Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl36/crypto/ec/ecp_nistp224.c
Line
Count
Source
1
/*
2
 * Copyright 2010-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
#error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
93
    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE },
96
    { 0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
        0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
        0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4 },
99
    { 0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
        0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
        0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21 },
102
    { 0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
        0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
        0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34 }
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
    { { { 0, 0, 0, 0 },
140
          { 0, 0, 0, 0 },
141
          { 0, 0, 0, 0 } },
142
        { { 0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf },
143
            { 0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723 },
144
            { 1, 0, 0, 0 } },
145
        { { 0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5 },
146
            { 0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321 },
147
            { 1, 0, 0, 0 } },
148
        { { 0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748 },
149
            { 0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17 },
150
            { 1, 0, 0, 0 } },
151
        { { 0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe },
152
            { 0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b },
153
            { 1, 0, 0, 0 } },
154
        { { 0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3 },
155
            { 0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a },
156
            { 1, 0, 0, 0 } },
157
        { { 0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c },
158
            { 0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244 },
159
            { 1, 0, 0, 0 } },
160
        { { 0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849 },
161
            { 0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112 },
162
            { 1, 0, 0, 0 } },
163
        { { 0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47 },
164
            { 0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394 },
165
            { 1, 0, 0, 0 } },
166
        { { 0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d },
167
            { 0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7 },
168
            { 1, 0, 0, 0 } },
169
        { { 0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24 },
170
            { 0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881 },
171
            { 1, 0, 0, 0 } },
172
        { { 0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984 },
173
            { 0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369 },
174
            { 1, 0, 0, 0 } },
175
        { { 0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3 },
176
            { 0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60 },
177
            { 1, 0, 0, 0 } },
178
        { { 0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057 },
179
            { 0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9 },
180
            { 1, 0, 0, 0 } },
181
        { { 0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9 },
182
            { 0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc },
183
            { 1, 0, 0, 0 } },
184
        { { 0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58 },
185
            { 0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558 },
186
            { 1, 0, 0, 0 } } },
187
    { { { 0, 0, 0, 0 },
188
          { 0, 0, 0, 0 },
189
          { 0, 0, 0, 0 } },
190
        { { 0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31 },
191
            { 0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d },
192
            { 1, 0, 0, 0 } },
193
        { { 0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3 },
194
            { 0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a },
195
            { 1, 0, 0, 0 } },
196
        { { 0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33 },
197
            { 0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100 },
198
            { 1, 0, 0, 0 } },
199
        { { 0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5 },
200
            { 0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea },
201
            { 1, 0, 0, 0 } },
202
        { { 0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be },
203
            { 0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51 },
204
            { 1, 0, 0, 0 } },
205
        { { 0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1 },
206
            { 0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb },
207
            { 1, 0, 0, 0 } },
208
        { { 0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233 },
209
            { 0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def },
210
            { 1, 0, 0, 0 } },
211
        { { 0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae },
212
            { 0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45 },
213
            { 1, 0, 0, 0 } },
214
        { { 0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e },
215
            { 0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb },
216
            { 1, 0, 0, 0 } },
217
        { { 0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de },
218
            { 0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3 },
219
            { 1, 0, 0, 0 } },
220
        { { 0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05 },
221
            { 0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58 },
222
            { 1, 0, 0, 0 } },
223
        { { 0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb },
224
            { 0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0 },
225
            { 1, 0, 0, 0 } },
226
        { { 0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9 },
227
            { 0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea },
228
            { 1, 0, 0, 0 } },
229
        { { 0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba },
230
            { 0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405 },
231
            { 1, 0, 0, 0 } },
232
        { { 0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e },
233
            { 0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e },
234
            { 1, 0, 0, 0 } } }
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
};
242
243
const EC_METHOD *EC_GFp_nistp224_method(void)
244
48.6k
{
245
48.6k
    static const EC_METHOD ret = {
246
48.6k
        EC_FLAGS_DEFAULT_OCT,
247
48.6k
        NID_X9_62_prime_field,
248
48.6k
        ossl_ec_GFp_nistp224_group_init,
249
48.6k
        ossl_ec_GFp_simple_group_finish,
250
48.6k
        ossl_ec_GFp_simple_group_clear_finish,
251
48.6k
        ossl_ec_GFp_nist_group_copy,
252
48.6k
        ossl_ec_GFp_nistp224_group_set_curve,
253
48.6k
        ossl_ec_GFp_simple_group_get_curve,
254
48.6k
        ossl_ec_GFp_simple_group_get_degree,
255
48.6k
        ossl_ec_group_simple_order_bits,
256
48.6k
        ossl_ec_GFp_simple_group_check_discriminant,
257
48.6k
        ossl_ec_GFp_simple_point_init,
258
48.6k
        ossl_ec_GFp_simple_point_finish,
259
48.6k
        ossl_ec_GFp_simple_point_clear_finish,
260
48.6k
        ossl_ec_GFp_simple_point_copy,
261
48.6k
        ossl_ec_GFp_simple_point_set_to_infinity,
262
48.6k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
263
48.6k
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
264
48.6k
        0 /* point_set_compressed_coordinates */,
265
48.6k
        0 /* point2oct */,
266
48.6k
        0 /* oct2point */,
267
48.6k
        ossl_ec_GFp_simple_add,
268
48.6k
        ossl_ec_GFp_simple_dbl,
269
48.6k
        ossl_ec_GFp_simple_invert,
270
48.6k
        ossl_ec_GFp_simple_is_at_infinity,
271
48.6k
        ossl_ec_GFp_simple_is_on_curve,
272
48.6k
        ossl_ec_GFp_simple_cmp,
273
48.6k
        ossl_ec_GFp_simple_make_affine,
274
48.6k
        ossl_ec_GFp_simple_points_make_affine,
275
48.6k
        ossl_ec_GFp_nistp224_points_mul,
276
48.6k
        ossl_ec_GFp_nistp224_precompute_mult,
277
48.6k
        ossl_ec_GFp_nistp224_have_precompute_mult,
278
48.6k
        ossl_ec_GFp_nist_field_mul,
279
48.6k
        ossl_ec_GFp_nist_field_sqr,
280
48.6k
        0 /* field_div */,
281
48.6k
        ossl_ec_GFp_simple_field_inv,
282
48.6k
        0 /* field_encode */,
283
48.6k
        0 /* field_decode */,
284
48.6k
        0, /* field_set_to_one */
285
48.6k
        ossl_ec_key_simple_priv2oct,
286
48.6k
        ossl_ec_key_simple_oct2priv,
287
48.6k
        0, /* set private */
288
48.6k
        ossl_ec_key_simple_generate_key,
289
48.6k
        ossl_ec_key_simple_check_key,
290
48.6k
        ossl_ec_key_simple_generate_public_key,
291
48.6k
        0, /* keycopy */
292
48.6k
        0, /* keyfinish */
293
48.6k
        ossl_ecdh_simple_compute_key,
294
48.6k
        ossl_ecdsa_simple_sign_setup,
295
48.6k
        ossl_ecdsa_simple_sign_sig,
296
48.6k
        ossl_ecdsa_simple_verify_sig,
297
48.6k
        0, /* field_inverse_mod_ord */
298
48.6k
        0, /* blind_coordinates */
299
48.6k
        0, /* ladder_pre */
300
48.6k
        0, /* ladder_step */
301
48.6k
        0 /* ladder_post */
302
48.6k
    };
303
304
48.6k
    return &ret;
305
48.6k
}
306
307
/*
308
 * Helper functions to convert field elements to/from internal representation
309
 */
310
static void bin28_to_felem(felem out, const u8 in[28])
311
19.2k
{
312
19.2k
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
313
19.2k
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
314
19.2k
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
315
19.2k
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
316
19.2k
}
317
318
static void felem_to_bin28(u8 out[28], const felem in)
319
29.2k
{
320
29.2k
    unsigned i;
321
234k
    for (i = 0; i < 7; ++i) {
322
204k
        out[i] = in[0] >> (8 * i);
323
204k
        out[i + 7] = in[1] >> (8 * i);
324
204k
        out[i + 14] = in[2] >> (8 * i);
325
204k
        out[i + 21] = in[3] >> (8 * i);
326
204k
    }
327
29.2k
}
328
329
/* From OpenSSL BIGNUM to internal representation */
330
static int BN_to_felem(felem out, const BIGNUM *bn)
331
19.2k
{
332
19.2k
    felem_bytearray b_out;
333
19.2k
    int num_bytes;
334
335
19.2k
    if (BN_is_negative(bn)) {
336
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
337
0
        return 0;
338
0
    }
339
19.2k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
340
19.2k
    if (num_bytes < 0) {
341
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
342
0
        return 0;
343
0
    }
344
19.2k
    bin28_to_felem(out, b_out);
345
19.2k
    return 1;
346
19.2k
}
347
348
/* From internal representation to OpenSSL BIGNUM */
349
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
350
29.2k
{
351
29.2k
    felem_bytearray b_out;
352
29.2k
    felem_to_bin28(b_out, in);
353
29.2k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
354
29.2k
}
355
356
/******************************************************************************/
357
/*-
358
 *                              FIELD OPERATIONS
359
 *
360
 * Field operations, using the internal representation of field elements.
361
 * NB! These operations are specific to our point multiplication and cannot be
362
 * expected to be correct in general - e.g., multiplication with a large scalar
363
 * will cause an overflow.
364
 *
365
 */
366
367
static void felem_one(felem out)
368
0
{
369
0
    out[0] = 1;
370
0
    out[1] = 0;
371
0
    out[2] = 0;
372
0
    out[3] = 0;
373
0
}
374
375
static void felem_assign(felem out, const felem in)
376
1.84M
{
377
1.84M
    out[0] = in[0];
378
1.84M
    out[1] = in[1];
379
1.84M
    out[2] = in[2];
380
1.84M
    out[3] = in[3];
381
1.84M
}
382
383
/* Sum two field elements: out += in */
384
static void felem_sum(felem out, const felem in)
385
430k
{
386
430k
    out[0] += in[0];
387
430k
    out[1] += in[1];
388
430k
    out[2] += in[2];
389
430k
    out[3] += in[3];
390
430k
}
391
392
/* Subtract field elements: out -= in */
393
/* Assumes in[i] < 2^57 */
394
static void felem_diff(felem out, const felem in)
395
450k
{
396
450k
    static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
397
450k
    static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
398
450k
    static const limb two58m42m2 = (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
399
400
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
401
450k
    out[0] += two58p2;
402
450k
    out[1] += two58m42m2;
403
450k
    out[2] += two58m2;
404
450k
    out[3] += two58m2;
405
406
450k
    out[0] -= in[0];
407
450k
    out[1] -= in[1];
408
450k
    out[2] -= in[2];
409
450k
    out[3] -= in[3];
410
450k
}
411
412
/* Subtract in unreduced 128-bit mode: out -= in */
413
/* Assumes in[i] < 2^119 */
414
static void widefelem_diff(widefelem out, const widefelem in)
415
307k
{
416
307k
    static const widelimb two120 = ((widelimb)1) << 120;
417
307k
    static const widelimb two120m64 = (((widelimb)1) << 120) - (((widelimb)1) << 64);
418
307k
    static const widelimb two120m104m64 = (((widelimb)1) << 120) - (((widelimb)1) << 104) - (((widelimb)1) << 64);
419
420
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
421
307k
    out[0] += two120;
422
307k
    out[1] += two120m64;
423
307k
    out[2] += two120m64;
424
307k
    out[3] += two120;
425
307k
    out[4] += two120m104m64;
426
307k
    out[5] += two120m64;
427
307k
    out[6] += two120m64;
428
429
307k
    out[0] -= in[0];
430
307k
    out[1] -= in[1];
431
307k
    out[2] -= in[2];
432
307k
    out[3] -= in[3];
433
307k
    out[4] -= in[4];
434
307k
    out[5] -= in[5];
435
307k
    out[6] -= in[6];
436
307k
}
437
438
/* Subtract in mixed mode: out128 -= in64 */
439
/* in[i] < 2^63 */
440
static void felem_diff_128_64(widefelem out, const felem in)
441
955k
{
442
955k
    static const widelimb two64p8 = (((widelimb)1) << 64) + (((widelimb)1) << 8);
443
955k
    static const widelimb two64m8 = (((widelimb)1) << 64) - (((widelimb)1) << 8);
444
955k
    static const widelimb two64m48m8 = (((widelimb)1) << 64) - (((widelimb)1) << 48) - (((widelimb)1) << 8);
445
446
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
447
955k
    out[0] += two64p8;
448
955k
    out[1] += two64m48m8;
449
955k
    out[2] += two64m8;
450
955k
    out[3] += two64m8;
451
452
955k
    out[0] -= in[0];
453
955k
    out[1] -= in[1];
454
955k
    out[2] -= in[2];
455
955k
    out[3] -= in[3];
456
955k
}
457
458
/*
459
 * Multiply a field element by a scalar: out = out * scalar The scalars we
460
 * actually use are small, so results fit without overflow
461
 */
462
static void felem_scalar(felem out, const limb scalar)
463
594k
{
464
594k
    out[0] *= scalar;
465
594k
    out[1] *= scalar;
466
594k
    out[2] *= scalar;
467
594k
    out[3] *= scalar;
468
594k
}
469
470
/*
471
 * Multiply an unreduced field element by a scalar: out = out * scalar The
472
 * scalars we actually use are small, so results fit without overflow
473
 */
474
static void widefelem_scalar(widefelem out, const widelimb scalar)
475
143k
{
476
143k
    out[0] *= scalar;
477
143k
    out[1] *= scalar;
478
143k
    out[2] *= scalar;
479
143k
    out[3] *= scalar;
480
143k
    out[4] *= scalar;
481
143k
    out[5] *= scalar;
482
143k
    out[6] *= scalar;
483
143k
}
484
485
/* Square a field element: out = in^2 */
486
static void felem_square(widefelem out, const felem in)
487
2.59M
{
488
2.59M
    limb tmp0, tmp1, tmp2;
489
2.59M
    tmp0 = 2 * in[0];
490
2.59M
    tmp1 = 2 * in[1];
491
2.59M
    tmp2 = 2 * in[2];
492
2.59M
    out[0] = ((widelimb)in[0]) * in[0];
493
2.59M
    out[1] = ((widelimb)in[0]) * tmp1;
494
2.59M
    out[2] = ((widelimb)in[0]) * tmp2 + ((widelimb)in[1]) * in[1];
495
2.59M
    out[3] = ((widelimb)in[3]) * tmp0 + ((widelimb)in[1]) * tmp2;
496
2.59M
    out[4] = ((widelimb)in[3]) * tmp1 + ((widelimb)in[2]) * in[2];
497
2.59M
    out[5] = ((widelimb)in[3]) * tmp2;
498
2.59M
    out[6] = ((widelimb)in[3]) * in[3];
499
2.59M
}
500
501
/* Multiply two field elements: out = in1 * in2 */
502
static void felem_mul(widefelem out, const felem in1, const felem in2)
503
1.88M
{
504
1.88M
    out[0] = ((widelimb)in1[0]) * in2[0];
505
1.88M
    out[1] = ((widelimb)in1[0]) * in2[1] + ((widelimb)in1[1]) * in2[0];
506
1.88M
    out[2] = ((widelimb)in1[0]) * in2[2] + ((widelimb)in1[1]) * in2[1] + ((widelimb)in1[2]) * in2[0];
507
1.88M
    out[3] = ((widelimb)in1[0]) * in2[3] + ((widelimb)in1[1]) * in2[2] + ((widelimb)in1[2]) * in2[1] + ((widelimb)in1[3]) * in2[0];
508
1.88M
    out[4] = ((widelimb)in1[1]) * in2[3] + ((widelimb)in1[2]) * in2[2] + ((widelimb)in1[3]) * in2[1];
509
1.88M
    out[5] = ((widelimb)in1[2]) * in2[3] + ((widelimb)in1[3]) * in2[2];
510
1.88M
    out[6] = ((widelimb)in1[3]) * in2[3];
511
1.88M
}
512
513
/*-
514
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
515
 * Requires in[i] < 2^126,
516
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
517
static void felem_reduce(felem out, const widefelem in)
518
4.19M
{
519
4.19M
    static const widelimb two127p15 = (((widelimb)1) << 127) + (((widelimb)1) << 15);
520
4.19M
    static const widelimb two127m71 = (((widelimb)1) << 127) - (((widelimb)1) << 71);
521
4.19M
    static const widelimb two127m71m55 = (((widelimb)1) << 127) - (((widelimb)1) << 71) - (((widelimb)1) << 55);
522
4.19M
    widelimb output[5];
523
524
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
525
4.19M
    output[0] = in[0] + two127p15;
526
4.19M
    output[1] = in[1] + two127m71m55;
527
4.19M
    output[2] = in[2] + two127m71;
528
4.19M
    output[3] = in[3];
529
4.19M
    output[4] = in[4];
530
531
    /* Eliminate in[4], in[5], in[6] */
532
4.19M
    output[4] += in[6] >> 16;
533
4.19M
    output[3] += (in[6] & 0xffff) << 40;
534
4.19M
    output[2] -= in[6];
535
536
4.19M
    output[3] += in[5] >> 16;
537
4.19M
    output[2] += (in[5] & 0xffff) << 40;
538
4.19M
    output[1] -= in[5];
539
540
4.19M
    output[2] += output[4] >> 16;
541
4.19M
    output[1] += (output[4] & 0xffff) << 40;
542
4.19M
    output[0] -= output[4];
543
544
    /* Carry 2 -> 3 -> 4 */
545
4.19M
    output[3] += output[2] >> 56;
546
4.19M
    output[2] &= 0x00ffffffffffffff;
547
548
4.19M
    output[4] = output[3] >> 56;
549
4.19M
    output[3] &= 0x00ffffffffffffff;
550
551
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
552
553
    /* Eliminate output[4] */
554
4.19M
    output[2] += output[4] >> 16;
555
    /* output[2] < 2^56 + 2^56 = 2^57 */
556
4.19M
    output[1] += (output[4] & 0xffff) << 40;
557
4.19M
    output[0] -= output[4];
558
559
    /* Carry 0 -> 1 -> 2 -> 3 */
560
4.19M
    output[1] += output[0] >> 56;
561
4.19M
    out[0] = output[0] & 0x00ffffffffffffff;
562
563
4.19M
    output[2] += output[1] >> 56;
564
    /* output[2] < 2^57 + 2^72 */
565
4.19M
    out[1] = output[1] & 0x00ffffffffffffff;
566
4.19M
    output[3] += output[2] >> 56;
567
    /* output[3] <= 2^56 + 2^16 */
568
4.19M
    out[2] = output[2] & 0x00ffffffffffffff;
569
570
    /*-
571
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
572
     * out[3] <= 2^56 + 2^16 (due to final carry),
573
     * so out < 2*p
574
     */
575
4.19M
    out[3] = output[3];
576
4.19M
}
577
578
static void felem_square_reduce(felem out, const felem in)
579
0
{
580
0
    widefelem tmp;
581
0
    felem_square(tmp, in);
582
0
    felem_reduce(out, tmp);
583
0
}
584
585
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
586
0
{
587
0
    widefelem tmp;
588
0
    felem_mul(tmp, in1, in2);
589
0
    felem_reduce(out, tmp);
590
0
}
591
592
/*
593
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
594
 * call felem_reduce first)
595
 */
596
static void felem_contract(felem out, const felem in)
597
21.2k
{
598
21.2k
    static const int64_t two56 = ((limb)1) << 56;
599
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
600
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
601
21.2k
    int64_t tmp[4], a;
602
21.2k
    tmp[0] = in[0];
603
21.2k
    tmp[1] = in[1];
604
21.2k
    tmp[2] = in[2];
605
21.2k
    tmp[3] = in[3];
606
    /* Case 1: a = 1 iff in >= 2^224 */
607
21.2k
    a = (in[3] >> 56);
608
21.2k
    tmp[0] -= a;
609
21.2k
    tmp[1] += a << 40;
610
21.2k
    tmp[3] &= 0x00ffffffffffffff;
611
    /*
612
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
613
     * and the lower part is non-zero
614
     */
615
21.2k
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
616
21.2k
    a &= 0x00ffffffffffffff;
617
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
618
21.2k
    a = (a - 1) >> 63;
619
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
620
21.2k
    tmp[3] &= a ^ 0xffffffffffffffff;
621
21.2k
    tmp[2] &= a ^ 0xffffffffffffffff;
622
21.2k
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
623
21.2k
    tmp[0] -= 1 & a;
624
625
    /*
626
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
627
     * non-zero, so we only need one step
628
     */
629
21.2k
    a = tmp[0] >> 63;
630
21.2k
    tmp[0] += two56 & a;
631
21.2k
    tmp[1] -= 1 & a;
632
633
    /* carry 1 -> 2 -> 3 */
634
21.2k
    tmp[2] += tmp[1] >> 56;
635
21.2k
    tmp[1] &= 0x00ffffffffffffff;
636
637
21.2k
    tmp[3] += tmp[2] >> 56;
638
21.2k
    tmp[2] &= 0x00ffffffffffffff;
639
640
    /* Now 0 <= out < p */
641
21.2k
    out[0] = tmp[0];
642
21.2k
    out[1] = tmp[1];
643
21.2k
    out[2] = tmp[2];
644
21.2k
    out[3] = tmp[3];
645
21.2k
}
646
647
/*
648
 * Get negative value: out = -in
649
 * Requires in[i] < 2^63,
650
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
651
 */
652
static void felem_neg(felem out, const felem in)
653
14.0k
{
654
14.0k
    widefelem tmp;
655
656
14.0k
    memset(tmp, 0, sizeof(tmp));
657
14.0k
    felem_diff_128_64(tmp, in);
658
14.0k
    felem_reduce(out, tmp);
659
14.0k
}
660
661
/*
662
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
663
 * elements are reduced to in < 2^225, so we only need to check three cases:
664
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
665
 */
666
static limb felem_is_zero(const felem in)
667
654k
{
668
654k
    limb zero, two224m96p1, two225m97p2;
669
670
654k
    zero = in[0] | in[1] | in[2] | in[3];
671
654k
    zero = (((int64_t)(zero)-1) >> 63) & 1;
672
654k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
673
654k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
674
654k
    two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
675
654k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
676
654k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
677
654k
    two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
678
654k
    return (zero | two224m96p1 | two225m97p2);
679
654k
}
680
681
static int felem_is_zero_int(const void *in)
682
0
{
683
0
    return (int)(felem_is_zero(in) & ((limb)1));
684
0
}
685
686
/* Invert a field element */
687
/* Computation chain copied from djb's code */
688
static void felem_inv(felem out, const felem in)
689
6.11k
{
690
6.11k
    felem ftmp, ftmp2, ftmp3, ftmp4;
691
6.11k
    widefelem tmp;
692
6.11k
    unsigned i;
693
694
6.11k
    felem_square(tmp, in);
695
6.11k
    felem_reduce(ftmp, tmp); /* 2 */
696
6.11k
    felem_mul(tmp, in, ftmp);
697
6.11k
    felem_reduce(ftmp, tmp); /* 2^2 - 1 */
698
6.11k
    felem_square(tmp, ftmp);
699
6.11k
    felem_reduce(ftmp, tmp); /* 2^3 - 2 */
700
6.11k
    felem_mul(tmp, in, ftmp);
701
6.11k
    felem_reduce(ftmp, tmp); /* 2^3 - 1 */
702
6.11k
    felem_square(tmp, ftmp);
703
6.11k
    felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
704
6.11k
    felem_square(tmp, ftmp2);
705
6.11k
    felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
706
6.11k
    felem_square(tmp, ftmp2);
707
6.11k
    felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
708
6.11k
    felem_mul(tmp, ftmp2, ftmp);
709
6.11k
    felem_reduce(ftmp, tmp); /* 2^6 - 1 */
710
6.11k
    felem_square(tmp, ftmp);
711
6.11k
    felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
712
36.6k
    for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
713
30.5k
        felem_square(tmp, ftmp2);
714
30.5k
        felem_reduce(ftmp2, tmp);
715
30.5k
    }
716
6.11k
    felem_mul(tmp, ftmp2, ftmp);
717
6.11k
    felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
718
6.11k
    felem_square(tmp, ftmp2);
719
6.11k
    felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
720
73.3k
    for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */
721
67.2k
        felem_square(tmp, ftmp3);
722
67.2k
        felem_reduce(ftmp3, tmp);
723
67.2k
    }
724
6.11k
    felem_mul(tmp, ftmp3, ftmp2);
725
6.11k
    felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
726
6.11k
    felem_square(tmp, ftmp2);
727
6.11k
    felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
728
146k
    for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */
729
140k
        felem_square(tmp, ftmp3);
730
140k
        felem_reduce(ftmp3, tmp);
731
140k
    }
732
6.11k
    felem_mul(tmp, ftmp3, ftmp2);
733
6.11k
    felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
734
6.11k
    felem_square(tmp, ftmp3);
735
6.11k
    felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
736
293k
    for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */
737
287k
        felem_square(tmp, ftmp4);
738
287k
        felem_reduce(ftmp4, tmp);
739
287k
    }
740
6.11k
    felem_mul(tmp, ftmp3, ftmp4);
741
6.11k
    felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
742
6.11k
    felem_square(tmp, ftmp3);
743
6.11k
    felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
744
146k
    for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */
745
140k
        felem_square(tmp, ftmp4);
746
140k
        felem_reduce(ftmp4, tmp);
747
140k
    }
748
6.11k
    felem_mul(tmp, ftmp2, ftmp4);
749
6.11k
    felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
750
42.7k
    for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
751
36.6k
        felem_square(tmp, ftmp2);
752
36.6k
        felem_reduce(ftmp2, tmp);
753
36.6k
    }
754
6.11k
    felem_mul(tmp, ftmp2, ftmp);
755
6.11k
    felem_reduce(ftmp, tmp); /* 2^126 - 1 */
756
6.11k
    felem_square(tmp, ftmp);
757
6.11k
    felem_reduce(ftmp, tmp); /* 2^127 - 2 */
758
6.11k
    felem_mul(tmp, ftmp, in);
759
6.11k
    felem_reduce(ftmp, tmp); /* 2^127 - 1 */
760
598k
    for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */
761
592k
        felem_square(tmp, ftmp);
762
592k
        felem_reduce(ftmp, tmp);
763
592k
    }
764
6.11k
    felem_mul(tmp, ftmp, ftmp3);
765
6.11k
    felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
766
6.11k
}
767
768
/*
769
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
770
 * out to itself.
771
 */
772
static void copy_conditional(felem out, const felem in, limb icopy)
773
995k
{
774
995k
    unsigned i;
775
    /*
776
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
777
     */
778
995k
    const limb copy = -icopy;
779
4.97M
    for (i = 0; i < 4; ++i) {
780
3.98M
        const limb tmp = copy & (in[i] ^ out[i]);
781
3.98M
        out[i] ^= tmp;
782
3.98M
    }
783
995k
}
784
785
/******************************************************************************/
786
/*-
787
 *                       ELLIPTIC CURVE POINT OPERATIONS
788
 *
789
 * Points are represented in Jacobian projective coordinates:
790
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
791
 * or to the point at infinity if Z == 0.
792
 *
793
 */
794
795
/*-
796
 * Double an elliptic curve point:
797
 * (X', Y', Z') = 2 * (X, Y, Z), where
798
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
799
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
800
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
801
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
802
 * while x_out == y_in is not (maybe this works, but it's not tested).
803
 */
804
static void
805
point_double(felem x_out, felem y_out, felem z_out,
806
    const felem x_in, const felem y_in, const felem z_in)
807
143k
{
808
143k
    widefelem tmp, tmp2;
809
143k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
810
811
143k
    felem_assign(ftmp, x_in);
812
143k
    felem_assign(ftmp2, x_in);
813
814
    /* delta = z^2 */
815
143k
    felem_square(tmp, z_in);
816
143k
    felem_reduce(delta, tmp);
817
818
    /* gamma = y^2 */
819
143k
    felem_square(tmp, y_in);
820
143k
    felem_reduce(gamma, tmp);
821
822
    /* beta = x*gamma */
823
143k
    felem_mul(tmp, x_in, gamma);
824
143k
    felem_reduce(beta, tmp);
825
826
    /* alpha = 3*(x-delta)*(x+delta) */
827
143k
    felem_diff(ftmp, delta);
828
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
829
143k
    felem_sum(ftmp2, delta);
830
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
831
143k
    felem_scalar(ftmp2, 3);
832
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
833
143k
    felem_mul(tmp, ftmp, ftmp2);
834
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
835
143k
    felem_reduce(alpha, tmp);
836
837
    /* x' = alpha^2 - 8*beta */
838
143k
    felem_square(tmp, alpha);
839
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
840
143k
    felem_assign(ftmp, beta);
841
143k
    felem_scalar(ftmp, 8);
842
    /* ftmp[i] < 8 * 2^57 = 2^60 */
843
143k
    felem_diff_128_64(tmp, ftmp);
844
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
845
143k
    felem_reduce(x_out, tmp);
846
847
    /* z' = (y + z)^2 - gamma - delta */
848
143k
    felem_sum(delta, gamma);
849
    /* delta[i] < 2^57 + 2^57 = 2^58 */
850
143k
    felem_assign(ftmp, y_in);
851
143k
    felem_sum(ftmp, z_in);
852
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
853
143k
    felem_square(tmp, ftmp);
854
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
855
143k
    felem_diff_128_64(tmp, delta);
856
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
857
143k
    felem_reduce(z_out, tmp);
858
859
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
860
143k
    felem_scalar(beta, 4);
861
    /* beta[i] < 4 * 2^57 = 2^59 */
862
143k
    felem_diff(beta, x_out);
863
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
864
143k
    felem_mul(tmp, alpha, beta);
865
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
866
143k
    felem_square(tmp2, gamma);
867
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
868
143k
    widefelem_scalar(tmp2, 8);
869
    /* tmp2[i] < 8 * 2^116 = 2^119 */
870
143k
    widefelem_diff(tmp, tmp2);
871
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
872
143k
    felem_reduce(y_out, tmp);
873
143k
}
874
875
/*-
876
 * Add two elliptic curve points:
877
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
878
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
879
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
880
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
881
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
882
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
883
 *
884
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
885
 */
886
887
/*
888
 * This function is not entirely constant-time: it includes a branch for
889
 * checking whether the two input points are equal, (while not equal to the
890
 * point at infinity). This case never happens during single point
891
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
892
 */
893
static void point_add(felem x3, felem y3, felem z3,
894
    const felem x1, const felem y1, const felem z1,
895
    const int mixed, const felem x2, const felem y2,
896
    const felem z2)
897
163k
{
898
163k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
899
163k
    widefelem tmp, tmp2;
900
163k
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
901
163k
    limb points_equal;
902
903
163k
    if (!mixed) {
904
        /* ftmp2 = z2^2 */
905
15.9k
        felem_square(tmp, z2);
906
15.9k
        felem_reduce(ftmp2, tmp);
907
908
        /* ftmp4 = z2^3 */
909
15.9k
        felem_mul(tmp, ftmp2, z2);
910
15.9k
        felem_reduce(ftmp4, tmp);
911
912
        /* ftmp4 = z2^3*y1 */
913
15.9k
        felem_mul(tmp2, ftmp4, y1);
914
15.9k
        felem_reduce(ftmp4, tmp2);
915
916
        /* ftmp2 = z2^2*x1 */
917
15.9k
        felem_mul(tmp2, ftmp2, x1);
918
15.9k
        felem_reduce(ftmp2, tmp2);
919
147k
    } else {
920
        /*
921
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
922
         */
923
924
        /* ftmp4 = z2^3*y1 */
925
147k
        felem_assign(ftmp4, y1);
926
927
        /* ftmp2 = z2^2*x1 */
928
147k
        felem_assign(ftmp2, x1);
929
147k
    }
930
931
    /* ftmp = z1^2 */
932
163k
    felem_square(tmp, z1);
933
163k
    felem_reduce(ftmp, tmp);
934
935
    /* ftmp3 = z1^3 */
936
163k
    felem_mul(tmp, ftmp, z1);
937
163k
    felem_reduce(ftmp3, tmp);
938
939
    /* tmp = z1^3*y2 */
940
163k
    felem_mul(tmp, ftmp3, y2);
941
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
942
943
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
944
163k
    felem_diff_128_64(tmp, ftmp4);
945
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
946
163k
    felem_reduce(ftmp3, tmp);
947
948
    /* tmp = z1^2*x2 */
949
163k
    felem_mul(tmp, ftmp, x2);
950
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
951
952
    /* ftmp = z1^2*x2 - z2^2*x1 */
953
163k
    felem_diff_128_64(tmp, ftmp2);
954
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
955
163k
    felem_reduce(ftmp, tmp);
956
957
    /*
958
     * The formulae are incorrect if the points are equal, in affine coordinates
959
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
960
     * happens.
961
     *
962
     * We use bitwise operations to avoid potential side-channels introduced by
963
     * the short-circuiting behaviour of boolean operators.
964
     */
965
163k
    x_equal = felem_is_zero(ftmp);
966
163k
    y_equal = felem_is_zero(ftmp3);
967
    /*
968
     * The special case of either point being the point at infinity (z1 and/or
969
     * z2 are zero), is handled separately later on in this function, so we
970
     * avoid jumping to point_double here in those special cases.
971
     */
972
163k
    z1_is_zero = felem_is_zero(z1);
973
163k
    z2_is_zero = felem_is_zero(z2);
974
975
    /*
976
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
977
     * specific implementation `felem_is_zero()` returns truth as `0x1`
978
     * (rather than `0xff..ff`).
979
     *
980
     * This implies that `~true` in this implementation becomes
981
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
982
     * the if expression, we mask out only the last bit in the next
983
     * line.
984
     */
985
163k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
986
987
163k
    if (points_equal) {
988
        /*
989
         * This is obviously not constant-time but, as mentioned before, this
990
         * case never happens during single point multiplication, so there is no
991
         * timing leak for ECDH or ECDSA signing.
992
         */
993
0
        point_double(x3, y3, z3, x1, y1, z1);
994
0
        return;
995
0
    }
996
997
    /* ftmp5 = z1*z2 */
998
163k
    if (!mixed) {
999
15.9k
        felem_mul(tmp, z1, z2);
1000
15.9k
        felem_reduce(ftmp5, tmp);
1001
147k
    } else {
1002
        /* special case z2 = 0 is handled later */
1003
147k
        felem_assign(ftmp5, z1);
1004
147k
    }
1005
1006
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1007
163k
    felem_mul(tmp, ftmp, ftmp5);
1008
163k
    felem_reduce(z_out, tmp);
1009
1010
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1011
163k
    felem_assign(ftmp5, ftmp);
1012
163k
    felem_square(tmp, ftmp);
1013
163k
    felem_reduce(ftmp, tmp);
1014
1015
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1016
163k
    felem_mul(tmp, ftmp, ftmp5);
1017
163k
    felem_reduce(ftmp5, tmp);
1018
1019
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1020
163k
    felem_mul(tmp, ftmp2, ftmp);
1021
163k
    felem_reduce(ftmp2, tmp);
1022
1023
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1024
163k
    felem_mul(tmp, ftmp4, ftmp5);
1025
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1026
1027
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1028
163k
    felem_square(tmp2, ftmp3);
1029
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1030
1031
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1032
163k
    felem_diff_128_64(tmp2, ftmp5);
1033
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1034
1035
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1036
163k
    felem_assign(ftmp5, ftmp2);
1037
163k
    felem_scalar(ftmp5, 2);
1038
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1039
1040
    /*-
1041
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1042
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1043
     */
1044
163k
    felem_diff_128_64(tmp2, ftmp5);
1045
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1046
163k
    felem_reduce(x_out, tmp2);
1047
1048
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1049
163k
    felem_diff(ftmp2, x_out);
1050
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1051
1052
    /*
1053
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1054
     */
1055
163k
    felem_mul(tmp2, ftmp3, ftmp2);
1056
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1057
1058
    /*-
1059
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1060
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1061
     */
1062
163k
    widefelem_diff(tmp2, tmp);
1063
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1064
163k
    felem_reduce(y_out, tmp2);
1065
1066
    /*
1067
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1068
     * the point at infinity, so we need to check for this separately
1069
     */
1070
1071
    /*
1072
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1073
     */
1074
163k
    copy_conditional(x_out, x2, z1_is_zero);
1075
163k
    copy_conditional(x_out, x1, z2_is_zero);
1076
163k
    copy_conditional(y_out, y2, z1_is_zero);
1077
163k
    copy_conditional(y_out, y1, z2_is_zero);
1078
163k
    copy_conditional(z_out, z2, z1_is_zero);
1079
163k
    copy_conditional(z_out, z1, z2_is_zero);
1080
163k
    felem_assign(x3, x_out);
1081
163k
    felem_assign(y3, y_out);
1082
163k
    felem_assign(z3, z_out);
1083
163k
}
1084
1085
/*
1086
 * select_point selects the |idx|th point from a precomputation table and
1087
 * copies it to out.
1088
 * The pre_comp array argument should be size of |size| argument
1089
 */
1090
static void select_point(const u64 idx, unsigned int size,
1091
    const felem pre_comp[][3], felem out[3])
1092
164k
{
1093
164k
    unsigned i, j;
1094
164k
    limb *outlimbs = &out[0][0];
1095
1096
164k
    memset(out, 0, sizeof(*out) * 3);
1097
2.80M
    for (i = 0; i < size; i++) {
1098
2.64M
        const limb *inlimbs = &pre_comp[i][0][0];
1099
2.64M
        u64 mask = i ^ idx;
1100
2.64M
        mask |= mask >> 4;
1101
2.64M
        mask |= mask >> 2;
1102
2.64M
        mask |= mask >> 1;
1103
2.64M
        mask &= 1;
1104
2.64M
        mask--;
1105
34.3M
        for (j = 0; j < 4 * 3; j++)
1106
31.7M
            outlimbs[j] |= inlimbs[j] & mask;
1107
2.64M
    }
1108
164k
}
1109
1110
/* get_bit returns the |i|th bit in |in| */
1111
static char get_bit(const felem_bytearray in, unsigned i)
1112
685k
{
1113
685k
    if (i >= 224)
1114
624
        return 0;
1115
685k
    return (in[i >> 3] >> (i & 7)) & 1;
1116
685k
}
1117
1118
/*
1119
 * Interleaved point multiplication using precomputed point multiples: The
1120
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1121
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1122
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1123
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1124
 */
1125
static void batch_mul(felem x_out, felem y_out, felem z_out,
1126
    const felem_bytearray scalars[],
1127
    const unsigned num_points, const u8 *g_scalar,
1128
    const int mixed, const felem pre_comp[][17][3],
1129
    const felem g_pre_comp[2][16][3])
1130
2.99k
{
1131
2.99k
    int i, skip;
1132
2.99k
    unsigned num;
1133
2.99k
    unsigned gen_mul = (g_scalar != NULL);
1134
2.99k
    felem nq[3], tmp[4];
1135
2.99k
    u64 bits;
1136
2.99k
    u8 sign, digit;
1137
1138
    /* set nq to the point at infinity */
1139
2.99k
    memset(nq, 0, sizeof(nq));
1140
1141
    /*
1142
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1143
     * of the generator (two in each of the last 28 rounds) and additions of
1144
     * other points multiples (every 5th round).
1145
     */
1146
2.99k
    skip = 1; /* save two point operations in the first
1147
               * round */
1148
147k
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1149
        /* double */
1150
144k
        if (!skip)
1151
141k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1152
1153
        /* add multiples of the generator */
1154
144k
        if (gen_mul && (i <= 27)) {
1155
            /* first, look 28 bits upwards */
1156
75.2k
            bits = get_bit(g_scalar, i + 196) << 3;
1157
75.2k
            bits |= get_bit(g_scalar, i + 140) << 2;
1158
75.2k
            bits |= get_bit(g_scalar, i + 84) << 1;
1159
75.2k
            bits |= get_bit(g_scalar, i + 28);
1160
            /* select the point to add, in constant time */
1161
75.2k
            select_point(bits, 16, g_pre_comp[1], tmp);
1162
1163
75.2k
            if (!skip) {
1164
                /* value 1 below is argument for "mixed" */
1165
72.5k
                point_add(nq[0], nq[1], nq[2],
1166
72.5k
                    nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1167
72.5k
            } else {
1168
2.68k
                memcpy(nq, tmp, 3 * sizeof(felem));
1169
2.68k
                skip = 0;
1170
2.68k
            }
1171
1172
            /* second, look at the current position */
1173
75.2k
            bits = get_bit(g_scalar, i + 168) << 3;
1174
75.2k
            bits |= get_bit(g_scalar, i + 112) << 2;
1175
75.2k
            bits |= get_bit(g_scalar, i + 56) << 1;
1176
75.2k
            bits |= get_bit(g_scalar, i);
1177
            /* select the point to add, in constant time */
1178
75.2k
            select_point(bits, 16, g_pre_comp[0], tmp);
1179
75.2k
            point_add(nq[0], nq[1], nq[2],
1180
75.2k
                nq[0], nq[1], nq[2],
1181
75.2k
                1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1182
75.2k
        }
1183
1184
        /* do other additions every 5 doublings */
1185
144k
        if (num_points && (i % 5 == 0)) {
1186
            /* loop over all scalars */
1187
28.0k
            for (num = 0; num < num_points; ++num) {
1188
14.0k
                bits = get_bit(scalars[num], i + 4) << 5;
1189
14.0k
                bits |= get_bit(scalars[num], i + 3) << 4;
1190
14.0k
                bits |= get_bit(scalars[num], i + 2) << 3;
1191
14.0k
                bits |= get_bit(scalars[num], i + 1) << 2;
1192
14.0k
                bits |= get_bit(scalars[num], i) << 1;
1193
14.0k
                bits |= get_bit(scalars[num], i - 1);
1194
14.0k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1195
1196
                /* select the point to add or subtract */
1197
14.0k
                select_point(digit, 17, pre_comp[num], tmp);
1198
14.0k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1199
                                            * point */
1200
14.0k
                copy_conditional(tmp[1], tmp[3], sign);
1201
1202
14.0k
                if (!skip) {
1203
13.7k
                    point_add(nq[0], nq[1], nq[2],
1204
13.7k
                        nq[0], nq[1], nq[2],
1205
13.7k
                        mixed, tmp[0], tmp[1], tmp[2]);
1206
13.7k
                } else {
1207
312
                    memcpy(nq, tmp, 3 * sizeof(felem));
1208
312
                    skip = 0;
1209
312
                }
1210
14.0k
            }
1211
14.0k
        }
1212
144k
    }
1213
2.99k
    felem_assign(x_out, nq[0]);
1214
2.99k
    felem_assign(y_out, nq[1]);
1215
2.99k
    felem_assign(z_out, nq[2]);
1216
2.99k
}
1217
1218
/******************************************************************************/
1219
/*
1220
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1221
 */
1222
1223
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1224
0
{
1225
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1226
1227
0
    if (ret == NULL)
1228
0
        return ret;
1229
1230
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1231
0
        OPENSSL_free(ret);
1232
0
        return NULL;
1233
0
    }
1234
0
    return ret;
1235
0
}
1236
1237
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1238
0
{
1239
0
    int i;
1240
0
    if (p != NULL)
1241
0
        CRYPTO_UP_REF(&p->references, &i);
1242
0
    return p;
1243
0
}
1244
1245
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1246
0
{
1247
0
    int i;
1248
1249
0
    if (p == NULL)
1250
0
        return;
1251
1252
0
    CRYPTO_DOWN_REF(&p->references, &i);
1253
0
    REF_PRINT_COUNT("EC_nistp224", i, p);
1254
0
    if (i > 0)
1255
0
        return;
1256
0
    REF_ASSERT_ISNT(i < 0);
1257
1258
0
    CRYPTO_FREE_REF(&p->references);
1259
0
    OPENSSL_free(p);
1260
0
}
1261
1262
/******************************************************************************/
1263
/*
1264
 * OPENSSL EC_METHOD FUNCTIONS
1265
 */
1266
1267
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1268
93.1k
{
1269
93.1k
    int ret;
1270
93.1k
    ret = ossl_ec_GFp_simple_group_init(group);
1271
93.1k
    group->a_is_minus3 = 1;
1272
93.1k
    return ret;
1273
93.1k
}
1274
1275
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1276
    const BIGNUM *a, const BIGNUM *b,
1277
    BN_CTX *ctx)
1278
48.6k
{
1279
48.6k
    int ret = 0;
1280
48.6k
    BIGNUM *curve_p, *curve_a, *curve_b;
1281
48.6k
#ifndef FIPS_MODULE
1282
48.6k
    BN_CTX *new_ctx = NULL;
1283
1284
48.6k
    if (ctx == NULL)
1285
0
        ctx = new_ctx = BN_CTX_new();
1286
48.6k
#endif
1287
48.6k
    if (ctx == NULL)
1288
0
        return 0;
1289
1290
48.6k
    BN_CTX_start(ctx);
1291
48.6k
    curve_p = BN_CTX_get(ctx);
1292
48.6k
    curve_a = BN_CTX_get(ctx);
1293
48.6k
    curve_b = BN_CTX_get(ctx);
1294
48.6k
    if (curve_b == NULL)
1295
0
        goto err;
1296
48.6k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1297
48.6k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1298
48.6k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1299
48.6k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1300
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1301
0
        goto err;
1302
0
    }
1303
48.6k
    group->field_mod_func = BN_nist_mod_224;
1304
48.6k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1305
48.6k
err:
1306
48.6k
    BN_CTX_end(ctx);
1307
48.6k
#ifndef FIPS_MODULE
1308
48.6k
    BN_CTX_free(new_ctx);
1309
48.6k
#endif
1310
48.6k
    return ret;
1311
48.6k
}
1312
1313
/*
1314
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1315
 * (X/Z^2, Y/Z^3)
1316
 */
1317
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1318
    const EC_POINT *point,
1319
    BIGNUM *x, BIGNUM *y,
1320
    BN_CTX *ctx)
1321
6.11k
{
1322
6.11k
    felem z1, z2, x_in, y_in, x_out, y_out;
1323
6.11k
    widefelem tmp;
1324
1325
6.11k
    if (EC_POINT_is_at_infinity(group, point)) {
1326
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1327
0
        return 0;
1328
0
    }
1329
6.11k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z)))
1330
0
        return 0;
1331
6.11k
    felem_inv(z2, z1);
1332
6.11k
    felem_square(tmp, z2);
1333
6.11k
    felem_reduce(z1, tmp);
1334
6.11k
    felem_mul(tmp, x_in, z1);
1335
6.11k
    felem_reduce(x_in, tmp);
1336
6.11k
    felem_contract(x_out, x_in);
1337
6.11k
    if (x != NULL) {
1338
6.11k
        if (!felem_to_BN(x, x_out)) {
1339
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1340
0
            return 0;
1341
0
        }
1342
6.11k
    }
1343
6.11k
    felem_mul(tmp, z1, z2);
1344
6.11k
    felem_reduce(z1, tmp);
1345
6.11k
    felem_mul(tmp, y_in, z1);
1346
6.11k
    felem_reduce(y_in, tmp);
1347
6.11k
    felem_contract(y_out, y_in);
1348
6.11k
    if (y != NULL) {
1349
6.11k
        if (!felem_to_BN(y, y_out)) {
1350
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1351
0
            return 0;
1352
0
        }
1353
6.11k
    }
1354
6.11k
    return 1;
1355
6.11k
}
1356
1357
static void make_points_affine(size_t num, felem points[/* num */][3],
1358
    felem tmp_felems[/* num+1 */])
1359
0
{
1360
    /*
1361
     * Runs in constant time, unless an input is the point at infinity (which
1362
     * normally shouldn't happen).
1363
     */
1364
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1365
0
        points,
1366
0
        sizeof(felem),
1367
0
        tmp_felems,
1368
0
        (void (*)(void *))felem_one,
1369
0
        felem_is_zero_int,
1370
0
        (void (*)(void *, const void *))
1371
0
            felem_assign,
1372
0
        (void (*)(void *, const void *))
1373
0
            felem_square_reduce,
1374
0
        (void (*)(void *,
1375
0
            const void
1376
0
                *,
1377
0
            const void
1378
0
                *))
1379
0
            felem_mul_reduce,
1380
0
        (void (*)(void *, const void *))
1381
0
            felem_inv,
1382
0
        (void (*)(void *, const void *))
1383
0
            felem_contract);
1384
0
}
1385
1386
/*
1387
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1388
 * values Result is stored in r (r can equal one of the inputs).
1389
 */
1390
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1391
    const BIGNUM *scalar, size_t num,
1392
    const EC_POINT *points[],
1393
    const BIGNUM *scalars[], BN_CTX *ctx)
1394
2.99k
{
1395
2.99k
    int ret = 0;
1396
2.99k
    int j;
1397
2.99k
    unsigned i;
1398
2.99k
    int mixed = 0;
1399
2.99k
    BIGNUM *x, *y, *z, *tmp_scalar;
1400
2.99k
    felem_bytearray g_secret;
1401
2.99k
    felem_bytearray *secrets = NULL;
1402
2.99k
    felem(*pre_comp)[17][3] = NULL;
1403
2.99k
    felem *tmp_felems = NULL;
1404
2.99k
    int num_bytes;
1405
2.99k
    int have_pre_comp = 0;
1406
2.99k
    size_t num_points = num;
1407
2.99k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1408
2.99k
    NISTP224_PRE_COMP *pre = NULL;
1409
2.99k
    const felem(*g_pre_comp)[16][3] = NULL;
1410
2.99k
    EC_POINT *generator = NULL;
1411
2.99k
    const EC_POINT *p = NULL;
1412
2.99k
    const BIGNUM *p_scalar = NULL;
1413
1414
2.99k
    BN_CTX_start(ctx);
1415
2.99k
    x = BN_CTX_get(ctx);
1416
2.99k
    y = BN_CTX_get(ctx);
1417
2.99k
    z = BN_CTX_get(ctx);
1418
2.99k
    tmp_scalar = BN_CTX_get(ctx);
1419
2.99k
    if (tmp_scalar == NULL)
1420
0
        goto err;
1421
1422
2.99k
    if (scalar != NULL) {
1423
2.68k
        pre = group->pre_comp.nistp224;
1424
2.68k
        if (pre)
1425
            /* we have precomputation, try to use it */
1426
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1427
2.68k
        else
1428
            /* try to use the standard precomputation */
1429
2.68k
            g_pre_comp = &gmul[0];
1430
2.68k
        generator = EC_POINT_new(group);
1431
2.68k
        if (generator == NULL)
1432
0
            goto err;
1433
        /* get the generator from precomputation */
1434
2.68k
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) || !felem_to_BN(y, g_pre_comp[0][1][1]) || !felem_to_BN(z, g_pre_comp[0][1][2])) {
1435
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1436
0
            goto err;
1437
0
        }
1438
2.68k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1439
2.68k
                generator,
1440
2.68k
                x, y, z, ctx))
1441
0
            goto err;
1442
2.68k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1443
            /* precomputation matches generator */
1444
2.68k
            have_pre_comp = 1;
1445
0
        else
1446
            /*
1447
             * we don't have valid precomputation: treat the generator as a
1448
             * random point
1449
             */
1450
0
            num_points = num_points + 1;
1451
2.68k
    }
1452
1453
2.99k
    if (num_points > 0) {
1454
312
        if (num_points >= 3) {
1455
            /*
1456
             * unless we precompute multiples for just one or two points,
1457
             * converting those into affine form is time well spent
1458
             */
1459
0
            mixed = 1;
1460
0
        }
1461
312
        secrets = OPENSSL_calloc(num_points, sizeof(*secrets));
1462
312
        pre_comp = OPENSSL_calloc(num_points, sizeof(*pre_comp));
1463
312
        if (mixed)
1464
0
            tmp_felems = OPENSSL_malloc_array(num_points * 17 + 1, sizeof(felem));
1465
312
        if ((secrets == NULL) || (pre_comp == NULL)
1466
312
            || (mixed && (tmp_felems == NULL)))
1467
0
            goto err;
1468
1469
        /*
1470
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1471
         * i.e., they contribute nothing to the linear combination
1472
         */
1473
624
        for (i = 0; i < num_points; ++i) {
1474
312
            if (i == num) {
1475
                /* the generator */
1476
0
                p = EC_GROUP_get0_generator(group);
1477
0
                p_scalar = scalar;
1478
312
            } else {
1479
                /* the i^th point */
1480
312
                p = points[i];
1481
312
                p_scalar = scalars[i];
1482
312
            }
1483
312
            if ((p_scalar != NULL) && (p != NULL)) {
1484
                /* reduce scalar to 0 <= scalar < 2^224 */
1485
312
                if ((BN_num_bits(p_scalar) > 224)
1486
312
                    || (BN_is_negative(p_scalar))) {
1487
                    /*
1488
                     * this is an unusual input, and we don't guarantee
1489
                     * constant-timeness
1490
                     */
1491
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1492
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1493
0
                        goto err;
1494
0
                    }
1495
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1496
0
                        secrets[i], sizeof(secrets[i]));
1497
312
                } else {
1498
312
                    num_bytes = BN_bn2lebinpad(p_scalar,
1499
312
                        secrets[i], sizeof(secrets[i]));
1500
312
                }
1501
312
                if (num_bytes < 0) {
1502
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1503
0
                    goto err;
1504
0
                }
1505
                /* precompute multiples */
1506
312
                if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z)))
1507
0
                    goto err;
1508
312
                felem_assign(pre_comp[i][1][0], x_out);
1509
312
                felem_assign(pre_comp[i][1][1], y_out);
1510
312
                felem_assign(pre_comp[i][1][2], z_out);
1511
4.99k
                for (j = 2; j <= 16; ++j) {
1512
4.68k
                    if (j & 1) {
1513
2.18k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1514
2.18k
                            pre_comp[i][j][2], pre_comp[i][1][0],
1515
2.18k
                            pre_comp[i][1][1], pre_comp[i][1][2], 0,
1516
2.18k
                            pre_comp[i][j - 1][0],
1517
2.18k
                            pre_comp[i][j - 1][1],
1518
2.18k
                            pre_comp[i][j - 1][2]);
1519
2.49k
                    } else {
1520
2.49k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1521
2.49k
                            pre_comp[i][j][2], pre_comp[i][j / 2][0],
1522
2.49k
                            pre_comp[i][j / 2][1],
1523
2.49k
                            pre_comp[i][j / 2][2]);
1524
2.49k
                    }
1525
4.68k
                }
1526
312
            }
1527
312
        }
1528
312
        if (mixed)
1529
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1530
312
    }
1531
1532
    /* the scalar for the generator */
1533
2.99k
    if ((scalar != NULL) && (have_pre_comp)) {
1534
2.68k
        memset(g_secret, 0, sizeof(g_secret));
1535
        /* reduce scalar to 0 <= scalar < 2^224 */
1536
2.68k
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1537
            /*
1538
             * this is an unusual input, and we don't guarantee
1539
             * constant-timeness
1540
             */
1541
634
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1542
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1543
0
                goto err;
1544
0
            }
1545
634
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1546
2.05k
        } else {
1547
2.05k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1548
2.05k
        }
1549
        /* do the multiplication with generator precomputation */
1550
2.68k
        batch_mul(x_out, y_out, z_out,
1551
2.68k
            (const felem_bytearray(*))secrets, num_points,
1552
2.68k
            g_secret,
1553
2.68k
            mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1554
2.68k
    } else {
1555
        /* do the multiplication without generator precomputation */
1556
312
        batch_mul(x_out, y_out, z_out,
1557
312
            (const felem_bytearray(*))secrets, num_points,
1558
312
            NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1559
312
    }
1560
    /* reduce the output to its unique minimal representation */
1561
2.99k
    felem_contract(x_in, x_out);
1562
2.99k
    felem_contract(y_in, y_out);
1563
2.99k
    felem_contract(z_in, z_out);
1564
2.99k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) {
1565
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1566
0
        goto err;
1567
0
    }
1568
2.99k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1569
2.99k
        ctx);
1570
1571
2.99k
err:
1572
2.99k
    BN_CTX_end(ctx);
1573
2.99k
    EC_POINT_free(generator);
1574
2.99k
    OPENSSL_free(secrets);
1575
2.99k
    OPENSSL_free(pre_comp);
1576
2.99k
    OPENSSL_free(tmp_felems);
1577
2.99k
    return ret;
1578
2.99k
}
1579
1580
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1581
0
{
1582
0
    int ret = 0;
1583
0
    NISTP224_PRE_COMP *pre = NULL;
1584
0
    int i, j;
1585
0
    BIGNUM *x, *y;
1586
0
    EC_POINT *generator = NULL;
1587
0
    felem tmp_felems[32];
1588
0
#ifndef FIPS_MODULE
1589
0
    BN_CTX *new_ctx = NULL;
1590
0
#endif
1591
1592
    /* throw away old precomputation */
1593
0
    EC_pre_comp_free(group);
1594
1595
0
#ifndef FIPS_MODULE
1596
0
    if (ctx == NULL)
1597
0
        ctx = new_ctx = BN_CTX_new();
1598
0
#endif
1599
0
    if (ctx == NULL)
1600
0
        return 0;
1601
1602
0
    BN_CTX_start(ctx);
1603
0
    x = BN_CTX_get(ctx);
1604
0
    y = BN_CTX_get(ctx);
1605
0
    if (y == NULL)
1606
0
        goto err;
1607
    /* get the generator */
1608
0
    if (group->generator == NULL)
1609
0
        goto err;
1610
0
    generator = EC_POINT_new(group);
1611
0
    if (generator == NULL)
1612
0
        goto err;
1613
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1614
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1615
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1616
0
        goto err;
1617
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1618
0
        goto err;
1619
    /*
1620
     * if the generator is the standard one, use built-in precomputation
1621
     */
1622
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1623
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1624
0
        goto done;
1625
0
    }
1626
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1627
0
        goto err;
1628
    /*
1629
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1630
     * 2^140*G, 2^196*G for the second one
1631
     */
1632
0
    for (i = 1; i <= 8; i <<= 1) {
1633
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1634
0
            pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1635
0
            pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1636
0
        for (j = 0; j < 27; ++j) {
1637
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1638
0
                pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1639
0
                pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1640
0
        }
1641
0
        if (i == 8)
1642
0
            break;
1643
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1644
0
            pre->g_pre_comp[0][2 * i][1],
1645
0
            pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1646
0
            pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1647
0
        for (j = 0; j < 27; ++j) {
1648
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1649
0
                pre->g_pre_comp[0][2 * i][1],
1650
0
                pre->g_pre_comp[0][2 * i][2],
1651
0
                pre->g_pre_comp[0][2 * i][0],
1652
0
                pre->g_pre_comp[0][2 * i][1],
1653
0
                pre->g_pre_comp[0][2 * i][2]);
1654
0
        }
1655
0
    }
1656
0
    for (i = 0; i < 2; i++) {
1657
        /* g_pre_comp[i][0] is the point at infinity */
1658
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1659
        /* the remaining multiples */
1660
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1661
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1662
0
            pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1663
0
            pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1664
0
            0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1665
0
            pre->g_pre_comp[i][2][2]);
1666
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1667
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1668
0
            pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1669
0
            pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1670
0
            0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1671
0
            pre->g_pre_comp[i][2][2]);
1672
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1673
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1674
0
            pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1675
0
            pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1676
0
            0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1677
0
            pre->g_pre_comp[i][4][2]);
1678
        /*
1679
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1680
         */
1681
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1682
0
            pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1683
0
            pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1684
0
            0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1685
0
            pre->g_pre_comp[i][2][2]);
1686
0
        for (j = 1; j < 8; ++j) {
1687
            /* odd multiples: add G resp. 2^28*G */
1688
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1689
0
                pre->g_pre_comp[i][2 * j + 1][1],
1690
0
                pre->g_pre_comp[i][2 * j + 1][2],
1691
0
                pre->g_pre_comp[i][2 * j][0],
1692
0
                pre->g_pre_comp[i][2 * j][1],
1693
0
                pre->g_pre_comp[i][2 * j][2], 0,
1694
0
                pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1695
0
                pre->g_pre_comp[i][1][2]);
1696
0
        }
1697
0
    }
1698
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1699
1700
0
done:
1701
0
    SETPRECOMP(group, nistp224, pre);
1702
0
    pre = NULL;
1703
0
    ret = 1;
1704
0
err:
1705
0
    BN_CTX_end(ctx);
1706
0
    EC_POINT_free(generator);
1707
0
#ifndef FIPS_MODULE
1708
0
    BN_CTX_free(new_ctx);
1709
0
#endif
1710
0
    EC_nistp224_pre_comp_free(pre);
1711
0
    return ret;
1712
0
}
1713
1714
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1715
0
{
1716
    return HAVEPRECOMP(group, nistp224);
1717
0
}