML_KEM_VINFO *vinfo = key->vinfo; |
1803 | 100 | int i; |
1804 | 100 | uint8_t mask; |
1805 | | |
1806 | | /* |
1807 | | * If our KDF is unavailable, fail early! Otherwise, keep going ignoring |
1808 | | * any further errors, returning success, and whatever we got for a shared |
1809 | | * secret. The decrypt_cpa() function is just arithmetic on secret data, |
1810 | | * so should not be subject to failure that makes its output predictable. |
1811 | | * |
1812 | | * We guard against "should never happen" catastrophic failure of the |
1813 | | * "pure" function |hash_g| by overwriting the shared secret with the |
1814 | | * content of the failure key and returning early, if nevertheless hash_g |
1815 | | * fails. This is not constant-time, but a failure of |hash_g| already |
1816 | | * implies loss of side-channel resistance. |
1817 | | * |
1818 | | * The same action is taken, if also |encrypt_cpa| should catastrophically |
1819 | | * fail, due to failure of the |PRF| underlying the CBD functions. |
1820 | | */ |
1821 | 100 | if (!kdf(failure_key, key->z, ctext, vinfo->ctext_bytes, mdctx, key)) { |
1822 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR, |
1823 | 0 | "internal error while performing %s decapsulation", |
1824 | 0 | vinfo->algorithm_name); |
1825 | 0 | return 0; |
1826 | 0 | } |
1827 | 100 | decrypt_cpa(decrypted, ctext, tmp, key); |
1828 | 100 | memcpy(decrypted + ML_KEM_SHARED_SECRET_BYTES, pkhash, ML_KEM_PKHASH_BYTES); |
1829 | 100 | if (!hash_g(Kr, decrypted, sizeof(decrypted), mdctx, key) |
1830 | 100 | || !encrypt_cpa(tmp_ctext, decrypted, r, tmp, mdctx, key)) { |
1831 | 0 | memcpy(secret, failure_key, ML_KEM_SHARED_SECRET_BYTES); |
1832 | 0 | OPENSSL_cleanse(decrypted, ML_KEM_SHARED_SECRET_BYTES); |
1833 | 0 | return 1; |
1834 | 0 | } |
1835 | 100 | mask = constant_time_eq_int_8(0, |
1836 | 100 | CRYPTO_memcmp(ctext, tmp_ctext, vinfo->ctext_bytes)); |
1837 | 3.30k | for (i = 0; i < ML_KEM_SHARED_SECRET_BYTES; i++) |
1838 | 3.20k | secret[i] = constant_time_select_8(mask, Kr[i], failure_key[i]); |
1839 | 100 | OPENSSL_cleanse(decrypted, ML_KEM_SHARED_SECRET_BYTES); |
1840 | 100 | OPENSSL_cleanse(Kr, sizeof(Kr)); |
1841 | 100 | return 1; |
1842 | 100 | } |
1843 | | |
1844 | | /* |
1845 | | * After allocating storage for public or private key data, update the key |
1846 | | * component pointers to reference that storage. |
1847 | | */ |
1848 | | static __owur int add_storage(scalar *p, int private, ML_KEM_KEY *key) |
1849 | 16.6k | { |
1850 | 16.6k | int rank = key->vinfo->rank; |
1851 | | |
1852 | 16.6k | if (p == NULL) |
1853 | 0 | return 0; |
1854 | | |
1855 | | /* |
1856 | | * We're adding key material, the seed buffer will now hold |rho| and |
1857 | | * |pkhash|. |
1858 | | */ |
1859 | 16.6k | memset(key->seedbuf, 0, sizeof(key->seedbuf)); |
1860 | 16.6k | key->rho = key->seedbuf; |
1861 | 16.6k | key->pkhash = key->seedbuf + ML_KEM_RANDOM_BYTES; |
1862 | 16.6k | key->d = key->z = NULL; |
1863 | | |
1864 | | /* A public key needs space for |t| and |m| */ |
1865 | 16.6k | key->m = (key->t = p) + rank; |
1866 | | |
1867 | | /* |
1868 | | * A private key also needs space for |s| and |z|. |
1869 | | * The |z| buffer always includes additional space for |d|, but a key's |d| |
1870 | | * pointer is left NULL when parsed from the NIST format, which omits that |
1871 | | * information. Only keys generated from a (d, z) seed pair will have a |
1872 | | * non-NULL |d| pointer. |
1873 | | */ |
1874 | 16.6k | if (private) |
1875 | 16.5k | key->z = (uint8_t *)(rank + (key->s = key->m + rank * rank)); |
1876 | 16.6k | return 1; |
1877 | 16.6k | } |
1878 | | |
1879 | | /* |
1880 | | * After freeing the storage associated with a key that failed to be |
1881 | | * constructed, reset the internal pointers back to NULL. |
1882 | | */ |
1883 | | void ossl_ml_kem_key_reset(ML_KEM_KEY *key) |
1884 | 16.7k | { |
1885 | 16.7k | if (key->t == NULL) |
1886 | 101 | return; |
1887 | | /*- |
1888 | | * Cleanse any sensitive data: |
1889 | | * - The private vector |s| is immediately followed by the FO failure |
1890 | | * secret |z|, and seed |d|, we can cleanse all three in one call. |
1891 | | * |
1892 | | * - Otherwise, when key->d is set, cleanse the stashed seed. |
1893 | | */ |
1894 | 16.6k | if (ossl_ml_kem_have_prvkey(key)) |
1895 | 16.5k | OPENSSL_cleanse(key->s, |
1896 | 16.5k | key->vinfo->rank * sizeof(scalar) + 2 * ML_KEM_RANDOM_BYTES); |
1897 | 16.6k | OPENSSL_free(key->t); |
1898 | 16.6k | key->d = key->z = (uint8_t *)(key->s = key->m = key->t = NULL); |
1899 | 16.6k | } |
1900 | | |
1901 | | /* |
1902 | | * ----- API exported to the provider |
1903 | | * |
1904 | | * Parameters with an implicit fixed length in the internal static API of each |
1905 | | * variant have an explicit checked length argument at this layer. |
1906 | | */ |
1907 | | |
1908 | | /* Retrieve the parameters of one of the ML-KEM variants */ |
1909 | | const ML_KEM_VINFO *ossl_ml_kem_get_vinfo(int evp_type) |
1910 | 275k | { |
1911 | 275k | switch (evp_type) { |
1912 | 57.3k | case EVP_PKEY_ML_KEM_512: |
1913 | 57.3k | return &vinfo_map[ML_KEM_512_VINFO]; |
1914 | 158k | case EVP_PKEY_ML_KEM_768: |
1915 | 158k | return &vinfo_map[ML_KEM_768_VINFO]; |
1916 | 59.7k | case EVP_PKEY_ML_KEM_1024: |
1917 | 59.7k | return &vinfo_map[ML_KEM_1024_VINFO]; |
1918 | 275k | } |
1919 | 0 | return NULL; |
1920 | 275k | } |
1921 | | |
1922 | | ML_KEM_KEY *ossl_ml_kem_key_new(OSSL_LIB_CTX *libctx, const char *properties, |
1923 | | int evp_type) |
1924 | 50.4k | { |
1925 | 50.4k | const ML_KEM_VINFO *vinfo = ossl_ml_kem_get_vinfo(evp_type); |
1926 | 50.4k | ML_KEM_KEY *key; |
1927 | | |
1928 | 50.4k | if (vinfo == NULL) { |
1929 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT, |
1930 | 0 | "unsupported ML-KEM key type: %d", evp_type); |
1931 | 0 | return NULL; |
1932 | 0 | } |
1933 | | |
1934 | 50.4k | if ((key = OPENSSL_malloc(sizeof(*key))) == NULL) |
1935 | 0 | return NULL; |
1936 | | |
1937 | 50.4k | key->vinfo = vinfo; |
1938 | 50.4k | key->libctx = libctx; |
1939 | 50.4k | key->prov_flags = ML_KEM_KEY_PROV_FLAGS_DEFAULT; |
1940 | 50.4k | key->shake128_md = EVP_MD_fetch(libctx, "SHAKE128", properties); |
1941 | 50.4k | key->shake256_md = EVP_MD_fetch(libctx, "SHAKE256", properties); |
1942 | 50.4k | key->sha3_256_md = EVP_MD_fetch(libctx, "SHA3-256", properties); |
1943 | 50.4k | key->sha3_512_md = EVP_MD_fetch(libctx, "SHA3-512", properties); |
1944 | 50.4k | key->d = key->z = key->rho = key->pkhash = key->encoded_dk = NULL; |
1945 | 50.4k | key->s = key->m = key->t = NULL; |
1946 | | |
1947 | 50.4k | if (key->shake128_md != NULL |
1948 | 50.4k | && key->shake256_md != NULL |
1949 | 50.4k | && key->sha3_256_md != NULL |
1950 | 50.4k | && key->sha3_512_md != NULL) |
1951 | 50.4k | return key; |
1952 | | |
1953 | 0 | ossl_ml_kem_key_free(key); |
1954 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR, |
1955 | 0 | "missing SHA3 digest algorithms while creating %s key", |
1956 | 0 | vinfo->algorithm_name); |
1957 | 0 | return NULL; |
1958 | 50.4k | } |
1959 | | |
1960 | | ML_KEM_KEY *ossl_ml_kem_key_dup(const ML_KEM_KEY *key, int selection) |
1961 | 28 | { |
1962 | 28 | int ok = 0; |
1963 | 28 | ML_KEM_KEY *ret; |
1964 | | |
1965 | | /* |
1966 | | * Partially decoded keys, not yet imported or loaded, should never be |
1967 | | * duplicated. |
1968 | | */ |
1969 | 28 | if (ossl_ml_kem_decoded_key(key)) |
1970 | 0 | return NULL; |
1971 | | |
1972 | 28 | if (key == NULL |
1973 | 28 | || (ret = OPENSSL_memdup(key, sizeof(*key))) == NULL) |
1974 | 0 | return NULL; |
1975 | 28 | ret->d = ret->z = ret->rho = ret->pkhash = NULL; |
1976 | 28 | ret->s = ret->m = ret->t = NULL; |
1977 | | |
1978 | | /* Clear selection bits we can't fulfill */ |
1979 | 28 | if (!ossl_ml_kem_have_pubkey(key)) |
1980 | 0 | selection = 0; |
1981 | 28 | else if (!ossl_ml_kem_have_prvkey(key)) |
1982 | 28 | selection &= ~OSSL_KEYMGMT_SELECT_PRIVATE_KEY; |
1983 | | |
1984 | 28 | switch (selection & OSSL_KEYMGMT_SELECT_KEYPAIR) { |
1985 | 0 | case 0: |
1986 | 0 | ok = 1; |
1987 | 0 | break; |
1988 | 28 | case OSSL_KEYMGMT_SELECT_PUBLIC_KEY: |
1989 | 28 | ok = add_storage(OPENSSL_memdup(key->t, key->vinfo->puballoc), 0, ret); |
1990 | 28 | ret->rho = ret->seedbuf; |
1991 | 28 | ret->pkhash = ret->rho + ML_KEM_RANDOM_BYTES; |
1992 | 28 | break; |
1993 | 0 | case OSSL_KEYMGMT_SELECT_PRIVATE_KEY: |
1994 | 0 | ok = add_storage(OPENSSL_memdup(key->t, key->vinfo->prvalloc), 1, ret); |
1995 | | /* Duplicated keys retain |d|, if available */ |
1996 | 0 | if (key->d != NULL) |
1997 | 0 | ret->d = ret->z + ML_KEM_RANDOM_BYTES; |
1998 | 0 | break; |
1999 | 28 | } |
2000 | | |
2001 | 28 | if (!ok) { |
2002 | 0 | OPENSSL_free(ret); |
2003 | 0 | return NULL; |
2004 | 0 | } |
2005 | | |
2006 | 28 | EVP_MD_up_ref(ret->shake128_md); |
2007 | 28 | EVP_MD_up_ref(ret->shake256_md); |
2008 | 28 | EVP_MD_up_ref(ret->sha3_256_md); |
2009 | 28 | EVP_MD_up_ref(ret->sha3_512_md); |
2010 | | |
2011 | 28 | return ret; |
2012 | 28 | } |
2013 | | |
2014 | | void ossl_ml_kem_key_free(ML_KEM_KEY *key) |
2015 | 91.7k | { |
2016 | 91.7k | if (key == NULL) |
2017 | 75.0k | return; |
2018 | | |
2019 | 16.7k | EVP_MD_free(key->shake128_md); |
2020 | 16.7k | EVP_MD_free(key->shake256_md); |
2021 | 16.7k | EVP_MD_free(key->sha3_256_md); |
2022 | 16.7k | EVP_MD_free(key->sha3_512_md); |
2023 | | |
2024 | 16.7k | if (ossl_ml_kem_decoded_key(key)) { |
2025 | 0 | OPENSSL_cleanse(key->seedbuf, sizeof(key->seedbuf)); |
2026 | 0 | if (ossl_ml_kem_have_dkenc(key)) { |
2027 | 0 | OPENSSL_cleanse(key->encoded_dk, key->vinfo->prvkey_bytes); |
2028 | 0 | OPENSSL_free(key->encoded_dk); |
2029 | 0 | } |
2030 | 0 | } |
2031 | 16.7k | ossl_ml_kem_key_reset(key); |
2032 | 16.7k | OPENSSL_free(key); |
2033 | 16.7k | } |
2034 | | |
2035 | | /* Serialise the public component of an ML-KEM key */ |
2036 | | int ossl_ml_kem_encode_public_key(uint8_t *out, size_t len, |
2037 | | const ML_KEM_KEY *key) |
2038 | 49.6k | { |
2039 | 49.6k | if (!ossl_ml_kem_have_pubkey(key) |
2040 | 49.6k | || len != key->vinfo->pubkey_bytes) |
2041 | 0 | return 0; |
2042 | 49.6k | encode_pubkey(out, key); |
2043 | 49.6k | return 1; |
2044 | 49.6k | } |
2045 | | |
2046 | | /* Serialise an ML-KEM private key */ |
2047 | | int ossl_ml_kem_encode_private_key(uint8_t *out, size_t len, |
2048 | | const ML_KEM_KEY *key) |
2049 | 74 | { |
2050 | 74 | if (!ossl_ml_kem_have_prvkey(key) |
2051 | 74 | || len != key->vinfo->prvkey_bytes) |
2052 | 0 | return 0; |
2053 | 74 | encode_prvkey(out, key); |
2054 | 74 | return 1; |
2055 | 74 | } |
2056 | | |
2057 | | int ossl_ml_kem_encode_seed(uint8_t *out, size_t len, |
2058 | | const ML_KEM_KEY *key) |
2059 | 103 | { |
2060 | 103 | if (key == NULL || key->d == NULL || len != ML_KEM_SEED_BYTES) |
2061 | 0 | return 0; |
2062 | | /* |
2063 | | * Both in the seed buffer, and in the allocated storage, the |d| component |
2064 | | * of the seed is stored last, so we must copy each separately. |
2065 | | */ |
2066 | 103 | memcpy(out, key->d, ML_KEM_RANDOM_BYTES); |
2067 | 103 | out += ML_KEM_RANDOM_BYTES; |
2068 | 103 | memcpy(out, key->z, ML_KEM_RANDOM_BYTES); |
2069 | 103 | return 1; |
2070 | 103 | } |
2071 | | |
2072 | | /* |
2073 | | * Stash the seed without (yet) performing a keygen, used during decoding, to |
2074 | | * avoid an extra keygen if we're only going to export the key again to load |
2075 | | * into another provider. |
2076 | | */ |
2077 | | ML_KEM_KEY *ossl_ml_kem_set_seed(const uint8_t *seed, size_t seedlen, ML_KEM_KEY *key) |
2078 | 29 | { |
2079 | 29 | if (key == NULL |
2080 | 29 | || ossl_ml_kem_have_pubkey(key) |
2081 | 29 | || ossl_ml_kem_have_seed(key) |
2082 | 29 | || seedlen != ML_KEM_SEED_BYTES) |
2083 | 0 | return NULL; |
2084 | | /* |
2085 | | * With no public or private key material on hand, we can use the seed |
2086 | | * buffer for |z| and |d|, in that order. |
2087 | | */ |
2088 | 29 | key->z = key->seedbuf; |
2089 | 29 | key->d = key->z + ML_KEM_RANDOM_BYTES; |
2090 | 29 | memcpy(key->d, seed, ML_KEM_RANDOM_BYTES); |
2091 | 29 | seed += ML_KEM_RANDOM_BYTES; |
2092 | 29 | memcpy(key->z, seed, ML_KEM_RANDOM_BYTES); |
2093 | 29 | return key; |
2094 | 29 | } |
2095 | | |
2096 | | /* Parse input as a public key */ |
2097 | | int ossl_ml_kem_parse_public_key(const uint8_t *in, size_t len, ML_KEM_KEY *key) |
2098 | 497 | { |
2099 | 497 | EVP_MD_CTX *mdctx = NULL; |
2100 | 497 | const ML_KEM_VINFO *vinfo; |
2101 | 497 | int ret = 0; |
2102 | | |
2103 | | /* Keys with key material are immutable */ |
2104 | 497 | if (key == NULL |
2105 | 497 | || ossl_ml_kem_have_pubkey(key) |
2106 | 497 | || ossl_ml_kem_have_dkenc(key)) |
2107 | 0 | return 0; |
2108 | 497 | vinfo = key->vinfo; |
2109 | | |
2110 | 497 | if (len != vinfo->pubkey_bytes |
2111 | 497 | || (mdctx = EVP_MD_CTX_new()) == NULL) |
2112 | 0 | return 0; |
2113 | | |
2114 | 497 | if (add_storage(OPENSSL_malloc(vinfo->puballoc), 0, key)) |
2115 | 497 | ret = parse_pubkey(in, mdctx, key); |
2116 | | |
2117 | 497 | if (!ret) |
2118 | 204 | ossl_ml_kem_key_reset(key); |
2119 | 497 | EVP_MD_CTX_free(mdctx); |
2120 | 497 | return ret; |
2121 | 497 | } |
2122 | | |
2123 | | /* Parse input as a new private key */ |
2124 | | int ossl_ml_kem_parse_private_key(const uint8_t *in, size_t len, |
2125 | | ML_KEM_KEY *key) |
2126 | 55 | { |
2127 | 55 | EVP_MD_CTX *mdctx = NULL; |
2128 | 55 | const ML_KEM_VINFO *vinfo; |
2129 | 55 | int ret = 0; |
2130 | | |
2131 | | /* Keys with key material are immutable */ |
2132 | 55 | if (key == NULL |
2133 | 55 | || ossl_ml_kem_have_pubkey(key) |
2134 | 55 | || ossl_ml_kem_have_dkenc(key)) |
2135 | 0 | return 0; |
2136 | 55 | vinfo = key->vinfo; |
2137 | | |
2138 | 55 | if (len != vinfo->prvkey_bytes |
2139 | 55 | || (mdctx = EVP_MD_CTX_new()) == NULL) |
2140 | 0 | return 0; |
2141 | | |
2142 | 55 | if (add_storage(OPENSSL_malloc(vinfo->prvalloc), 1, key)) |
2143 | 55 | ret = parse_prvkey(in, mdctx, key); |
2144 | | |
2145 | 55 | if (!ret) |
2146 | 55 | ossl_ml_kem_key_reset(key); |
2147 | 55 | EVP_MD_CTX_free(mdctx); |
2148 | 55 | return ret; |
2149 | 55 | } |
2150 | | |
2151 | | /* |
2152 | | * Generate a new keypair, either from the saved seed (when non-null), or from |
2153 | | * the RNG. |
2154 | | */ |
2155 | | int ossl_ml_kem_genkey(uint8_t *pubenc, size_t publen, ML_KEM_KEY *key) |
2156 | 49.8k | { |
2157 | 49.8k | uint8_t seed[ML_KEM_SEED_BYTES]; |
2158 | 49.8k | EVP_MD_CTX *mdctx = NULL; |
2159 | 49.8k | const ML_KEM_VINFO *vinfo; |
2160 | 49.8k | int ret = 0; |
2161 | | |
2162 | 49.8k | if (key == NULL |
2163 | 49.8k | || ossl_ml_kem_have_pubkey(key) |
2164 | 49.8k | || ossl_ml_kem_have_dkenc(key)) |
2165 | 0 | return 0; |
2166 | 49.8k | vinfo = key->vinfo; |
2167 | | |
2168 | 49.8k | if (pubenc != NULL && publen != vinfo->pubkey_bytes) |
2169 | 0 | return 0; |
2170 | | |
2171 | 49.8k | if (ossl_ml_kem_have_seed(key)) { |
2172 | 29 | if (!ossl_ml_kem_encode_seed(seed, sizeof(seed), key)) |
2173 | 0 | return 0; |
2174 | 29 | key->d = key->z = NULL; |
2175 | 49.7k | } else if (RAND_priv_bytes_ex(key->libctx, seed, sizeof(seed), |
2176 | 49.7k | key->vinfo->secbits) |
2177 | 49.7k | <= 0) { |
2178 | 0 | return 0; |
2179 | 0 | } |
2180 | | |
2181 | 49.8k | if ((mdctx = EVP_MD_CTX_new()) == NULL) |
2182 | 0 | return 0; |
2183 | | |
2184 | | /* |
2185 | | * Data derived from (d, z) defaults secret, and to avoid side-channel |
2186 | | * leaks should not influence control flow. |
2187 | | */ |
2188 | 49.8k | CONSTTIME_SECRET(seed, ML_KEM_SEED_BYTES); |
2189 | | |
2190 | 49.8k | if (add_storage(OPENSSL_malloc(vinfo->prvalloc), 1, key)) |
2191 | 49.8k | ret = genkey(seed, mdctx, pubenc, key); |
2192 | 49.8k | OPENSSL_cleanse(seed, sizeof(seed)); |
2193 | | |
2194 | | /* Declassify secret inputs and derived outputs before returning control */ |
2195 | 49.8k | CONSTTIME_DECLASSIFY(seed, ML_KEM_SEED_BYTES); |
2196 | | |
2197 | 49.8k | EVP_MD_CTX_free(mdctx); |
2198 | 49.8k | if (!ret) { |
2199 | 0 | ossl_ml_kem_key_reset(key); |
2200 | 0 | return 0; |
2201 | 0 | } |
2202 | | |
2203 | | /* The public components are already declassified */ |
2204 | 49.8k | CONSTTIME_DECLASSIFY(key->s, vinfo->rank * sizeof(scalar)); |
2205 | 49.8k | CONSTTIME_DECLASSIFY(key->z, 2 * ML_KEM_RANDOM_BYTES); |
2206 | 49.8k | return 1; |
2207 | 49.8k | } |
2208 | | |
2209 | | /* |
2210 | | * FIPS 203, Section 6.2, Algorithm 17: ML-KEM.Encaps_internal |
2211 | | * This is the deterministic version with randomness supplied externally. |
2212 | | */ |
2213 | | int ossl_ml_kem_encap_seed(uint8_t *ctext, size_t clen, |
2214 | | uint8_t *shared_secret, size_t slen, |
2215 | | const uint8_t *entropy, size_t elen, |
2216 | | const ML_KEM_KEY *key) |
2217 | 128 | { |
2218 | 128 | const ML_KEM_VINFO *vinfo; |
2219 | 128 | EVP_MD_CTX *mdctx; |
2220 | 128 | int ret = 0; |
2221 | | |
2222 | 128 | if (key == NULL || !ossl_ml_kem_have_pubkey(key)) |
2223 | 0 | return 0; |
2224 | 128 | vinfo = key->vinfo; |
2225 | | |
2226 | 128 | if (ctext == NULL || clen != vinfo->ctext_bytes |
2227 | 128 | || shared_secret == NULL || slen != ML_KEM_SHARED_SECRET_BYTES |
2228 | 128 | || entropy == NULL || elen != ML_KEM_RANDOM_BYTES |
2229 | 128 | || (mdctx = EVP_MD_CTX_new()) == NULL) |
2230 | 0 | return 0; |
2231 | | /* |
2232 | | * Data derived from the encap entropy defaults secret, and to avoid |
2233 | | * side-channel leaks should not influence control flow. |
2234 | | */ |
2235 | 128 | CONSTTIME_SECRET(entropy, elen); |
2236 | | |
2237 | | /*- |
2238 | | * This avoids the need to handle allocation failures for two (max 2KB |
2239 | | * each) vectors, that are never retained on return from this function. |
2240 | | * We stack-allocate these. |
2241 | | */ |
2242 | 128 | #define case_encap_seed(bits) \ |
2243 | 128 | case EVP_PKEY_ML_KEM_##bits: { \ |
2244 | 128 | scalar tmp[2 * ML_KEM_##bits##_RANK]; \ |
2245 | 128 | \ |
2246 | 128 | ret = encap(ctext, shared_secret, entropy, tmp, mdctx, key); \ |
2247 | 128 | OPENSSL_cleanse((void *)tmp, sizeof(tmp)); \ |
2248 | 128 | break; \ |
2249 | 128 | } |
2250 | 128 | switch (vinfo->evp_type) { |
2251 | 41 | case_encap_seed(512); |
2252 | 52 | case_encap_seed(768); |
2253 | 35 | case_encap_seed(1024); |
2254 | 128 | } |
2255 | 128 | #undef case_encap_seed |
2256 | | |
2257 | | /* Declassify secret inputs and derived outputs before returning control */ |
2258 | 128 | CONSTTIME_DECLASSIFY(entropy, elen); |
2259 | 128 | CONSTTIME_DECLASSIFY(ctext, clen); |
2260 | 128 | CONSTTIME_DECLASSIFY(shared_secret, slen); |
2261 | | |
2262 | 128 | EVP_MD_CTX_free(mdctx); |
2263 | 128 | return ret; |
2264 | 128 | } |
2265 | | |
2266 | | int ossl_ml_kem_encap_rand(uint8_t *ctext, size_t clen, |
2267 | | uint8_t *shared_secret, size_t slen, |
2268 | | const ML_KEM_KEY *key) |
2269 | 128 | { |
2270 | 128 | uint8_t r[ML_KEM_RANDOM_BYTES]; |
2271 | | |
2272 | 128 | if (key == NULL) |
2273 | 0 | return 0; |
2274 | | |
2275 | 128 | if (RAND_bytes_ex(key->libctx, r, ML_KEM_RANDOM_BYTES, |
2276 | 128 | key->vinfo->secbits) |
2277 | 128 | < 1) |
2278 | 0 | return 0; |
2279 | | |
2280 | 128 | return ossl_ml_kem_encap_seed(ctext, clen, shared_secret, slen, |
2281 | 128 | r, sizeof(r), key); |
2282 | 128 | } |
2283 | | |
2284 | | int ossl_ml_kem_decap(uint8_t *shared_secret, size_t slen, |
2285 | | const uint8_t *ctext, size_t clen, |
2286 | | const ML_KEM_KEY *key) |
2287 | 100 | { |
2288 | 100 | const ML_KEM_VINFO *vinfo; |
2289 | 100 | EVP_MD_CTX *mdctx; |
2290 | 100 | int ret = 0; |
2291 | | #if defined(OPENSSL_CONSTANT_TIME_VALIDATION) |
2292 | | int classify_bytes; |
2293 | | #endif |
2294 | | |
2295 | | /* Need a private key here */ |
2296 | 100 | if (!ossl_ml_kem_have_prvkey(key)) |
2297 | 0 | return 0; |
2298 | 100 | vinfo = key->vinfo; |
2299 | | |
2300 | 100 | if (shared_secret == NULL || slen != ML_KEM_SHARED_SECRET_BYTES |
2301 | 100 | || ctext == NULL || clen != vinfo->ctext_bytes |
2302 | 100 | || (mdctx = EVP_MD_CTX_new()) == NULL) { |
2303 | 0 | (void)RAND_bytes_ex(key->libctx, shared_secret, |
2304 | 0 | ML_KEM_SHARED_SECRET_BYTES, vinfo->secbits); |
2305 | 0 | return 0; |
2306 | 0 | } |
2307 | | #if defined(OPENSSL_CONSTANT_TIME_VALIDATION) |
2308 | | /* |
2309 | | * Data derived from |s| and |z| defaults secret, and to avoid side-channel |
2310 | | * leaks should not influence control flow. |
2311 | | */ |
2312 | | classify_bytes = 2 * sizeof(scalar) + ML_KEM_RANDOM_BYTES; |
2313 | | CONSTTIME_SECRET(key->s, classify_bytes); |
2314 | | #endif |
2315 | | |
2316 | | /*- |
2317 | | * This avoids the need to handle allocation failures for two (max 2KB |
2318 | | * each) vectors and an encoded ciphertext (max 1568 bytes), that are never |
2319 | | * retained on return from this function. |
2320 | | * We stack-allocate these. |
2321 | | */ |
2322 | 100 | #define case_decap(bits) \ |
2323 | 100 | case EVP_PKEY_ML_KEM_##bits: { \ |
2324 | 100 | uint8_t cbuf[CTEXT_BYTES(bits)]; \ |
2325 | 100 | scalar tmp[2 * ML_KEM_##bits##_RANK]; \ |
2326 | 100 | \ |
2327 | 100 | ret = decap(shared_secret, ctext, cbuf, tmp, mdctx, key); \ |
2328 | 100 | OPENSSL_cleanse((void *)tmp, sizeof(tmp)); \ |
2329 | 100 | break; \ |
2330 | 100 | } |
2331 | 100 | switch (vinfo->evp_type) { |
2332 | 41 | case_decap(512); |
2333 | 24 | case_decap(768); |
2334 | 35 | case_decap(1024); |
2335 | 100 | } |
2336 | | |
2337 | | /* Declassify secret inputs and derived outputs before returning control */ |
2338 | 100 | CONSTTIME_DECLASSIFY(key->s, classify_bytes); |
2339 | 100 | CONSTTIME_DECLASSIFY(shared_secret, slen); |
2340 | 100 | EVP_MD_CTX_free(mdctx); |
2341 | | |
2342 | 100 | return ret; |
2343 | 100 | #undef case_decap |
2344 | 100 | } |
2345 | | |
2346 | | int ossl_ml_kem_pubkey_cmp(const ML_KEM_KEY *key1, const ML_KEM_KEY *key2) |
2347 | 138 | { |
2348 | | /* |
2349 | | * This handles any unexpected differences in the ML-KEM variant rank, |
2350 | | * giving different key component structures, barring SHA3-256 hash |
2351 | | * collisions, the keys are the same size. |
2352 | | */ |
2353 | 138 | if (ossl_ml_kem_have_pubkey(key1) && ossl_ml_kem_have_pubkey(key2)) |
2354 | 138 | return memcmp(key1->pkhash, key2->pkhash, ML_KEM_PKHASH_BYTES) == 0; |
2355 | | |
2356 | | /* |
2357 | | * No match if just one of the public keys is not available, otherwise both |
2358 | | * are unavailable, and for now such keys are considered equal. |
2359 | | */ |
2360 | 0 | return (!(ossl_ml_kem_have_pubkey(key1) ^ ossl_ml_kem_have_pubkey(key2))); |
2361 | 138 | } |