/src/openssl36/crypto/bn/bn_local.h
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #ifndef OSSL_CRYPTO_BN_LOCAL_H |
11 | | #define OSSL_CRYPTO_BN_LOCAL_H |
12 | | |
13 | | /* |
14 | | * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or |
15 | | * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our |
16 | | * Configure script and needs to support both 32-bit and 64-bit. |
17 | | */ |
18 | | #include <openssl/opensslconf.h> |
19 | | |
20 | | #if !defined(OPENSSL_SYS_UEFI) |
21 | | #include "crypto/bn_conf.h" |
22 | | #endif |
23 | | |
24 | | #include "crypto/bn.h" |
25 | | #include "internal/cryptlib.h" |
26 | | #include "internal/numbers.h" |
27 | | |
28 | | /* |
29 | | * These preprocessor symbols control various aspects of the bignum headers |
30 | | * and library code. They're not defined by any "normal" configuration, as |
31 | | * they are intended for development and testing purposes. NB: defining |
32 | | * them can be useful for debugging application code as well as openssl |
33 | | * itself. BN_DEBUG - turn on various debugging alterations to the bignum |
34 | | * code BN_RAND_DEBUG - uses random poisoning of unused words to trip up |
35 | | * mismanagement of bignum internals. Enable BN_RAND_DEBUG is known to |
36 | | * break some of the OpenSSL tests. |
37 | | */ |
38 | | #if defined(BN_RAND_DEBUG) && !defined(BN_DEBUG) |
39 | | #define BN_DEBUG |
40 | | #endif |
41 | | #if defined(BN_RAND_DEBUG) |
42 | | #include <openssl/rand.h> |
43 | | #endif |
44 | | |
45 | | /* |
46 | | * This should limit the stack usage due to alloca to about 4K. |
47 | | * BN_SOFT_LIMIT is a soft limit equivalent to 2*OPENSSL_RSA_MAX_MODULUS_BITS. |
48 | | * Beyond that size bn_mul_mont is no longer used, and the constant time |
49 | | * assembler code is disabled, due to the blatant alloca and bn_mul_mont usage. |
50 | | * Note that bn_mul_mont does an alloca that is hidden away in assembly. |
51 | | * It is not recommended to do computations with numbers exceeding this limit, |
52 | | * since the result will be highly version dependent: |
53 | | * While the current OpenSSL version will use non-optimized, but safe code, |
54 | | * previous versions will use optimized code, that may crash due to unexpected |
55 | | * stack overflow, and future versions may very well turn this into a hard |
56 | | * limit. |
57 | | * Note however, that it is possible to override the size limit using |
58 | | * "./config -DBN_SOFT_LIMIT=<limit>" if necessary, and the O/S specific |
59 | | * stack limit is known and taken into consideration. |
60 | | */ |
61 | | #ifndef BN_SOFT_LIMIT |
62 | 274M | #define BN_SOFT_LIMIT (4096 / BN_BYTES) |
63 | | #endif |
64 | | |
65 | | #ifndef OPENSSL_SMALL_FOOTPRINT |
66 | | #define BN_MUL_COMBA |
67 | | #define BN_SQR_COMBA |
68 | | #define BN_RECURSION |
69 | | #endif |
70 | | |
71 | | /* |
72 | | * This next option uses the C libraries (2 word)/(1 word) function. If it is |
73 | | * not defined, I use my C version (which is slower). The reason for this |
74 | | * flag is that when the particular C compiler library routine is used, and |
75 | | * the library is linked with a different compiler, the library is missing. |
76 | | * This mostly happens when the library is built with gcc and then linked |
77 | | * using normal cc. This would be a common occurrence because gcc normally |
78 | | * produces code that is 2 times faster than system compilers for the big |
79 | | * number stuff. For machines with only one compiler (or shared libraries), |
80 | | * this should be on. Again this in only really a problem on machines using |
81 | | * "long long's", are 32bit, and are not using my assembler code. |
82 | | */ |
83 | | #if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) || defined(linux) |
84 | | #define BN_DIV2W |
85 | | #endif |
86 | | |
87 | | /* |
88 | | * 64-bit processor with LP64 ABI |
89 | | */ |
90 | | #ifdef SIXTY_FOUR_BIT_LONG |
91 | | #define BN_ULLONG unsigned long long |
92 | 2.24G | #define BN_BITS4 32 |
93 | 9.35G | #define BN_MASK2 (0xffffffffffffffffL) |
94 | 2.23G | #define BN_MASK2l (0xffffffffL) |
95 | 1.39M | #define BN_MASK2h (0xffffffff00000000L) |
96 | | #define BN_MASK2h1 (0xffffffff80000000L) |
97 | 3.40M | #define BN_DEC_CONV (10000000000000000000UL) |
98 | 3.19M | #define BN_DEC_NUM 19 |
99 | 3.05M | #define BN_DEC_FMT1 "%lu" |
100 | 350k | #define BN_DEC_FMT2 "%019lu" |
101 | | #endif |
102 | | |
103 | | /* |
104 | | * 64-bit processor other than LP64 ABI |
105 | | */ |
106 | | #ifdef SIXTY_FOUR_BIT |
107 | | #undef BN_LLONG |
108 | | #undef BN_ULLONG |
109 | | #define BN_BITS4 32 |
110 | | #define BN_MASK2 (0xffffffffffffffffLL) |
111 | | #define BN_MASK2l (0xffffffffL) |
112 | | #define BN_MASK2h (0xffffffff00000000LL) |
113 | | #define BN_MASK2h1 (0xffffffff80000000LL) |
114 | | #define BN_DEC_CONV (10000000000000000000ULL) |
115 | | #define BN_DEC_NUM 19 |
116 | | #define BN_DEC_FMT1 "%llu" |
117 | | #define BN_DEC_FMT2 "%019llu" |
118 | | #endif |
119 | | |
120 | | #ifdef THIRTY_TWO_BIT |
121 | | #ifdef BN_LLONG |
122 | | #if defined(_WIN32) && !defined(__GNUC__) |
123 | | #define BN_ULLONG unsigned __int64 |
124 | | #else |
125 | | #define BN_ULLONG unsigned long long |
126 | | #endif |
127 | | #endif |
128 | | #define BN_BITS4 16 |
129 | | #define BN_MASK2 (0xffffffffL) |
130 | | #define BN_MASK2l (0xffff) |
131 | | #define BN_MASK2h1 (0xffff8000L) |
132 | | #define BN_MASK2h (0xffff0000L) |
133 | | #define BN_DEC_CONV (1000000000L) |
134 | | #define BN_DEC_NUM 9 |
135 | | #define BN_DEC_FMT1 "%u" |
136 | | #define BN_DEC_FMT2 "%09u" |
137 | | #endif |
138 | | |
139 | | /*- |
140 | | * Bignum consistency macros |
141 | | * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from |
142 | | * bignum data after direct manipulations on the data. There is also an |
143 | | * "internal" macro, bn_check_top(), for verifying that there are no leading |
144 | | * zeroes. Unfortunately, some auditing is required due to the fact that |
145 | | * bn_fix_top() has become an overabused duct-tape because bignum data is |
146 | | * occasionally passed around in an inconsistent state. So the following |
147 | | * changes have been made to sort this out; |
148 | | * - bn_fix_top()s implementation has been moved to bn_correct_top() |
149 | | * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and |
150 | | * bn_check_top() is as before. |
151 | | * - if BN_DEBUG *is* defined; |
152 | | * - bn_check_top() tries to pollute unused words even if the bignum 'top' is |
153 | | * consistent. (ed: only if BN_RAND_DEBUG is defined) |
154 | | * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything. |
155 | | * The idea is to have debug builds flag up inconsistent bignums when they |
156 | | * occur. If that occurs in a bn_fix_top(), we examine the code in question; if |
157 | | * the use of bn_fix_top() was appropriate (ie. it follows directly after code |
158 | | * that manipulates the bignum) it is converted to bn_correct_top(), and if it |
159 | | * was not appropriate, we convert it permanently to bn_check_top() and track |
160 | | * down the cause of the bug. Eventually, no internal code should be using the |
161 | | * bn_fix_top() macro. External applications and libraries should try this with |
162 | | * their own code too, both in terms of building against the openssl headers |
163 | | * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it |
164 | | * defined. This not only improves external code, it provides more test |
165 | | * coverage for openssl's own code. |
166 | | */ |
167 | | |
168 | | #ifdef BN_DEBUG |
169 | | /* |
170 | | * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with |
171 | | * bn_correct_top, in other words such vectors are permitted to have zeros |
172 | | * in most significant limbs. Such vectors are used internally to achieve |
173 | | * execution time invariance for critical operations with private keys. |
174 | | * It's BN_DEBUG-only flag, because user application is not supposed to |
175 | | * observe it anyway. Moreover, optimizing compiler would actually remove |
176 | | * all operations manipulating the bit in question in non-BN_DEBUG build. |
177 | | */ |
178 | | #define BN_FLG_FIXED_TOP 0x10000 |
179 | | #ifdef BN_RAND_DEBUG |
180 | | #define bn_pollute(a) \ |
181 | | do { \ |
182 | | const BIGNUM *_bnum1 = (a); \ |
183 | | if (_bnum1->top < _bnum1->dmax) { \ |
184 | | unsigned char _tmp_char; \ |
185 | | /* We cast away const without the compiler knowing, any \ |
186 | | * *genuinely* constant variables that aren't mutable \ |
187 | | * wouldn't be constructed with top!=dmax. */ \ |
188 | | BN_ULONG *_not_const; \ |
189 | | memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \ |
190 | | (void)RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */ \ |
191 | | memset(_not_const + _bnum1->top, _tmp_char, \ |
192 | | sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \ |
193 | | } \ |
194 | | } while (0) |
195 | | #else |
196 | | #define bn_pollute(a) |
197 | | #endif |
198 | | #define bn_check_top(a) \ |
199 | | do { \ |
200 | | const BIGNUM *_bnum2 = (a); \ |
201 | | if (_bnum2 != NULL) { \ |
202 | | int _top = _bnum2->top; \ |
203 | | (void)ossl_assert((_top == 0 && !_bnum2->neg) || (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) || _bnum2->d[_top - 1] != 0))); \ |
204 | | bn_pollute(_bnum2); \ |
205 | | } \ |
206 | | } while (0) |
207 | | |
208 | | #define bn_fix_top(a) bn_check_top(a) |
209 | | |
210 | | #define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits + BN_BITS2 - 1)) / BN_BITS2) |
211 | | #define bn_wcheck_size(bn, words) \ |
212 | | do { \ |
213 | | const BIGNUM *_bnum2 = (bn); \ |
214 | | assert((words) <= (_bnum2)->dmax && (words) >= (_bnum2)->top); \ |
215 | | /* avoid unused variable warning with NDEBUG */ \ |
216 | | (void)(_bnum2); \ |
217 | | } while (0) |
218 | | |
219 | | #else /* !BN_DEBUG */ |
220 | | |
221 | 2.55G | #define BN_FLG_FIXED_TOP 0 |
222 | | #define bn_pollute(a) |
223 | | #define bn_check_top(a) |
224 | | #define bn_fix_top(a) bn_correct_top(a) |
225 | | #define bn_check_size(bn, bits) |
226 | | #define bn_wcheck_size(bn, words) |
227 | | |
228 | | #endif |
229 | | |
230 | | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, |
231 | | BN_ULONG w); |
232 | | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); |
233 | | void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num); |
234 | | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); |
235 | | BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
236 | | int num); |
237 | | BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
238 | | int num); |
239 | | |
240 | | struct bignum_st { |
241 | | BN_ULONG *d; /* |
242 | | * Pointer to an array of 'BN_BITS2' bit |
243 | | * chunks. These chunks are organised in |
244 | | * a least significant chunk first order. |
245 | | */ |
246 | | int top; /* Index of last used d +1. */ |
247 | | /* The next are internal book keeping for bn_expand. */ |
248 | | int dmax; /* Size of the d array. */ |
249 | | int neg; /* one if the number is negative */ |
250 | | int flags; |
251 | | }; |
252 | | |
253 | | /* Used for montgomery multiplication */ |
254 | | struct bn_mont_ctx_st { |
255 | | BIGNUM RR; /* used to convert to montgomery form, |
256 | | possibly zero-padded */ |
257 | | BIGNUM N; /* The modulus */ |
258 | | BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only |
259 | | * stored for bignum algorithm) */ |
260 | | BN_ULONG n0[2]; /* least significant word(s) of Ni; (type |
261 | | * changed with 0.9.9, was "BN_ULONG n0;" |
262 | | * before) */ |
263 | | int ri; /* number of bits in R */ |
264 | | int flags; |
265 | | }; |
266 | | |
267 | | /* |
268 | | * Used for reciprocal division/mod functions It cannot be shared between |
269 | | * threads |
270 | | */ |
271 | | struct bn_recp_ctx_st { |
272 | | BIGNUM N; /* the divisor */ |
273 | | BIGNUM Nr; /* the reciprocal */ |
274 | | int num_bits; |
275 | | int shift; |
276 | | int flags; |
277 | | }; |
278 | | |
279 | | /* Used for slow "generation" functions. */ |
280 | | struct bn_gencb_st { |
281 | | unsigned int ver; /* To handle binary (in)compatibility */ |
282 | | void *arg; /* callback-specific data */ |
283 | | union { |
284 | | /* if (ver==1) - handles old style callbacks */ |
285 | | void (*cb_1)(int, int, void *); |
286 | | /* if (ver==2) - new callback style */ |
287 | | int (*cb_2)(int, int, BN_GENCB *); |
288 | | } cb; |
289 | | }; |
290 | | |
291 | | /*- |
292 | | * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions |
293 | | * |
294 | | * |
295 | | * For window size 'w' (w >= 2) and a random 'b' bits exponent, |
296 | | * the number of multiplications is a constant plus on average |
297 | | * |
298 | | * 2^(w-1) + (b-w)/(w+1); |
299 | | * |
300 | | * here 2^(w-1) is for precomputing the table (we actually need |
301 | | * entries only for windows that have the lowest bit set), and |
302 | | * (b-w)/(w+1) is an approximation for the expected number of |
303 | | * w-bit windows, not counting the first one. |
304 | | * |
305 | | * Thus we should use |
306 | | * |
307 | | * w >= 6 if b > 671 |
308 | | * w = 5 if 671 > b > 239 |
309 | | * w = 4 if 239 > b > 79 |
310 | | * w = 3 if 79 > b > 23 |
311 | | * w <= 2 if 23 > b |
312 | | * |
313 | | * (with draws in between). Very small exponents are often selected |
314 | | * with low Hamming weight, so we use w = 1 for b <= 23. |
315 | | */ |
316 | | #define BN_window_bits_for_exponent_size(b) \ |
317 | 325k | ((b) > 671 ? 6 : (b) > 239 ? 5 \ |
318 | 319k | : (b) > 79 ? 4 \ |
319 | 273k | : (b) > 23 ? 3 \ |
320 | 130k | : 1) |
321 | | |
322 | | /* |
323 | | * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache |
324 | | * line width of the target processor is at least the following value. |
325 | | */ |
326 | 203k | #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64) |
327 | 101k | #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) |
328 | | |
329 | | /* |
330 | | * Window sizes optimized for fixed window size modular exponentiation |
331 | | * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of |
332 | | * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed |
333 | | * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are |
334 | | * defined for cache line sizes of 32 and 64, cache line sizes where |
335 | | * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be |
336 | | * used on processors that have a 128 byte or greater cache line size. |
337 | | */ |
338 | | #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 |
339 | | |
340 | | #define BN_window_bits_for_ctime_exponent_size(b) \ |
341 | 101k | ((b) > 937 ? 6 : (b) > 306 ? 5 \ |
342 | 55.1k | : (b) > 89 ? 4 \ |
343 | 48.1k | : (b) > 22 ? 3 \ |
344 | 41.6k | : 1) |
345 | | #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) |
346 | | |
347 | | #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 |
348 | | |
349 | | #define BN_window_bits_for_ctime_exponent_size(b) \ |
350 | | ((b) > 306 ? 5 : (b) > 89 ? 4 \ |
351 | | : (b) > 22 ? 3 \ |
352 | | : 1) |
353 | | #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) |
354 | | |
355 | | #endif |
356 | | |
357 | | /* Pentium pro 16,16,16,32,64 */ |
358 | | /* Alpha 16,16,16,16.64 */ |
359 | 34.9M | #define BN_MULL_SIZE_NORMAL (16) /* 32 */ |
360 | 62.2M | #define BN_MUL_RECURSIVE_SIZE_NORMAL (16) /* 32 less than */ |
361 | 12.1M | #define BN_SQR_RECURSIVE_SIZE_NORMAL (16) /* 32 */ |
362 | 0 | #define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32) /* 32 */ |
363 | | #define BN_MONT_CTX_SET_SIZE_WORD (64) /* 32 */ |
364 | | |
365 | | #if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) |
366 | | /* |
367 | | * BN_UMULT_HIGH section. |
368 | | * If the compiler doesn't support 2*N integer type, then you have to |
369 | | * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some |
370 | | * shifts and additions which unavoidably results in severe performance |
371 | | * penalties. Of course provided that the hardware is capable of producing |
372 | | * 2*N result... That's when you normally start considering assembler |
373 | | * implementation. However! It should be pointed out that some CPUs (e.g., |
374 | | * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating |
375 | | * the upper half of the product placing the result into a general |
376 | | * purpose register. Now *if* the compiler supports inline assembler, |
377 | | * then it's not impossible to implement the "bignum" routines (and have |
378 | | * the compiler optimize 'em) exhibiting "native" performance in C. That's |
379 | | * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do |
380 | | * support 2*64 integer type, which is also used here. |
381 | | */ |
382 | | #if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__ == 16 && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) |
383 | | #define BN_UMULT_HIGH(a, b) (((uint128_t)(a) * (b)) >> 64) |
384 | | #define BN_UMULT_LOHI(low, high, a, b) ({ \ |
385 | | uint128_t ret=(uint128_t)(a)*(b); \ |
386 | | (high)=ret>>64; (low)=ret; }) |
387 | | #elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
388 | | #if defined(__DECC) |
389 | | #include <c_asm.h> |
390 | | #define BN_UMULT_HIGH(a, b) (BN_ULONG) asm("umulh %a0,%a1,%v0", (a), (b)) |
391 | | #elif defined(__GNUC__) && __GNUC__ >= 2 |
392 | | #define BN_UMULT_HIGH(a, b) ({ \ |
393 | | register BN_ULONG ret; \ |
394 | | asm ("umulh %1,%2,%0" \ |
395 | | : "=r"(ret) \ |
396 | | : "r"(a), "r"(b)); \ |
397 | | ret; }) |
398 | | #endif /* compiler */ |
399 | | #elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG) |
400 | | #if defined(__GNUC__) && __GNUC__ >= 2 |
401 | | #define BN_UMULT_HIGH(a, b) ({ \ |
402 | | register BN_ULONG ret; \ |
403 | | asm ("mulhdu %0,%1,%2" \ |
404 | | : "=r"(ret) \ |
405 | | : "r"(a), "r"(b)); \ |
406 | | ret; }) |
407 | | #endif /* compiler */ |
408 | | #elif (defined(__x86_64) || defined(__x86_64__)) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
409 | | #if defined(__GNUC__) && __GNUC__ >= 2 |
410 | | #define BN_UMULT_HIGH(a, b) ({ \ |
411 | | register BN_ULONG ret,discard; \ |
412 | | asm ("mulq %3" \ |
413 | | : "=a"(discard),"=d"(ret) \ |
414 | | : "a"(a), "g"(b) \ |
415 | | : "cc"); \ |
416 | | ret; }) |
417 | | #define BN_UMULT_LOHI(low, high, a, b) \ |
418 | | asm("mulq %3" \ |
419 | | : "=a"(low), "=d"(high) \ |
420 | | : "a"(a), "g"(b) \ |
421 | | : "cc"); |
422 | | #endif |
423 | | #elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT) |
424 | | #if defined(_MSC_VER) && _MSC_VER >= 1400 |
425 | | unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b); |
426 | | unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b, |
427 | | unsigned __int64 *h); |
428 | | #pragma intrinsic(__umulh, _umul128) |
429 | | #define BN_UMULT_HIGH(a, b) __umulh((a), (b)) |
430 | | #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high))) |
431 | | #endif |
432 | | #elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) |
433 | | #if defined(__GNUC__) && __GNUC__ >= 2 |
434 | | #define BN_UMULT_HIGH(a, b) ({ \ |
435 | | register BN_ULONG ret; \ |
436 | | asm ("dmultu %1,%2" \ |
437 | | : "=h"(ret) \ |
438 | | : "r"(a), "r"(b) : "l"); \ |
439 | | ret; }) |
440 | | #define BN_UMULT_LOHI(low, high, a, b) \ |
441 | | asm("dmultu %2,%3" \ |
442 | | : "=l"(low), "=h"(high) \ |
443 | | : "r"(a), "r"(b)); |
444 | | #endif |
445 | | #elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG) |
446 | | #if defined(__GNUC__) && __GNUC__ >= 2 |
447 | | #define BN_UMULT_HIGH(a, b) ({ \ |
448 | | register BN_ULONG ret; \ |
449 | | asm ("umulh %0,%1,%2" \ |
450 | | : "=r"(ret) \ |
451 | | : "r"(a), "r"(b)); \ |
452 | | ret; }) |
453 | | #endif |
454 | | #endif /* cpu */ |
455 | | #endif /* OPENSSL_NO_ASM */ |
456 | | |
457 | | #ifdef BN_RAND_DEBUG |
458 | | #define bn_clear_top2max(a) \ |
459 | | { \ |
460 | | int ind = (a)->dmax - (a)->top; \ |
461 | | BN_ULONG *ftl = &(a)->d[(a)->top - 1]; \ |
462 | | for (; ind != 0; ind--) \ |
463 | | *(++ftl) = 0x0; \ |
464 | | } |
465 | | #else |
466 | | #define bn_clear_top2max(a) |
467 | | #endif |
468 | | |
469 | | #ifdef BN_LLONG |
470 | | /******************************************************************* |
471 | | * Using the long long type, has to be twice as wide as BN_ULONG... |
472 | | */ |
473 | | #define Lw(t) (((BN_ULONG)(t)) & BN_MASK2) |
474 | | #define Hw(t) (((BN_ULONG)((t) >> BN_BITS2)) & BN_MASK2) |
475 | | |
476 | | #define mul_add(r, a, w, c) \ |
477 | | { \ |
478 | | BN_ULLONG t; \ |
479 | | t = (BN_ULLONG)w * (a) + (r) + (c); \ |
480 | | (r) = Lw(t); \ |
481 | | (c) = Hw(t); \ |
482 | | } |
483 | | |
484 | | #define mul(r, a, w, c) \ |
485 | | { \ |
486 | | BN_ULLONG t; \ |
487 | | t = (BN_ULLONG)w * (a) + (c); \ |
488 | | (r) = Lw(t); \ |
489 | | (c) = Hw(t); \ |
490 | | } |
491 | | |
492 | | #define sqr(r0, r1, a) \ |
493 | | { \ |
494 | | BN_ULLONG t; \ |
495 | | t = (BN_ULLONG)(a) * (a); \ |
496 | | (r0) = Lw(t); \ |
497 | | (r1) = Hw(t); \ |
498 | | } |
499 | | |
500 | | #elif defined(BN_UMULT_LOHI) |
501 | | #define mul_add(r, a, w, c) \ |
502 | | { \ |
503 | | BN_ULONG high, low, ret, tmp = (a); \ |
504 | | ret = (r); \ |
505 | | BN_UMULT_LOHI(low, high, w, tmp); \ |
506 | | ret += (c); \ |
507 | | (c) = (ret < (c)); \ |
508 | | (c) += high; \ |
509 | | ret += low; \ |
510 | | (c) += (ret < low); \ |
511 | | (r) = ret; \ |
512 | | } |
513 | | |
514 | | #define mul(r, a, w, c) \ |
515 | | { \ |
516 | | BN_ULONG high, low, ret, ta = (a); \ |
517 | | BN_UMULT_LOHI(low, high, w, ta); \ |
518 | | ret = low + (c); \ |
519 | | (c) = high; \ |
520 | | (c) += (ret < low); \ |
521 | | (r) = ret; \ |
522 | | } |
523 | | |
524 | | #define sqr(r0, r1, a) \ |
525 | | { \ |
526 | | BN_ULONG tmp = (a); \ |
527 | | BN_UMULT_LOHI(r0, r1, tmp, tmp); \ |
528 | | } |
529 | | |
530 | | #elif defined(BN_UMULT_HIGH) |
531 | | #define mul_add(r, a, w, c) \ |
532 | | { \ |
533 | | BN_ULONG high, low, ret, tmp = (a); \ |
534 | | ret = (r); \ |
535 | | high = BN_UMULT_HIGH(w, tmp); \ |
536 | | ret += (c); \ |
537 | | low = (w) * tmp; \ |
538 | | (c) = (ret < (c)); \ |
539 | | (c) += high; \ |
540 | | ret += low; \ |
541 | | (c) += (ret < low); \ |
542 | | (r) = ret; \ |
543 | | } |
544 | | |
545 | | #define mul(r, a, w, c) \ |
546 | | { \ |
547 | | BN_ULONG high, low, ret, ta = (a); \ |
548 | | low = (w) * ta; \ |
549 | | high = BN_UMULT_HIGH(w, ta); \ |
550 | | ret = low + (c); \ |
551 | | (c) = high; \ |
552 | | (c) += (ret < low); \ |
553 | | (r) = ret; \ |
554 | | } |
555 | | |
556 | | #define sqr(r0, r1, a) \ |
557 | | { \ |
558 | | BN_ULONG tmp = (a); \ |
559 | | (r0) = tmp * tmp; \ |
560 | | (r1) = BN_UMULT_HIGH(tmp, tmp); \ |
561 | | } |
562 | | |
563 | | #else |
564 | | /************************************************************* |
565 | | * No long long type |
566 | | */ |
567 | | |
568 | 886M | #define LBITS(a) ((a) & BN_MASK2l) |
569 | 1.32G | #define HBITS(a) (((a) >> BN_BITS4) & BN_MASK2l) |
570 | 886M | #define L2HBITS(a) (((a) << BN_BITS4) & BN_MASK2) |
571 | | |
572 | | #define LLBITS(a) ((a) & BN_MASKl) |
573 | | #define LHBITS(a) (((a) >> BN_BITS2) & BN_MASKl) |
574 | | #define LL2HBITS(a) ((BN_ULLONG)((a) & BN_MASKl) << BN_BITS2) |
575 | | |
576 | | #define mul64(l, h, bl, bh) \ |
577 | 443M | { \ |
578 | 443M | BN_ULONG m, m1, lt, ht; \ |
579 | 443M | \ |
580 | 443M | lt = l; \ |
581 | 443M | ht = h; \ |
582 | 443M | m = (bh) * (lt); \ |
583 | 443M | lt = (bl) * (lt); \ |
584 | 443M | m1 = (bl) * (ht); \ |
585 | 443M | ht = (bh) * (ht); \ |
586 | 443M | m = (m + m1) & BN_MASK2; \ |
587 | 443M | ht += L2HBITS((BN_ULONG)(m < m1)); \ |
588 | 443M | ht += HBITS(m); \ |
589 | 443M | m1 = L2HBITS(m); \ |
590 | 443M | lt = (lt + m1) & BN_MASK2; \ |
591 | 443M | ht += (lt < m1); \ |
592 | 443M | (l) = lt; \ |
593 | 443M | (h) = ht; \ |
594 | 443M | } |
595 | | |
596 | | #define sqr64(lo, ho, in) \ |
597 | | { \ |
598 | | BN_ULONG l, h, m; \ |
599 | | \ |
600 | | h = (in); \ |
601 | | l = LBITS(h); \ |
602 | | h = HBITS(h); \ |
603 | | m = (l) * (h); \ |
604 | | l *= l; \ |
605 | | h *= h; \ |
606 | | h += (m & BN_MASK2h1) >> (BN_BITS4 - 1); \ |
607 | | m = (m & BN_MASK2l) << (BN_BITS4 + 1); \ |
608 | | l = (l + m) & BN_MASK2; \ |
609 | | h += (l < m); \ |
610 | | (lo) = l; \ |
611 | | (ho) = h; \ |
612 | | } |
613 | | |
614 | | #define mul_add(r, a, bl, bh, c) \ |
615 | | { \ |
616 | | BN_ULONG l, h; \ |
617 | | \ |
618 | | h = (a); \ |
619 | | l = LBITS(h); \ |
620 | | h = HBITS(h); \ |
621 | | mul64(l, h, (bl), (bh)); \ |
622 | | \ |
623 | | /* non-multiply part */ \ |
624 | | l = (l + (c)) & BN_MASK2; \ |
625 | | h += (l < (c)); \ |
626 | | (c) = (r); \ |
627 | | l = (l + (c)) & BN_MASK2; \ |
628 | | h += (l < (c)); \ |
629 | | (c) = h & BN_MASK2; \ |
630 | | (r) = l; \ |
631 | | } |
632 | | |
633 | | #define mul(r, a, bl, bh, c) \ |
634 | | { \ |
635 | | BN_ULONG l, h; \ |
636 | | \ |
637 | | h = (a); \ |
638 | | l = LBITS(h); \ |
639 | | h = HBITS(h); \ |
640 | | mul64(l, h, (bl), (bh)); \ |
641 | | \ |
642 | | /* non-multiply part */ \ |
643 | | l += (c); \ |
644 | | h += ((l & BN_MASK2) < (c)); \ |
645 | | (c) = h & BN_MASK2; \ |
646 | | (r) = l & BN_MASK2; \ |
647 | | } |
648 | | #endif /* !BN_LLONG */ |
649 | | |
650 | | void BN_RECP_CTX_init(BN_RECP_CTX *recp); |
651 | | void BN_MONT_CTX_init(BN_MONT_CTX *ctx); |
652 | | |
653 | | void bn_init(BIGNUM *a); |
654 | | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); |
655 | | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
656 | | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
657 | | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp); |
658 | | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a); |
659 | | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a); |
660 | | int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n); |
661 | | int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl); |
662 | | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
663 | | int dna, int dnb, BN_ULONG *t); |
664 | | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, |
665 | | int n, int tna, int tnb, BN_ULONG *t); |
666 | | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t); |
667 | | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); |
668 | | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
669 | | BN_ULONG *t); |
670 | | BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
671 | | int cl, int dl); |
672 | | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
673 | | const BN_ULONG *np, const BN_ULONG *n0, int num); |
674 | | void bn_correct_top_consttime(BIGNUM *a); |
675 | | BIGNUM *int_bn_mod_inverse(BIGNUM *in, |
676 | | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
677 | | int *noinv); |
678 | | |
679 | | static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits) |
680 | 3.13M | { |
681 | 3.13M | if (bits > (INT_MAX - BN_BITS2 + 1)) |
682 | 0 | return NULL; |
683 | | |
684 | 3.13M | if (((bits + BN_BITS2 - 1) / BN_BITS2) <= (a)->dmax) |
685 | 1.75M | return a; |
686 | | |
687 | 1.38M | return bn_expand2((a), (bits + BN_BITS2 - 1) / BN_BITS2); |
688 | 3.13M | } Unexecuted instantiation: bn_dh.c:bn_expand Line | Count | Source | 680 | 3.13M | { | 681 | 3.13M | if (bits > (INT_MAX - BN_BITS2 + 1)) | 682 | 0 | return NULL; | 683 | | | 684 | 3.13M | if (((bits + BN_BITS2 - 1) / BN_BITS2) <= (a)->dmax) | 685 | 1.75M | return a; | 686 | | | 687 | 1.38M | return bn_expand2((a), (bits + BN_BITS2 - 1) / BN_BITS2); | 688 | 3.13M | } |
Unexecuted instantiation: bn_mont.c:bn_expand Unexecuted instantiation: bn_mul.c:bn_expand Unexecuted instantiation: bn_shift.c:bn_expand Unexecuted instantiation: bn_sqr.c:bn_expand Unexecuted instantiation: bn_word.c:bn_expand Unexecuted instantiation: x86_64-gcc.c:bn_expand Unexecuted instantiation: bn_add.c:bn_expand Unexecuted instantiation: bn_blind.c:bn_expand Unexecuted instantiation: bn_conv.c:bn_expand Unexecuted instantiation: bn_ctx.c:bn_expand Unexecuted instantiation: bn_div.c:bn_expand Unexecuted instantiation: bn_exp.c:bn_expand Unexecuted instantiation: bn_exp2.c:bn_expand Unexecuted instantiation: bn_gcd.c:bn_expand Unexecuted instantiation: bn_intern.c:bn_expand Unexecuted instantiation: bn_kron.c:bn_expand Unexecuted instantiation: bn_mod.c:bn_expand Unexecuted instantiation: bn_nist.c:bn_expand Unexecuted instantiation: bn_prime.c:bn_expand Unexecuted instantiation: bn_print.c:bn_expand Unexecuted instantiation: bn_rand.c:bn_expand Unexecuted instantiation: bn_recp.c:bn_expand Unexecuted instantiation: bn_rsa_fips186_4.c:bn_expand Unexecuted instantiation: bn_sqrt.c:bn_expand Unexecuted instantiation: bn_srp.c:bn_expand Unexecuted instantiation: rsaz_exp.c:bn_expand Unexecuted instantiation: rsaz_exp_x2.c:bn_expand Unexecuted instantiation: bn_gf2m.c:bn_expand |
689 | | |
690 | | int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx, |
691 | | int do_trial_division, BN_GENCB *cb); |
692 | | |
693 | | #endif |