Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl35/ssl/t1_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <ctype.h>
13
#include <openssl/objects.h>
14
#include <openssl/evp.h>
15
#include <openssl/hmac.h>
16
#include <openssl/core_names.h>
17
#include <openssl/ocsp.h>
18
#include <openssl/conf.h>
19
#include <openssl/x509v3.h>
20
#include <openssl/dh.h>
21
#include <openssl/bn.h>
22
#include <openssl/provider.h>
23
#include <openssl/param_build.h>
24
#include "internal/nelem.h"
25
#include "internal/sizes.h"
26
#include "internal/tlsgroups.h"
27
#include "internal/ssl_unwrap.h"
28
#include "ssl_local.h"
29
#include "quic/quic_local.h"
30
#include <openssl/ct.h>
31
32
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35
SSL3_ENC_METHOD const TLSv1_enc_data = {
36
    tls1_setup_key_block,
37
    tls1_generate_master_secret,
38
    tls1_change_cipher_state,
39
    tls1_final_finish_mac,
40
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
    tls1_alert_code,
43
    tls1_export_keying_material,
44
    0,
45
    ssl3_set_handshake_header,
46
    tls_close_construct_packet,
47
    ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
    tls1_setup_key_block,
52
    tls1_generate_master_secret,
53
    tls1_change_cipher_state,
54
    tls1_final_finish_mac,
55
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57
    tls1_alert_code,
58
    tls1_export_keying_material,
59
    0,
60
    ssl3_set_handshake_header,
61
    tls_close_construct_packet,
62
    ssl3_handshake_write
63
};
64
65
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66
    tls1_setup_key_block,
67
    tls1_generate_master_secret,
68
    tls1_change_cipher_state,
69
    tls1_final_finish_mac,
70
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72
    tls1_alert_code,
73
    tls1_export_keying_material,
74
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76
    ssl3_set_handshake_header,
77
    tls_close_construct_packet,
78
    ssl3_handshake_write
79
};
80
81
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82
    tls13_setup_key_block,
83
    tls13_generate_master_secret,
84
    tls13_change_cipher_state,
85
    tls13_final_finish_mac,
86
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88
    tls13_alert_code,
89
    tls13_export_keying_material,
90
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91
    ssl3_set_handshake_header,
92
    tls_close_construct_packet,
93
    ssl3_handshake_write
94
};
95
96
OSSL_TIME tls1_default_timeout(void)
97
119k
{
98
    /*
99
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100
     * http, the cache would over fill
101
     */
102
119k
    return ossl_seconds2time(60 * 60 * 2);
103
119k
}
104
105
int tls1_new(SSL *s)
106
119k
{
107
119k
    if (!ssl3_new(s))
108
0
        return 0;
109
119k
    if (!s->method->ssl_clear(s))
110
0
        return 0;
111
112
119k
    return 1;
113
119k
}
114
115
void tls1_free(SSL *s)
116
64.4k
{
117
64.4k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119
64.4k
    if (sc == NULL)
120
0
        return;
121
122
64.4k
    OPENSSL_free(sc->ext.session_ticket);
123
64.4k
    ssl3_free(s);
124
64.4k
}
125
126
int tls1_clear(SSL *s)
127
257k
{
128
257k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130
257k
    if (sc == NULL)
131
0
        return 0;
132
133
257k
    if (!ssl3_clear(s))
134
0
        return 0;
135
136
257k
    if (s->method->version == TLS_ANY_VERSION)
137
257k
        sc->version = TLS_MAX_VERSION_INTERNAL;
138
0
    else
139
0
        sc->version = s->method->version;
140
141
257k
    return 1;
142
257k
}
143
144
/* Legacy NID to group_id mapping. Only works for groups we know about */
145
static const struct {
146
    int nid;
147
    uint16_t group_id;
148
} nid_to_group[] = {
149
    { NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1 },
150
    { NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1 },
151
    { NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2 },
152
    { NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1 },
153
    { NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2 },
154
    { NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1 },
155
    { NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1 },
156
    { NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1 },
157
    { NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1 },
158
    { NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1 },
159
    { NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1 },
160
    { NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1 },
161
    { NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1 },
162
    { NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1 },
163
    { NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1 },
164
    { NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1 },
165
    { NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2 },
166
    { NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1 },
167
    { NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1 },
168
    { NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1 },
169
    { NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1 },
170
    { NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1 },
171
    { NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1 },
172
    { NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1 },
173
    { NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1 },
174
    { NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1 },
175
    { NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1 },
176
    { NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1 },
177
    { EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519 },
178
    { EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448 },
179
    { NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13 },
180
    { NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13 },
181
    { NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13 },
182
    { NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A },
183
    { NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B },
184
    { NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C },
185
    { NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D },
186
    { NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A },
187
    { NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B },
188
    { NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C },
189
    { NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048 },
190
    { NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072 },
191
    { NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096 },
192
    { NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144 },
193
    { NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192 }
194
};
195
196
static const unsigned char ecformats_default[] = {
197
    TLSEXT_ECPOINTFORMAT_uncompressed,
198
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
199
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
200
};
201
202
/* Group list string of the built-in pseudo group DEFAULT */
203
#define DEFAULT_GROUP_NAME "DEFAULT"
204
#define TLS_DEFAULT_GROUP_LIST \
205
    "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
206
207
static const uint16_t suiteb_curves[] = {
208
    OSSL_TLS_GROUP_ID_secp256r1,
209
    OSSL_TLS_GROUP_ID_secp384r1,
210
};
211
212
/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
213
#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
214
#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
215
216
struct provider_ctx_data_st {
217
    SSL_CTX *ctx;
218
    OSSL_PROVIDER *provider;
219
};
220
221
1.08M
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
222
static OSSL_CALLBACK add_provider_groups;
223
static int add_provider_groups(const OSSL_PARAM params[], void *data)
224
5.35M
{
225
5.35M
    struct provider_ctx_data_st *pgd = data;
226
5.35M
    SSL_CTX *ctx = pgd->ctx;
227
5.35M
    const OSSL_PARAM *p;
228
5.35M
    TLS_GROUP_INFO *ginf = NULL;
229
5.35M
    EVP_KEYMGMT *keymgmt;
230
5.35M
    unsigned int gid;
231
5.35M
    unsigned int is_kem = 0;
232
5.35M
    int ret = 0;
233
234
5.35M
    if (ctx->group_list_max_len == ctx->group_list_len) {
235
544k
        TLS_GROUP_INFO *tmp = NULL;
236
237
544k
        if (ctx->group_list_max_len == 0)
238
90.6k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
239
544k
                * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
240
453k
        else
241
453k
            tmp = OPENSSL_realloc(ctx->group_list,
242
544k
                (ctx->group_list_max_len
243
544k
                    + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
244
544k
                    * sizeof(TLS_GROUP_INFO));
245
544k
        if (tmp == NULL)
246
0
            return 0;
247
544k
        ctx->group_list = tmp;
248
544k
        memset(tmp + ctx->group_list_max_len,
249
544k
            0,
250
544k
            sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
544k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
252
544k
    }
253
254
5.35M
    ginf = &ctx->group_list[ctx->group_list_len];
255
256
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
257
5.35M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
258
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
259
0
        goto err;
260
0
    }
261
5.35M
    ginf->tlsname = OPENSSL_strdup(p->data);
262
5.35M
    if (ginf->tlsname == NULL)
263
0
        goto err;
264
265
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
266
5.35M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
267
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
268
0
        goto err;
269
0
    }
270
5.35M
    ginf->realname = OPENSSL_strdup(p->data);
271
5.35M
    if (ginf->realname == NULL)
272
0
        goto err;
273
274
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
275
5.35M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
276
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277
0
        goto err;
278
0
    }
279
5.35M
    ginf->group_id = (uint16_t)gid;
280
281
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
282
5.35M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
283
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
284
0
        goto err;
285
0
    }
286
5.35M
    ginf->algorithm = OPENSSL_strdup(p->data);
287
5.35M
    if (ginf->algorithm == NULL)
288
0
        goto err;
289
290
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
291
5.35M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
292
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
293
0
        goto err;
294
0
    }
295
296
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
297
5.35M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
298
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
299
0
        goto err;
300
0
    }
301
5.35M
    ginf->is_kem = 1 & is_kem;
302
303
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
304
5.35M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
305
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306
0
        goto err;
307
0
    }
308
309
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
310
5.35M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
311
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312
0
        goto err;
313
0
    }
314
315
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
316
5.35M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
317
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318
0
        goto err;
319
0
    }
320
321
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
322
5.35M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
323
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324
0
        goto err;
325
0
    }
326
    /*
327
     * Now check that the algorithm is actually usable for our property query
328
     * string. Regardless of the result we still return success because we have
329
     * successfully processed this group, even though we may decide not to use
330
     * it.
331
     */
332
5.35M
    ret = 1;
333
5.35M
    ERR_set_mark();
334
5.35M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
335
5.35M
    if (keymgmt != NULL) {
336
        /* We have successfully fetched the algorithm, we can use the group. */
337
5.35M
        ctx->group_list_len++;
338
5.35M
        ginf = NULL;
339
5.35M
        EVP_KEYMGMT_free(keymgmt);
340
5.35M
    }
341
5.35M
    ERR_pop_to_mark();
342
5.35M
err:
343
5.35M
    if (ginf != NULL) {
344
0
        OPENSSL_free(ginf->tlsname);
345
0
        OPENSSL_free(ginf->realname);
346
0
        OPENSSL_free(ginf->algorithm);
347
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
348
0
    }
349
5.35M
    return ret;
350
5.35M
}
351
352
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
353
327k
{
354
327k
    struct provider_ctx_data_st pgd;
355
356
327k
    pgd.ctx = vctx;
357
327k
    pgd.provider = provider;
358
327k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
359
327k
        add_provider_groups, &pgd);
360
327k
}
361
362
int ssl_load_groups(SSL_CTX *ctx)
363
90.6k
{
364
90.6k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
365
0
        return 0;
366
367
90.6k
    return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
368
90.6k
}
369
370
static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
371
544k
{
372
544k
    return (sinf->keytype != NULL
373
544k
            ? sinf->keytype
374
544k
            : (sinf->sig_name != NULL
375
544k
                      ? sinf->sig_name
376
544k
                      : sinf->sigalg_name));
377
544k
}
378
379
181k
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
380
static OSSL_CALLBACK add_provider_sigalgs;
381
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
382
272k
{
383
272k
    struct provider_ctx_data_st *pgd = data;
384
272k
    SSL_CTX *ctx = pgd->ctx;
385
272k
    OSSL_PROVIDER *provider = pgd->provider;
386
272k
    const OSSL_PARAM *p;
387
272k
    TLS_SIGALG_INFO *sinf = NULL;
388
272k
    EVP_KEYMGMT *keymgmt;
389
272k
    const char *keytype;
390
272k
    unsigned int code_point = 0;
391
272k
    int ret = 0;
392
393
272k
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
394
90.6k
        TLS_SIGALG_INFO *tmp = NULL;
395
396
90.6k
        if (ctx->sigalg_list_max_len == 0)
397
90.6k
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
398
90.6k
                * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
399
0
        else
400
0
            tmp = OPENSSL_realloc(ctx->sigalg_list,
401
90.6k
                (ctx->sigalg_list_max_len
402
90.6k
                    + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
403
90.6k
                    * sizeof(TLS_SIGALG_INFO));
404
90.6k
        if (tmp == NULL)
405
0
            return 0;
406
90.6k
        ctx->sigalg_list = tmp;
407
90.6k
        memset(tmp + ctx->sigalg_list_max_len, 0,
408
90.6k
            sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
409
90.6k
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
410
90.6k
    }
411
412
272k
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
413
414
    /* First, mandatory parameters */
415
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
416
272k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
417
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
418
0
        goto err;
419
0
    }
420
272k
    OPENSSL_free(sinf->sigalg_name);
421
272k
    sinf->sigalg_name = OPENSSL_strdup(p->data);
422
272k
    if (sinf->sigalg_name == NULL)
423
0
        goto err;
424
425
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
426
272k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
427
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
428
0
        goto err;
429
0
    }
430
272k
    OPENSSL_free(sinf->name);
431
272k
    sinf->name = OPENSSL_strdup(p->data);
432
272k
    if (sinf->name == NULL)
433
0
        goto err;
434
435
272k
    p = OSSL_PARAM_locate_const(params,
436
272k
        OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
437
272k
    if (p == NULL
438
272k
        || !OSSL_PARAM_get_uint(p, &code_point)
439
272k
        || code_point > UINT16_MAX) {
440
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
441
0
        goto err;
442
0
    }
443
272k
    sinf->code_point = (uint16_t)code_point;
444
445
272k
    p = OSSL_PARAM_locate_const(params,
446
272k
        OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
447
272k
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
448
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
449
0
        goto err;
450
0
    }
451
452
    /* Now, optional parameters */
453
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
454
272k
    if (p == NULL) {
455
0
        sinf->sigalg_oid = NULL;
456
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
457
0
        goto err;
458
272k
    } else {
459
272k
        OPENSSL_free(sinf->sigalg_oid);
460
272k
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
461
272k
        if (sinf->sigalg_oid == NULL)
462
0
            goto err;
463
272k
    }
464
465
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
466
272k
    if (p == NULL) {
467
272k
        sinf->sig_name = NULL;
468
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
469
0
        goto err;
470
0
    } else {
471
0
        OPENSSL_free(sinf->sig_name);
472
0
        sinf->sig_name = OPENSSL_strdup(p->data);
473
0
        if (sinf->sig_name == NULL)
474
0
            goto err;
475
0
    }
476
477
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
478
272k
    if (p == NULL) {
479
272k
        sinf->sig_oid = NULL;
480
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
481
0
        goto err;
482
0
    } else {
483
0
        OPENSSL_free(sinf->sig_oid);
484
0
        sinf->sig_oid = OPENSSL_strdup(p->data);
485
0
        if (sinf->sig_oid == NULL)
486
0
            goto err;
487
0
    }
488
489
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
490
272k
    if (p == NULL) {
491
272k
        sinf->hash_name = NULL;
492
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
493
0
        goto err;
494
0
    } else {
495
0
        OPENSSL_free(sinf->hash_name);
496
0
        sinf->hash_name = OPENSSL_strdup(p->data);
497
0
        if (sinf->hash_name == NULL)
498
0
            goto err;
499
0
    }
500
501
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
502
272k
    if (p == NULL) {
503
272k
        sinf->hash_oid = NULL;
504
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
505
0
        goto err;
506
0
    } else {
507
0
        OPENSSL_free(sinf->hash_oid);
508
0
        sinf->hash_oid = OPENSSL_strdup(p->data);
509
0
        if (sinf->hash_oid == NULL)
510
0
            goto err;
511
0
    }
512
513
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
514
272k
    if (p == NULL) {
515
272k
        sinf->keytype = NULL;
516
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
517
0
        goto err;
518
0
    } else {
519
0
        OPENSSL_free(sinf->keytype);
520
0
        sinf->keytype = OPENSSL_strdup(p->data);
521
0
        if (sinf->keytype == NULL)
522
0
            goto err;
523
0
    }
524
525
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
526
272k
    if (p == NULL) {
527
272k
        sinf->keytype_oid = NULL;
528
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
529
0
        goto err;
530
0
    } else {
531
0
        OPENSSL_free(sinf->keytype_oid);
532
0
        sinf->keytype_oid = OPENSSL_strdup(p->data);
533
0
        if (sinf->keytype_oid == NULL)
534
0
            goto err;
535
0
    }
536
537
    /* Optional, not documented prior to 3.5 */
538
272k
    sinf->mindtls = sinf->maxdtls = -1;
539
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
540
272k
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
541
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
542
0
        goto err;
543
0
    }
544
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
545
272k
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
546
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
547
0
        goto err;
548
0
    }
549
    /* DTLS version numbers grow downward */
550
272k
    if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) && ((sinf->maxdtls > sinf->mindtls))) {
551
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
552
0
        goto err;
553
0
    }
554
    /* No provider sigalgs are supported in DTLS, reset after checking. */
555
272k
    sinf->mindtls = sinf->maxdtls = -1;
556
557
    /* The remaining parameters below are mandatory again */
558
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
559
272k
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
560
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
561
0
        goto err;
562
0
    }
563
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
564
272k
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
565
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
566
0
        goto err;
567
0
    }
568
272k
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < sinf->mintls))) {
569
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
570
0
        goto err;
571
0
    }
572
272k
    if ((sinf->mintls != 0) && (sinf->mintls != -1) && ((sinf->mintls > TLS1_3_VERSION)))
573
0
        sinf->mintls = sinf->maxtls = -1;
574
272k
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < TLS1_3_VERSION)))
575
0
        sinf->mintls = sinf->maxtls = -1;
576
577
    /* Ignore unusable sigalgs */
578
272k
    if (sinf->mintls == -1 && sinf->mindtls == -1) {
579
0
        ret = 1;
580
0
        goto err;
581
0
    }
582
583
    /*
584
     * Now check that the algorithm is actually usable for our property query
585
     * string. Regardless of the result we still return success because we have
586
     * successfully processed this signature, even though we may decide not to
587
     * use it.
588
     */
589
272k
    ret = 1;
590
272k
    ERR_set_mark();
591
272k
    keytype = inferred_keytype(sinf);
592
272k
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
593
272k
    if (keymgmt != NULL) {
594
        /*
595
         * We have successfully fetched the algorithm - however if the provider
596
         * doesn't match this one then we ignore it.
597
         *
598
         * Note: We're cheating a little here. Technically if the same algorithm
599
         * is available from more than one provider then it is undefined which
600
         * implementation you will get back. Theoretically this could be
601
         * different every time...we assume here that you'll always get the
602
         * same one back if you repeat the exact same fetch. Is this a reasonable
603
         * assumption to make (in which case perhaps we should document this
604
         * behaviour)?
605
         */
606
272k
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
607
            /*
608
             * We have a match - so we could use this signature;
609
             * Check proper object registration first, though.
610
             * Don't care about return value as this may have been
611
             * done within providers or previous calls to
612
             * add_provider_sigalgs.
613
             */
614
272k
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
615
            /* sanity check: Without successful registration don't use alg */
616
272k
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) || (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
617
0
                ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
618
0
                goto err;
619
0
            }
620
272k
            if (sinf->sig_name != NULL)
621
0
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
622
272k
            if (sinf->keytype != NULL)
623
0
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
624
272k
            if (sinf->hash_name != NULL)
625
0
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
626
272k
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
627
272k
                (sinf->hash_name != NULL
628
272k
                        ? OBJ_txt2nid(sinf->hash_name)
629
272k
                        : NID_undef),
630
272k
                OBJ_txt2nid(keytype));
631
272k
            ctx->sigalg_list_len++;
632
272k
            sinf = NULL;
633
272k
        }
634
272k
        EVP_KEYMGMT_free(keymgmt);
635
272k
    }
636
272k
    ERR_pop_to_mark();
637
272k
err:
638
272k
    if (sinf != NULL) {
639
0
        OPENSSL_free(sinf->name);
640
0
        sinf->name = NULL;
641
0
        OPENSSL_free(sinf->sigalg_name);
642
0
        sinf->sigalg_name = NULL;
643
0
        OPENSSL_free(sinf->sigalg_oid);
644
0
        sinf->sigalg_oid = NULL;
645
0
        OPENSSL_free(sinf->sig_name);
646
0
        sinf->sig_name = NULL;
647
0
        OPENSSL_free(sinf->sig_oid);
648
0
        sinf->sig_oid = NULL;
649
0
        OPENSSL_free(sinf->hash_name);
650
0
        sinf->hash_name = NULL;
651
0
        OPENSSL_free(sinf->hash_oid);
652
0
        sinf->hash_oid = NULL;
653
0
        OPENSSL_free(sinf->keytype);
654
0
        sinf->keytype = NULL;
655
0
        OPENSSL_free(sinf->keytype_oid);
656
0
        sinf->keytype_oid = NULL;
657
0
    }
658
272k
    return ret;
659
272k
}
660
661
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
662
304k
{
663
304k
    struct provider_ctx_data_st pgd;
664
665
304k
    pgd.ctx = vctx;
666
304k
    pgd.provider = provider;
667
304k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
668
304k
        add_provider_sigalgs, &pgd);
669
    /*
670
     * Always OK, even if provider doesn't support the capability:
671
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
672
     */
673
304k
    return 1;
674
304k
}
675
676
int ssl_load_sigalgs(SSL_CTX *ctx)
677
152k
{
678
152k
    size_t i;
679
152k
    SSL_CERT_LOOKUP lu;
680
681
152k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
682
0
        return 0;
683
684
    /* now populate ctx->ssl_cert_info */
685
152k
    if (ctx->sigalg_list_len > 0) {
686
90.6k
        OPENSSL_free(ctx->ssl_cert_info);
687
90.6k
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
688
90.6k
        if (ctx->ssl_cert_info == NULL)
689
0
            return 0;
690
362k
        for (i = 0; i < ctx->sigalg_list_len; i++) {
691
272k
            const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
692
272k
            ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
693
272k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
694
272k
        }
695
90.6k
    }
696
697
    /*
698
     * For now, leave it at this: legacy sigalgs stay in their own
699
     * data structures until "legacy cleanup" occurs.
700
     */
701
702
152k
    return 1;
703
152k
}
704
705
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
706
725k
{
707
725k
    size_t i;
708
709
4.08M
    for (i = 0; i < ctx->group_list_len; i++) {
710
4.08M
        if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
711
3.35M
            || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
712
725k
            return ctx->group_list[i].group_id;
713
4.08M
    }
714
715
0
    return 0;
716
725k
}
717
718
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
719
3.20M
{
720
3.20M
    size_t i;
721
722
69.8M
    for (i = 0; i < ctx->group_list_len; i++) {
723
69.8M
        if (ctx->group_list[i].group_id == group_id)
724
3.20M
            return &ctx->group_list[i];
725
69.8M
    }
726
727
0
    return NULL;
728
3.20M
}
729
730
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
731
0
{
732
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
733
734
0
    if (tls_group_info == NULL)
735
0
        return NULL;
736
737
0
    return tls_group_info->tlsname;
738
0
}
739
740
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
741
1.40M
{
742
1.40M
    size_t i;
743
744
1.40M
    if (group_id == 0)
745
0
        return NID_undef;
746
747
    /*
748
     * Return well known Group NIDs - for backwards compatibility. This won't
749
     * work for groups we don't know about.
750
     */
751
44.8M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
752
44.7M
        if (nid_to_group[i].group_id == group_id)
753
1.30M
            return nid_to_group[i].nid;
754
44.7M
    }
755
100k
    if (!include_unknown)
756
100k
        return NID_undef;
757
0
    return TLSEXT_nid_unknown | (int)group_id;
758
100k
}
759
760
uint16_t tls1_nid2group_id(int nid)
761
28.1k
{
762
28.1k
    size_t i;
763
764
    /*
765
     * Return well known Group ids - for backwards compatibility. This won't
766
     * work for groups we don't know about.
767
     */
768
647k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
769
647k
        if (nid_to_group[i].nid == nid)
770
28.1k
            return nid_to_group[i].group_id;
771
647k
    }
772
773
6
    return 0;
774
28.1k
}
775
776
/*
777
 * Set *pgroups to the supported groups list and *pgroupslen to
778
 * the number of groups supported.
779
 */
780
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
781
    size_t *pgroupslen)
782
460k
{
783
460k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
784
785
    /* For Suite B mode only include P-256, P-384 */
786
460k
    switch (tls1_suiteb(s)) {
787
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
788
0
        *pgroups = suiteb_curves;
789
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
790
0
        break;
791
792
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
793
0
        *pgroups = suiteb_curves;
794
0
        *pgroupslen = 1;
795
0
        break;
796
797
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
798
0
        *pgroups = suiteb_curves + 1;
799
0
        *pgroupslen = 1;
800
0
        break;
801
802
460k
    default:
803
460k
        if (s->ext.supportedgroups == NULL) {
804
231k
            *pgroups = sctx->ext.supportedgroups;
805
231k
            *pgroupslen = sctx->ext.supportedgroups_len;
806
231k
        } else {
807
228k
            *pgroups = s->ext.supportedgroups;
808
228k
            *pgroupslen = s->ext.supportedgroups_len;
809
228k
        }
810
460k
        break;
811
460k
    }
812
460k
}
813
814
/*
815
 * Some comments for the function below:
816
 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
817
 * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
818
 * eligible group from the legacy list. Therefore, we provide the entire list of supported
819
 * groups in this case.
820
 *
821
 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
822
 * but the groupID to 0.
823
 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
824
 * the "list of requested key share groups" is used, or the "list of supported groups" in
825
 * combination with setting add_only_one = 1 is applied.
826
 */
827
void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
828
    size_t *pgroupslen)
829
49.5k
{
830
49.5k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
831
832
49.5k
    if (s->ext.supportedgroups == NULL) {
833
0
        *pgroups = sctx->ext.supportedgroups;
834
0
        *pgroupslen = sctx->ext.supportedgroups_len;
835
49.5k
    } else {
836
49.5k
        *pgroups = s->ext.keyshares;
837
49.5k
        *pgroupslen = s->ext.keyshares_len;
838
49.5k
    }
839
49.5k
}
840
841
void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
842
    size_t *ptupleslen)
843
2.28k
{
844
2.28k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
845
846
2.28k
    if (s->ext.supportedgroups == NULL) {
847
0
        *ptuples = sctx->ext.tuples;
848
0
        *ptupleslen = sctx->ext.tuples_len;
849
2.28k
    } else {
850
2.28k
        *ptuples = s->ext.tuples;
851
2.28k
        *ptupleslen = s->ext.tuples_len;
852
2.28k
    }
853
2.28k
}
854
855
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
856
    int minversion, int maxversion,
857
    int isec, int *okfortls13)
858
1.48M
{
859
1.48M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
860
1.48M
        group_id);
861
1.48M
    int ret;
862
1.48M
    int group_minversion, group_maxversion;
863
864
1.48M
    if (okfortls13 != NULL)
865
978k
        *okfortls13 = 0;
866
867
1.48M
    if (ginfo == NULL)
868
0
        return 0;
869
870
1.48M
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
871
1.48M
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
872
873
1.48M
    if (group_minversion < 0 || group_maxversion < 0)
874
131k
        return 0;
875
1.35M
    if (group_maxversion == 0)
876
1.35M
        ret = 1;
877
0
    else
878
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
879
1.35M
    if (group_minversion > 0)
880
1.35M
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
881
882
1.35M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
883
1.17M
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
884
737k
            *okfortls13 = (group_maxversion == 0)
885
0
                || (group_maxversion >= TLS1_3_VERSION);
886
1.17M
    }
887
1.35M
    ret &= !isec
888
324k
        || strcmp(ginfo->algorithm, "EC") == 0
889
323k
        || strcmp(ginfo->algorithm, "X25519") == 0
890
100k
        || strcmp(ginfo->algorithm, "X448") == 0;
891
892
1.35M
    return ret;
893
1.48M
}
894
895
/* See if group is allowed by security callback */
896
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
897
1.40M
{
898
1.40M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
899
1.40M
        group);
900
1.40M
    unsigned char gtmp[2];
901
902
1.40M
    if (ginfo == NULL)
903
0
        return 0;
904
905
1.40M
    gtmp[0] = group >> 8;
906
1.40M
    gtmp[1] = group & 0xff;
907
1.40M
    return ssl_security(s, op, ginfo->secbits,
908
1.40M
        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
909
1.40M
}
910
911
/* Return 1 if "id" is in "list" */
912
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
913
102k
{
914
102k
    size_t i;
915
687k
    for (i = 0; i < listlen; i++)
916
631k
        if (list[i] == id)
917
46.6k
            return 1;
918
55.5k
    return 0;
919
102k
}
920
921
typedef struct {
922
    TLS_GROUP_INFO *grp;
923
    size_t ix;
924
} TLS_GROUP_IX;
925
926
DEFINE_STACK_OF(TLS_GROUP_IX)
927
928
static void free_wrapper(TLS_GROUP_IX *a)
929
0
{
930
0
    OPENSSL_free(a);
931
0
}
932
933
static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
934
    const TLS_GROUP_IX *const *b)
935
0
{
936
0
    int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
937
0
    int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
938
0
    int ixcmpab = (*a)->ix < (*b)->ix;
939
0
    int ixcmpba = (*b)->ix < (*a)->ix;
940
941
    /* Ascending by group id */
942
0
    if (idcmpab != idcmpba)
943
0
        return (idcmpba - idcmpab);
944
    /* Ascending by original appearance index */
945
0
    return ixcmpba - ixcmpab;
946
0
}
947
948
int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
949
    TLS_GROUP_INFO *grps, size_t num, long all,
950
    STACK_OF(OPENSSL_CSTRING) *out)
951
0
{
952
0
    STACK_OF(TLS_GROUP_IX) *collect = NULL;
953
0
    TLS_GROUP_IX *gix;
954
0
    uint16_t id = 0;
955
0
    int ret = 0;
956
0
    size_t ix;
957
958
0
    if (grps == NULL || out == NULL)
959
0
        return 0;
960
0
    if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
961
0
        return 0;
962
0
    for (ix = 0; ix < num; ++ix, ++grps) {
963
0
        if (grps->mintls > 0 && max_proto_version > 0
964
0
            && grps->mintls > max_proto_version)
965
0
            continue;
966
0
        if (grps->maxtls > 0 && min_proto_version > 0
967
0
            && grps->maxtls < min_proto_version)
968
0
            continue;
969
970
0
        if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
971
0
            goto end;
972
0
        gix->grp = grps;
973
0
        gix->ix = ix;
974
0
        if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
975
0
            OPENSSL_free(gix);
976
0
            goto end;
977
0
        }
978
0
    }
979
980
0
    sk_TLS_GROUP_IX_sort(collect);
981
0
    num = sk_TLS_GROUP_IX_num(collect);
982
0
    for (ix = 0; ix < num; ++ix) {
983
0
        gix = sk_TLS_GROUP_IX_value(collect, ix);
984
0
        if (!all && gix->grp->group_id == id)
985
0
            continue;
986
0
        id = gix->grp->group_id;
987
0
        if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
988
0
            goto end;
989
0
    }
990
0
    ret = 1;
991
992
0
end:
993
0
    sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
994
0
    return ret;
995
0
}
996
997
/*-
998
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
999
 * if there is no match.
1000
 * For nmatch == -1, return number of matches
1001
 * For nmatch == -2, return the id of the group to use for
1002
 * a tmp key, or 0 if there is no match.
1003
 */
1004
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1005
44.4k
{
1006
44.4k
    const uint16_t *pref, *supp;
1007
44.4k
    size_t num_pref, num_supp, i;
1008
44.4k
    int k;
1009
44.4k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1010
1011
    /* Can't do anything on client side */
1012
44.4k
    if (s->server == 0)
1013
0
        return 0;
1014
44.4k
    if (nmatch == -2) {
1015
10.9k
        if (tls1_suiteb(s)) {
1016
            /*
1017
             * For Suite B ciphersuite determines curve: we already know
1018
             * these are acceptable due to previous checks.
1019
             */
1020
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
1021
1022
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1023
0
                return OSSL_TLS_GROUP_ID_secp256r1;
1024
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1025
0
                return OSSL_TLS_GROUP_ID_secp384r1;
1026
            /* Should never happen */
1027
0
            return 0;
1028
0
        }
1029
        /* If not Suite B just return first preference shared curve */
1030
10.9k
        nmatch = 0;
1031
10.9k
    }
1032
    /*
1033
     * If server preference set, our groups are the preference order
1034
     * otherwise peer decides.
1035
     */
1036
44.4k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
1037
0
        tls1_get_supported_groups(s, &pref, &num_pref);
1038
0
        tls1_get_peer_groups(s, &supp, &num_supp);
1039
44.4k
    } else {
1040
44.4k
        tls1_get_peer_groups(s, &pref, &num_pref);
1041
44.4k
        tls1_get_supported_groups(s, &supp, &num_supp);
1042
44.4k
    }
1043
1044
94.2k
    for (k = 0, i = 0; i < num_pref; i++) {
1045
72.1k
        uint16_t id = pref[i];
1046
72.1k
        const TLS_GROUP_INFO *inf;
1047
72.1k
        int minversion, maxversion;
1048
1049
72.1k
        if (!tls1_in_list(id, supp, num_supp)
1050
28.4k
            || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1051
43.6k
            continue;
1052
28.4k
        inf = tls1_group_id_lookup(ctx, id);
1053
28.4k
        if (!ossl_assert(inf != NULL))
1054
0
            return 0;
1055
1056
28.4k
        minversion = SSL_CONNECTION_IS_DTLS(s)
1057
28.4k
            ? inf->mindtls
1058
28.4k
            : inf->mintls;
1059
28.4k
        maxversion = SSL_CONNECTION_IS_DTLS(s)
1060
28.4k
            ? inf->maxdtls
1061
28.4k
            : inf->maxtls;
1062
28.4k
        if (maxversion == -1)
1063
3.78k
            continue;
1064
24.6k
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1065
22.2k
            || (maxversion != 0
1066
0
                && ssl_version_cmp(s, s->version, maxversion) > 0))
1067
2.43k
            continue;
1068
1069
22.2k
        if (nmatch == k)
1070
22.2k
            return id;
1071
0
        k++;
1072
0
    }
1073
22.1k
    if (nmatch == -1)
1074
0
        return k;
1075
    /* Out of range (nmatch > k). */
1076
22.1k
    return 0;
1077
22.1k
}
1078
1079
int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1080
    uint16_t **ksext, size_t *ksextlen,
1081
    size_t **tplext, size_t *tplextlen,
1082
    int *groups, size_t ngroups)
1083
0
{
1084
0
    uint16_t *glist = NULL, *kslist = NULL;
1085
0
    size_t *tpllist = NULL;
1086
0
    size_t i;
1087
    /*
1088
     * Bitmap of groups included to detect duplicates: two variables are added
1089
     * to detect duplicates as some values are more than 32.
1090
     */
1091
0
    unsigned long *dup_list = NULL;
1092
0
    unsigned long dup_list_egrp = 0;
1093
0
    unsigned long dup_list_dhgrp = 0;
1094
1095
0
    if (ngroups == 0) {
1096
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1097
0
        return 0;
1098
0
    }
1099
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1100
0
        goto err;
1101
0
    if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1102
0
        goto err;
1103
0
    if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1104
0
        goto err;
1105
0
    for (i = 0; i < ngroups; i++) {
1106
0
        unsigned long idmask;
1107
0
        uint16_t id;
1108
0
        id = tls1_nid2group_id(groups[i]);
1109
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1110
0
            goto err;
1111
0
        idmask = 1L << (id & 0x00FF);
1112
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1113
0
        if (!id || ((*dup_list) & idmask))
1114
0
            goto err;
1115
0
        *dup_list |= idmask;
1116
0
        glist[i] = id;
1117
0
    }
1118
0
    OPENSSL_free(*grpext);
1119
0
    OPENSSL_free(*ksext);
1120
0
    OPENSSL_free(*tplext);
1121
0
    *grpext = glist;
1122
0
    *grpextlen = ngroups;
1123
    /*
1124
     * No * prefix was used, let tls_construct_ctos_key_share choose a key
1125
     * share. This has the advantage that it will filter unsupported groups
1126
     * before choosing one, which this function does not do. See also the
1127
     * comment for tls1_get_requested_keyshare_groups.
1128
     */
1129
0
    kslist[0] = 0;
1130
0
    *ksext = kslist;
1131
0
    *ksextlen = 1;
1132
0
    tpllist[0] = ngroups;
1133
0
    *tplext = tpllist;
1134
0
    *tplextlen = 1;
1135
0
    return 1;
1136
0
err:
1137
0
    OPENSSL_free(glist);
1138
0
    OPENSSL_free(kslist);
1139
0
    OPENSSL_free(tpllist);
1140
0
    return 0;
1141
0
}
1142
1143
/*
1144
 * Definition of DEFAULT[_XYZ] pseudo group names.
1145
 * A pseudo group name is actually a full list of groups, including prefixes
1146
 * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1147
 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1148
 * groups not backed by a provider will always silently be ignored, even without '?' prefix
1149
 */
1150
typedef struct {
1151
    const char *list_name; /* The name of this pseudo group */
1152
    const char *group_string; /* The group string of this pseudo group */
1153
} default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
1154
1155
/* Built-in pseudo group-names must start with a (D or d) */
1156
static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1157
1158
/* The list of all built-in pseudo-group-name structures */
1159
static const default_group_string_st default_group_strings[] = {
1160
    { DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST },
1161
    { SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST }
1162
};
1163
1164
/*
1165
 * Some GOST names are not resolved by tls1_group_name2id,
1166
 * hence we'll check for those manually
1167
 */
1168
typedef struct {
1169
    const char *group_name;
1170
    uint16_t groupID;
1171
} name2id_st;
1172
static const name2id_st name2id_arr[] = {
1173
    { "GC256A", OSSL_TLS_GROUP_ID_gc256A },
1174
    { "GC256B", OSSL_TLS_GROUP_ID_gc256B },
1175
    { "GC256C", OSSL_TLS_GROUP_ID_gc256C },
1176
    { "GC256D", OSSL_TLS_GROUP_ID_gc256D },
1177
    { "GC512A", OSSL_TLS_GROUP_ID_gc512A },
1178
    { "GC512B", OSSL_TLS_GROUP_ID_gc512B },
1179
    { "GC512C", OSSL_TLS_GROUP_ID_gc512C },
1180
};
1181
1182
/*
1183
 * Group list management:
1184
 * We establish three lists along with their related size counters:
1185
 * 1) List of (unique) groups
1186
 * 2) List of number of groups per group-priority-tuple
1187
 * 3) List of (unique) key share groups
1188
 */
1189
272k
#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1190
#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1191
1192
/*
1193
 * Preparation of the prefix used to indicate the desire to send a key share,
1194
 * the characters used as separators between groups or tuples of groups, the
1195
 * character to indicate that an unknown group should be ignored, and the
1196
 * character to indicate that a group should be deleted from a list
1197
 */
1198
#ifndef TUPLE_DELIMITER_CHARACTER
1199
/* The prefix characters to indicate group tuple boundaries */
1200
90.6k
#define TUPLE_DELIMITER_CHARACTER '/'
1201
#endif
1202
#ifndef GROUP_DELIMITER_CHARACTER
1203
/* The prefix characters to indicate group tuple boundaries */
1204
362k
#define GROUP_DELIMITER_CHARACTER ':'
1205
#endif
1206
#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1207
/* The prefix character to ignore unknown groups */
1208
725k
#define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1209
#endif
1210
#ifndef KEY_SHARE_INDICATOR_CHARACTER
1211
/* The prefix character to trigger a key share addition */
1212
181k
#define KEY_SHARE_INDICATOR_CHARACTER '*'
1213
#endif
1214
#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1215
/* The prefix character to trigger a key share removal */
1216
0
#define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1217
#endif
1218
static const char prefixes[] = { TUPLE_DELIMITER_CHARACTER,
1219
    GROUP_DELIMITER_CHARACTER,
1220
    IGNORE_UNKNOWN_GROUP_CHARACTER,
1221
    KEY_SHARE_INDICATOR_CHARACTER,
1222
    REMOVE_GROUP_INDICATOR_CHARACTER,
1223
    '\0' };
1224
1225
/*
1226
 * High-level description of how group strings are analyzed:
1227
 * A first call back function (tuple_cb) is used to process group tuples, and a
1228
 * second callback function (gid_cb) is used to process the groups inside a tuple.
1229
 * Those callback functions are (indirectly) called by CONF_parse_list with
1230
 * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1231
 * is used to keep track of the parsing results between the various calls
1232
 */
1233
1234
typedef struct {
1235
    SSL_CTX *ctx;
1236
    /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1237
    size_t gidmax; /* The memory allocation chunk size for the group IDs */
1238
    size_t gidcnt; /* Number of groups */
1239
    uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1240
    size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1241
    size_t tplcnt; /* Number of tuples */
1242
    size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1243
    size_t ksidmax; /* The memory allocation chunk size */
1244
    size_t ksidcnt; /* Number of key shares */
1245
    uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1246
    /* Variable to keep state between execution of callback or helper functions */
1247
    size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1248
    int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1249
} gid_cb_st;
1250
1251
/* Forward declaration of tuple callback function */
1252
static int tuple_cb(const char *tuple, int len, void *arg);
1253
1254
/*
1255
 * Extract and process the individual groups (and their prefixes if present)
1256
 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1257
 * and must be appended by a \0 if used as \0-terminated string
1258
 */
1259
static int gid_cb(const char *elem, int len, void *arg)
1260
725k
{
1261
725k
    gid_cb_st *garg = arg;
1262
725k
    size_t i, j, k;
1263
725k
    uint16_t gid = 0;
1264
725k
    int found_group = 0;
1265
725k
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1266
725k
    int retval = 1; /* We assume success */
1267
725k
    char *current_prefix;
1268
725k
    int ignore_unknown = 0;
1269
725k
    int add_keyshare = 0;
1270
725k
    int remove_group = 0;
1271
725k
    size_t restored_prefix_index = 0;
1272
725k
    char *restored_default_group_string;
1273
725k
    int continue_while_loop = 1;
1274
1275
    /* Sanity checks */
1276
725k
    if (garg == NULL || elem == NULL || len <= 0) {
1277
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1278
0
        return 0;
1279
0
    }
1280
1281
    /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1282
1.63M
    while (continue_while_loop && len > 0
1283
1.63M
        && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1284
906k
            || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1285
1286
906k
        switch (*current_prefix) {
1287
0
        case TUPLE_DELIMITER_CHARACTER:
1288
            /* tuple delimiter not allowed here -> syntax error */
1289
0
            return -1;
1290
0
            break;
1291
0
        case GROUP_DELIMITER_CHARACTER:
1292
0
            return -1; /* Not a valid prefix for a single group name-> syntax error */
1293
0
            break;
1294
181k
        case KEY_SHARE_INDICATOR_CHARACTER:
1295
181k
            if (add_keyshare)
1296
0
                return -1; /* Only single key share prefix allowed -> syntax error */
1297
181k
            add_keyshare = 1;
1298
181k
            ++elem;
1299
181k
            --len;
1300
181k
            break;
1301
0
        case REMOVE_GROUP_INDICATOR_CHARACTER:
1302
0
            if (remove_group)
1303
0
                return -1; /* Only single remove group prefix allowed -> syntax error */
1304
0
            remove_group = 1;
1305
0
            ++elem;
1306
0
            --len;
1307
0
            break;
1308
725k
        case IGNORE_UNKNOWN_GROUP_CHARACTER:
1309
725k
            if (ignore_unknown)
1310
0
                return -1; /* Only single ? allowed -> syntax error */
1311
725k
            ignore_unknown = 1;
1312
725k
            ++elem;
1313
725k
            --len;
1314
725k
            break;
1315
0
        default:
1316
            /*
1317
             * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1318
             * list of groups) should be added
1319
             */
1320
0
            for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1321
0
                if ((size_t)len == (strlen(default_group_strings[i].list_name))
1322
0
                    && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1323
                    /*
1324
                     * We're asked to insert an entire list of groups from a
1325
                     * DEFAULT[_XYZ] 'pseudo group' which we do by
1326
                     * recursively calling this function (indirectly via
1327
                     * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1328
                     * group string like a tuple which is appended to the current tuple
1329
                     * rather then starting a new tuple. Variable tuple_mode is the flag which
1330
                     * controls append tuple vs start new tuple.
1331
                     */
1332
1333
0
                    if (ignore_unknown || remove_group)
1334
0
                        return -1; /* removal or ignore not allowed here -> syntax error */
1335
1336
                    /*
1337
                     * First, we restore any keyshare prefix in a new zero-terminated string
1338
                     * (if not already present)
1339
                     */
1340
0
                    restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ + strlen(default_group_strings[i].group_string) + 1 /* \0 */) * sizeof(char));
1341
0
                    if (restored_default_group_string == NULL)
1342
0
                        return 0;
1343
0
                    if (add_keyshare
1344
                        /* Remark: we tolerate a duplicated keyshare indicator here */
1345
0
                        && default_group_strings[i].group_string[0]
1346
0
                            != KEY_SHARE_INDICATOR_CHARACTER)
1347
0
                        restored_default_group_string[restored_prefix_index++] = KEY_SHARE_INDICATOR_CHARACTER;
1348
1349
0
                    memcpy(restored_default_group_string + restored_prefix_index,
1350
0
                        default_group_strings[i].group_string,
1351
0
                        strlen(default_group_strings[i].group_string));
1352
0
                    restored_default_group_string[strlen(default_group_strings[i].group_string) + restored_prefix_index] = '\0';
1353
                    /* We execute the recursive call */
1354
0
                    garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1355
                    /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1356
0
                    garg->tuple_mode = 0;
1357
                    /* We use the tuple_cb callback to process the pseudo group tuple */
1358
0
                    retval = CONF_parse_list(restored_default_group_string,
1359
0
                        TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1360
0
                    garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1361
0
                    garg->ignore_unknown_default = 0; /* reset to original value */
1362
                    /* We don't need the \0-terminated string anymore */
1363
0
                    OPENSSL_free(restored_default_group_string);
1364
1365
0
                    return retval;
1366
0
                }
1367
0
            }
1368
            /*
1369
             * If we reached this point, a group name started with a 'd' or 'D', but no request
1370
             * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1371
             * name can continue as usual (= the while loop checking prefixes can end)
1372
             */
1373
0
            continue_while_loop = 0;
1374
0
            break;
1375
906k
        }
1376
906k
    }
1377
1378
725k
    if (len == 0)
1379
0
        return -1; /* Seems we have prefxes without a group name -> syntax error */
1380
1381
725k
    if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1382
0
        ignore_unknown = 1;
1383
1384
    /* Memory management in case more groups are present compared to initial allocation */
1385
725k
    if (garg->gidcnt == garg->gidmax) {
1386
0
        uint16_t *tmp = OPENSSL_realloc(garg->gid_arr,
1387
0
            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1388
1389
0
        if (tmp == NULL)
1390
0
            return 0;
1391
1392
0
        garg->gidmax += GROUPLIST_INCREMENT;
1393
0
        garg->gid_arr = tmp;
1394
0
    }
1395
    /* Memory management for key share groups */
1396
725k
    if (garg->ksidcnt == garg->ksidmax) {
1397
0
        uint16_t *tmp = OPENSSL_realloc(garg->ksid_arr,
1398
0
            (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1399
1400
0
        if (tmp == NULL)
1401
0
            return 0;
1402
0
        garg->ksidmax += GROUPLIST_INCREMENT;
1403
0
        garg->ksid_arr = tmp;
1404
0
    }
1405
1406
725k
    if (len > (int)(sizeof(etmp) - 1))
1407
0
        return -1; /* group name to long  -> syntax error */
1408
1409
    /*
1410
     * Prepare addition or removal of a single group by converting
1411
     * a group name into its groupID equivalent
1412
     */
1413
1414
    /* Create a \0-terminated string and get the gid for this group if possible */
1415
725k
    memcpy(etmp, elem, len);
1416
725k
    etmp[len] = 0;
1417
1418
    /* Get the groupID */
1419
725k
    gid = tls1_group_name2id(garg->ctx, etmp);
1420
    /*
1421
     * Handle the case where no valid groupID was returned
1422
     * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1423
     */
1424
725k
    if (gid == 0) {
1425
        /* Is it one of the GOST groups ? */
1426
0
        for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1427
0
            if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1428
0
                gid = name2id_arr[i].groupID;
1429
0
                break;
1430
0
            }
1431
0
        }
1432
0
        if (gid == 0) { /* still not found */
1433
            /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1434
0
            retval = ignore_unknown;
1435
0
            goto done;
1436
0
        }
1437
0
    }
1438
1439
    /* Make sure that at least one provider is supporting this groupID */
1440
725k
    found_group = 0;
1441
4.08M
    for (j = 0; j < garg->ctx->group_list_len; j++)
1442
4.08M
        if (garg->ctx->group_list[j].group_id == gid) {
1443
725k
            found_group = 1;
1444
725k
            break;
1445
725k
        }
1446
1447
    /*
1448
     * No provider supports this group - ignore if
1449
     * ignore_unknown; trigger error otherwise
1450
     */
1451
725k
    if (found_group == 0) {
1452
0
        retval = ignore_unknown;
1453
0
        goto done;
1454
0
    }
1455
    /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1456
725k
    if (remove_group) {
1457
        /* Is the current group specified anywhere in the entire list so far? */
1458
0
        found_group = 0;
1459
0
        for (i = 0; i < garg->gidcnt; i++)
1460
0
            if (garg->gid_arr[i] == gid) {
1461
0
                found_group = 1;
1462
0
                break;
1463
0
            }
1464
        /* The group to remove is at position i in the list of (zero indexed) groups */
1465
0
        if (found_group) {
1466
            /* We remove that group from its position (which is at i)... */
1467
0
            for (j = i; j < (garg->gidcnt - 1); j++)
1468
0
                garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1469
0
            garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1470
1471
            /*
1472
             * We also must update the number of groups either in a previous tuple (which we
1473
             * must identify and check whether it becomes empty due to the deletion) or in
1474
             * the current tuple, pending where the deleted group resides
1475
             */
1476
0
            k = 0;
1477
0
            for (j = 0; j < garg->tplcnt; j++) {
1478
0
                k += garg->tuplcnt_arr[j];
1479
                /* Remark: i is zero-indexed, k is one-indexed */
1480
0
                if (k > i) { /* remove from one of the previous tuples */
1481
0
                    garg->tuplcnt_arr[j]--;
1482
0
                    break; /* We took care not to have group duplicates, hence we can stop here */
1483
0
                }
1484
0
            }
1485
0
            if (k <= i) /* remove from current tuple */
1486
0
                garg->tuplcnt_arr[j]--;
1487
1488
            /* We also remove the group from the list of keyshares (if present) */
1489
0
            found_group = 0;
1490
0
            for (i = 0; i < garg->ksidcnt; i++)
1491
0
                if (garg->ksid_arr[i] == gid) {
1492
0
                    found_group = 1;
1493
0
                    break;
1494
0
                }
1495
0
            if (found_group) {
1496
                /* Found, hence we remove that keyshare from its position (which is at i)... */
1497
0
                for (j = i; j < (garg->ksidcnt - 1); j++)
1498
0
                    garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1499
                /* ... and update the book keeping */
1500
0
                garg->ksidcnt--;
1501
0
            }
1502
0
        }
1503
725k
    } else { /* Processing addition of a single new group */
1504
1505
        /* Check for duplicates */
1506
3.26M
        for (i = 0; i < garg->gidcnt; i++)
1507
2.53M
            if (garg->gid_arr[i] == gid) {
1508
                /* Duplicate group anywhere in the list of groups - ignore */
1509
0
                goto done;
1510
0
            }
1511
1512
        /* Add the current group to the 'flat' list of groups */
1513
725k
        garg->gid_arr[garg->gidcnt++] = gid;
1514
        /* and update the book keeping for the number of groups in current tuple */
1515
725k
        garg->tuplcnt_arr[garg->tplcnt]++;
1516
1517
        /* We memorize if needed that we want to add a key share for the current group */
1518
725k
        if (add_keyshare)
1519
181k
            garg->ksid_arr[garg->ksidcnt++] = gid;
1520
725k
    }
1521
1522
725k
done:
1523
725k
    return retval;
1524
725k
}
1525
1526
/* Extract and process a tuple of groups */
1527
static int tuple_cb(const char *tuple, int len, void *arg)
1528
362k
{
1529
362k
    gid_cb_st *garg = arg;
1530
362k
    int retval = 1; /* We assume success */
1531
362k
    char *restored_tuple_string;
1532
1533
    /* Sanity checks */
1534
362k
    if (garg == NULL || tuple == NULL || len <= 0) {
1535
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1536
0
        return 0;
1537
0
    }
1538
1539
    /* Memory management for tuples */
1540
362k
    if (garg->tplcnt == garg->tplmax) {
1541
0
        size_t *tmp = OPENSSL_realloc(garg->tuplcnt_arr,
1542
0
            (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1543
1544
0
        if (tmp == NULL)
1545
0
            return 0;
1546
0
        garg->tplmax += GROUPLIST_INCREMENT;
1547
0
        garg->tuplcnt_arr = tmp;
1548
0
    }
1549
1550
    /* Convert to \0-terminated string */
1551
362k
    restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1552
362k
    if (restored_tuple_string == NULL)
1553
0
        return 0;
1554
362k
    memcpy(restored_tuple_string, tuple, len);
1555
362k
    restored_tuple_string[len] = '\0';
1556
1557
    /* Analyze group list of this tuple */
1558
362k
    retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1559
1560
    /* We don't need the \o-terminated string anymore */
1561
362k
    OPENSSL_free(restored_tuple_string);
1562
1563
362k
    if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1564
362k
        if (garg->tuple_mode) {
1565
            /* We 'close' the tuple */
1566
362k
            garg->tplcnt++;
1567
362k
            garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1568
362k
            garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1569
362k
        }
1570
362k
    }
1571
1572
362k
    return retval;
1573
362k
}
1574
1575
/*
1576
 * Set groups and prepare generation of keyshares based on a string of groupnames,
1577
 * names separated by the group or the tuple delimiter, with per-group prefixes to
1578
 * (1) add a key share for this group, (2) ignore the group if unknown to the current
1579
 * context, (3) delete a previous occurrence of the group in the current tuple.
1580
 *
1581
 * The list parsing is done in two hierarchical steps: The top-level step extracts the
1582
 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1583
 * parse and process the groups inside a tuple
1584
 */
1585
int tls1_set_groups_list(SSL_CTX *ctx,
1586
    uint16_t **grpext, size_t *grpextlen,
1587
    uint16_t **ksext, size_t *ksextlen,
1588
    size_t **tplext, size_t *tplextlen,
1589
    const char *str)
1590
90.6k
{
1591
90.6k
    size_t i = 0, j;
1592
90.6k
    int ret = 0, parse_ret = 0;
1593
90.6k
    gid_cb_st gcb;
1594
1595
    /* Sanity check */
1596
90.6k
    if (ctx == NULL) {
1597
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1598
0
        return 0;
1599
0
    }
1600
1601
90.6k
    memset(&gcb, 0, sizeof(gcb));
1602
90.6k
    gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1603
90.6k
    gcb.ignore_unknown_default = 0;
1604
90.6k
    gcb.gidmax = GROUPLIST_INCREMENT;
1605
90.6k
    gcb.tplmax = GROUPLIST_INCREMENT;
1606
90.6k
    gcb.ksidmax = GROUPLIST_INCREMENT;
1607
90.6k
    gcb.ctx = ctx;
1608
1609
    /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1610
90.6k
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1611
90.6k
    if (gcb.gid_arr == NULL)
1612
0
        goto end;
1613
90.6k
    gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1614
90.6k
    if (gcb.tuplcnt_arr == NULL)
1615
0
        goto end;
1616
90.6k
    gcb.tuplcnt_arr[0] = 0;
1617
90.6k
    gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1618
90.6k
    if (gcb.ksid_arr == NULL)
1619
0
        goto end;
1620
1621
90.6k
    while (str[0] != '\0' && isspace((unsigned char)*str))
1622
0
        str++;
1623
90.6k
    if (str[0] == '\0')
1624
0
        goto empty_list;
1625
1626
    /*
1627
     * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1628
     * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1629
     */
1630
90.6k
    parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1631
1632
90.6k
    if (parse_ret == 0)
1633
0
        goto end;
1634
90.6k
    if (parse_ret == -1) {
1635
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1636
0
            "Syntax error in '%s'", str);
1637
0
        goto end;
1638
0
    }
1639
1640
    /*
1641
     * We check whether a tuple was completely emptied by using "-" prefix
1642
     * excessively, in which case we remove the tuple
1643
     */
1644
453k
    for (i = j = 0; j < gcb.tplcnt; j++) {
1645
362k
        if (gcb.tuplcnt_arr[j] == 0)
1646
0
            continue;
1647
        /* If there's a gap, move to first unfilled slot */
1648
362k
        if (j == i)
1649
362k
            ++i;
1650
0
        else
1651
0
            gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1652
362k
    }
1653
90.6k
    gcb.tplcnt = i;
1654
1655
90.6k
    if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1656
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1657
0
            "To many keyshares requested in '%s' (max = %d)",
1658
0
            str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1659
0
        goto end;
1660
0
    }
1661
1662
    /*
1663
     * For backward compatibility we let the rest of the code know that a key share
1664
     * for the first valid group should be added if no "*" prefix was used anywhere
1665
     */
1666
90.6k
    if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1667
        /*
1668
         * No key share group prefix character was used, hence we indicate that a single
1669
         * key share should be sent and flag that it should come from the supported_groups list
1670
         */
1671
0
        gcb.ksidcnt = 1;
1672
0
        gcb.ksid_arr[0] = 0;
1673
0
    }
1674
1675
90.6k
empty_list:
1676
    /*
1677
     * A call to tls1_set_groups_list with any of the args (other than ctx) set
1678
     * to NULL only does a syntax check, hence we're done here and report success
1679
     */
1680
90.6k
    if (grpext == NULL || ksext == NULL || tplext == NULL || grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1681
0
        ret = 1;
1682
0
        goto end;
1683
0
    }
1684
1685
    /*
1686
     * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1687
     * can just go ahead and set the results (after disposing the existing)
1688
     */
1689
90.6k
    OPENSSL_free(*grpext);
1690
90.6k
    *grpext = gcb.gid_arr;
1691
90.6k
    *grpextlen = gcb.gidcnt;
1692
90.6k
    OPENSSL_free(*ksext);
1693
90.6k
    *ksext = gcb.ksid_arr;
1694
90.6k
    *ksextlen = gcb.ksidcnt;
1695
90.6k
    OPENSSL_free(*tplext);
1696
90.6k
    *tplext = gcb.tuplcnt_arr;
1697
90.6k
    *tplextlen = gcb.tplcnt;
1698
1699
90.6k
    return 1;
1700
1701
0
end:
1702
0
    OPENSSL_free(gcb.gid_arr);
1703
0
    OPENSSL_free(gcb.tuplcnt_arr);
1704
0
    OPENSSL_free(gcb.ksid_arr);
1705
0
    return ret;
1706
90.6k
}
1707
1708
/* Check a group id matches preferences */
1709
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1710
    int check_own_groups)
1711
36.6k
{
1712
36.6k
    const uint16_t *groups;
1713
36.6k
    size_t groups_len;
1714
1715
36.6k
    if (group_id == 0)
1716
16
        return 0;
1717
1718
    /* Check for Suite B compliance */
1719
36.5k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1720
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1721
1722
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1723
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1724
0
                return 0;
1725
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1726
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1727
0
                return 0;
1728
0
        } else {
1729
            /* Should never happen */
1730
0
            return 0;
1731
0
        }
1732
0
    }
1733
1734
36.5k
    if (check_own_groups) {
1735
        /* Check group is one of our preferences */
1736
8.91k
        tls1_get_supported_groups(s, &groups, &groups_len);
1737
8.91k
        if (!tls1_in_list(group_id, groups, groups_len))
1738
147
            return 0;
1739
8.91k
    }
1740
1741
36.4k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1742
0
        return 0;
1743
1744
    /* For clients, nothing more to check */
1745
36.4k
    if (!s->server)
1746
8.77k
        return 1;
1747
1748
    /* Check group is one of peers preferences */
1749
27.6k
    tls1_get_peer_groups(s, &groups, &groups_len);
1750
1751
    /*
1752
     * RFC 4492 does not require the supported elliptic curves extension
1753
     * so if it is not sent we can just choose any curve.
1754
     * It is invalid to send an empty list in the supported groups
1755
     * extension, so groups_len == 0 always means no extension.
1756
     */
1757
27.6k
    if (groups_len == 0)
1758
13.6k
        return 1;
1759
14.0k
    return tls1_in_list(group_id, groups, groups_len);
1760
27.6k
}
1761
1762
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1763
    size_t *num_formats)
1764
78.5k
{
1765
    /*
1766
     * If we have a custom point format list use it otherwise use default
1767
     */
1768
78.5k
    if (s->ext.ecpointformats) {
1769
0
        *pformats = s->ext.ecpointformats;
1770
0
        *num_formats = s->ext.ecpointformats_len;
1771
78.5k
    } else {
1772
78.5k
        *pformats = ecformats_default;
1773
        /* For Suite B we don't support char2 fields */
1774
78.5k
        if (tls1_suiteb(s))
1775
0
            *num_formats = sizeof(ecformats_default) - 1;
1776
78.5k
        else
1777
78.5k
            *num_formats = sizeof(ecformats_default);
1778
78.5k
    }
1779
78.5k
}
1780
1781
/* Check a key is compatible with compression extension */
1782
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1783
29.1k
{
1784
29.1k
    unsigned char comp_id;
1785
29.1k
    size_t i;
1786
29.1k
    int point_conv;
1787
1788
    /* If not an EC key nothing to check */
1789
29.1k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1790
0
        return 1;
1791
1792
    /* Get required compression id */
1793
29.1k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1794
29.1k
    if (point_conv == 0)
1795
0
        return 0;
1796
29.1k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1797
29.0k
        comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1798
29.0k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1799
        /*
1800
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1801
         * this check.
1802
         */
1803
0
        return 1;
1804
104
    } else {
1805
104
        int field_type = EVP_PKEY_get_field_type(pkey);
1806
1807
104
        if (field_type == NID_X9_62_prime_field)
1808
98
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1809
6
        else if (field_type == NID_X9_62_characteristic_two_field)
1810
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1811
6
        else
1812
6
            return 0;
1813
104
    }
1814
    /*
1815
     * If point formats extension present check it, otherwise everything is
1816
     * supported (see RFC4492).
1817
     */
1818
29.1k
    if (s->ext.peer_ecpointformats == NULL)
1819
23.1k
        return 1;
1820
1821
10.4k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1822
9.47k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1823
5.04k
            return 1;
1824
9.47k
    }
1825
987
    return 0;
1826
6.03k
}
1827
1828
/* Return group id of a key */
1829
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1830
28.1k
{
1831
28.1k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1832
1833
28.1k
    if (curve_nid == NID_undef)
1834
0
        return 0;
1835
28.1k
    return tls1_nid2group_id(curve_nid);
1836
28.1k
}
1837
1838
/*
1839
 * Check cert parameters compatible with extensions: currently just checks EC
1840
 * certificates have compatible curves and compression.
1841
 */
1842
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1843
85.8k
{
1844
85.8k
    uint16_t group_id;
1845
85.8k
    EVP_PKEY *pkey;
1846
85.8k
    pkey = X509_get0_pubkey(x);
1847
85.8k
    if (pkey == NULL)
1848
0
        return 0;
1849
    /* If not EC nothing to do */
1850
85.8k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1851
57.2k
        return 1;
1852
    /* Check compression */
1853
28.6k
    if (!tls1_check_pkey_comp(s, pkey))
1854
959
        return 0;
1855
27.6k
    group_id = tls1_get_group_id(pkey);
1856
    /*
1857
     * For a server we allow the certificate to not be in our list of supported
1858
     * groups.
1859
     */
1860
27.6k
    if (!tls1_check_group_id(s, group_id, !s->server))
1861
7.29k
        return 0;
1862
    /*
1863
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1864
     * SHA384+P-384.
1865
     */
1866
20.3k
    if (check_ee_md && tls1_suiteb(s)) {
1867
0
        int check_md;
1868
0
        size_t i;
1869
1870
        /* Check to see we have necessary signing algorithm */
1871
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1872
0
            check_md = NID_ecdsa_with_SHA256;
1873
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1874
0
            check_md = NID_ecdsa_with_SHA384;
1875
0
        else
1876
0
            return 0; /* Should never happen */
1877
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1878
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1879
0
                return 1;
1880
0
        }
1881
0
        return 0;
1882
0
    }
1883
20.3k
    return 1;
1884
20.3k
}
1885
1886
/*
1887
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1888
 * @s: SSL connection
1889
 * @cid: Cipher ID we're considering using
1890
 *
1891
 * Checks that the kECDHE cipher suite we're considering using
1892
 * is compatible with the client extensions.
1893
 *
1894
 * Returns 0 when the cipher can't be used or 1 when it can.
1895
 */
1896
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1897
36.5k
{
1898
    /* If not Suite B just need a shared group */
1899
36.5k
    if (!tls1_suiteb(s))
1900
36.5k
        return tls1_shared_group(s, 0) != 0;
1901
    /*
1902
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1903
     * curves permitted.
1904
     */
1905
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1906
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1907
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1908
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1909
1910
0
    return 0;
1911
0
}
1912
1913
/* Default sigalg schemes */
1914
static const uint16_t tls12_sigalgs[] = {
1915
    TLSEXT_SIGALG_mldsa65,
1916
    TLSEXT_SIGALG_mldsa87,
1917
    TLSEXT_SIGALG_mldsa44,
1918
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1919
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1920
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1921
    TLSEXT_SIGALG_ed25519,
1922
    TLSEXT_SIGALG_ed448,
1923
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1924
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1925
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1926
1927
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1928
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1929
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1930
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1931
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1932
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1933
1934
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1935
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1936
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1937
1938
    TLSEXT_SIGALG_ecdsa_sha224,
1939
    TLSEXT_SIGALG_ecdsa_sha1,
1940
1941
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1942
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1943
1944
    TLSEXT_SIGALG_dsa_sha224,
1945
    TLSEXT_SIGALG_dsa_sha1,
1946
1947
    TLSEXT_SIGALG_dsa_sha256,
1948
    TLSEXT_SIGALG_dsa_sha384,
1949
    TLSEXT_SIGALG_dsa_sha512,
1950
1951
#ifndef OPENSSL_NO_GOST
1952
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1953
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1954
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1955
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1956
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1957
#endif
1958
};
1959
1960
static const uint16_t suiteb_sigalgs[] = {
1961
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1962
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1963
};
1964
1965
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1966
    { TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1967
        "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1968
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1969
        NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1970
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1971
    { TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1972
        "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1973
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1974
        NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1975
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1976
    { TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1977
        "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1978
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1979
        NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1980
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1981
1982
    { TLSEXT_SIGALG_ed25519_name,
1983
        NULL, TLSEXT_SIGALG_ed25519,
1984
        NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1985
        NID_undef, NID_undef, 1, 0,
1986
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1987
    { TLSEXT_SIGALG_ed448_name,
1988
        NULL, TLSEXT_SIGALG_ed448,
1989
        NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1990
        NID_undef, NID_undef, 1, 0,
1991
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1992
1993
    { TLSEXT_SIGALG_ecdsa_sha224_name,
1994
        "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
1995
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1996
        NID_ecdsa_with_SHA224, NID_undef, 1, 0,
1997
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
1998
    { TLSEXT_SIGALG_ecdsa_sha1_name,
1999
        "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2000
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2001
        NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2002
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2003
2004
    { TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2005
        TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2006
        TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2007
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2008
        NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2009
        TLS1_3_VERSION, 0, -1, -1 },
2010
    { TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2011
        TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2012
        TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2013
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2014
        NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2015
        TLS1_3_VERSION, 0, -1, -1 },
2016
    { TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2017
        TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2018
        TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2019
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2020
        NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2021
        TLS1_3_VERSION, 0, -1, -1 },
2022
2023
    { TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2024
        "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2025
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2026
        NID_undef, NID_undef, 1, 0,
2027
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2028
    { TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2029
        "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2030
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2031
        NID_undef, NID_undef, 1, 0,
2032
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2033
    { TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2034
        "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2035
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2036
        NID_undef, NID_undef, 1, 0,
2037
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2038
2039
    { TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2040
        NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2041
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2042
        NID_undef, NID_undef, 1, 0,
2043
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2044
    { TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2045
        NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2046
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2047
        NID_undef, NID_undef, 1, 0,
2048
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2049
    { TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2050
        NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2051
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2052
        NID_undef, NID_undef, 1, 0,
2053
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2054
2055
    { TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2056
        "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2057
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2058
        NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2059
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2060
    { TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2061
        "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2062
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2063
        NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2064
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2065
    { TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2066
        "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2067
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2068
        NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2069
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2070
2071
    { TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2072
        "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2073
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2074
        NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2075
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2076
    { TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2077
        "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2078
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2079
        NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2080
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2081
2082
    { TLSEXT_SIGALG_dsa_sha256_name,
2083
        "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2084
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2085
        NID_dsa_with_SHA256, NID_undef, 1, 0,
2086
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2087
    { TLSEXT_SIGALG_dsa_sha384_name,
2088
        "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2089
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2090
        NID_undef, NID_undef, 1, 0,
2091
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2092
    { TLSEXT_SIGALG_dsa_sha512_name,
2093
        "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2094
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2095
        NID_undef, NID_undef, 1, 0,
2096
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2097
    { TLSEXT_SIGALG_dsa_sha224_name,
2098
        "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2099
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2100
        NID_undef, NID_undef, 1, 0,
2101
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2102
    { TLSEXT_SIGALG_dsa_sha1_name,
2103
        "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2104
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2105
        NID_dsaWithSHA1, NID_undef, 1, 0,
2106
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2107
2108
#ifndef OPENSSL_NO_GOST
2109
    { TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2110
        TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2111
        TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2112
        NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2113
        NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2114
        NID_undef, NID_undef, 1, 0,
2115
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2116
    { TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2117
        TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2118
        TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2119
        NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2120
        NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2121
        NID_undef, NID_undef, 1, 0,
2122
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2123
2124
    { TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2125
        NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2126
        NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2127
        NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2128
        NID_undef, NID_undef, 1, 0,
2129
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2130
    { TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2131
        NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2132
        NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2133
        NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2134
        NID_undef, NID_undef, 1, 0,
2135
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2136
    { TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2137
        NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2138
        NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2139
        NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2140
        NID_undef, NID_undef, 1, 0,
2141
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2142
#endif
2143
};
2144
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2145
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2146
    "rsa_pkcs1_md5_sha1", NULL, 0,
2147
    NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2148
    EVP_PKEY_RSA, SSL_PKEY_RSA,
2149
    NID_undef, NID_undef, 1, 0,
2150
    TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2151
};
2152
2153
/*
2154
 * Default signature algorithm values used if signature algorithms not present.
2155
 * From RFC5246. Note: order must match certificate index order.
2156
 */
2157
static const uint16_t tls_default_sigalg[] = {
2158
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2159
    0, /* SSL_PKEY_RSA_PSS_SIGN */
2160
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2161
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2162
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2163
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2164
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2165
    0, /* SSL_PKEY_ED25519 */
2166
    0, /* SSL_PKEY_ED448 */
2167
};
2168
2169
int ssl_setup_sigalgs(SSL_CTX *ctx)
2170
90.6k
{
2171
90.6k
    size_t i, cache_idx, sigalgs_len, enabled;
2172
90.6k
    const SIGALG_LOOKUP *lu;
2173
90.6k
    SIGALG_LOOKUP *cache = NULL;
2174
90.6k
    uint16_t *tls12_sigalgs_list = NULL;
2175
90.6k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2176
90.6k
    int istls;
2177
90.6k
    int ret = 0;
2178
2179
90.6k
    if (ctx == NULL)
2180
0
        goto err;
2181
2182
90.6k
    istls = !SSL_CTX_IS_DTLS(ctx);
2183
2184
90.6k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2185
2186
90.6k
    cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2187
90.6k
    if (cache == NULL || tmpkey == NULL)
2188
0
        goto err;
2189
2190
90.6k
    tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2191
90.6k
    if (tls12_sigalgs_list == NULL)
2192
0
        goto err;
2193
2194
90.6k
    ERR_set_mark();
2195
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2196
90.6k
    for (i = 0, lu = sigalg_lookup_tbl;
2197
2.90M
        i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2198
2.81M
        EVP_PKEY_CTX *pctx;
2199
2200
2.81M
        cache[i] = *lu;
2201
2202
        /*
2203
         * Check hash is available.
2204
         * This test is not perfect. A provider could have support
2205
         * for a signature scheme, but not a particular hash. However the hash
2206
         * could be available from some other loaded provider. In that case it
2207
         * could be that the signature is available, and the hash is available
2208
         * independently - but not as a combination. We ignore this for now.
2209
         */
2210
2.81M
        if (lu->hash != NID_undef
2211
2.63M
            && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2212
453k
            cache[i].available = 0;
2213
453k
            continue;
2214
453k
        }
2215
2216
2.35M
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2217
0
            cache[i].available = 0;
2218
0
            continue;
2219
0
        }
2220
2.35M
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2221
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2222
2.35M
        if (pctx == NULL)
2223
0
            cache[i].available = 0;
2224
2.35M
        EVP_PKEY_CTX_free(pctx);
2225
2.35M
    }
2226
2227
    /* Now complete cache and tls12_sigalgs list with provider sig information */
2228
90.6k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2229
362k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
2230
272k
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2231
272k
        cache[cache_idx].name = si.name;
2232
272k
        cache[cache_idx].name12 = si.sigalg_name;
2233
272k
        cache[cache_idx].sigalg = si.code_point;
2234
272k
        tls12_sigalgs_list[cache_idx] = si.code_point;
2235
272k
        cache[cache_idx].hash = si.hash_name ? OBJ_txt2nid(si.hash_name) : NID_undef;
2236
272k
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2237
272k
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2238
272k
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
2239
272k
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2240
272k
        cache[cache_idx].curve = NID_undef;
2241
272k
        cache[cache_idx].mintls = TLS1_3_VERSION;
2242
272k
        cache[cache_idx].maxtls = TLS1_3_VERSION;
2243
272k
        cache[cache_idx].mindtls = -1;
2244
272k
        cache[cache_idx].maxdtls = -1;
2245
        /* Compatibility with TLS 1.3 is checked on load */
2246
272k
        cache[cache_idx].available = istls;
2247
272k
        cache[cache_idx].advertise = 0;
2248
272k
        cache_idx++;
2249
272k
    }
2250
90.6k
    ERR_pop_to_mark();
2251
2252
90.6k
    enabled = 0;
2253
3.17M
    for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2254
3.08M
        SIGALG_LOOKUP *ent = cache;
2255
3.08M
        size_t j;
2256
2257
53.9M
        for (j = 0; j < sigalgs_len; ent++, j++) {
2258
53.9M
            if (ent->sigalg != tls12_sigalgs[i])
2259
50.8M
                continue;
2260
            /* Dedup by marking cache entry as default enabled. */
2261
3.08M
            if (ent->available && !ent->advertise) {
2262
2.55M
                ent->advertise = 1;
2263
2.55M
                tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2264
2.55M
            }
2265
3.08M
            break;
2266
53.9M
        }
2267
3.08M
    }
2268
2269
    /* Append any provider sigalgs not yet handled */
2270
362k
    for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2271
272k
        SIGALG_LOOKUP *ent = &cache[i];
2272
2273
272k
        if (ent->available && !ent->advertise)
2274
0
            tls12_sigalgs_list[enabled++] = ent->sigalg;
2275
272k
    }
2276
2277
90.6k
    ctx->sigalg_lookup_cache = cache;
2278
90.6k
    ctx->sigalg_lookup_cache_len = sigalgs_len;
2279
90.6k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
2280
90.6k
    ctx->tls12_sigalgs_len = enabled;
2281
90.6k
    cache = NULL;
2282
90.6k
    tls12_sigalgs_list = NULL;
2283
2284
90.6k
    ret = 1;
2285
90.6k
err:
2286
90.6k
    OPENSSL_free(cache);
2287
90.6k
    OPENSSL_free(tls12_sigalgs_list);
2288
90.6k
    EVP_PKEY_free(tmpkey);
2289
90.6k
    return ret;
2290
90.6k
}
2291
2292
0
#define SIGLEN_BUF_INCREMENT 100
2293
2294
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2295
0
{
2296
0
    size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2297
0
    const SIGALG_LOOKUP *lu;
2298
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2299
0
    char *retval = OPENSSL_malloc(maxretlen);
2300
2301
0
    if (retval == NULL)
2302
0
        return NULL;
2303
2304
    /* ensure retval string is NUL terminated */
2305
0
    retval[0] = (char)0;
2306
2307
0
    for (i = 0, lu = sigalg_lookup_tbl;
2308
0
        i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2309
0
        EVP_PKEY_CTX *pctx;
2310
0
        int enabled = 1;
2311
2312
0
        ERR_set_mark();
2313
        /* Check hash is available in some provider. */
2314
0
        if (lu->hash != NID_undef) {
2315
0
            EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2316
2317
            /* If unable to create we assume the hash algorithm is unavailable */
2318
0
            if (hash == NULL) {
2319
0
                enabled = 0;
2320
0
                ERR_pop_to_mark();
2321
0
                continue;
2322
0
            }
2323
0
            EVP_MD_free(hash);
2324
0
        }
2325
2326
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2327
0
            enabled = 0;
2328
0
            ERR_pop_to_mark();
2329
0
            continue;
2330
0
        }
2331
0
        pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2332
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2333
0
        if (pctx == NULL)
2334
0
            enabled = 0;
2335
0
        ERR_pop_to_mark();
2336
0
        EVP_PKEY_CTX_free(pctx);
2337
2338
0
        if (enabled) {
2339
0
            const char *sa = lu->name;
2340
2341
0
            if (sa != NULL) {
2342
0
                if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2343
0
                    char *tmp;
2344
2345
0
                    maxretlen += SIGLEN_BUF_INCREMENT;
2346
0
                    tmp = OPENSSL_realloc(retval, maxretlen);
2347
0
                    if (tmp == NULL) {
2348
0
                        OPENSSL_free(retval);
2349
0
                        return NULL;
2350
0
                    }
2351
0
                    retval = tmp;
2352
0
                }
2353
0
                if (strlen(retval) > 0)
2354
0
                    OPENSSL_strlcat(retval, ":", maxretlen);
2355
0
                OPENSSL_strlcat(retval, sa, maxretlen);
2356
0
            } else {
2357
                /* lu->name must not be NULL */
2358
0
                ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2359
0
            }
2360
0
        }
2361
0
    }
2362
2363
0
    EVP_PKEY_free(tmpkey);
2364
0
    return retval;
2365
0
}
2366
2367
/* Lookup TLS signature algorithm */
2368
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2369
    uint16_t sigalg)
2370
14.5M
{
2371
14.5M
    size_t i;
2372
14.5M
    const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2373
2374
232M
    for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2375
232M
        if (lu->sigalg == sigalg) {
2376
14.2M
            if (!lu->available)
2377
1.13M
                return NULL;
2378
13.0M
            return lu;
2379
14.2M
        }
2380
232M
    }
2381
377k
    return NULL;
2382
14.5M
}
2383
2384
/* Lookup hash: return 0 if invalid or not enabled */
2385
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2386
4.10M
{
2387
4.10M
    const EVP_MD *md;
2388
2389
4.10M
    if (lu == NULL)
2390
0
        return 0;
2391
    /* lu->hash == NID_undef means no associated digest */
2392
4.10M
    if (lu->hash == NID_undef) {
2393
402k
        md = NULL;
2394
3.70M
    } else {
2395
3.70M
        md = ssl_md(ctx, lu->hash_idx);
2396
3.70M
        if (md == NULL)
2397
0
            return 0;
2398
3.70M
    }
2399
4.10M
    if (pmd)
2400
4.01M
        *pmd = md;
2401
4.10M
    return 1;
2402
4.10M
}
2403
2404
/*
2405
 * Check if key is large enough to generate RSA-PSS signature.
2406
 *
2407
 * The key must greater than or equal to 2 * hash length + 2.
2408
 * SHA512 has a hash length of 64 bytes, which is incompatible
2409
 * with a 128 byte (1024 bit) key.
2410
 */
2411
1.32k
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
2412
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2413
    const SIGALG_LOOKUP *lu)
2414
1.32k
{
2415
1.32k
    const EVP_MD *md;
2416
2417
1.32k
    if (pkey == NULL)
2418
0
        return 0;
2419
1.32k
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2420
0
        return 0;
2421
1.32k
    if (EVP_MD_get_size(md) <= 0)
2422
0
        return 0;
2423
1.32k
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2424
0
        return 0;
2425
1.32k
    return 1;
2426
1.32k
}
2427
2428
/*
2429
 * Returns a signature algorithm when the peer did not send a list of supported
2430
 * signature algorithms. The signature algorithm is fixed for the certificate
2431
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2432
 * certificate type from |s| will be used.
2433
 * Returns the signature algorithm to use, or NULL on error.
2434
 */
2435
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2436
    int idx)
2437
276k
{
2438
276k
    if (idx == -1) {
2439
20.4k
        if (s->server) {
2440
20.4k
            size_t i;
2441
2442
            /* Work out index corresponding to ciphersuite */
2443
29.4k
            for (i = 0; i < s->ssl_pkey_num; i++) {
2444
29.4k
                const SSL_CERT_LOOKUP *clu
2445
29.4k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2446
2447
29.4k
                if (clu == NULL)
2448
0
                    continue;
2449
29.4k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2450
20.4k
                    idx = i;
2451
20.4k
                    break;
2452
20.4k
                }
2453
29.4k
            }
2454
2455
            /*
2456
             * Some GOST ciphersuites allow more than one signature algorithms
2457
             * */
2458
20.4k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2459
0
                int real_idx;
2460
2461
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2462
0
                    real_idx--) {
2463
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
2464
0
                        idx = real_idx;
2465
0
                        break;
2466
0
                    }
2467
0
                }
2468
0
            }
2469
            /*
2470
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2471
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2472
             */
2473
20.4k
            else if (idx == SSL_PKEY_GOST12_256) {
2474
0
                int real_idx;
2475
2476
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2477
0
                    real_idx--) {
2478
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
2479
0
                        idx = real_idx;
2480
0
                        break;
2481
0
                    }
2482
0
                }
2483
0
            }
2484
20.4k
        } else {
2485
0
            idx = s->cert->key - s->cert->pkeys;
2486
0
        }
2487
20.4k
    }
2488
276k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2489
38.9k
        return NULL;
2490
2491
237k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2492
227k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2493
227k
            tls_default_sigalg[idx]);
2494
2495
227k
        if (lu == NULL)
2496
143k
            return NULL;
2497
84.0k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2498
0
            return NULL;
2499
84.0k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2500
0
            return NULL;
2501
84.0k
        return lu;
2502
84.0k
    }
2503
9.94k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2504
0
        return NULL;
2505
9.94k
    return &legacy_rsa_sigalg;
2506
9.94k
}
2507
/* Set peer sigalg based key type */
2508
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2509
1.94k
{
2510
1.94k
    size_t idx;
2511
1.94k
    const SIGALG_LOOKUP *lu;
2512
2513
1.94k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2514
0
        return 0;
2515
1.94k
    lu = tls1_get_legacy_sigalg(s, idx);
2516
1.94k
    if (lu == NULL)
2517
9
        return 0;
2518
1.93k
    s->s3.tmp.peer_sigalg = lu;
2519
1.93k
    return 1;
2520
1.94k
}
2521
2522
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2523
538k
{
2524
    /*
2525
     * If Suite B mode use Suite B sigalgs only, ignore any other
2526
     * preferences.
2527
     */
2528
538k
    switch (tls1_suiteb(s)) {
2529
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
2530
0
        *psigs = suiteb_sigalgs;
2531
0
        return OSSL_NELEM(suiteb_sigalgs);
2532
2533
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2534
0
        *psigs = suiteb_sigalgs;
2535
0
        return 1;
2536
2537
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
2538
0
        *psigs = suiteb_sigalgs + 1;
2539
0
        return 1;
2540
538k
    }
2541
    /*
2542
     *  We use client_sigalgs (if not NULL) if we're a server
2543
     *  and sending a certificate request or if we're a client and
2544
     *  determining which shared algorithm to use.
2545
     */
2546
538k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2547
0
        *psigs = s->cert->client_sigalgs;
2548
0
        return s->cert->client_sigalgslen;
2549
538k
    } else if (s->cert->conf_sigalgs) {
2550
0
        *psigs = s->cert->conf_sigalgs;
2551
0
        return s->cert->conf_sigalgslen;
2552
538k
    } else {
2553
538k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2554
538k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2555
538k
    }
2556
538k
}
2557
2558
/*
2559
 * Called by servers only. Checks that we have a sig alg that supports the
2560
 * specified EC curve.
2561
 */
2562
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2563
0
{
2564
0
    const uint16_t *sigs;
2565
0
    size_t siglen, i;
2566
2567
0
    if (s->cert->conf_sigalgs) {
2568
0
        sigs = s->cert->conf_sigalgs;
2569
0
        siglen = s->cert->conf_sigalgslen;
2570
0
    } else {
2571
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2572
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2573
0
    }
2574
2575
0
    for (i = 0; i < siglen; i++) {
2576
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2577
2578
0
        if (lu == NULL)
2579
0
            continue;
2580
0
        if (lu->sig == EVP_PKEY_EC
2581
0
            && lu->curve != NID_undef
2582
0
            && curve == lu->curve)
2583
0
            return 1;
2584
0
    }
2585
2586
0
    return 0;
2587
0
}
2588
2589
/*
2590
 * Return the number of security bits for the signature algorithm, or 0 on
2591
 * error.
2592
 */
2593
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2594
2.97M
{
2595
2.97M
    const EVP_MD *md = NULL;
2596
2.97M
    int secbits = 0;
2597
2598
2.97M
    if (!tls1_lookup_md(ctx, lu, &md))
2599
0
        return 0;
2600
2.97M
    if (md != NULL) {
2601
2.63M
        int md_type = EVP_MD_get_type(md);
2602
2603
        /* Security bits: half digest bits */
2604
2.63M
        secbits = EVP_MD_get_size(md) * 4;
2605
2.63M
        if (secbits <= 0)
2606
0
            return 0;
2607
        /*
2608
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
2609
         * they're no longer accepted at security level 1. The real values don't
2610
         * really matter as long as they're lower than 80, which is our
2611
         * security level 1.
2612
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2613
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2614
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2615
         * puts a chosen-prefix attack for MD5 at 2^39.
2616
         */
2617
2.63M
        if (md_type == NID_sha1)
2618
247k
            secbits = 64;
2619
2.38M
        else if (md_type == NID_md5_sha1)
2620
7.63k
            secbits = 67;
2621
2.37M
        else if (md_type == NID_md5)
2622
0
            secbits = 39;
2623
2.63M
    } else {
2624
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2625
339k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2626
89.1k
            secbits = 128;
2627
250k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2628
101k
            secbits = 224;
2629
339k
    }
2630
    /*
2631
     * For provider-based sigalgs we have secbits information available
2632
     * in the (provider-loaded) sigalg_list structure
2633
     */
2634
2.97M
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2635
148k
        && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2636
148k
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2637
148k
    }
2638
2.97M
    return secbits;
2639
2.97M
}
2640
2641
static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2642
1.85M
{
2643
1.85M
    int minversion, maxversion;
2644
1.85M
    int minproto, maxproto;
2645
2646
1.85M
    if (!lu->available)
2647
0
        return 0;
2648
2649
1.85M
    if (SSL_CONNECTION_IS_DTLS(sc)) {
2650
386k
        if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2651
378k
            minproto = sc->min_proto_version;
2652
378k
            maxproto = sc->max_proto_version;
2653
378k
        } else {
2654
8.17k
            maxproto = minproto = sc->version;
2655
8.17k
        }
2656
386k
        minversion = lu->mindtls;
2657
386k
        maxversion = lu->maxdtls;
2658
1.47M
    } else {
2659
1.47M
        if (sc->ssl.method->version == TLS_ANY_VERSION) {
2660
1.43M
            minproto = sc->min_proto_version;
2661
1.43M
            maxproto = sc->max_proto_version;
2662
1.43M
        } else {
2663
36.8k
            maxproto = minproto = sc->version;
2664
36.8k
        }
2665
1.47M
        minversion = lu->mintls;
2666
1.47M
        maxversion = lu->maxtls;
2667
1.47M
    }
2668
1.85M
    if (minversion == -1 || maxversion == -1
2669
1.81M
        || (minversion != 0 && maxproto != 0
2670
44.6k
            && ssl_version_cmp(sc, minversion, maxproto) > 0)
2671
1.81M
        || (maxversion != 0 && minproto != 0
2672
364k
            && ssl_version_cmp(sc, maxversion, minproto) < 0)
2673
1.54M
        || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2674
311k
        return 0;
2675
1.54M
    return 1;
2676
1.85M
}
2677
2678
/*
2679
 * Check signature algorithm is consistent with sent supported signature
2680
 * algorithms and if so set relevant digest and signature scheme in
2681
 * s.
2682
 */
2683
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2684
11.7k
{
2685
11.7k
    const uint16_t *sent_sigs;
2686
11.7k
    const EVP_MD *md = NULL;
2687
11.7k
    char sigalgstr[2];
2688
11.7k
    size_t sent_sigslen, i, cidx;
2689
11.7k
    int pkeyid = -1;
2690
11.7k
    const SIGALG_LOOKUP *lu;
2691
11.7k
    int secbits = 0;
2692
2693
11.7k
    pkeyid = EVP_PKEY_get_id(pkey);
2694
2695
11.7k
    if (SSL_CONNECTION_IS_TLS13(s)) {
2696
        /* Disallow DSA for TLS 1.3 */
2697
9.44k
        if (pkeyid == EVP_PKEY_DSA) {
2698
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2699
0
            return 0;
2700
0
        }
2701
        /* Only allow PSS for TLS 1.3 */
2702
9.44k
        if (pkeyid == EVP_PKEY_RSA)
2703
9.42k
            pkeyid = EVP_PKEY_RSA_PSS;
2704
9.44k
    }
2705
2706
    /* Is this code point available and compatible with the protocol */
2707
11.7k
    lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2708
11.7k
    if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2709
107
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2710
107
        return 0;
2711
107
    }
2712
2713
    /* If we don't know the pkey nid yet go and find it */
2714
11.6k
    if (pkeyid == EVP_PKEY_KEYMGMT) {
2715
0
        const SSL_CERT_LOOKUP *scl = ssl_cert_lookup_by_pkey(pkey, NULL, SSL_CONNECTION_GET_CTX(s));
2716
2717
0
        if (scl == NULL) {
2718
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2719
0
            return 0;
2720
0
        }
2721
0
        pkeyid = scl->pkey_nid;
2722
0
    }
2723
2724
    /* Should never happen */
2725
11.6k
    if (pkeyid == -1) {
2726
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2727
0
        return -1;
2728
0
    }
2729
2730
    /*
2731
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2732
     * is consistent with signature: RSA keys can be used for RSA-PSS
2733
     */
2734
11.6k
    if ((SSL_CONNECTION_IS_TLS13(s)
2735
9.40k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2736
11.6k
        || (pkeyid != lu->sig
2737
322
            && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2738
38
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2739
38
        return 0;
2740
38
    }
2741
    /* Check the sigalg is consistent with the key OID */
2742
11.5k
    if (!ssl_cert_lookup_by_nid(
2743
11.5k
            (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2744
11.5k
            &cidx, SSL_CONNECTION_GET_CTX(s))
2745
11.5k
        || lu->sig_idx != (int)cidx) {
2746
8
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2747
8
        return 0;
2748
8
    }
2749
2750
11.5k
    if (pkeyid == EVP_PKEY_EC) {
2751
2752
        /* Check point compression is permitted */
2753
224
        if (!tls1_check_pkey_comp(s, pkey)) {
2754
12
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2755
12
                SSL_R_ILLEGAL_POINT_COMPRESSION);
2756
12
            return 0;
2757
12
        }
2758
2759
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2760
212
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2761
0
            int curve = ssl_get_EC_curve_nid(pkey);
2762
2763
0
            if (lu->curve != NID_undef && curve != lu->curve) {
2764
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2765
0
                return 0;
2766
0
            }
2767
0
        }
2768
212
        if (!SSL_CONNECTION_IS_TLS13(s)) {
2769
            /* Check curve matches extensions */
2770
212
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2771
5
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2772
5
                return 0;
2773
5
            }
2774
207
            if (tls1_suiteb(s)) {
2775
                /* Check sigalg matches a permissible Suite B value */
2776
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2777
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2778
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2779
0
                        SSL_R_WRONG_SIGNATURE_TYPE);
2780
0
                    return 0;
2781
0
                }
2782
0
            }
2783
207
        }
2784
11.3k
    } else if (tls1_suiteb(s)) {
2785
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2786
0
        return 0;
2787
0
    }
2788
2789
    /* Check signature matches a type we sent */
2790
11.5k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2791
189k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2792
189k
        if (sig == *sent_sigs)
2793
11.5k
            break;
2794
189k
    }
2795
    /* Allow fallback to SHA1 if not strict mode */
2796
11.5k
    if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2797
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2798
0
        return 0;
2799
0
    }
2800
11.5k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2801
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2802
0
        return 0;
2803
0
    }
2804
    /*
2805
     * Make sure security callback allows algorithm. For historical
2806
     * reasons we have to pass the sigalg as a two byte char array.
2807
     */
2808
11.5k
    sigalgstr[0] = (sig >> 8) & 0xff;
2809
11.5k
    sigalgstr[1] = sig & 0xff;
2810
11.5k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2811
11.5k
    if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_get_type(md) : NID_undef, (void *)sigalgstr)) {
2812
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2813
0
        return 0;
2814
0
    }
2815
    /* Store the sigalg the peer uses */
2816
11.5k
    s->s3.tmp.peer_sigalg = lu;
2817
11.5k
    return 1;
2818
11.5k
}
2819
2820
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2821
0
{
2822
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2823
2824
0
    if (sc == NULL)
2825
0
        return 0;
2826
2827
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2828
0
        return 0;
2829
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2830
0
    return 1;
2831
0
}
2832
2833
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2834
0
{
2835
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2836
2837
0
    if (sc == NULL)
2838
0
        return 0;
2839
2840
0
    if (sc->s3.tmp.sigalg == NULL)
2841
0
        return 0;
2842
0
    *pnid = sc->s3.tmp.sigalg->sig;
2843
0
    return 1;
2844
0
}
2845
2846
/*
2847
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2848
 * supported, doesn't appear in supported signature algorithms, isn't supported
2849
 * by the enabled protocol versions or by the security level.
2850
 *
2851
 * This function should only be used for checking which ciphers are supported
2852
 * by the client.
2853
 *
2854
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2855
 */
2856
int ssl_set_client_disabled(SSL_CONNECTION *s)
2857
353k
{
2858
353k
    s->s3.tmp.mask_a = 0;
2859
353k
    s->s3.tmp.mask_k = 0;
2860
353k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2861
353k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2862
353k
            &s->s3.tmp.max_ver, NULL)
2863
353k
        != 0)
2864
0
        return 0;
2865
353k
#ifndef OPENSSL_NO_PSK
2866
    /* with PSK there must be client callback set */
2867
353k
    if (!s->psk_client_callback) {
2868
353k
        s->s3.tmp.mask_a |= SSL_aPSK;
2869
353k
        s->s3.tmp.mask_k |= SSL_PSK;
2870
353k
    }
2871
353k
#endif /* OPENSSL_NO_PSK */
2872
353k
#ifndef OPENSSL_NO_SRP
2873
353k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2874
353k
        s->s3.tmp.mask_a |= SSL_aSRP;
2875
353k
        s->s3.tmp.mask_k |= SSL_kSRP;
2876
353k
    }
2877
353k
#endif
2878
353k
    return 1;
2879
353k
}
2880
2881
/*
2882
 * ssl_cipher_disabled - check that a cipher is disabled or not
2883
 * @s: SSL connection that you want to use the cipher on
2884
 * @c: cipher to check
2885
 * @op: Security check that you want to do
2886
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2887
 *
2888
 * Returns 1 when it's disabled, 0 when enabled.
2889
 */
2890
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2891
    int op, int ecdhe)
2892
31.8M
{
2893
31.8M
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2894
31.8M
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2895
2896
31.8M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2897
18.5M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2898
13.2M
        return 1;
2899
18.5M
    if (s->s3.tmp.max_ver == 0)
2900
0
        return 1;
2901
2902
18.5M
    if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2903
        /* For QUIC, only allow these ciphersuites. */
2904
479k
        switch (SSL_CIPHER_get_id(c)) {
2905
152k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2906
325k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2907
479k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2908
479k
            break;
2909
34
        default:
2910
34
            return 1;
2911
479k
        }
2912
2913
    /*
2914
     * For historical reasons we will allow ECHDE to be selected by a server
2915
     * in SSLv3 if we are a client
2916
     */
2917
18.5M
    if (minversion == TLS1_VERSION
2918
1.24M
        && ecdhe
2919
5.47k
        && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2920
5.46k
        minversion = SSL3_VERSION;
2921
2922
18.5M
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2923
18.0M
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2924
453k
        return 1;
2925
2926
18.0M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2927
18.5M
}
2928
2929
int tls_use_ticket(SSL_CONNECTION *s)
2930
165k
{
2931
165k
    if ((s->options & SSL_OP_NO_TICKET))
2932
0
        return 0;
2933
165k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2934
165k
}
2935
2936
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2937
29.6k
{
2938
29.6k
    size_t i;
2939
2940
    /* Clear any shared signature algorithms */
2941
29.6k
    OPENSSL_free(s->shared_sigalgs);
2942
29.6k
    s->shared_sigalgs = NULL;
2943
29.6k
    s->shared_sigalgslen = 0;
2944
2945
    /* Clear certificate validity flags */
2946
29.6k
    if (s->s3.tmp.valid_flags)
2947
113
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2948
29.5k
    else
2949
29.5k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2950
29.6k
    if (s->s3.tmp.valid_flags == NULL)
2951
0
        return 0;
2952
    /*
2953
     * If peer sent no signature algorithms check to see if we support
2954
     * the default algorithm for each certificate type
2955
     */
2956
29.6k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2957
28.9k
        && s->s3.tmp.peer_sigalgs == NULL) {
2958
21.9k
        const uint16_t *sent_sigs;
2959
21.9k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2960
2961
258k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2962
236k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2963
236k
            size_t j;
2964
2965
236k
            if (lu == NULL)
2966
170k
                continue;
2967
            /* Check default matches a type we sent */
2968
1.48M
            for (j = 0; j < sent_sigslen; j++) {
2969
1.47M
                if (lu->sigalg == sent_sigs[j]) {
2970
60.4k
                    s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2971
60.4k
                    break;
2972
60.4k
                }
2973
1.47M
            }
2974
65.8k
        }
2975
21.9k
        return 1;
2976
21.9k
    }
2977
2978
7.68k
    if (!tls1_process_sigalgs(s)) {
2979
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2980
0
        return 0;
2981
0
    }
2982
7.68k
    if (s->shared_sigalgs != NULL)
2983
7.57k
        return 1;
2984
2985
    /* Fatal error if no shared signature algorithms */
2986
7.68k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2987
108
        SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2988
108
    return 0;
2989
7.68k
}
2990
2991
/*-
2992
 * Gets the ticket information supplied by the client if any.
2993
 *
2994
 *   hello: The parsed ClientHello data
2995
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2996
 *       point to the resulting session.
2997
 */
2998
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2999
    CLIENTHELLO_MSG *hello,
3000
    SSL_SESSION **ret)
3001
30.3k
{
3002
30.3k
    size_t size;
3003
30.3k
    RAW_EXTENSION *ticketext;
3004
3005
30.3k
    *ret = NULL;
3006
30.3k
    s->ext.ticket_expected = 0;
3007
3008
    /*
3009
     * If tickets disabled or not supported by the protocol version
3010
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3011
     * resumption.
3012
     */
3013
30.3k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3014
0
        return SSL_TICKET_NONE;
3015
3016
30.3k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3017
30.3k
    if (!ticketext->present)
3018
23.9k
        return SSL_TICKET_NONE;
3019
3020
6.47k
    size = PACKET_remaining(&ticketext->data);
3021
3022
6.47k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3023
6.47k
        hello->session_id, hello->session_id_len, ret);
3024
30.3k
}
3025
3026
/*-
3027
 * tls_decrypt_ticket attempts to decrypt a session ticket.
3028
 *
3029
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3030
 * expecting a pre-shared key ciphersuite, in which case we have no use for
3031
 * session tickets and one will never be decrypted, nor will
3032
 * s->ext.ticket_expected be set to 1.
3033
 *
3034
 * Side effects:
3035
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
3036
 *   a new session ticket to the client because the client indicated support
3037
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3038
 *   a session ticket or we couldn't use the one it gave us, or if
3039
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3040
 *   Otherwise, s->ext.ticket_expected is set to 0.
3041
 *
3042
 *   etick: points to the body of the session ticket extension.
3043
 *   eticklen: the length of the session tickets extension.
3044
 *   sess_id: points at the session ID.
3045
 *   sesslen: the length of the session ID.
3046
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
3047
 *       point to the resulting session.
3048
 */
3049
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3050
    const unsigned char *etick,
3051
    size_t eticklen,
3052
    const unsigned char *sess_id,
3053
    size_t sesslen, SSL_SESSION **psess)
3054
7.43k
{
3055
7.43k
    SSL_SESSION *sess = NULL;
3056
7.43k
    unsigned char *sdec;
3057
7.43k
    const unsigned char *p;
3058
7.43k
    int slen, ivlen, renew_ticket = 0, declen;
3059
7.43k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3060
7.43k
    size_t mlen;
3061
7.43k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3062
7.43k
    SSL_HMAC *hctx = NULL;
3063
7.43k
    EVP_CIPHER_CTX *ctx = NULL;
3064
7.43k
    SSL_CTX *tctx = s->session_ctx;
3065
7.43k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3066
3067
7.43k
    if (eticklen == 0) {
3068
        /*
3069
         * The client will accept a ticket but doesn't currently have
3070
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3071
         */
3072
4.04k
        ret = SSL_TICKET_EMPTY;
3073
4.04k
        goto end;
3074
4.04k
    }
3075
3.38k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3076
        /*
3077
         * Indicate that the ticket couldn't be decrypted rather than
3078
         * generating the session from ticket now, trigger
3079
         * abbreviated handshake based on external mechanism to
3080
         * calculate the master secret later.
3081
         */
3082
0
        ret = SSL_TICKET_NO_DECRYPT;
3083
0
        goto end;
3084
0
    }
3085
3086
    /* Need at least keyname + iv */
3087
3.38k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3088
1.01k
        ret = SSL_TICKET_NO_DECRYPT;
3089
1.01k
        goto end;
3090
1.01k
    }
3091
3092
    /* Initialize session ticket encryption and HMAC contexts */
3093
2.36k
    hctx = ssl_hmac_new(tctx);
3094
2.36k
    if (hctx == NULL) {
3095
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3096
0
        goto end;
3097
0
    }
3098
2.36k
    ctx = EVP_CIPHER_CTX_new();
3099
2.36k
    if (ctx == NULL) {
3100
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3101
0
        goto end;
3102
0
    }
3103
2.36k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3104
2.36k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3105
#else
3106
    if (tctx->ext.ticket_key_evp_cb != NULL)
3107
#endif
3108
0
    {
3109
0
        unsigned char *nctick = (unsigned char *)etick;
3110
0
        int rv = 0;
3111
3112
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
3113
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3114
0
                nctick,
3115
0
                nctick + TLSEXT_KEYNAME_LENGTH,
3116
0
                ctx,
3117
0
                ssl_hmac_get0_EVP_MAC_CTX(hctx),
3118
0
                0);
3119
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3120
0
        else if (tctx->ext.ticket_key_cb != NULL)
3121
            /* if 0 is returned, write an empty ticket */
3122
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3123
0
                nctick + TLSEXT_KEYNAME_LENGTH,
3124
0
                ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3125
0
#endif
3126
0
        if (rv < 0) {
3127
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3128
0
            goto end;
3129
0
        }
3130
0
        if (rv == 0) {
3131
0
            ret = SSL_TICKET_NO_DECRYPT;
3132
0
            goto end;
3133
0
        }
3134
0
        if (rv == 2)
3135
0
            renew_ticket = 1;
3136
2.36k
    } else {
3137
2.36k
        EVP_CIPHER *aes256cbc = NULL;
3138
3139
        /* Check key name matches */
3140
2.36k
        if (memcmp(etick, tctx->ext.tick_key_name,
3141
2.36k
                TLSEXT_KEYNAME_LENGTH)
3142
2.36k
            != 0) {
3143
980
            ret = SSL_TICKET_NO_DECRYPT;
3144
980
            goto end;
3145
980
        }
3146
3147
1.38k
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3148
1.38k
            sctx->propq);
3149
1.38k
        if (aes256cbc == NULL
3150
1.38k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3151
1.38k
                   sizeof(tctx->ext.secure->tick_hmac_key),
3152
1.38k
                   "SHA256")
3153
1.38k
                <= 0
3154
1.38k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3155
1.38k
                   tctx->ext.secure->tick_aes_key,
3156
1.38k
                   etick + TLSEXT_KEYNAME_LENGTH)
3157
1.38k
                <= 0) {
3158
0
            EVP_CIPHER_free(aes256cbc);
3159
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3160
0
            goto end;
3161
0
        }
3162
1.38k
        EVP_CIPHER_free(aes256cbc);
3163
1.38k
        if (SSL_CONNECTION_IS_TLS13(s))
3164
626
            renew_ticket = 1;
3165
1.38k
    }
3166
    /*
3167
     * Attempt to process session ticket, first conduct sanity and integrity
3168
     * checks on ticket.
3169
     */
3170
1.38k
    mlen = ssl_hmac_size(hctx);
3171
1.38k
    if (mlen == 0) {
3172
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3173
0
        goto end;
3174
0
    }
3175
3176
1.38k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3177
1.38k
    if (ivlen < 0) {
3178
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3179
0
        goto end;
3180
0
    }
3181
3182
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3183
1.38k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3184
159
        ret = SSL_TICKET_NO_DECRYPT;
3185
159
        goto end;
3186
159
    }
3187
1.23k
    eticklen -= mlen;
3188
    /* Check HMAC of encrypted ticket */
3189
1.23k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3190
1.23k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3191
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3192
0
        goto end;
3193
0
    }
3194
3195
1.23k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3196
193
        ret = SSL_TICKET_NO_DECRYPT;
3197
193
        goto end;
3198
193
    }
3199
    /* Attempt to decrypt session data */
3200
    /* Move p after IV to start of encrypted ticket, update length */
3201
1.03k
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3202
1.03k
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3203
1.03k
    sdec = OPENSSL_malloc(eticklen);
3204
1.03k
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) {
3205
0
        OPENSSL_free(sdec);
3206
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3207
0
        goto end;
3208
0
    }
3209
1.03k
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3210
66
        OPENSSL_free(sdec);
3211
66
        ret = SSL_TICKET_NO_DECRYPT;
3212
66
        goto end;
3213
66
    }
3214
971
    slen += declen;
3215
971
    p = sdec;
3216
3217
971
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3218
971
    slen -= p - sdec;
3219
971
    OPENSSL_free(sdec);
3220
971
    if (sess) {
3221
        /* Some additional consistency checks */
3222
816
        if (slen != 0) {
3223
12
            SSL_SESSION_free(sess);
3224
12
            sess = NULL;
3225
12
            ret = SSL_TICKET_NO_DECRYPT;
3226
12
            goto end;
3227
12
        }
3228
        /*
3229
         * The session ID, if non-empty, is used by some clients to detect
3230
         * that the ticket has been accepted. So we copy it to the session
3231
         * structure. If it is empty set length to zero as required by
3232
         * standard.
3233
         */
3234
804
        if (sesslen) {
3235
289
            memcpy(sess->session_id, sess_id, sesslen);
3236
289
            sess->session_id_length = sesslen;
3237
289
        }
3238
804
        if (renew_ticket)
3239
493
            ret = SSL_TICKET_SUCCESS_RENEW;
3240
311
        else
3241
311
            ret = SSL_TICKET_SUCCESS;
3242
804
        goto end;
3243
816
    }
3244
155
    ERR_clear_error();
3245
    /*
3246
     * For session parse failure, indicate that we need to send a new ticket.
3247
     */
3248
155
    ret = SSL_TICKET_NO_DECRYPT;
3249
3250
7.43k
end:
3251
7.43k
    EVP_CIPHER_CTX_free(ctx);
3252
7.43k
    ssl_hmac_free(hctx);
3253
3254
    /*
3255
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
3256
     * detected above. The callback is responsible for checking |ret| before it
3257
     * performs any action
3258
     */
3259
7.43k
    if (s->session_ctx->decrypt_ticket_cb != NULL
3260
0
        && (ret == SSL_TICKET_EMPTY
3261
0
            || ret == SSL_TICKET_NO_DECRYPT
3262
0
            || ret == SSL_TICKET_SUCCESS
3263
0
            || ret == SSL_TICKET_SUCCESS_RENEW)) {
3264
0
        size_t keyname_len = eticklen;
3265
0
        int retcb;
3266
3267
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3268
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
3269
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3270
0
            sess, etick, keyname_len,
3271
0
            ret,
3272
0
            s->session_ctx->ticket_cb_data);
3273
0
        switch (retcb) {
3274
0
        case SSL_TICKET_RETURN_ABORT:
3275
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3276
0
            break;
3277
3278
0
        case SSL_TICKET_RETURN_IGNORE:
3279
0
            ret = SSL_TICKET_NONE;
3280
0
            SSL_SESSION_free(sess);
3281
0
            sess = NULL;
3282
0
            break;
3283
3284
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
3285
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3286
0
                ret = SSL_TICKET_NO_DECRYPT;
3287
            /* else the value of |ret| will already do the right thing */
3288
0
            SSL_SESSION_free(sess);
3289
0
            sess = NULL;
3290
0
            break;
3291
3292
0
        case SSL_TICKET_RETURN_USE:
3293
0
        case SSL_TICKET_RETURN_USE_RENEW:
3294
0
            if (ret != SSL_TICKET_SUCCESS
3295
0
                && ret != SSL_TICKET_SUCCESS_RENEW)
3296
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
3297
0
            else if (retcb == SSL_TICKET_RETURN_USE)
3298
0
                ret = SSL_TICKET_SUCCESS;
3299
0
            else
3300
0
                ret = SSL_TICKET_SUCCESS_RENEW;
3301
0
            break;
3302
3303
0
        default:
3304
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3305
0
        }
3306
0
    }
3307
3308
7.43k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3309
7.43k
        switch (ret) {
3310
2.58k
        case SSL_TICKET_NO_DECRYPT:
3311
3.07k
        case SSL_TICKET_SUCCESS_RENEW:
3312
7.11k
        case SSL_TICKET_EMPTY:
3313
7.11k
            s->ext.ticket_expected = 1;
3314
7.43k
        }
3315
7.43k
    }
3316
3317
7.43k
    *psess = sess;
3318
3319
7.43k
    return ret;
3320
7.43k
}
3321
3322
/* Check to see if a signature algorithm is allowed */
3323
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3324
    const SIGALG_LOOKUP *lu)
3325
4.64M
{
3326
4.64M
    unsigned char sigalgstr[2];
3327
4.64M
    int secbits;
3328
3329
4.64M
    if (lu == NULL || !lu->available)
3330
0
        return 0;
3331
    /* DSA is not allowed in TLS 1.3 */
3332
4.64M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3333
9.95k
        return 0;
3334
    /*
3335
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3336
     * spec
3337
     */
3338
4.63M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3339
3.50M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
3340
1.85M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3341
1.19M
            || lu->hash_idx == SSL_MD_MD5_IDX
3342
1.19M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
3343
693k
        return 0;
3344
3345
    /* See if public key algorithm allowed */
3346
3.93M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3347
0
        return 0;
3348
3349
3.93M
    if (lu->sig == NID_id_GostR3410_2012_256
3350
3.93M
        || lu->sig == NID_id_GostR3410_2012_512
3351
3.93M
        || lu->sig == NID_id_GostR3410_2001) {
3352
        /* We never allow GOST sig algs on the server with TLSv1.3 */
3353
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
3354
0
            return 0;
3355
0
        if (!s->server
3356
0
            && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3357
0
            && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3358
0
            int i, num;
3359
0
            STACK_OF(SSL_CIPHER) *sk;
3360
3361
            /*
3362
             * We're a client that could negotiate TLSv1.3. We only allow GOST
3363
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3364
             * ciphersuites enabled.
3365
             */
3366
3367
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3368
0
                return 0;
3369
3370
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3371
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3372
0
            for (i = 0; i < num; i++) {
3373
0
                const SSL_CIPHER *c;
3374
3375
0
                c = sk_SSL_CIPHER_value(sk, i);
3376
                /* Skip disabled ciphers */
3377
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3378
0
                    continue;
3379
3380
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3381
0
                    break;
3382
0
            }
3383
0
            if (i == num)
3384
0
                return 0;
3385
0
        }
3386
0
    }
3387
3388
    /* Finally see if security callback allows it */
3389
3.93M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3390
3.93M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3391
3.93M
    sigalgstr[1] = lu->sigalg & 0xff;
3392
3.93M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3393
3.93M
}
3394
3395
/*
3396
 * Get a mask of disabled public key algorithms based on supported signature
3397
 * algorithms. For example if no signature algorithm supports RSA then RSA is
3398
 * disabled.
3399
 */
3400
3401
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3402
353k
{
3403
353k
    const uint16_t *sigalgs;
3404
353k
    size_t i, sigalgslen;
3405
353k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3406
    /*
3407
     * Go through all signature algorithms seeing if we support any
3408
     * in disabled_mask.
3409
     */
3410
353k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3411
10.7M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
3412
10.3M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3413
10.3M
        const SSL_CERT_LOOKUP *clu;
3414
3415
10.3M
        if (lu == NULL)
3416
790k
            continue;
3417
3418
9.58M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3419
9.58M
            SSL_CONNECTION_GET_CTX(s));
3420
9.58M
        if (clu == NULL)
3421
0
            continue;
3422
3423
        /* If algorithm is disabled see if we can enable it */
3424
9.58M
        if ((clu->amask & disabled_mask) != 0
3425
1.46M
            && tls12_sigalg_allowed(s, op, lu))
3426
959k
            disabled_mask &= ~clu->amask;
3427
9.58M
    }
3428
353k
    *pmask_a |= disabled_mask;
3429
353k
}
3430
3431
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3432
    const uint16_t *psig, size_t psiglen)
3433
116k
{
3434
116k
    size_t i;
3435
116k
    int rv = 0;
3436
3437
3.54M
    for (i = 0; i < psiglen; i++, psig++) {
3438
3.42M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3439
3440
3.42M
        if (lu == NULL || !tls_sigalg_compat(s, lu))
3441
762k
            continue;
3442
2.66M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
3443
0
            return 0;
3444
        /*
3445
         * If TLS 1.3 must have at least one valid TLS 1.3 message
3446
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3447
         */
3448
2.66M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224)))
3449
116k
            rv = 1;
3450
2.66M
    }
3451
116k
    if (rv == 0)
3452
116k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3453
116k
    return rv;
3454
116k
}
3455
3456
/* Given preference and allowed sigalgs set shared sigalgs */
3457
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3458
    const SIGALG_LOOKUP **shsig,
3459
    const uint16_t *pref, size_t preflen,
3460
    const uint16_t *allow, size_t allowlen)
3461
18.5k
{
3462
18.5k
    const uint16_t *ptmp, *atmp;
3463
18.5k
    size_t i, j, nmatch = 0;
3464
457k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3465
439k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3466
3467
        /* Skip disabled hashes or signature algorithms */
3468
439k
        if (lu == NULL
3469
193k
            || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3470
255k
            continue;
3471
2.87M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3472
2.87M
            if (*ptmp == *atmp) {
3473
184k
                nmatch++;
3474
184k
                if (shsig)
3475
92.0k
                    *shsig++ = lu;
3476
184k
                break;
3477
184k
            }
3478
2.87M
        }
3479
184k
    }
3480
18.5k
    return nmatch;
3481
18.5k
}
3482
3483
/* Set shared signature algorithms for SSL structures */
3484
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3485
9.36k
{
3486
9.36k
    const uint16_t *pref, *allow, *conf;
3487
9.36k
    size_t preflen, allowlen, conflen;
3488
9.36k
    size_t nmatch;
3489
9.36k
    const SIGALG_LOOKUP **salgs = NULL;
3490
9.36k
    CERT *c = s->cert;
3491
9.36k
    unsigned int is_suiteb = tls1_suiteb(s);
3492
3493
9.36k
    OPENSSL_free(s->shared_sigalgs);
3494
9.36k
    s->shared_sigalgs = NULL;
3495
9.36k
    s->shared_sigalgslen = 0;
3496
    /* If client use client signature algorithms if not NULL */
3497
9.36k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
3498
0
        conf = c->client_sigalgs;
3499
0
        conflen = c->client_sigalgslen;
3500
9.36k
    } else if (c->conf_sigalgs && !is_suiteb) {
3501
0
        conf = c->conf_sigalgs;
3502
0
        conflen = c->conf_sigalgslen;
3503
0
    } else
3504
9.36k
        conflen = tls12_get_psigalgs(s, 0, &conf);
3505
9.36k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3506
0
        pref = conf;
3507
0
        preflen = conflen;
3508
0
        allow = s->s3.tmp.peer_sigalgs;
3509
0
        allowlen = s->s3.tmp.peer_sigalgslen;
3510
9.36k
    } else {
3511
9.36k
        allow = conf;
3512
9.36k
        allowlen = conflen;
3513
9.36k
        pref = s->s3.tmp.peer_sigalgs;
3514
9.36k
        preflen = s->s3.tmp.peer_sigalgslen;
3515
9.36k
    }
3516
9.36k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3517
9.36k
    if (nmatch) {
3518
9.15k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3519
0
            return 0;
3520
9.15k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3521
9.15k
    } else {
3522
219
        salgs = NULL;
3523
219
    }
3524
9.36k
    s->shared_sigalgs = salgs;
3525
9.36k
    s->shared_sigalgslen = nmatch;
3526
9.36k
    return 1;
3527
9.36k
}
3528
3529
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3530
30.7k
{
3531
30.7k
    unsigned int stmp;
3532
30.7k
    size_t size, i;
3533
30.7k
    uint16_t *buf;
3534
3535
30.7k
    size = PACKET_remaining(pkt);
3536
3537
    /* Invalid data length */
3538
30.7k
    if (size == 0 || (size & 1) != 0)
3539
68
        return 0;
3540
3541
30.6k
    size >>= 1;
3542
3543
30.6k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3544
0
        return 0;
3545
334k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3546
303k
        buf[i] = stmp;
3547
3548
30.6k
    if (i != size) {
3549
0
        OPENSSL_free(buf);
3550
0
        return 0;
3551
0
    }
3552
3553
30.6k
    OPENSSL_free(*pdest);
3554
30.6k
    *pdest = buf;
3555
30.6k
    *pdestlen = size;
3556
3557
30.6k
    return 1;
3558
30.6k
}
3559
3560
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3561
11.3k
{
3562
    /* Extension ignored for inappropriate versions */
3563
11.3k
    if (!SSL_USE_SIGALGS(s))
3564
273
        return 1;
3565
    /* Should never happen */
3566
11.0k
    if (s->cert == NULL)
3567
0
        return 0;
3568
3569
11.0k
    if (cert)
3570
950
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3571
950
            &s->s3.tmp.peer_cert_sigalgslen);
3572
10.1k
    else
3573
10.1k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3574
10.1k
            &s->s3.tmp.peer_sigalgslen);
3575
11.0k
}
3576
3577
/* Set preferred digest for each key type */
3578
3579
int tls1_process_sigalgs(SSL_CONNECTION *s)
3580
9.36k
{
3581
9.36k
    size_t i;
3582
9.36k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
3583
3584
9.36k
    if (!tls1_set_shared_sigalgs(s))
3585
0
        return 0;
3586
3587
108k
    for (i = 0; i < s->ssl_pkey_num; i++)
3588
99.0k
        pvalid[i] = 0;
3589
3590
101k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3591
92.0k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3592
92.0k
        int idx = sigptr->sig_idx;
3593
3594
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
3595
92.0k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3596
2.76k
            continue;
3597
        /* If not disabled indicate we can explicitly sign */
3598
89.2k
        if (pvalid[idx] == 0
3599
17.2k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3600
17.2k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3601
89.2k
    }
3602
9.36k
    return 1;
3603
9.36k
}
3604
3605
int SSL_get_sigalgs(SSL *s, int idx,
3606
    int *psign, int *phash, int *psignhash,
3607
    unsigned char *rsig, unsigned char *rhash)
3608
0
{
3609
0
    uint16_t *psig;
3610
0
    size_t numsigalgs;
3611
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3612
3613
0
    if (sc == NULL)
3614
0
        return 0;
3615
3616
0
    psig = sc->s3.tmp.peer_sigalgs;
3617
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
3618
3619
0
    if (psig == NULL || numsigalgs > INT_MAX)
3620
0
        return 0;
3621
0
    if (idx >= 0) {
3622
0
        const SIGALG_LOOKUP *lu;
3623
3624
0
        if (idx >= (int)numsigalgs)
3625
0
            return 0;
3626
0
        psig += idx;
3627
0
        if (rhash != NULL)
3628
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
3629
0
        if (rsig != NULL)
3630
0
            *rsig = (unsigned char)(*psig & 0xff);
3631
0
        lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3632
0
        if (psign != NULL)
3633
0
            *psign = lu != NULL ? lu->sig : NID_undef;
3634
0
        if (phash != NULL)
3635
0
            *phash = lu != NULL ? lu->hash : NID_undef;
3636
0
        if (psignhash != NULL)
3637
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3638
0
    }
3639
0
    return (int)numsigalgs;
3640
0
}
3641
3642
int SSL_get_shared_sigalgs(SSL *s, int idx,
3643
    int *psign, int *phash, int *psignhash,
3644
    unsigned char *rsig, unsigned char *rhash)
3645
0
{
3646
0
    const SIGALG_LOOKUP *shsigalgs;
3647
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3648
3649
0
    if (sc == NULL)
3650
0
        return 0;
3651
3652
0
    if (sc->shared_sigalgs == NULL
3653
0
        || idx < 0
3654
0
        || idx >= (int)sc->shared_sigalgslen
3655
0
        || sc->shared_sigalgslen > INT_MAX)
3656
0
        return 0;
3657
0
    shsigalgs = sc->shared_sigalgs[idx];
3658
0
    if (phash != NULL)
3659
0
        *phash = shsigalgs->hash;
3660
0
    if (psign != NULL)
3661
0
        *psign = shsigalgs->sig;
3662
0
    if (psignhash != NULL)
3663
0
        *psignhash = shsigalgs->sigandhash;
3664
0
    if (rsig != NULL)
3665
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3666
0
    if (rhash != NULL)
3667
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3668
0
    return (int)sc->shared_sigalgslen;
3669
0
}
3670
3671
/* Maximum possible number of unique entries in sigalgs array */
3672
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3673
3674
typedef struct {
3675
    size_t sigalgcnt;
3676
    /* TLSEXT_SIGALG_XXX values */
3677
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3678
    SSL_CTX *ctx;
3679
} sig_cb_st;
3680
3681
static void get_sigorhash(int *psig, int *phash, const char *str)
3682
0
{
3683
0
    if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3684
0
        *psig = EVP_PKEY_RSA;
3685
0
    } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3686
0
        || OPENSSL_strcasecmp(str, "PSS") == 0) {
3687
0
        *psig = EVP_PKEY_RSA_PSS;
3688
0
    } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3689
0
        *psig = EVP_PKEY_DSA;
3690
0
    } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3691
0
        *psig = EVP_PKEY_EC;
3692
0
    } else {
3693
0
        *phash = OBJ_sn2nid(str);
3694
0
        if (*phash == NID_undef)
3695
0
            *phash = OBJ_ln2nid(str);
3696
0
    }
3697
0
}
3698
/* Maximum length of a signature algorithm string component */
3699
#define TLS_MAX_SIGSTRING_LEN 40
3700
3701
static int sig_cb(const char *elem, int len, void *arg)
3702
0
{
3703
0
    sig_cb_st *sarg = arg;
3704
0
    size_t i = 0;
3705
0
    const SIGALG_LOOKUP *s;
3706
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3707
0
    const char *iana, *alias;
3708
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
3709
0
    int ignore_unknown = 0;
3710
3711
0
    if (elem == NULL)
3712
0
        return 0;
3713
0
    if (elem[0] == '?') {
3714
0
        ignore_unknown = 1;
3715
0
        ++elem;
3716
0
        --len;
3717
0
    }
3718
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3719
0
        return 0;
3720
0
    if (len > (int)(sizeof(etmp) - 1))
3721
0
        return 0;
3722
0
    memcpy(etmp, elem, len);
3723
0
    etmp[len] = 0;
3724
0
    p = strchr(etmp, '+');
3725
    /*
3726
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3727
     * if there's no '+' in the provided name, look for the new-style combined
3728
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3729
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3730
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
3731
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
3732
     * in the table.
3733
     */
3734
0
    if (p == NULL) {
3735
0
        if (sarg->ctx != NULL) {
3736
0
            for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3737
0
                iana = sarg->ctx->sigalg_lookup_cache[i].name;
3738
0
                alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3739
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3740
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3741
                    /* Ignore known, but unavailable sigalgs. */
3742
0
                    if (!sarg->ctx->sigalg_lookup_cache[i].available)
3743
0
                        return 1;
3744
0
                    sarg->sigalgs[sarg->sigalgcnt++] = sarg->ctx->sigalg_lookup_cache[i].sigalg;
3745
0
                    goto found;
3746
0
                }
3747
0
            }
3748
0
        } else {
3749
            /* Syntax checks use the built-in sigalgs */
3750
0
            for (i = 0, s = sigalg_lookup_tbl;
3751
0
                i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3752
0
                iana = s->name;
3753
0
                alias = s->name12;
3754
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3755
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3756
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3757
0
                    goto found;
3758
0
                }
3759
0
            }
3760
0
        }
3761
0
    } else {
3762
0
        *p = 0;
3763
0
        p++;
3764
0
        if (*p == 0)
3765
0
            return 0;
3766
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
3767
0
        get_sigorhash(&sig_alg, &hash_alg, p);
3768
0
        if (sig_alg != NID_undef && hash_alg != NID_undef) {
3769
0
            if (sarg->ctx != NULL) {
3770
0
                for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3771
0
                    s = &sarg->ctx->sigalg_lookup_cache[i];
3772
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3773
                        /* Ignore known, but unavailable sigalgs. */
3774
0
                        if (!sarg->ctx->sigalg_lookup_cache[i].available)
3775
0
                            return 1;
3776
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3777
0
                        goto found;
3778
0
                    }
3779
0
                }
3780
0
            } else {
3781
0
                for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3782
0
                    s = &sigalg_lookup_tbl[i];
3783
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3784
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3785
0
                        goto found;
3786
0
                    }
3787
0
                }
3788
0
            }
3789
0
        }
3790
0
    }
3791
    /* Ignore unknown algorithms if ignore_unknown */
3792
0
    return ignore_unknown;
3793
3794
0
found:
3795
    /* Ignore duplicates */
3796
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3797
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3798
0
            sarg->sigalgcnt--;
3799
0
            return 1;
3800
0
        }
3801
0
    }
3802
0
    return 1;
3803
0
}
3804
3805
/*
3806
 * Set supported signature algorithms based on a colon separated list of the
3807
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3808
 */
3809
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3810
0
{
3811
0
    sig_cb_st sig;
3812
0
    sig.sigalgcnt = 0;
3813
3814
0
    if (ctx != NULL)
3815
0
        sig.ctx = ctx;
3816
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3817
0
        return 0;
3818
0
    if (sig.sigalgcnt == 0) {
3819
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3820
0
            "No valid signature algorithms in '%s'", str);
3821
0
        return 0;
3822
0
    }
3823
0
    if (c == NULL)
3824
0
        return 1;
3825
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3826
0
}
3827
3828
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3829
    int client)
3830
0
{
3831
0
    uint16_t *sigalgs;
3832
3833
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3834
0
        return 0;
3835
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3836
3837
0
    if (client) {
3838
0
        OPENSSL_free(c->client_sigalgs);
3839
0
        c->client_sigalgs = sigalgs;
3840
0
        c->client_sigalgslen = salglen;
3841
0
    } else {
3842
0
        OPENSSL_free(c->conf_sigalgs);
3843
0
        c->conf_sigalgs = sigalgs;
3844
0
        c->conf_sigalgslen = salglen;
3845
0
    }
3846
3847
0
    return 1;
3848
0
}
3849
3850
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3851
0
{
3852
0
    uint16_t *sigalgs, *sptr;
3853
0
    size_t i;
3854
3855
0
    if (salglen & 1)
3856
0
        return 0;
3857
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3858
0
        return 0;
3859
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3860
0
        size_t j;
3861
0
        const SIGALG_LOOKUP *curr;
3862
0
        int md_id = *psig_nids++;
3863
0
        int sig_id = *psig_nids++;
3864
3865
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3866
0
            j++, curr++) {
3867
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3868
0
                *sptr++ = curr->sigalg;
3869
0
                break;
3870
0
            }
3871
0
        }
3872
3873
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3874
0
            goto err;
3875
0
    }
3876
3877
0
    if (client) {
3878
0
        OPENSSL_free(c->client_sigalgs);
3879
0
        c->client_sigalgs = sigalgs;
3880
0
        c->client_sigalgslen = salglen / 2;
3881
0
    } else {
3882
0
        OPENSSL_free(c->conf_sigalgs);
3883
0
        c->conf_sigalgs = sigalgs;
3884
0
        c->conf_sigalgslen = salglen / 2;
3885
0
    }
3886
3887
0
    return 1;
3888
3889
0
err:
3890
0
    OPENSSL_free(sigalgs);
3891
0
    return 0;
3892
0
}
3893
3894
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3895
0
{
3896
0
    int sig_nid, use_pc_sigalgs = 0;
3897
0
    size_t i;
3898
0
    const SIGALG_LOOKUP *sigalg;
3899
0
    size_t sigalgslen;
3900
3901
    /*-
3902
     * RFC 8446, section 4.2.3:
3903
     *
3904
     * The signatures on certificates that are self-signed or certificates
3905
     * that are trust anchors are not validated, since they begin a
3906
     * certification path (see [RFC5280], Section 3.2).  A certificate that
3907
     * begins a certification path MAY use a signature algorithm that is not
3908
     * advertised as being supported in the "signature_algorithms"
3909
     * extension.
3910
     */
3911
0
    if (default_nid == -1 || X509_self_signed(x, 0))
3912
0
        return 1;
3913
0
    sig_nid = X509_get_signature_nid(x);
3914
0
    if (default_nid)
3915
0
        return sig_nid == default_nid ? 1 : 0;
3916
3917
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3918
        /*
3919
         * If we're in TLSv1.3 then we only get here if we're checking the
3920
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3921
         * otherwise we default to normal sigalgs.
3922
         */
3923
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3924
0
        use_pc_sigalgs = 1;
3925
0
    } else {
3926
0
        sigalgslen = s->shared_sigalgslen;
3927
0
    }
3928
0
    for (i = 0; i < sigalgslen; i++) {
3929
0
        int mdnid, pknid;
3930
3931
0
        sigalg = use_pc_sigalgs
3932
0
            ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3933
0
                  s->s3.tmp.peer_cert_sigalgs[i])
3934
0
            : s->shared_sigalgs[i];
3935
0
        if (sigalg == NULL)
3936
0
            continue;
3937
0
        if (sig_nid == sigalg->sigandhash)
3938
0
            return 1;
3939
0
        if (sigalg->sig != EVP_PKEY_RSA_PSS)
3940
0
            continue;
3941
        /*
3942
         * Accept RSA PKCS#1 signatures in certificates when the signature
3943
         * algorithms include RSA-PSS with a matching digest algorithm.
3944
         *
3945
         * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3946
         * points, and we're doing strict checking of the certificate chain (in
3947
         * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3948
         * certificates in the chain, but the TLS requirement on PSS should not
3949
         * extend to certificates.  Though the peer can in fact list the legacy
3950
         * sigalgs for just this purpose, it is not likely that a better chain
3951
         * signed with RSA-PSS is available.
3952
         */
3953
0
        if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3954
0
            continue;
3955
0
        if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3956
0
            return 1;
3957
0
    }
3958
0
    return 0;
3959
0
}
3960
3961
/* Check to see if a certificate issuer name matches list of CA names */
3962
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3963
0
{
3964
0
    const X509_NAME *nm;
3965
0
    int i;
3966
0
    nm = X509_get_issuer_name(x);
3967
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3968
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3969
0
            return 1;
3970
0
    }
3971
0
    return 0;
3972
0
}
3973
3974
/*
3975
 * Check certificate chain is consistent with TLS extensions and is usable by
3976
 * server. This servers two purposes: it allows users to check chains before
3977
 * passing them to the server and it allows the server to check chains before
3978
 * attempting to use them.
3979
 */
3980
3981
/* Flags which need to be set for a certificate when strict mode not set */
3982
3983
#define CERT_PKEY_VALID_FLAGS \
3984
0
    (CERT_PKEY_EE_SIGNATURE | CERT_PKEY_EE_PARAM)
3985
/* Strict mode flags */
3986
#define CERT_PKEY_STRICT_FLAGS                                           \
3987
0
    (CERT_PKEY_VALID_FLAGS | CERT_PKEY_CA_SIGNATURE | CERT_PKEY_CA_PARAM \
3988
0
        | CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE)
3989
3990
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3991
    STACK_OF(X509) *chain, int idx)
3992
236k
{
3993
236k
    int i;
3994
236k
    int rv = 0;
3995
236k
    int check_flags = 0, strict_mode;
3996
236k
    CERT_PKEY *cpk = NULL;
3997
236k
    CERT *c = s->cert;
3998
236k
    uint32_t *pvalid;
3999
236k
    unsigned int suiteb_flags = tls1_suiteb(s);
4000
4001
    /*
4002
     * Meaning of idx:
4003
     * idx == -1 means SSL_check_chain() invocation
4004
     * idx == -2 means checking client certificate chains
4005
     * idx >= 0 means checking SSL_PKEY index
4006
     *
4007
     * For RPK, where there may be no cert, we ignore -1
4008
     */
4009
236k
    if (idx != -1) {
4010
236k
        if (idx == -2) {
4011
0
            cpk = c->key;
4012
0
            idx = (int)(cpk - c->pkeys);
4013
0
        } else
4014
236k
            cpk = c->pkeys + idx;
4015
236k
        pvalid = s->s3.tmp.valid_flags + idx;
4016
236k
        x = cpk->x509;
4017
236k
        pk = cpk->privatekey;
4018
236k
        chain = cpk->chain;
4019
236k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4020
236k
        if (tls12_rpk_and_privkey(s, idx)) {
4021
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4022
0
                return 0;
4023
0
            *pvalid = rv = CERT_PKEY_RPK;
4024
0
            return rv;
4025
0
        }
4026
        /* If no cert or key, forget it */
4027
236k
        if (x == NULL || pk == NULL)
4028
157k
            goto end;
4029
236k
    } else {
4030
0
        size_t certidx;
4031
4032
0
        if (x == NULL || pk == NULL)
4033
0
            return 0;
4034
4035
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
4036
0
                SSL_CONNECTION_GET_CTX(s))
4037
0
            == NULL)
4038
0
            return 0;
4039
0
        idx = certidx;
4040
0
        pvalid = s->s3.tmp.valid_flags + idx;
4041
4042
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4043
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
4044
0
        else
4045
0
            check_flags = CERT_PKEY_VALID_FLAGS;
4046
0
        strict_mode = 1;
4047
0
    }
4048
4049
78.8k
    if (suiteb_flags) {
4050
0
        int ok;
4051
0
        if (check_flags)
4052
0
            check_flags |= CERT_PKEY_SUITEB;
4053
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4054
0
        if (ok == X509_V_OK)
4055
0
            rv |= CERT_PKEY_SUITEB;
4056
0
        else if (!check_flags)
4057
0
            goto end;
4058
0
    }
4059
4060
    /*
4061
     * Check all signature algorithms are consistent with signature
4062
     * algorithms extension if TLS 1.2 or later and strict mode.
4063
     */
4064
78.8k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4065
32.3k
        && strict_mode) {
4066
0
        int default_nid;
4067
0
        int rsign = 0;
4068
4069
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
4070
0
            || s->s3.tmp.peer_sigalgs != NULL) {
4071
0
            default_nid = 0;
4072
            /* If no sigalgs extension use defaults from RFC5246 */
4073
0
        } else {
4074
0
            switch (idx) {
4075
0
            case SSL_PKEY_RSA:
4076
0
                rsign = EVP_PKEY_RSA;
4077
0
                default_nid = NID_sha1WithRSAEncryption;
4078
0
                break;
4079
4080
0
            case SSL_PKEY_DSA_SIGN:
4081
0
                rsign = EVP_PKEY_DSA;
4082
0
                default_nid = NID_dsaWithSHA1;
4083
0
                break;
4084
4085
0
            case SSL_PKEY_ECC:
4086
0
                rsign = EVP_PKEY_EC;
4087
0
                default_nid = NID_ecdsa_with_SHA1;
4088
0
                break;
4089
4090
0
            case SSL_PKEY_GOST01:
4091
0
                rsign = NID_id_GostR3410_2001;
4092
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4093
0
                break;
4094
4095
0
            case SSL_PKEY_GOST12_256:
4096
0
                rsign = NID_id_GostR3410_2012_256;
4097
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4098
0
                break;
4099
4100
0
            case SSL_PKEY_GOST12_512:
4101
0
                rsign = NID_id_GostR3410_2012_512;
4102
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4103
0
                break;
4104
4105
0
            default:
4106
0
                default_nid = -1;
4107
0
                break;
4108
0
            }
4109
0
        }
4110
        /*
4111
         * If peer sent no signature algorithms extension and we have set
4112
         * preferred signature algorithms check we support sha1.
4113
         */
4114
0
        if (default_nid > 0 && c->conf_sigalgs) {
4115
0
            size_t j;
4116
0
            const uint16_t *p = c->conf_sigalgs;
4117
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4118
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4119
4120
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4121
0
                    break;
4122
0
            }
4123
0
            if (j == c->conf_sigalgslen) {
4124
0
                if (check_flags)
4125
0
                    goto skip_sigs;
4126
0
                else
4127
0
                    goto end;
4128
0
            }
4129
0
        }
4130
        /* Check signature algorithm of each cert in chain */
4131
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
4132
            /*
4133
             * We only get here if the application has called SSL_check_chain(),
4134
             * so check_flags is always set.
4135
             */
4136
0
            if (find_sig_alg(s, x, pk) != NULL)
4137
0
                rv |= CERT_PKEY_EE_SIGNATURE;
4138
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4139
0
            if (!check_flags)
4140
0
                goto end;
4141
0
        } else
4142
0
            rv |= CERT_PKEY_EE_SIGNATURE;
4143
0
        rv |= CERT_PKEY_CA_SIGNATURE;
4144
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4145
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4146
0
                if (check_flags) {
4147
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
4148
0
                    break;
4149
0
                } else
4150
0
                    goto end;
4151
0
            }
4152
0
        }
4153
0
    }
4154
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4155
78.8k
    else if (check_flags)
4156
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4157
78.8k
skip_sigs:
4158
    /* Check cert parameters are consistent */
4159
78.8k
    if (tls1_check_cert_param(s, x, 1))
4160
71.1k
        rv |= CERT_PKEY_EE_PARAM;
4161
7.63k
    else if (!check_flags)
4162
7.63k
        goto end;
4163
71.1k
    if (!s->server)
4164
0
        rv |= CERT_PKEY_CA_PARAM;
4165
    /* In strict mode check rest of chain too */
4166
71.1k
    else if (strict_mode) {
4167
0
        rv |= CERT_PKEY_CA_PARAM;
4168
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4169
0
            X509 *ca = sk_X509_value(chain, i);
4170
0
            if (!tls1_check_cert_param(s, ca, 0)) {
4171
0
                if (check_flags) {
4172
0
                    rv &= ~CERT_PKEY_CA_PARAM;
4173
0
                    break;
4174
0
                } else
4175
0
                    goto end;
4176
0
            }
4177
0
        }
4178
0
    }
4179
71.1k
    if (!s->server && strict_mode) {
4180
0
        STACK_OF(X509_NAME) *ca_dn;
4181
0
        int check_type = 0;
4182
4183
0
        if (EVP_PKEY_is_a(pk, "RSA"))
4184
0
            check_type = TLS_CT_RSA_SIGN;
4185
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
4186
0
            check_type = TLS_CT_DSS_SIGN;
4187
0
        else if (EVP_PKEY_is_a(pk, "EC"))
4188
0
            check_type = TLS_CT_ECDSA_SIGN;
4189
4190
0
        if (check_type) {
4191
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
4192
0
            size_t j;
4193
4194
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4195
0
                if (*ctypes == check_type) {
4196
0
                    rv |= CERT_PKEY_CERT_TYPE;
4197
0
                    break;
4198
0
                }
4199
0
            }
4200
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4201
0
                goto end;
4202
0
        } else {
4203
0
            rv |= CERT_PKEY_CERT_TYPE;
4204
0
        }
4205
4206
0
        ca_dn = s->s3.tmp.peer_ca_names;
4207
4208
0
        if (ca_dn == NULL
4209
0
            || sk_X509_NAME_num(ca_dn) == 0
4210
0
            || ssl_check_ca_name(ca_dn, x))
4211
0
            rv |= CERT_PKEY_ISSUER_NAME;
4212
0
        else
4213
0
            for (i = 0; i < sk_X509_num(chain); i++) {
4214
0
                X509 *xtmp = sk_X509_value(chain, i);
4215
4216
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
4217
0
                    rv |= CERT_PKEY_ISSUER_NAME;
4218
0
                    break;
4219
0
                }
4220
0
            }
4221
4222
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4223
0
            goto end;
4224
0
    } else
4225
71.1k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4226
4227
71.1k
    if (!check_flags || (rv & check_flags) == check_flags)
4228
71.1k
        rv |= CERT_PKEY_VALID;
4229
4230
236k
end:
4231
4232
236k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4233
97.0k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4234
139k
    else
4235
139k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4236
4237
    /*
4238
     * When checking a CERT_PKEY structure all flags are irrelevant if the
4239
     * chain is invalid.
4240
     */
4241
236k
    if (!check_flags) {
4242
236k
        if (rv & CERT_PKEY_VALID) {
4243
71.1k
            *pvalid = rv;
4244
165k
        } else {
4245
            /* Preserve sign and explicit sign flag, clear rest */
4246
165k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4247
165k
            return 0;
4248
165k
        }
4249
236k
    }
4250
71.1k
    return rv;
4251
236k
}
4252
4253
/* Set validity of certificates in an SSL structure */
4254
void tls1_set_cert_validity(SSL_CONNECTION *s)
4255
28.6k
{
4256
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4257
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4258
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4259
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4260
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4261
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4262
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4263
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4264
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4265
28.6k
}
4266
4267
/* User level utility function to check a chain is suitable */
4268
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4269
0
{
4270
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4271
4272
0
    if (sc == NULL)
4273
0
        return 0;
4274
4275
0
    return tls1_check_chain(sc, x, pk, chain, -1);
4276
0
}
4277
4278
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4279
0
{
4280
0
    EVP_PKEY *dhp = NULL;
4281
0
    BIGNUM *p;
4282
0
    int dh_secbits = 80, sec_level_bits;
4283
0
    EVP_PKEY_CTX *pctx = NULL;
4284
0
    OSSL_PARAM_BLD *tmpl = NULL;
4285
0
    OSSL_PARAM *params = NULL;
4286
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4287
4288
0
    if (s->cert->dh_tmp_auto != 2) {
4289
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4290
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
4291
0
                dh_secbits = 128;
4292
0
            else
4293
0
                dh_secbits = 80;
4294
0
        } else {
4295
0
            if (s->s3.tmp.cert == NULL)
4296
0
                return NULL;
4297
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4298
0
        }
4299
0
    }
4300
4301
    /* Do not pick a prime that is too weak for the current security level */
4302
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4303
0
        NULL, NULL);
4304
0
    if (dh_secbits < sec_level_bits)
4305
0
        dh_secbits = sec_level_bits;
4306
4307
0
    if (dh_secbits >= 192)
4308
0
        p = BN_get_rfc3526_prime_8192(NULL);
4309
0
    else if (dh_secbits >= 152)
4310
0
        p = BN_get_rfc3526_prime_4096(NULL);
4311
0
    else if (dh_secbits >= 128)
4312
0
        p = BN_get_rfc3526_prime_3072(NULL);
4313
0
    else if (dh_secbits >= 112)
4314
0
        p = BN_get_rfc3526_prime_2048(NULL);
4315
0
    else
4316
0
        p = BN_get_rfc2409_prime_1024(NULL);
4317
0
    if (p == NULL)
4318
0
        goto err;
4319
4320
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4321
0
    if (pctx == NULL
4322
0
        || EVP_PKEY_fromdata_init(pctx) != 1)
4323
0
        goto err;
4324
4325
0
    tmpl = OSSL_PARAM_BLD_new();
4326
0
    if (tmpl == NULL
4327
0
        || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4328
0
        || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4329
0
        goto err;
4330
4331
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
4332
0
    if (params == NULL
4333
0
        || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4334
0
        goto err;
4335
4336
0
err:
4337
0
    OSSL_PARAM_free(params);
4338
0
    OSSL_PARAM_BLD_free(tmpl);
4339
0
    EVP_PKEY_CTX_free(pctx);
4340
0
    BN_free(p);
4341
0
    return dhp;
4342
0
}
4343
4344
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4345
    int op)
4346
164k
{
4347
164k
    int secbits = -1;
4348
164k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
4349
4350
164k
    if (pkey) {
4351
        /*
4352
         * If no parameters this will return -1 and fail using the default
4353
         * security callback for any non-zero security level. This will
4354
         * reject keys which omit parameters but this only affects DSA and
4355
         * omission of parameters is never (?) done in practice.
4356
         */
4357
164k
        secbits = EVP_PKEY_get_security_bits(pkey);
4358
164k
    }
4359
164k
    if (s != NULL)
4360
24.5k
        return ssl_security(s, op, secbits, 0, x);
4361
140k
    else
4362
140k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
4363
164k
}
4364
4365
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4366
    int op)
4367
164k
{
4368
    /* Lookup signature algorithm digest */
4369
164k
    int secbits, nid, pknid;
4370
4371
    /* Don't check signature if self signed */
4372
164k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4373
164k
        return 1;
4374
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4375
0
        secbits = -1;
4376
    /* If digest NID not defined use signature NID */
4377
0
    if (nid == NID_undef)
4378
0
        nid = pknid;
4379
0
    if (s != NULL)
4380
0
        return ssl_security(s, op, secbits, nid, x);
4381
0
    else
4382
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
4383
0
}
4384
4385
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4386
    int is_ee)
4387
181k
{
4388
181k
    if (vfy)
4389
0
        vfy = SSL_SECOP_PEER;
4390
181k
    if (is_ee) {
4391
181k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4392
0
            return SSL_R_EE_KEY_TOO_SMALL;
4393
181k
    } else {
4394
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4395
0
            return SSL_R_CA_KEY_TOO_SMALL;
4396
0
    }
4397
181k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4398
0
        return SSL_R_CA_MD_TOO_WEAK;
4399
181k
    return 1;
4400
181k
}
4401
4402
/*
4403
 * Check security of a chain, if |sk| includes the end entity certificate then
4404
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4405
 * one to the peer. Return values: 1 if ok otherwise error code to use
4406
 */
4407
4408
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4409
    X509 *x, int vfy)
4410
26.7k
{
4411
26.7k
    int rv, start_idx, i;
4412
4413
26.7k
    if (x == NULL) {
4414
26.7k
        x = sk_X509_value(sk, 0);
4415
26.7k
        if (x == NULL)
4416
0
            return ERR_R_INTERNAL_ERROR;
4417
26.7k
        start_idx = 1;
4418
26.7k
    } else
4419
0
        start_idx = 0;
4420
4421
26.7k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
4422
26.7k
    if (rv != 1)
4423
0
        return rv;
4424
4425
26.7k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
4426
0
        x = sk_X509_value(sk, i);
4427
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
4428
0
        if (rv != 1)
4429
0
            return rv;
4430
0
    }
4431
26.7k
    return 1;
4432
26.7k
}
4433
4434
/*
4435
 * For TLS 1.2 servers check if we have a certificate which can be used
4436
 * with the signature algorithm "lu" and return index of certificate.
4437
 */
4438
4439
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4440
    const SIGALG_LOOKUP *lu)
4441
29.3k
{
4442
29.3k
    int sig_idx = lu->sig_idx;
4443
29.3k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4444
29.3k
        SSL_CONNECTION_GET_CTX(s));
4445
4446
    /* If not recognised or not supported by cipher mask it is not suitable */
4447
29.3k
    if (clu == NULL
4448
29.3k
        || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4449
18.4k
        || (clu->pkey_nid == EVP_PKEY_RSA_PSS
4450
1.22k
            && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4451
11.5k
        return -1;
4452
4453
    /* If doing RPK, the CERT_PKEY won't be "valid" */
4454
17.7k
    if (tls12_rpk_and_privkey(s, sig_idx))
4455
0
        return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4456
4457
17.7k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4458
17.7k
}
4459
4460
/*
4461
 * Checks the given cert against signature_algorithm_cert restrictions sent by
4462
 * the peer (if any) as well as whether the hash from the sigalg is usable with
4463
 * the key.
4464
 * Returns true if the cert is usable and false otherwise.
4465
 */
4466
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4467
    X509 *x, EVP_PKEY *pkey)
4468
47.4k
{
4469
47.4k
    const SIGALG_LOOKUP *lu;
4470
47.4k
    int mdnid, pknid, supported;
4471
47.4k
    size_t i;
4472
47.4k
    const char *mdname = NULL;
4473
47.4k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4474
4475
    /*
4476
     * If the given EVP_PKEY cannot support signing with this digest,
4477
     * the answer is simply 'no'.
4478
     */
4479
47.4k
    if (sig->hash != NID_undef)
4480
47.4k
        mdname = OBJ_nid2sn(sig->hash);
4481
47.4k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4482
47.4k
        mdname,
4483
47.4k
        sctx->propq);
4484
47.4k
    if (supported <= 0)
4485
0
        return 0;
4486
4487
    /*
4488
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
4489
     * on the sigalg with which the certificate was signed (by its issuer).
4490
     */
4491
47.4k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4492
21.7k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4493
0
            return 0;
4494
121k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4495
100k
            lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4496
100k
                s->s3.tmp.peer_cert_sigalgs[i]);
4497
100k
            if (lu == NULL)
4498
72.3k
                continue;
4499
4500
            /*
4501
             * This does not differentiate between the
4502
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4503
             * have a chain here that lets us look at the key OID in the
4504
             * signing certificate.
4505
             */
4506
27.8k
            if (mdnid == lu->hash && pknid == lu->sig)
4507
52
                return 1;
4508
27.8k
        }
4509
21.7k
        return 0;
4510
21.7k
    }
4511
4512
    /*
4513
     * Without signat_algorithms_cert, any certificate for which we have
4514
     * a viable public key is permitted.
4515
     */
4516
25.6k
    return 1;
4517
47.4k
}
4518
4519
/*
4520
 * Returns true if |s| has a usable certificate configured for use
4521
 * with signature scheme |sig|.
4522
 * "Usable" includes a check for presence as well as applying
4523
 * the signature_algorithm_cert restrictions sent by the peer (if any).
4524
 * Returns false if no usable certificate is found.
4525
 */
4526
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4527
47.7k
{
4528
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4529
47.7k
    if (idx == -1)
4530
7.21k
        idx = sig->sig_idx;
4531
47.7k
    if (!ssl_has_cert(s, idx))
4532
354
        return 0;
4533
4534
47.4k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4535
47.4k
        s->cert->pkeys[idx].privatekey);
4536
47.7k
}
4537
4538
/*
4539
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
4540
 * specified signature scheme |sig|, or false otherwise.
4541
 */
4542
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4543
    EVP_PKEY *pkey)
4544
0
{
4545
0
    size_t idx;
4546
4547
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4548
0
        return 0;
4549
4550
    /* Check the key is consistent with the sig alg */
4551
0
    if ((int)idx != sig->sig_idx)
4552
0
        return 0;
4553
4554
0
    return check_cert_usable(s, sig, x, pkey);
4555
0
}
4556
4557
/*
4558
 * Find a signature scheme that works with the supplied certificate |x| and key
4559
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4560
 * available certs/keys to find one that works.
4561
 */
4562
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4563
    EVP_PKEY *pkey)
4564
2.06k
{
4565
2.06k
    const SIGALG_LOOKUP *lu = NULL;
4566
2.06k
    size_t i;
4567
2.06k
    int curve = -1;
4568
2.06k
    EVP_PKEY *tmppkey;
4569
2.06k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4570
4571
    /* Look for a shared sigalgs matching possible certificates */
4572
5.86k
    for (i = 0; i < s->shared_sigalgslen; i++) {
4573
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4574
5.77k
        lu = s->shared_sigalgs[i];
4575
5.77k
        if (lu->hash == NID_sha1
4576
4.88k
            || lu->hash == NID_sha224
4577
4.65k
            || lu->sig == EVP_PKEY_DSA
4578
4.65k
            || lu->sig == EVP_PKEY_RSA
4579
3.70k
            || !tls_sigalg_compat(s, lu))
4580
2.06k
            continue;
4581
4582
        /* Check that we have a cert, and signature_algorithms_cert */
4583
3.70k
        if (!tls1_lookup_md(sctx, lu, NULL))
4584
0
            continue;
4585
3.70k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4586
3.54k
            || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4587
160
            continue;
4588
4589
3.54k
        tmppkey = (pkey != NULL) ? pkey
4590
3.54k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
4591
4592
3.54k
        if (lu->sig == EVP_PKEY_EC) {
4593
3.03k
            if (curve == -1)
4594
1.67k
                curve = ssl_get_EC_curve_nid(tmppkey);
4595
3.03k
            if (lu->curve != NID_undef && curve != lu->curve)
4596
1.57k
                continue;
4597
3.03k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4598
            /* validate that key is large enough for the signature algorithm */
4599
504
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4600
0
                continue;
4601
504
        }
4602
1.96k
        break;
4603
3.54k
    }
4604
4605
2.06k
    if (i == s->shared_sigalgslen)
4606
95
        return NULL;
4607
4608
1.96k
    return lu;
4609
2.06k
}
4610
4611
/*
4612
 * Choose an appropriate signature algorithm based on available certificates
4613
 * Sets chosen certificate and signature algorithm.
4614
 *
4615
 * For servers if we fail to find a required certificate it is a fatal error,
4616
 * an appropriate error code is set and a TLS alert is sent.
4617
 *
4618
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4619
 * a fatal error: we will either try another certificate or not present one
4620
 * to the server. In this case no error is set.
4621
 */
4622
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4623
16.7k
{
4624
16.7k
    const SIGALG_LOOKUP *lu = NULL;
4625
16.7k
    int sig_idx = -1;
4626
4627
16.7k
    s->s3.tmp.cert = NULL;
4628
16.7k
    s->s3.tmp.sigalg = NULL;
4629
4630
16.7k
    if (SSL_CONNECTION_IS_TLS13(s)) {
4631
2.06k
        lu = find_sig_alg(s, NULL, NULL);
4632
2.06k
        if (lu == NULL) {
4633
95
            if (!fatalerrs)
4634
0
                return 1;
4635
95
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4636
95
                SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4637
95
            return 0;
4638
95
        }
4639
14.6k
    } else {
4640
        /* If ciphersuite doesn't require a cert nothing to do */
4641
14.6k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4642
1.04k
            return 1;
4643
13.6k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
4644
28
            return 1;
4645
4646
13.6k
        if (SSL_USE_SIGALGS(s)) {
4647
10.8k
            size_t i;
4648
10.8k
            if (s->s3.tmp.peer_sigalgs != NULL) {
4649
2.30k
                int curve = -1;
4650
2.30k
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4651
4652
                /* For Suite B need to match signature algorithm to curve */
4653
2.30k
                if (tls1_suiteb(s))
4654
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4655
0
                            .privatekey);
4656
4657
                /*
4658
                 * Find highest preference signature algorithm matching
4659
                 * cert type
4660
                 */
4661
18.1k
                for (i = 0; i < s->shared_sigalgslen; i++) {
4662
                    /* Check the sigalg version bounds */
4663
17.6k
                    lu = s->shared_sigalgs[i];
4664
17.6k
                    if (!tls_sigalg_compat(s, lu))
4665
94
                        continue;
4666
17.5k
                    if (s->server) {
4667
17.5k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4668
7.82k
                            continue;
4669
17.5k
                    } else {
4670
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
4671
4672
0
                        sig_idx = lu->sig_idx;
4673
0
                        if (cc_idx != sig_idx)
4674
0
                            continue;
4675
0
                    }
4676
                    /* Check that we have a cert, and sig_algs_cert */
4677
9.70k
                    if (!has_usable_cert(s, lu, sig_idx))
4678
7.98k
                        continue;
4679
1.72k
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
4680
                        /* validate that key is large enough for the signature algorithm */
4681
552
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4682
4683
552
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4684
0
                            continue;
4685
552
                    }
4686
1.72k
                    if (curve == -1 || lu->curve == curve)
4687
1.72k
                        break;
4688
1.72k
                }
4689
2.30k
#ifndef OPENSSL_NO_GOST
4690
                /*
4691
                 * Some Windows-based implementations do not send GOST algorithms indication
4692
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4693
                 * we have to assume GOST support.
4694
                 */
4695
2.30k
                if (i == s->shared_sigalgslen
4696
571
                    && (s->s3.tmp.new_cipher->algorithm_auth
4697
571
                           & (SSL_aGOST01 | SSL_aGOST12))
4698
571
                        != 0) {
4699
0
                    if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4700
0
                        if (!fatalerrs)
4701
0
                            return 1;
4702
0
                        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4703
0
                            SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4704
0
                        return 0;
4705
0
                    } else {
4706
0
                        i = 0;
4707
0
                        sig_idx = lu->sig_idx;
4708
0
                    }
4709
0
                }
4710
2.30k
#endif
4711
2.30k
                if (i == s->shared_sigalgslen) {
4712
571
                    if (!fatalerrs)
4713
0
                        return 1;
4714
571
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4715
571
                        SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4716
571
                    return 0;
4717
571
                }
4718
8.58k
            } else {
4719
                /*
4720
                 * If we have no sigalg use defaults
4721
                 */
4722
8.58k
                const uint16_t *sent_sigs;
4723
8.58k
                size_t sent_sigslen;
4724
4725
8.58k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4726
0
                    if (!fatalerrs)
4727
0
                        return 1;
4728
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4729
0
                        SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4730
0
                    return 0;
4731
0
                }
4732
4733
                /* Check signature matches a type we sent */
4734
8.58k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4735
190k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4736
190k
                    if (lu->sigalg == *sent_sigs
4737
8.58k
                        && has_usable_cert(s, lu, lu->sig_idx))
4738
8.58k
                        break;
4739
190k
                }
4740
8.58k
                if (i == sent_sigslen) {
4741
0
                    if (!fatalerrs)
4742
0
                        return 1;
4743
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4744
0
                        SSL_R_WRONG_SIGNATURE_TYPE);
4745
0
                    return 0;
4746
0
                }
4747
8.58k
            }
4748
10.8k
        } else {
4749
2.71k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4750
0
                if (!fatalerrs)
4751
0
                    return 1;
4752
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4753
0
                    SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4754
0
                return 0;
4755
0
            }
4756
2.71k
        }
4757
13.6k
    }
4758
14.9k
    if (sig_idx == -1)
4759
13.2k
        sig_idx = lu->sig_idx;
4760
14.9k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4761
14.9k
    s->cert->key = s->s3.tmp.cert;
4762
14.9k
    s->s3.tmp.sigalg = lu;
4763
14.9k
    return 1;
4764
16.7k
}
4765
4766
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4767
0
{
4768
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4769
0
        && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4770
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4771
0
        return 0;
4772
0
    }
4773
4774
0
    ctx->ext.max_fragment_len_mode = mode;
4775
0
    return 1;
4776
0
}
4777
4778
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4779
0
{
4780
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4781
4782
0
    if (sc == NULL
4783
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4784
0
        return 0;
4785
4786
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4787
0
        && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4788
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4789
0
        return 0;
4790
0
    }
4791
4792
0
    sc->ext.max_fragment_len_mode = mode;
4793
0
    return 1;
4794
0
}
4795
4796
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4797
0
{
4798
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4799
0
        return TLSEXT_max_fragment_length_DISABLED;
4800
0
    return session->ext.max_fragment_len_mode;
4801
0
}
4802
4803
/*
4804
 * Helper functions for HMAC access with legacy support included.
4805
 */
4806
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4807
2.40k
{
4808
2.40k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4809
2.40k
    EVP_MAC *mac = NULL;
4810
4811
2.40k
    if (ret == NULL)
4812
0
        return NULL;
4813
2.40k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4814
2.40k
    if (ctx->ext.ticket_key_evp_cb == NULL
4815
2.40k
        && ctx->ext.ticket_key_cb != NULL) {
4816
0
        if (!ssl_hmac_old_new(ret))
4817
0
            goto err;
4818
0
        return ret;
4819
0
    }
4820
2.40k
#endif
4821
2.40k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4822
2.40k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4823
0
        goto err;
4824
2.40k
    EVP_MAC_free(mac);
4825
2.40k
    return ret;
4826
0
err:
4827
0
    EVP_MAC_CTX_free(ret->ctx);
4828
0
    EVP_MAC_free(mac);
4829
0
    OPENSSL_free(ret);
4830
0
    return NULL;
4831
2.40k
}
4832
4833
void ssl_hmac_free(SSL_HMAC *ctx)
4834
7.46k
{
4835
7.46k
    if (ctx != NULL) {
4836
2.40k
        EVP_MAC_CTX_free(ctx->ctx);
4837
2.40k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4838
2.40k
        ssl_hmac_old_free(ctx);
4839
2.40k
#endif
4840
2.40k
        OPENSSL_free(ctx);
4841
2.40k
    }
4842
7.46k
}
4843
4844
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4845
0
{
4846
0
    return ctx->ctx;
4847
0
}
4848
4849
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4850
1.42k
{
4851
1.42k
    OSSL_PARAM params[2], *p = params;
4852
4853
1.42k
    if (ctx->ctx != NULL) {
4854
1.42k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4855
1.42k
        *p = OSSL_PARAM_construct_end();
4856
1.42k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
4857
1.42k
            return 1;
4858
1.42k
    }
4859
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4860
0
    if (ctx->old_ctx != NULL)
4861
0
        return ssl_hmac_old_init(ctx, key, len, md);
4862
0
#endif
4863
0
    return 0;
4864
0
}
4865
4866
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4867
1.26k
{
4868
1.26k
    if (ctx->ctx != NULL)
4869
1.26k
        return EVP_MAC_update(ctx->ctx, data, len);
4870
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4871
0
    if (ctx->old_ctx != NULL)
4872
0
        return ssl_hmac_old_update(ctx, data, len);
4873
0
#endif
4874
0
    return 0;
4875
0
}
4876
4877
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4878
    size_t max_size)
4879
1.26k
{
4880
1.26k
    if (ctx->ctx != NULL)
4881
1.26k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4882
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4883
0
    if (ctx->old_ctx != NULL)
4884
0
        return ssl_hmac_old_final(ctx, md, len);
4885
0
#endif
4886
0
    return 0;
4887
0
}
4888
4889
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4890
1.38k
{
4891
1.38k
    if (ctx->ctx != NULL)
4892
1.38k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4893
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4894
0
    if (ctx->old_ctx != NULL)
4895
0
        return ssl_hmac_old_size(ctx);
4896
0
#endif
4897
0
    return 0;
4898
0
}
4899
4900
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4901
31.5k
{
4902
31.5k
    char gname[OSSL_MAX_NAME_SIZE];
4903
4904
31.5k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4905
31.5k
        return OBJ_txt2nid(gname);
4906
4907
0
    return NID_undef;
4908
31.5k
}
4909
4910
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4911
    const unsigned char *enckey,
4912
    size_t enckeylen)
4913
28.6k
{
4914
28.6k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4915
161
        int bits = EVP_PKEY_get_bits(pkey);
4916
4917
161
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4918
            /* the encoded key must be padded to the length of the p */
4919
12
            return 0;
4920
28.4k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4921
199
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4922
193
            || enckey[0] != 0x04)
4923
50
            return 0;
4924
199
    }
4925
4926
28.5k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4927
28.6k
}