Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl36/crypto/bn/rsaz_exp_x2.c
Line
Count
Source
1
/*
2
 * Copyright 2020-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2020-2021, Intel Corporation. All Rights Reserved.
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 *
10
 *
11
 * Originally written by Sergey Kirillov and Andrey Matyukov.
12
 * Special thanks to Ilya Albrekht for his valuable hints.
13
 * Intel Corporation
14
 *
15
 */
16
17
#include <openssl/opensslconf.h>
18
#include <openssl/crypto.h>
19
#include "rsaz_exp.h"
20
21
#ifndef RSAZ_ENABLED
22
NON_EMPTY_TRANSLATION_UNIT
23
#else
24
#include <assert.h>
25
#include <string.h>
26
27
#define ALIGN_OF(ptr, boundary) \
28
0
    ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
29
30
/* Internal radix */
31
0
#define DIGIT_SIZE (52)
32
/* 52-bit mask */
33
0
#define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
34
35
0
#define BITS2WORD8_SIZE(x) (((x) + 7) >> 3)
36
0
#define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
37
38
/* Number of registers required to hold |digits_num| amount of qword digits */
39
#define NUMBER_OF_REGISTERS(digits_num, register_size) \
40
0
    (((digits_num) * 64 + (register_size) - 1) / (register_size))
41
42
static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len);
43
static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit);
44
static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
45
    int in_bitsize);
46
static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
47
static ossl_inline void set_bit(BN_ULONG *a, int idx);
48
49
/* Number of |digit_size|-bit digits in |bitsize|-bit value */
50
static ossl_inline int number_of_digits(int bitsize, int digit_size)
51
0
{
52
0
    return (bitsize + digit_size - 1) / digit_size;
53
0
}
54
55
/*
56
 * For details of the methods declared below please refer to
57
 *    crypto/bn/asm/rsaz-avx512.pl
58
 *
59
 * Naming conventions:
60
 *  amm = Almost Montgomery Multiplication
61
 *  ams = Almost Montgomery Squaring
62
 *  52xZZ - data represented as array of ZZ digits in 52-bit radix
63
 *  _x1_/_x2_ - 1 or 2 independent inputs/outputs
64
 *  _ifma256 - uses 256-bit wide IFMA ISA (AVX512_IFMA256)
65
 *  _avxifma256 - uses 256-bit wide AVXIFMA ISA (AVX_IFMA256)
66
 */
67
68
void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
69
    const BN_ULONG *b, const BN_ULONG *m,
70
    BN_ULONG k0);
71
void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
72
    const BN_ULONG *b, const BN_ULONG *m,
73
    const BN_ULONG k0[2]);
74
void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
75
    const BN_ULONG *red_table,
76
    int red_table_idx1, int red_table_idx2);
77
78
void ossl_rsaz_amm52x30_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
79
    const BN_ULONG *b, const BN_ULONG *m,
80
    BN_ULONG k0);
81
void ossl_rsaz_amm52x30_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
82
    const BN_ULONG *b, const BN_ULONG *m,
83
    const BN_ULONG k0[2]);
84
void ossl_extract_multiplier_2x30_win5(BN_ULONG *red_Y,
85
    const BN_ULONG *red_table,
86
    int red_table_idx1, int red_table_idx2);
87
88
void ossl_rsaz_amm52x40_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
89
    const BN_ULONG *b, const BN_ULONG *m,
90
    BN_ULONG k0);
91
void ossl_rsaz_amm52x40_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
92
    const BN_ULONG *b, const BN_ULONG *m,
93
    const BN_ULONG k0[2]);
94
void ossl_extract_multiplier_2x40_win5(BN_ULONG *red_Y,
95
    const BN_ULONG *red_table,
96
    int red_table_idx1, int red_table_idx2);
97
98
void ossl_rsaz_amm52x20_x1_avxifma256(BN_ULONG *res, const BN_ULONG *a,
99
    const BN_ULONG *b, const BN_ULONG *m,
100
    BN_ULONG k0);
101
void ossl_rsaz_amm52x20_x2_avxifma256(BN_ULONG *out, const BN_ULONG *a,
102
    const BN_ULONG *b, const BN_ULONG *m,
103
    const BN_ULONG k0[2]);
104
void ossl_extract_multiplier_2x20_win5_avx(BN_ULONG *red_Y,
105
    const BN_ULONG *red_table,
106
    int red_table_idx1,
107
    int red_table_idx2);
108
109
void ossl_rsaz_amm52x30_x1_avxifma256(BN_ULONG *res, const BN_ULONG *a,
110
    const BN_ULONG *b, const BN_ULONG *m,
111
    BN_ULONG k0);
112
void ossl_rsaz_amm52x30_x2_avxifma256(BN_ULONG *out, const BN_ULONG *a,
113
    const BN_ULONG *b, const BN_ULONG *m,
114
    const BN_ULONG k0[2]);
115
void ossl_extract_multiplier_2x30_win5_avx(BN_ULONG *red_Y,
116
    const BN_ULONG *red_table,
117
    int red_table_idx1,
118
    int red_table_idx2);
119
120
void ossl_rsaz_amm52x40_x1_avxifma256(BN_ULONG *res, const BN_ULONG *a,
121
    const BN_ULONG *b, const BN_ULONG *m,
122
    BN_ULONG k0);
123
void ossl_rsaz_amm52x40_x2_avxifma256(BN_ULONG *out, const BN_ULONG *a,
124
    const BN_ULONG *b, const BN_ULONG *m,
125
    const BN_ULONG k0[2]);
126
void ossl_extract_multiplier_2x40_win5_avx(BN_ULONG *red_Y,
127
    const BN_ULONG *red_table,
128
    int red_table_idx1,
129
    int red_table_idx2);
130
131
typedef void (*AMM)(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b,
132
    const BN_ULONG *m, BN_ULONG k0);
133
134
static AMM ossl_rsaz_amm52_x1[] = {
135
    ossl_rsaz_amm52x20_x1_avxifma256,
136
    ossl_rsaz_amm52x20_x1_ifma256,
137
    ossl_rsaz_amm52x30_x1_avxifma256,
138
    ossl_rsaz_amm52x30_x1_ifma256,
139
    ossl_rsaz_amm52x40_x1_avxifma256,
140
    ossl_rsaz_amm52x40_x1_ifma256,
141
};
142
143
typedef void (*DAMM)(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b,
144
    const BN_ULONG *m, const BN_ULONG k0[2]);
145
146
static DAMM ossl_rsaz_amm52_x2[] = {
147
    ossl_rsaz_amm52x20_x2_avxifma256,
148
    ossl_rsaz_amm52x20_x2_ifma256,
149
    ossl_rsaz_amm52x30_x2_avxifma256,
150
    ossl_rsaz_amm52x30_x2_ifma256,
151
    ossl_rsaz_amm52x40_x2_avxifma256,
152
    ossl_rsaz_amm52x40_x2_ifma256,
153
};
154
155
typedef void (*DEXTRACT)(BN_ULONG *res, const BN_ULONG *red_table,
156
    int red_table_idx, int tbl_idx);
157
158
static DEXTRACT ossl_extract_multiplier_win5[] = {
159
    ossl_extract_multiplier_2x20_win5_avx,
160
    ossl_extract_multiplier_2x20_win5,
161
    ossl_extract_multiplier_2x30_win5_avx,
162
    ossl_extract_multiplier_2x30_win5,
163
    ossl_extract_multiplier_2x40_win5_avx,
164
    ossl_extract_multiplier_2x40_win5,
165
};
166
167
static int RSAZ_mod_exp_x2_ifma256(BN_ULONG *res, const BN_ULONG *base,
168
    const BN_ULONG *exp[2], const BN_ULONG *m,
169
    const BN_ULONG *rr, const BN_ULONG k0[2],
170
    int modulus_bitsize);
171
172
/*
173
 * Dual Montgomery modular exponentiation using prime moduli of the
174
 * same bit size, optimized with AVX512 ISA or AVXIFMA ISA.
175
 *
176
 * Input and output parameters for each exponentiation are independent and
177
 * denoted here by index |i|, i = 1..2.
178
 *
179
 * Input and output are all in regular 2^64 radix.
180
 *
181
 * Each moduli shall be |factor_size| bit size.
182
 *
183
 * Supported cases:
184
 *   - 2x1024
185
 *   - 2x1536
186
 *   - 2x2048
187
 *
188
 *  [out] res|i|      - result of modular exponentiation: array of qword values
189
 *                      in regular (2^64) radix. Size of array shall be enough
190
 *                      to hold |factor_size| bits.
191
 *  [in]  base|i|     - base
192
 *  [in]  exp|i|      - exponent
193
 *  [in]  m|i|        - moduli
194
 *  [in]  rr|i|       - Montgomery parameter RR = R^2 mod m|i|
195
 *  [in]  k0_|i|      - Montgomery parameter k0 = -1/m|i| mod 2^64
196
 *  [in]  factor_size - moduli bit size
197
 *
198
 * \return 0 in case of failure,
199
 *         1 in case of success.
200
 */
201
int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
202
    const BN_ULONG *base1,
203
    const BN_ULONG *exp1,
204
    const BN_ULONG *m1,
205
    const BN_ULONG *rr1,
206
    BN_ULONG k0_1,
207
    BN_ULONG *res2,
208
    const BN_ULONG *base2,
209
    const BN_ULONG *exp2,
210
    const BN_ULONG *m2,
211
    const BN_ULONG *rr2,
212
    BN_ULONG k0_2,
213
    int factor_size)
214
0
{
215
0
    int ret = 0;
216
217
    /*
218
     * Number of word-size (BN_ULONG) digits to store exponent in redundant
219
     * representation.
220
     */
221
0
    int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
222
0
    int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
223
224
    /*  Number of YMM registers required to store exponent's digits */
225
0
    int ymm_regs_num = NUMBER_OF_REGISTERS(exp_digits, 256 /* ymm bit size */);
226
    /* Capacity of the register set (in qwords) to store exponent */
227
0
    int regs_capacity = ymm_regs_num * 4;
228
229
0
    BN_ULONG *base1_red, *m1_red, *rr1_red;
230
0
    BN_ULONG *base2_red, *m2_red, *rr2_red;
231
0
    BN_ULONG *coeff_red;
232
0
    BN_ULONG *storage = NULL;
233
0
    BN_ULONG *storage_aligned = NULL;
234
0
    int storage_len_bytes = 7 * regs_capacity * sizeof(BN_ULONG)
235
0
        + 64 /* alignment */;
236
237
0
    const BN_ULONG *exp[2] = { 0 };
238
0
    BN_ULONG k0[2] = { 0 };
239
    /* AMM = Almost Montgomery Multiplication */
240
0
    AMM amm = NULL;
241
0
    int avx512ifma = !!ossl_rsaz_avx512ifma_eligible();
242
243
0
    if (factor_size != 1024 && factor_size != 1536 && factor_size != 2048)
244
0
        goto err;
245
246
0
    amm = ossl_rsaz_amm52_x1[(factor_size / 512 - 2) * 2 + avx512ifma];
247
248
0
    storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes);
249
0
    if (storage == NULL)
250
0
        goto err;
251
0
    storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
252
253
    /* Memory layout for red(undant) representations */
254
0
    base1_red = storage_aligned;
255
0
    base2_red = storage_aligned + 1 * regs_capacity;
256
0
    m1_red = storage_aligned + 2 * regs_capacity;
257
0
    m2_red = storage_aligned + 3 * regs_capacity;
258
0
    rr1_red = storage_aligned + 4 * regs_capacity;
259
0
    rr2_red = storage_aligned + 5 * regs_capacity;
260
0
    coeff_red = storage_aligned + 6 * regs_capacity;
261
262
    /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
263
0
    to_words52(base1_red, regs_capacity, base1, factor_size);
264
0
    to_words52(base2_red, regs_capacity, base2, factor_size);
265
0
    to_words52(m1_red, regs_capacity, m1, factor_size);
266
0
    to_words52(m2_red, regs_capacity, m2, factor_size);
267
0
    to_words52(rr1_red, regs_capacity, rr1, factor_size);
268
0
    to_words52(rr2_red, regs_capacity, rr2, factor_size);
269
270
    /*
271
     * Compute target domain Montgomery converters RR' for each modulus
272
     * based on precomputed original domain's RR.
273
     *
274
     * RR -> RR' transformation steps:
275
     *  (1) coeff = 2^k
276
     *  (2) t = AMM(RR,RR) = RR^2 / R' mod m
277
     *  (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
278
     * where
279
     *  k = 4 * (52 * digits52 - modlen)
280
     *  R  = 2^(64 * ceil(modlen/64)) mod m
281
     *  RR = R^2 mod m
282
     *  R' = 2^(52 * ceil(modlen/52)) mod m
283
     *
284
     *  EX/ modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
285
     */
286
0
    memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
287
    /* (1) in reduced domain representation */
288
0
    set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
289
290
0
    amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */
291
0
    amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */
292
293
0
    amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */
294
0
    amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */
295
296
0
    exp[0] = exp1;
297
0
    exp[1] = exp2;
298
299
0
    k0[0] = k0_1;
300
0
    k0[1] = k0_2;
301
302
    /* Dual (2-exps in parallel) exponentiation */
303
0
    ret = RSAZ_mod_exp_x2_ifma256(rr1_red, base1_red, exp, m1_red, rr1_red,
304
0
        k0, factor_size);
305
0
    if (!ret)
306
0
        goto err;
307
308
    /* Convert rr_i back to regular radix */
309
0
    from_words52(res1, factor_size, rr1_red);
310
0
    from_words52(res2, factor_size, rr2_red);
311
312
    /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
313
0
    factor_size /= sizeof(BN_ULONG) * 8;
314
315
0
    bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
316
0
    bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
317
318
0
err:
319
0
    if (storage != NULL) {
320
0
        OPENSSL_cleanse(storage, storage_len_bytes);
321
0
        OPENSSL_free(storage);
322
0
    }
323
0
    return ret;
324
0
}
325
326
/*
327
 * Dual {1024,1536,2048}-bit w-ary modular exponentiation using prime moduli of
328
 * the same bit size using Almost Montgomery Multiplication, optimized with
329
 * AVX512_IFMA256 ISA.
330
 *
331
 * The parameter w (window size) = 5.
332
 *
333
 *  [out] res      - result of modular exponentiation: 2x{20,30,40} qword
334
 *                   values in 2^52 radix.
335
 *  [in]  base     - base (2x{20,30,40} qword values in 2^52 radix)
336
 *  [in]  exp      - array of 2 pointers to {16,24,32} qword values in 2^64 radix.
337
 *                   Exponent is not converted to redundant representation.
338
 *  [in]  m        - moduli (2x{20,30,40} qword values in 2^52 radix)
339
 *  [in]  rr       - Montgomery parameter for 2 moduli:
340
 *                     RR(1024) = 2^2080 mod m.
341
 *                     RR(1536) = 2^3120 mod m.
342
 *                     RR(2048) = 2^4160 mod m.
343
 *                   (2x{20,30,40} qword values in 2^52 radix)
344
 *  [in]  k0       - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
345
 *
346
 * \return (void).
347
 */
348
int RSAZ_mod_exp_x2_ifma256(BN_ULONG *out,
349
    const BN_ULONG *base,
350
    const BN_ULONG *exp[2],
351
    const BN_ULONG *m,
352
    const BN_ULONG *rr,
353
    const BN_ULONG k0[2],
354
    int modulus_bitsize)
355
0
{
356
0
    int ret = 0;
357
0
    int idx;
358
359
    /* Exponent window size */
360
0
    int exp_win_size = 5;
361
0
    int exp_win_mask = (1U << exp_win_size) - 1;
362
363
    /*
364
     * Number of digits (64-bit words) in redundant representation to handle
365
     * modulus bits
366
     */
367
0
    int red_digits = 0;
368
0
    int exp_digits = 0;
369
370
0
    BN_ULONG *storage = NULL;
371
0
    BN_ULONG *storage_aligned = NULL;
372
0
    int storage_len_bytes = 0;
373
374
    /* Red(undant) result Y and multiplier X */
375
0
    BN_ULONG *red_Y = NULL; /* [2][red_digits] */
376
0
    BN_ULONG *red_X = NULL; /* [2][red_digits] */
377
    /* Pre-computed table of base powers */
378
0
    BN_ULONG *red_table = NULL; /* [1U << exp_win_size][2][red_digits] */
379
    /* Expanded exponent */
380
0
    BN_ULONG *expz = NULL; /* [2][exp_digits + 1] */
381
382
    /* Dual AMM */
383
0
    DAMM damm = NULL;
384
    /* Extractor from red_table */
385
0
    DEXTRACT extract = NULL;
386
0
    int avx512ifma = !!ossl_rsaz_avx512ifma_eligible();
387
388
/*
389
 * Squaring is done using multiplication now. That can be a subject of
390
 * optimization in future.
391
 */
392
0
#define DAMS(r, a, m, k0) damm((r), (a), (a), (m), (k0))
393
394
0
    if (modulus_bitsize != 1024 && modulus_bitsize != 1536 && modulus_bitsize != 2048)
395
0
        goto err;
396
397
0
    damm = ossl_rsaz_amm52_x2[(modulus_bitsize / 512 - 2) * 2 + avx512ifma];
398
0
    extract = ossl_extract_multiplier_win5[(modulus_bitsize / 512 - 2) * 2 + avx512ifma];
399
400
0
    switch (modulus_bitsize) {
401
0
    case 1024:
402
0
        red_digits = 20;
403
0
        exp_digits = 16;
404
0
        break;
405
0
    case 1536:
406
        /* Extended with 2 digits padding to avoid mask ops in high YMM register */
407
0
        red_digits = 30 + 2;
408
0
        exp_digits = 24;
409
0
        break;
410
0
    case 2048:
411
0
        red_digits = 40;
412
0
        exp_digits = 32;
413
0
        break;
414
0
    default:
415
0
        goto err;
416
0
    }
417
418
0
    storage_len_bytes = (2 * red_digits /* red_Y     */
419
0
                            + 2 * red_digits /* red_X     */
420
0
                            + 2 * red_digits * (1U << exp_win_size) /* red_table */
421
0
                            + 2 * (exp_digits + 1)) /* expz      */
422
0
            * sizeof(BN_ULONG)
423
0
        + 64; /* alignment */
424
425
0
    storage = (BN_ULONG *)OPENSSL_zalloc(storage_len_bytes);
426
0
    if (storage == NULL)
427
0
        goto err;
428
0
    storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
429
430
0
    red_Y = storage_aligned;
431
0
    red_X = red_Y + 2 * red_digits;
432
0
    red_table = red_X + 2 * red_digits;
433
0
    expz = red_table + 2 * red_digits * (1U << exp_win_size);
434
435
    /*
436
     * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
437
     *   table[0] = mont(x^0) = mont(1)
438
     *   table[1] = mont(x^1) = mont(x)
439
     */
440
0
    red_X[0 * red_digits] = 1;
441
0
    red_X[1 * red_digits] = 1;
442
0
    damm(&red_table[0 * 2 * red_digits], (const BN_ULONG *)red_X, rr, m, k0);
443
0
    damm(&red_table[1 * 2 * red_digits], base, rr, m, k0);
444
445
0
    for (idx = 1; idx < (int)((1U << exp_win_size) / 2); idx++) {
446
0
        DAMS(&red_table[(2 * idx + 0) * 2 * red_digits],
447
0
            &red_table[(1 * idx) * 2 * red_digits], m, k0);
448
0
        damm(&red_table[(2 * idx + 1) * 2 * red_digits],
449
0
            &red_table[(2 * idx) * 2 * red_digits],
450
0
            &red_table[1 * 2 * red_digits], m, k0);
451
0
    }
452
453
    /* Copy and expand exponents */
454
0
    memcpy(&expz[0 * (exp_digits + 1)], exp[0], exp_digits * sizeof(BN_ULONG));
455
0
    expz[1 * (exp_digits + 1) - 1] = 0;
456
0
    memcpy(&expz[1 * (exp_digits + 1)], exp[1], exp_digits * sizeof(BN_ULONG));
457
0
    expz[2 * (exp_digits + 1) - 1] = 0;
458
459
    /* Exponentiation */
460
0
    {
461
0
        const int rem = modulus_bitsize % exp_win_size;
462
0
        const BN_ULONG table_idx_mask = exp_win_mask;
463
464
0
        int exp_bit_no = modulus_bitsize - rem;
465
0
        int exp_chunk_no = exp_bit_no / 64;
466
0
        int exp_chunk_shift = exp_bit_no % 64;
467
468
0
        BN_ULONG red_table_idx_0, red_table_idx_1;
469
470
        /*
471
         * If rem == 0, then
472
         *      exp_bit_no = modulus_bitsize - exp_win_size
473
         * However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
474
         * which is { 4, 1, 3 } respectively.
475
         *
476
         * If this assertion ever fails the fix above is easy.
477
         */
478
0
        OPENSSL_assert(rem != 0);
479
480
        /* Process 1-st exp window - just init result */
481
0
        red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
482
0
        red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
483
484
        /*
485
         * The function operates with fixed moduli sizes divisible by 64,
486
         * thus table index here is always in supported range [0, EXP_WIN_SIZE).
487
         */
488
0
        red_table_idx_0 >>= exp_chunk_shift;
489
0
        red_table_idx_1 >>= exp_chunk_shift;
490
491
0
        extract(&red_Y[0 * red_digits], (const BN_ULONG *)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
492
493
        /* Process other exp windows */
494
0
        for (exp_bit_no -= exp_win_size; exp_bit_no >= 0; exp_bit_no -= exp_win_size) {
495
            /* Extract pre-computed multiplier from the table */
496
0
            {
497
0
                BN_ULONG T;
498
499
0
                exp_chunk_no = exp_bit_no / 64;
500
0
                exp_chunk_shift = exp_bit_no % 64;
501
0
                {
502
0
                    red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
503
0
                    T = expz[exp_chunk_no + 1 + 0 * (exp_digits + 1)];
504
505
0
                    red_table_idx_0 >>= exp_chunk_shift;
506
                    /*
507
                     * Get additional bits from then next quadword
508
                     * when 64-bit boundaries are crossed.
509
                     */
510
0
                    if (exp_chunk_shift > 64 - exp_win_size) {
511
0
                        T <<= (64 - exp_chunk_shift);
512
0
                        red_table_idx_0 ^= T;
513
0
                    }
514
0
                    red_table_idx_0 &= table_idx_mask;
515
0
                }
516
0
                {
517
0
                    red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
518
0
                    T = expz[exp_chunk_no + 1 + 1 * (exp_digits + 1)];
519
520
0
                    red_table_idx_1 >>= exp_chunk_shift;
521
                    /*
522
                     * Get additional bits from then next quadword
523
                     * when 64-bit boundaries are crossed.
524
                     */
525
0
                    if (exp_chunk_shift > 64 - exp_win_size) {
526
0
                        T <<= (64 - exp_chunk_shift);
527
0
                        red_table_idx_1 ^= T;
528
0
                    }
529
0
                    red_table_idx_1 &= table_idx_mask;
530
0
                }
531
532
0
                extract(&red_X[0 * red_digits], (const BN_ULONG *)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
533
0
            }
534
535
            /* Series of squaring */
536
0
            DAMS((BN_ULONG *)red_Y, (const BN_ULONG *)red_Y, m, k0);
537
0
            DAMS((BN_ULONG *)red_Y, (const BN_ULONG *)red_Y, m, k0);
538
0
            DAMS((BN_ULONG *)red_Y, (const BN_ULONG *)red_Y, m, k0);
539
0
            DAMS((BN_ULONG *)red_Y, (const BN_ULONG *)red_Y, m, k0);
540
0
            DAMS((BN_ULONG *)red_Y, (const BN_ULONG *)red_Y, m, k0);
541
542
0
            damm((BN_ULONG *)red_Y, (const BN_ULONG *)red_Y, (const BN_ULONG *)red_X, m, k0);
543
0
        }
544
0
    }
545
546
    /*
547
     *
548
     * NB: After the last AMM of exponentiation in Montgomery domain, the result
549
     * may be (modulus_bitsize + 1), but the conversion out of Montgomery domain
550
     * performs an AMM(x,1) which guarantees that the final result is less than
551
     * |m|, so no conditional subtraction is needed here. See [1] for details.
552
     *
553
     * [1] Gueron, S. Efficient software implementations of modular exponentiation.
554
     *     DOI: 10.1007/s13389-012-0031-5
555
     */
556
557
    /* Convert result back in regular 2^52 domain */
558
0
    memset(red_X, 0, 2 * red_digits * sizeof(BN_ULONG));
559
0
    red_X[0 * red_digits] = 1;
560
0
    red_X[1 * red_digits] = 1;
561
0
    damm(out, (const BN_ULONG *)red_Y, (const BN_ULONG *)red_X, m, k0);
562
563
0
    ret = 1;
564
565
0
err:
566
0
    if (storage != NULL) {
567
        /* Clear whole storage */
568
0
        OPENSSL_cleanse(storage, storage_len_bytes);
569
0
        OPENSSL_free(storage);
570
0
    }
571
572
0
#undef DAMS
573
0
    return ret;
574
0
}
575
576
static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len)
577
0
{
578
0
    uint64_t digit = 0;
579
580
0
    assert(in != NULL);
581
0
    assert(in_len <= 8);
582
583
0
    for (; in_len > 0; in_len--) {
584
0
        digit <<= 8;
585
0
        digit += (uint64_t)(in[in_len - 1]);
586
0
    }
587
0
    return digit;
588
0
}
589
590
/*
591
 * Convert array of words in regular (base=2^64) representation to array of
592
 * words in redundant (base=2^52) one.
593
 */
594
static void to_words52(BN_ULONG *out, int out_len,
595
    const BN_ULONG *in, int in_bitsize)
596
0
{
597
0
    uint8_t *in_str = NULL;
598
599
0
    assert(out != NULL);
600
0
    assert(in != NULL);
601
    /* Check destination buffer capacity */
602
0
    assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
603
604
0
    in_str = (uint8_t *)in;
605
606
0
    for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
607
0
        uint64_t digit;
608
609
0
        memcpy(&digit, in_str, sizeof(digit));
610
0
        out[0] = digit & DIGIT_MASK;
611
0
        in_str += 6;
612
0
        memcpy(&digit, in_str, sizeof(digit));
613
0
        out[1] = (digit >> 4) & DIGIT_MASK;
614
0
        in_str += 7;
615
0
        out_len -= 2;
616
0
    }
617
618
0
    if (in_bitsize > DIGIT_SIZE) {
619
0
        uint64_t digit = get_digit(in_str, 7);
620
621
0
        out[0] = digit & DIGIT_MASK;
622
0
        in_str += 6;
623
0
        in_bitsize -= DIGIT_SIZE;
624
0
        digit = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
625
0
        out[1] = digit >> 4;
626
0
        out += 2;
627
0
        out_len -= 2;
628
0
    } else if (in_bitsize > 0) {
629
0
        out[0] = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
630
0
        out++;
631
0
        out_len--;
632
0
    }
633
634
0
    memset(out, 0, out_len * sizeof(BN_ULONG));
635
0
}
636
637
static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit)
638
0
{
639
0
    assert(out != NULL);
640
0
    assert(out_len <= 8);
641
642
0
    for (; out_len > 0; out_len--) {
643
0
        *out++ = (uint8_t)(digit & 0xFF);
644
0
        digit >>= 8;
645
0
    }
646
0
}
647
648
/*
649
 * Convert array of words in redundant (base=2^52) representation to array of
650
 * words in regular (base=2^64) one.
651
 */
652
static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
653
0
{
654
0
    int i;
655
0
    int out_len = BITS2WORD64_SIZE(out_bitsize);
656
657
0
    assert(out != NULL);
658
0
    assert(in != NULL);
659
660
0
    for (i = 0; i < out_len; i++)
661
0
        out[i] = 0;
662
663
0
    {
664
0
        uint8_t *out_str = (uint8_t *)out;
665
666
0
        for (; out_bitsize >= (2 * DIGIT_SIZE);
667
0
            out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
668
0
            uint64_t digit;
669
670
0
            digit = in[0];
671
0
            memcpy(out_str, &digit, sizeof(digit));
672
0
            out_str += 6;
673
0
            digit = digit >> 48 | in[1] << 4;
674
0
            memcpy(out_str, &digit, sizeof(digit));
675
0
            out_str += 7;
676
0
        }
677
678
0
        if (out_bitsize > DIGIT_SIZE) {
679
0
            put_digit(out_str, 7, in[0]);
680
0
            out_str += 6;
681
0
            out_bitsize -= DIGIT_SIZE;
682
0
            put_digit(out_str, BITS2WORD8_SIZE(out_bitsize),
683
0
                (in[1] << 4 | in[0] >> 48));
684
0
        } else if (out_bitsize) {
685
0
            put_digit(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
686
0
        }
687
0
    }
688
0
}
689
690
/*
691
 * Set bit at index |idx| in the words array |a|.
692
 * It does not do any boundaries checks, make sure the index is valid before
693
 * calling the function.
694
 */
695
static ossl_inline void set_bit(BN_ULONG *a, int idx)
696
0
{
697
0
    assert(a != NULL);
698
699
0
    {
700
0
        int i, j;
701
702
0
        i = idx / BN_BITS2;
703
0
        j = idx % BN_BITS2;
704
0
        a[i] |= (((BN_ULONG)1) << j);
705
0
    }
706
0
}
707
708
#endif