/src/openssl36/crypto/ec/ecp_nistp256.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2011-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* Copyright 2011 Google Inc. |
11 | | * |
12 | | * Licensed under the Apache License, Version 2.0 (the "License"); |
13 | | * |
14 | | * you may not use this file except in compliance with the License. |
15 | | * You may obtain a copy of the License at |
16 | | * |
17 | | * http://www.apache.org/licenses/LICENSE-2.0 |
18 | | * |
19 | | * Unless required by applicable law or agreed to in writing, software |
20 | | * distributed under the License is distributed on an "AS IS" BASIS, |
21 | | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
22 | | * See the License for the specific language governing permissions and |
23 | | * limitations under the License. |
24 | | */ |
25 | | |
26 | | /* |
27 | | * ECDSA low level APIs are deprecated for public use, but still ok for |
28 | | * internal use. |
29 | | */ |
30 | | #include "internal/deprecated.h" |
31 | | |
32 | | /* |
33 | | * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication |
34 | | * |
35 | | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. |
36 | | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 |
37 | | * work which got its smarts from Daniel J. Bernstein's work on the same. |
38 | | */ |
39 | | |
40 | | #include <openssl/opensslconf.h> |
41 | | |
42 | | #include <stdint.h> |
43 | | #include <string.h> |
44 | | #include <openssl/err.h> |
45 | | #include "ec_local.h" |
46 | | |
47 | | #include "internal/numbers.h" |
48 | | |
49 | | #ifndef INT128_MAX |
50 | | #error "Your compiler doesn't appear to support 128-bit integer types" |
51 | | #endif |
52 | | |
53 | | typedef uint8_t u8; |
54 | | typedef uint32_t u32; |
55 | | typedef uint64_t u64; |
56 | | |
57 | | /* |
58 | | * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We |
59 | | * can serialize an element of this field into 32 bytes. We call this an |
60 | | * felem_bytearray. |
61 | | */ |
62 | | |
63 | | typedef u8 felem_bytearray[32]; |
64 | | |
65 | | /* |
66 | | * These are the parameters of P256, taken from FIPS 186-3, page 86. These |
67 | | * values are big-endian. |
68 | | */ |
69 | | static const felem_bytearray nistp256_curve_params[5] = { |
70 | | { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */ |
71 | | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
72 | | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, |
73 | | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, |
74 | | { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */ |
75 | | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
76 | | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, |
77 | | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc }, |
78 | | { 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */ |
79 | | 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, |
80 | | 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, |
81 | | 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b }, |
82 | | { 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */ |
83 | | 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, |
84 | | 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, |
85 | | 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96 }, |
86 | | { 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */ |
87 | | 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, |
88 | | 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, |
89 | | 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5 } |
90 | | }; |
91 | | |
92 | | /*- |
93 | | * The representation of field elements. |
94 | | * ------------------------------------ |
95 | | * |
96 | | * We represent field elements with either four 128-bit values, eight 128-bit |
97 | | * values, or four 64-bit values. The field element represented is: |
98 | | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p) |
99 | | * or: |
100 | | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[7]*2^448 (mod p) |
101 | | * |
102 | | * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits |
103 | | * apart, but are 128-bits wide, the most significant bits of each limb overlap |
104 | | * with the least significant bits of the next. |
105 | | * |
106 | | * A field element with four limbs is an 'felem'. One with eight limbs is a |
107 | | * 'longfelem' |
108 | | * |
109 | | * A field element with four, 64-bit values is called a 'smallfelem'. Small |
110 | | * values are used as intermediate values before multiplication. |
111 | | */ |
112 | | |
113 | 0 | #define NLIMBS 4 |
114 | | |
115 | | typedef uint128_t limb; |
116 | | typedef limb felem[NLIMBS]; |
117 | | typedef limb longfelem[NLIMBS * 2]; |
118 | | typedef u64 smallfelem[NLIMBS]; |
119 | | |
120 | | /* This is the value of the prime as four 64-bit words, little-endian. */ |
121 | | static const u64 kPrime[4] = { |
122 | | 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul |
123 | | }; |
124 | | static const u64 bottom63bits = 0x7ffffffffffffffful; |
125 | | |
126 | | /* |
127 | | * bin32_to_felem takes a little-endian byte array and converts it into felem |
128 | | * form. This assumes that the CPU is little-endian. |
129 | | */ |
130 | | static void bin32_to_felem(felem out, const u8 in[32]) |
131 | 0 | { |
132 | 0 | out[0] = *((u64 *)&in[0]); |
133 | 0 | out[1] = *((u64 *)&in[8]); |
134 | 0 | out[2] = *((u64 *)&in[16]); |
135 | 0 | out[3] = *((u64 *)&in[24]); |
136 | 0 | } |
137 | | |
138 | | /* |
139 | | * smallfelem_to_bin32 takes a smallfelem and serializes into a little |
140 | | * endian, 32 byte array. This assumes that the CPU is little-endian. |
141 | | */ |
142 | | static void smallfelem_to_bin32(u8 out[32], const smallfelem in) |
143 | 0 | { |
144 | 0 | *((u64 *)&out[0]) = in[0]; |
145 | 0 | *((u64 *)&out[8]) = in[1]; |
146 | 0 | *((u64 *)&out[16]) = in[2]; |
147 | 0 | *((u64 *)&out[24]) = in[3]; |
148 | 0 | } |
149 | | |
150 | | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ |
151 | | static int BN_to_felem(felem out, const BIGNUM *bn) |
152 | 0 | { |
153 | 0 | felem_bytearray b_out; |
154 | 0 | int num_bytes; |
155 | |
|
156 | 0 | if (BN_is_negative(bn)) { |
157 | 0 | ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); |
158 | 0 | return 0; |
159 | 0 | } |
160 | 0 | num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); |
161 | 0 | if (num_bytes < 0) { |
162 | 0 | ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); |
163 | 0 | return 0; |
164 | 0 | } |
165 | 0 | bin32_to_felem(out, b_out); |
166 | 0 | return 1; |
167 | 0 | } |
168 | | |
169 | | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ |
170 | | static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) |
171 | 0 | { |
172 | 0 | felem_bytearray b_out; |
173 | 0 | smallfelem_to_bin32(b_out, in); |
174 | 0 | return BN_lebin2bn(b_out, sizeof(b_out), out); |
175 | 0 | } |
176 | | |
177 | | /*- |
178 | | * Field operations |
179 | | * ---------------- |
180 | | */ |
181 | | |
182 | | static void smallfelem_one(smallfelem out) |
183 | 0 | { |
184 | 0 | out[0] = 1; |
185 | 0 | out[1] = 0; |
186 | 0 | out[2] = 0; |
187 | 0 | out[3] = 0; |
188 | 0 | } |
189 | | |
190 | | static void smallfelem_assign(smallfelem out, const smallfelem in) |
191 | 0 | { |
192 | 0 | out[0] = in[0]; |
193 | 0 | out[1] = in[1]; |
194 | 0 | out[2] = in[2]; |
195 | 0 | out[3] = in[3]; |
196 | 0 | } |
197 | | |
198 | | static void felem_assign(felem out, const felem in) |
199 | 0 | { |
200 | 0 | out[0] = in[0]; |
201 | 0 | out[1] = in[1]; |
202 | 0 | out[2] = in[2]; |
203 | 0 | out[3] = in[3]; |
204 | 0 | } |
205 | | |
206 | | /* felem_sum sets out = out + in. */ |
207 | | static void felem_sum(felem out, const felem in) |
208 | 0 | { |
209 | 0 | out[0] += in[0]; |
210 | 0 | out[1] += in[1]; |
211 | 0 | out[2] += in[2]; |
212 | 0 | out[3] += in[3]; |
213 | 0 | } |
214 | | |
215 | | /* felem_small_sum sets out = out + in. */ |
216 | | static void felem_small_sum(felem out, const smallfelem in) |
217 | 0 | { |
218 | 0 | out[0] += in[0]; |
219 | 0 | out[1] += in[1]; |
220 | 0 | out[2] += in[2]; |
221 | 0 | out[3] += in[3]; |
222 | 0 | } |
223 | | |
224 | | /* felem_scalar sets out = out * scalar */ |
225 | | static void felem_scalar(felem out, const u64 scalar) |
226 | 0 | { |
227 | 0 | out[0] *= scalar; |
228 | 0 | out[1] *= scalar; |
229 | 0 | out[2] *= scalar; |
230 | 0 | out[3] *= scalar; |
231 | 0 | } |
232 | | |
233 | | /* longfelem_scalar sets out = out * scalar */ |
234 | | static void longfelem_scalar(longfelem out, const u64 scalar) |
235 | 0 | { |
236 | 0 | out[0] *= scalar; |
237 | 0 | out[1] *= scalar; |
238 | 0 | out[2] *= scalar; |
239 | 0 | out[3] *= scalar; |
240 | 0 | out[4] *= scalar; |
241 | 0 | out[5] *= scalar; |
242 | 0 | out[6] *= scalar; |
243 | 0 | out[7] *= scalar; |
244 | 0 | } |
245 | | |
246 | | #define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) |
247 | | #define two105 (((limb)1) << 105) |
248 | | #define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) |
249 | | |
250 | | /* zero105 is 0 mod p */ |
251 | | static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 }; |
252 | | |
253 | | /*- |
254 | | * smallfelem_neg sets |out| to |-small| |
255 | | * On exit: |
256 | | * out[i] < out[i] + 2^105 |
257 | | */ |
258 | | static void smallfelem_neg(felem out, const smallfelem small) |
259 | 0 | { |
260 | | /* In order to prevent underflow, we subtract from 0 mod p. */ |
261 | 0 | out[0] = zero105[0] - small[0]; |
262 | 0 | out[1] = zero105[1] - small[1]; |
263 | 0 | out[2] = zero105[2] - small[2]; |
264 | 0 | out[3] = zero105[3] - small[3]; |
265 | 0 | } |
266 | | |
267 | | /*- |
268 | | * felem_diff subtracts |in| from |out| |
269 | | * On entry: |
270 | | * in[i] < 2^104 |
271 | | * On exit: |
272 | | * out[i] < out[i] + 2^105 |
273 | | */ |
274 | | static void felem_diff(felem out, const felem in) |
275 | 0 | { |
276 | | /* |
277 | | * In order to prevent underflow, we add 0 mod p before subtracting. |
278 | | */ |
279 | 0 | out[0] += zero105[0]; |
280 | 0 | out[1] += zero105[1]; |
281 | 0 | out[2] += zero105[2]; |
282 | 0 | out[3] += zero105[3]; |
283 | |
|
284 | 0 | out[0] -= in[0]; |
285 | 0 | out[1] -= in[1]; |
286 | 0 | out[2] -= in[2]; |
287 | 0 | out[3] -= in[3]; |
288 | 0 | } |
289 | | |
290 | | #define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) |
291 | | #define two107 (((limb)1) << 107) |
292 | | #define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) |
293 | | |
294 | | /* zero107 is 0 mod p */ |
295 | | static const felem zero107 = { |
296 | | two107m43m11, two107, two107m43p11, two107m43p11 |
297 | | }; |
298 | | |
299 | | /*- |
300 | | * An alternative felem_diff for larger inputs |in| |
301 | | * felem_diff_zero107 subtracts |in| from |out| |
302 | | * On entry: |
303 | | * in[i] < 2^106 |
304 | | * On exit: |
305 | | * out[i] < out[i] + 2^107 |
306 | | */ |
307 | | static void felem_diff_zero107(felem out, const felem in) |
308 | 0 | { |
309 | | /* |
310 | | * In order to prevent underflow, we add 0 mod p before subtracting. |
311 | | */ |
312 | 0 | out[0] += zero107[0]; |
313 | 0 | out[1] += zero107[1]; |
314 | 0 | out[2] += zero107[2]; |
315 | 0 | out[3] += zero107[3]; |
316 | |
|
317 | 0 | out[0] -= in[0]; |
318 | 0 | out[1] -= in[1]; |
319 | 0 | out[2] -= in[2]; |
320 | 0 | out[3] -= in[3]; |
321 | 0 | } |
322 | | |
323 | | /*- |
324 | | * longfelem_diff subtracts |in| from |out| |
325 | | * On entry: |
326 | | * in[i] < 7*2^67 |
327 | | * On exit: |
328 | | * out[i] < out[i] + 2^70 + 2^40 |
329 | | */ |
330 | | static void longfelem_diff(longfelem out, const longfelem in) |
331 | 0 | { |
332 | 0 | static const limb two70m8p6 = (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6); |
333 | 0 | static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40); |
334 | 0 | static const limb two70 = (((limb)1) << 70); |
335 | 0 | static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) - (((limb)1) << 38) + (((limb)1) << 6); |
336 | 0 | static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6); |
337 | | |
338 | | /* add 0 mod p to avoid underflow */ |
339 | 0 | out[0] += two70m8p6; |
340 | 0 | out[1] += two70p40; |
341 | 0 | out[2] += two70; |
342 | 0 | out[3] += two70m40m38p6; |
343 | 0 | out[4] += two70m6; |
344 | 0 | out[5] += two70m6; |
345 | 0 | out[6] += two70m6; |
346 | 0 | out[7] += two70m6; |
347 | | |
348 | | /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */ |
349 | 0 | out[0] -= in[0]; |
350 | 0 | out[1] -= in[1]; |
351 | 0 | out[2] -= in[2]; |
352 | 0 | out[3] -= in[3]; |
353 | 0 | out[4] -= in[4]; |
354 | 0 | out[5] -= in[5]; |
355 | 0 | out[6] -= in[6]; |
356 | 0 | out[7] -= in[7]; |
357 | 0 | } |
358 | | |
359 | | #define two64m0 (((limb)1) << 64) - 1 |
360 | | #define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 |
361 | | #define two64m46 (((limb)1) << 64) - (((limb)1) << 46) |
362 | | #define two64m32 (((limb)1) << 64) - (((limb)1) << 32) |
363 | | |
364 | | /* zero110 is 0 mod p */ |
365 | | static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 }; |
366 | | |
367 | | /*- |
368 | | * felem_shrink converts an felem into a smallfelem. The result isn't quite |
369 | | * minimal as the value may be greater than p. |
370 | | * |
371 | | * On entry: |
372 | | * in[i] < 2^109 |
373 | | * On exit: |
374 | | * out[i] < 2^64 |
375 | | */ |
376 | | static void felem_shrink(smallfelem out, const felem in) |
377 | 0 | { |
378 | 0 | felem tmp; |
379 | 0 | u64 a, b, mask; |
380 | 0 | u64 high, low; |
381 | 0 | static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */ |
382 | | |
383 | | /* Carry 2->3 */ |
384 | 0 | tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64)); |
385 | | /* tmp[3] < 2^110 */ |
386 | |
|
387 | 0 | tmp[2] = zero110[2] + (u64)in[2]; |
388 | 0 | tmp[0] = zero110[0] + in[0]; |
389 | 0 | tmp[1] = zero110[1] + in[1]; |
390 | | /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */ |
391 | | |
392 | | /* |
393 | | * We perform two partial reductions where we eliminate the high-word of |
394 | | * tmp[3]. We don't update the other words till the end. |
395 | | */ |
396 | 0 | a = tmp[3] >> 64; /* a < 2^46 */ |
397 | 0 | tmp[3] = (u64)tmp[3]; |
398 | 0 | tmp[3] -= a; |
399 | 0 | tmp[3] += ((limb)a) << 32; |
400 | | /* tmp[3] < 2^79 */ |
401 | |
|
402 | 0 | b = a; |
403 | 0 | a = tmp[3] >> 64; /* a < 2^15 */ |
404 | 0 | b += a; /* b < 2^46 + 2^15 < 2^47 */ |
405 | 0 | tmp[3] = (u64)tmp[3]; |
406 | 0 | tmp[3] -= a; |
407 | 0 | tmp[3] += ((limb)a) << 32; |
408 | | /* tmp[3] < 2^64 + 2^47 */ |
409 | | |
410 | | /* |
411 | | * This adjusts the other two words to complete the two partial |
412 | | * reductions. |
413 | | */ |
414 | 0 | tmp[0] += b; |
415 | 0 | tmp[1] -= (((limb)b) << 32); |
416 | | |
417 | | /* |
418 | | * In order to make space in tmp[3] for the carry from 2 -> 3, we |
419 | | * conditionally subtract kPrime if tmp[3] is large enough. |
420 | | */ |
421 | 0 | high = (u64)(tmp[3] >> 64); |
422 | | /* As tmp[3] < 2^65, high is either 1 or 0 */ |
423 | 0 | high = 0 - high; |
424 | | /*- |
425 | | * high is: |
426 | | * all ones if the high word of tmp[3] is 1 |
427 | | * all zeros if the high word of tmp[3] if 0 |
428 | | */ |
429 | 0 | low = (u64)tmp[3]; |
430 | 0 | mask = 0 - (low >> 63); |
431 | | /*- |
432 | | * mask is: |
433 | | * all ones if the MSB of low is 1 |
434 | | * all zeros if the MSB of low if 0 |
435 | | */ |
436 | 0 | low &= bottom63bits; |
437 | 0 | low -= kPrime3Test; |
438 | | /* if low was greater than kPrime3Test then the MSB is zero */ |
439 | 0 | low = ~low; |
440 | 0 | low = 0 - (low >> 63); |
441 | | /*- |
442 | | * low is: |
443 | | * all ones if low was > kPrime3Test |
444 | | * all zeros if low was <= kPrime3Test |
445 | | */ |
446 | 0 | mask = (mask & low) | high; |
447 | 0 | tmp[0] -= mask & kPrime[0]; |
448 | 0 | tmp[1] -= mask & kPrime[1]; |
449 | | /* kPrime[2] is zero, so omitted */ |
450 | 0 | tmp[3] -= mask & kPrime[3]; |
451 | | /* tmp[3] < 2**64 - 2**32 + 1 */ |
452 | |
|
453 | 0 | tmp[1] += ((u64)(tmp[0] >> 64)); |
454 | 0 | tmp[0] = (u64)tmp[0]; |
455 | 0 | tmp[2] += ((u64)(tmp[1] >> 64)); |
456 | 0 | tmp[1] = (u64)tmp[1]; |
457 | 0 | tmp[3] += ((u64)(tmp[2] >> 64)); |
458 | 0 | tmp[2] = (u64)tmp[2]; |
459 | | /* tmp[i] < 2^64 */ |
460 | |
|
461 | 0 | out[0] = tmp[0]; |
462 | 0 | out[1] = tmp[1]; |
463 | 0 | out[2] = tmp[2]; |
464 | 0 | out[3] = tmp[3]; |
465 | 0 | } |
466 | | |
467 | | /* smallfelem_expand converts a smallfelem to an felem */ |
468 | | static void smallfelem_expand(felem out, const smallfelem in) |
469 | 0 | { |
470 | 0 | out[0] = in[0]; |
471 | 0 | out[1] = in[1]; |
472 | 0 | out[2] = in[2]; |
473 | 0 | out[3] = in[3]; |
474 | 0 | } |
475 | | |
476 | | /*- |
477 | | * smallfelem_square sets |out| = |small|^2 |
478 | | * On entry: |
479 | | * small[i] < 2^64 |
480 | | * On exit: |
481 | | * out[i] < 7 * 2^64 < 2^67 |
482 | | */ |
483 | | static void smallfelem_square(longfelem out, const smallfelem small) |
484 | 0 | { |
485 | 0 | limb a; |
486 | 0 | u64 high, low; |
487 | |
|
488 | 0 | a = ((uint128_t)small[0]) * small[0]; |
489 | 0 | low = a; |
490 | 0 | high = a >> 64; |
491 | 0 | out[0] = low; |
492 | 0 | out[1] = high; |
493 | |
|
494 | 0 | a = ((uint128_t)small[0]) * small[1]; |
495 | 0 | low = a; |
496 | 0 | high = a >> 64; |
497 | 0 | out[1] += low; |
498 | 0 | out[1] += low; |
499 | 0 | out[2] = high; |
500 | |
|
501 | 0 | a = ((uint128_t)small[0]) * small[2]; |
502 | 0 | low = a; |
503 | 0 | high = a >> 64; |
504 | 0 | out[2] += low; |
505 | 0 | out[2] *= 2; |
506 | 0 | out[3] = high; |
507 | |
|
508 | 0 | a = ((uint128_t)small[0]) * small[3]; |
509 | 0 | low = a; |
510 | 0 | high = a >> 64; |
511 | 0 | out[3] += low; |
512 | 0 | out[4] = high; |
513 | |
|
514 | 0 | a = ((uint128_t)small[1]) * small[2]; |
515 | 0 | low = a; |
516 | 0 | high = a >> 64; |
517 | 0 | out[3] += low; |
518 | 0 | out[3] *= 2; |
519 | 0 | out[4] += high; |
520 | |
|
521 | 0 | a = ((uint128_t)small[1]) * small[1]; |
522 | 0 | low = a; |
523 | 0 | high = a >> 64; |
524 | 0 | out[2] += low; |
525 | 0 | out[3] += high; |
526 | |
|
527 | 0 | a = ((uint128_t)small[1]) * small[3]; |
528 | 0 | low = a; |
529 | 0 | high = a >> 64; |
530 | 0 | out[4] += low; |
531 | 0 | out[4] *= 2; |
532 | 0 | out[5] = high; |
533 | |
|
534 | 0 | a = ((uint128_t)small[2]) * small[3]; |
535 | 0 | low = a; |
536 | 0 | high = a >> 64; |
537 | 0 | out[5] += low; |
538 | 0 | out[5] *= 2; |
539 | 0 | out[6] = high; |
540 | 0 | out[6] += high; |
541 | |
|
542 | 0 | a = ((uint128_t)small[2]) * small[2]; |
543 | 0 | low = a; |
544 | 0 | high = a >> 64; |
545 | 0 | out[4] += low; |
546 | 0 | out[5] += high; |
547 | |
|
548 | 0 | a = ((uint128_t)small[3]) * small[3]; |
549 | 0 | low = a; |
550 | 0 | high = a >> 64; |
551 | 0 | out[6] += low; |
552 | 0 | out[7] = high; |
553 | 0 | } |
554 | | |
555 | | /*- |
556 | | * felem_square sets |out| = |in|^2 |
557 | | * On entry: |
558 | | * in[i] < 2^109 |
559 | | * On exit: |
560 | | * out[i] < 7 * 2^64 < 2^67 |
561 | | */ |
562 | | static void felem_square(longfelem out, const felem in) |
563 | 0 | { |
564 | 0 | u64 small[4]; |
565 | 0 | felem_shrink(small, in); |
566 | 0 | smallfelem_square(out, small); |
567 | 0 | } |
568 | | |
569 | | /*- |
570 | | * smallfelem_mul sets |out| = |small1| * |small2| |
571 | | * On entry: |
572 | | * small1[i] < 2^64 |
573 | | * small2[i] < 2^64 |
574 | | * On exit: |
575 | | * out[i] < 7 * 2^64 < 2^67 |
576 | | */ |
577 | | static void smallfelem_mul(longfelem out, const smallfelem small1, |
578 | | const smallfelem small2) |
579 | 0 | { |
580 | 0 | limb a; |
581 | 0 | u64 high, low; |
582 | |
|
583 | 0 | a = ((uint128_t)small1[0]) * small2[0]; |
584 | 0 | low = a; |
585 | 0 | high = a >> 64; |
586 | 0 | out[0] = low; |
587 | 0 | out[1] = high; |
588 | |
|
589 | 0 | a = ((uint128_t)small1[0]) * small2[1]; |
590 | 0 | low = a; |
591 | 0 | high = a >> 64; |
592 | 0 | out[1] += low; |
593 | 0 | out[2] = high; |
594 | |
|
595 | 0 | a = ((uint128_t)small1[1]) * small2[0]; |
596 | 0 | low = a; |
597 | 0 | high = a >> 64; |
598 | 0 | out[1] += low; |
599 | 0 | out[2] += high; |
600 | |
|
601 | 0 | a = ((uint128_t)small1[0]) * small2[2]; |
602 | 0 | low = a; |
603 | 0 | high = a >> 64; |
604 | 0 | out[2] += low; |
605 | 0 | out[3] = high; |
606 | |
|
607 | 0 | a = ((uint128_t)small1[1]) * small2[1]; |
608 | 0 | low = a; |
609 | 0 | high = a >> 64; |
610 | 0 | out[2] += low; |
611 | 0 | out[3] += high; |
612 | |
|
613 | 0 | a = ((uint128_t)small1[2]) * small2[0]; |
614 | 0 | low = a; |
615 | 0 | high = a >> 64; |
616 | 0 | out[2] += low; |
617 | 0 | out[3] += high; |
618 | |
|
619 | 0 | a = ((uint128_t)small1[0]) * small2[3]; |
620 | 0 | low = a; |
621 | 0 | high = a >> 64; |
622 | 0 | out[3] += low; |
623 | 0 | out[4] = high; |
624 | |
|
625 | 0 | a = ((uint128_t)small1[1]) * small2[2]; |
626 | 0 | low = a; |
627 | 0 | high = a >> 64; |
628 | 0 | out[3] += low; |
629 | 0 | out[4] += high; |
630 | |
|
631 | 0 | a = ((uint128_t)small1[2]) * small2[1]; |
632 | 0 | low = a; |
633 | 0 | high = a >> 64; |
634 | 0 | out[3] += low; |
635 | 0 | out[4] += high; |
636 | |
|
637 | 0 | a = ((uint128_t)small1[3]) * small2[0]; |
638 | 0 | low = a; |
639 | 0 | high = a >> 64; |
640 | 0 | out[3] += low; |
641 | 0 | out[4] += high; |
642 | |
|
643 | 0 | a = ((uint128_t)small1[1]) * small2[3]; |
644 | 0 | low = a; |
645 | 0 | high = a >> 64; |
646 | 0 | out[4] += low; |
647 | 0 | out[5] = high; |
648 | |
|
649 | 0 | a = ((uint128_t)small1[2]) * small2[2]; |
650 | 0 | low = a; |
651 | 0 | high = a >> 64; |
652 | 0 | out[4] += low; |
653 | 0 | out[5] += high; |
654 | |
|
655 | 0 | a = ((uint128_t)small1[3]) * small2[1]; |
656 | 0 | low = a; |
657 | 0 | high = a >> 64; |
658 | 0 | out[4] += low; |
659 | 0 | out[5] += high; |
660 | |
|
661 | 0 | a = ((uint128_t)small1[2]) * small2[3]; |
662 | 0 | low = a; |
663 | 0 | high = a >> 64; |
664 | 0 | out[5] += low; |
665 | 0 | out[6] = high; |
666 | |
|
667 | 0 | a = ((uint128_t)small1[3]) * small2[2]; |
668 | 0 | low = a; |
669 | 0 | high = a >> 64; |
670 | 0 | out[5] += low; |
671 | 0 | out[6] += high; |
672 | |
|
673 | 0 | a = ((uint128_t)small1[3]) * small2[3]; |
674 | 0 | low = a; |
675 | 0 | high = a >> 64; |
676 | 0 | out[6] += low; |
677 | 0 | out[7] = high; |
678 | 0 | } |
679 | | |
680 | | /*- |
681 | | * felem_mul sets |out| = |in1| * |in2| |
682 | | * On entry: |
683 | | * in1[i] < 2^109 |
684 | | * in2[i] < 2^109 |
685 | | * On exit: |
686 | | * out[i] < 7 * 2^64 < 2^67 |
687 | | */ |
688 | | static void felem_mul(longfelem out, const felem in1, const felem in2) |
689 | 0 | { |
690 | 0 | smallfelem small1, small2; |
691 | 0 | felem_shrink(small1, in1); |
692 | 0 | felem_shrink(small2, in2); |
693 | 0 | smallfelem_mul(out, small1, small2); |
694 | 0 | } |
695 | | |
696 | | /*- |
697 | | * felem_small_mul sets |out| = |small1| * |in2| |
698 | | * On entry: |
699 | | * small1[i] < 2^64 |
700 | | * in2[i] < 2^109 |
701 | | * On exit: |
702 | | * out[i] < 7 * 2^64 < 2^67 |
703 | | */ |
704 | | static void felem_small_mul(longfelem out, const smallfelem small1, |
705 | | const felem in2) |
706 | 0 | { |
707 | 0 | smallfelem small2; |
708 | 0 | felem_shrink(small2, in2); |
709 | 0 | smallfelem_mul(out, small1, small2); |
710 | 0 | } |
711 | | |
712 | | #define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) |
713 | | #define two100 (((limb)1) << 100) |
714 | | #define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) |
715 | | /* zero100 is 0 mod p */ |
716 | | static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 }; |
717 | | |
718 | | /*- |
719 | | * Internal function for the different flavours of felem_reduce. |
720 | | * felem_reduce_ reduces the higher coefficients in[4]-in[7]. |
721 | | * On entry: |
722 | | * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7] |
723 | | * out[1] >= in[7] + 2^32*in[4] |
724 | | * out[2] >= in[5] + 2^32*in[5] |
725 | | * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6] |
726 | | * On exit: |
727 | | * out[0] <= out[0] + in[4] + 2^32*in[5] |
728 | | * out[1] <= out[1] + in[5] + 2^33*in[6] |
729 | | * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] |
730 | | * out[3] <= out[3] + 2^32*in[4] + 3*in[7] |
731 | | */ |
732 | | static void felem_reduce_(felem out, const longfelem in) |
733 | 0 | { |
734 | 0 | int128_t c; |
735 | | /* combine common terms from below */ |
736 | 0 | c = in[4] + (in[5] << 32); |
737 | 0 | out[0] += c; |
738 | 0 | out[3] -= c; |
739 | |
|
740 | 0 | c = in[5] - in[7]; |
741 | 0 | out[1] += c; |
742 | 0 | out[2] -= c; |
743 | | |
744 | | /* the remaining terms */ |
745 | | /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */ |
746 | 0 | out[1] -= (in[4] << 32); |
747 | 0 | out[3] += (in[4] << 32); |
748 | | |
749 | | /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */ |
750 | 0 | out[2] -= (in[5] << 32); |
751 | | |
752 | | /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */ |
753 | 0 | out[0] -= in[6]; |
754 | 0 | out[0] -= (in[6] << 32); |
755 | 0 | out[1] += (in[6] << 33); |
756 | 0 | out[2] += (in[6] * 2); |
757 | 0 | out[3] -= (in[6] << 32); |
758 | | |
759 | | /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */ |
760 | 0 | out[0] -= in[7]; |
761 | 0 | out[0] -= (in[7] << 32); |
762 | 0 | out[2] += (in[7] << 33); |
763 | 0 | out[3] += (in[7] * 3); |
764 | 0 | } |
765 | | |
766 | | /*- |
767 | | * felem_reduce converts a longfelem into an felem. |
768 | | * To be called directly after felem_square or felem_mul. |
769 | | * On entry: |
770 | | * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64 |
771 | | * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64 |
772 | | * On exit: |
773 | | * out[i] < 2^101 |
774 | | */ |
775 | | static void felem_reduce(felem out, const longfelem in) |
776 | 0 | { |
777 | 0 | out[0] = zero100[0] + in[0]; |
778 | 0 | out[1] = zero100[1] + in[1]; |
779 | 0 | out[2] = zero100[2] + in[2]; |
780 | 0 | out[3] = zero100[3] + in[3]; |
781 | |
|
782 | 0 | felem_reduce_(out, in); |
783 | | |
784 | | /*- |
785 | | * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 |
786 | | * out[1] > 2^100 - 2^64 - 7*2^96 > 0 |
787 | | * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0 |
788 | | * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0 |
789 | | * |
790 | | * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 |
791 | | * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101 |
792 | | * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101 |
793 | | * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 |
794 | | */ |
795 | 0 | } |
796 | | |
797 | | /*- |
798 | | * felem_reduce_zero105 converts a larger longfelem into an felem. |
799 | | * On entry: |
800 | | * in[0] < 2^71 |
801 | | * On exit: |
802 | | * out[i] < 2^106 |
803 | | */ |
804 | | static void felem_reduce_zero105(felem out, const longfelem in) |
805 | 0 | { |
806 | 0 | out[0] = zero105[0] + in[0]; |
807 | 0 | out[1] = zero105[1] + in[1]; |
808 | 0 | out[2] = zero105[2] + in[2]; |
809 | 0 | out[3] = zero105[3] + in[3]; |
810 | |
|
811 | 0 | felem_reduce_(out, in); |
812 | | |
813 | | /*- |
814 | | * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 |
815 | | * out[1] > 2^105 - 2^71 - 2^103 > 0 |
816 | | * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0 |
817 | | * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0 |
818 | | * |
819 | | * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 |
820 | | * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 |
821 | | * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106 |
822 | | * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 |
823 | | */ |
824 | 0 | } |
825 | | |
826 | | /* |
827 | | * subtract_u64 sets *result = *result - v and *carry to one if the |
828 | | * subtraction underflowed. |
829 | | */ |
830 | | static void subtract_u64(u64 *result, u64 *carry, u64 v) |
831 | 0 | { |
832 | 0 | uint128_t r = *result; |
833 | 0 | r -= v; |
834 | 0 | *carry = (r >> 64) & 1; |
835 | 0 | *result = (u64)r; |
836 | 0 | } |
837 | | |
838 | | /* |
839 | | * felem_contract converts |in| to its unique, minimal representation. On |
840 | | * entry: in[i] < 2^109 |
841 | | */ |
842 | | static void felem_contract(smallfelem out, const felem in) |
843 | 0 | { |
844 | 0 | unsigned i; |
845 | 0 | u64 all_equal_so_far = 0, result = 0, carry; |
846 | |
|
847 | 0 | felem_shrink(out, in); |
848 | | /* small is minimal except that the value might be > p */ |
849 | |
|
850 | 0 | all_equal_so_far--; |
851 | | /* |
852 | | * We are doing a constant time test if out >= kPrime. We need to compare |
853 | | * each u64, from most-significant to least significant. For each one, if |
854 | | * all words so far have been equal (m is all ones) then a non-equal |
855 | | * result is the answer. Otherwise we continue. |
856 | | */ |
857 | 0 | for (i = 3; i < 4; i--) { |
858 | 0 | u64 equal; |
859 | 0 | uint128_t a = ((uint128_t)kPrime[i]) - out[i]; |
860 | | /* |
861 | | * if out[i] > kPrime[i] then a will underflow and the high 64-bits |
862 | | * will all be set. |
863 | | */ |
864 | 0 | result |= all_equal_so_far & ((u64)(a >> 64)); |
865 | | |
866 | | /* |
867 | | * if kPrime[i] == out[i] then |equal| will be all zeros and the |
868 | | * decrement will make it all ones. |
869 | | */ |
870 | 0 | equal = kPrime[i] ^ out[i]; |
871 | 0 | equal--; |
872 | 0 | equal &= equal << 32; |
873 | 0 | equal &= equal << 16; |
874 | 0 | equal &= equal << 8; |
875 | 0 | equal &= equal << 4; |
876 | 0 | equal &= equal << 2; |
877 | 0 | equal &= equal << 1; |
878 | 0 | equal = 0 - (equal >> 63); |
879 | |
|
880 | 0 | all_equal_so_far &= equal; |
881 | 0 | } |
882 | | |
883 | | /* |
884 | | * if all_equal_so_far is still all ones then the two values are equal |
885 | | * and so out >= kPrime is true. |
886 | | */ |
887 | 0 | result |= all_equal_so_far; |
888 | | |
889 | | /* if out >= kPrime then we subtract kPrime. */ |
890 | 0 | subtract_u64(&out[0], &carry, result & kPrime[0]); |
891 | 0 | subtract_u64(&out[1], &carry, carry); |
892 | 0 | subtract_u64(&out[2], &carry, carry); |
893 | 0 | subtract_u64(&out[3], &carry, carry); |
894 | |
|
895 | 0 | subtract_u64(&out[1], &carry, result & kPrime[1]); |
896 | 0 | subtract_u64(&out[2], &carry, carry); |
897 | 0 | subtract_u64(&out[3], &carry, carry); |
898 | |
|
899 | 0 | subtract_u64(&out[2], &carry, result & kPrime[2]); |
900 | 0 | subtract_u64(&out[3], &carry, carry); |
901 | |
|
902 | 0 | subtract_u64(&out[3], &carry, result & kPrime[3]); |
903 | 0 | } |
904 | | |
905 | | static void smallfelem_square_contract(smallfelem out, const smallfelem in) |
906 | 0 | { |
907 | 0 | longfelem longtmp; |
908 | 0 | felem tmp; |
909 | |
|
910 | 0 | smallfelem_square(longtmp, in); |
911 | 0 | felem_reduce(tmp, longtmp); |
912 | 0 | felem_contract(out, tmp); |
913 | 0 | } |
914 | | |
915 | | static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, |
916 | | const smallfelem in2) |
917 | 0 | { |
918 | 0 | longfelem longtmp; |
919 | 0 | felem tmp; |
920 | |
|
921 | 0 | smallfelem_mul(longtmp, in1, in2); |
922 | 0 | felem_reduce(tmp, longtmp); |
923 | 0 | felem_contract(out, tmp); |
924 | 0 | } |
925 | | |
926 | | /*- |
927 | | * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 |
928 | | * otherwise. |
929 | | * On entry: |
930 | | * small[i] < 2^64 |
931 | | */ |
932 | | static limb smallfelem_is_zero(const smallfelem small) |
933 | 0 | { |
934 | 0 | limb result; |
935 | 0 | u64 is_p; |
936 | |
|
937 | 0 | u64 is_zero = small[0] | small[1] | small[2] | small[3]; |
938 | 0 | is_zero--; |
939 | 0 | is_zero &= is_zero << 32; |
940 | 0 | is_zero &= is_zero << 16; |
941 | 0 | is_zero &= is_zero << 8; |
942 | 0 | is_zero &= is_zero << 4; |
943 | 0 | is_zero &= is_zero << 2; |
944 | 0 | is_zero &= is_zero << 1; |
945 | 0 | is_zero = 0 - (is_zero >> 63); |
946 | |
|
947 | 0 | is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) | (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]); |
948 | 0 | is_p--; |
949 | 0 | is_p &= is_p << 32; |
950 | 0 | is_p &= is_p << 16; |
951 | 0 | is_p &= is_p << 8; |
952 | 0 | is_p &= is_p << 4; |
953 | 0 | is_p &= is_p << 2; |
954 | 0 | is_p &= is_p << 1; |
955 | 0 | is_p = 0 - (is_p >> 63); |
956 | |
|
957 | 0 | is_zero |= is_p; |
958 | |
|
959 | 0 | result = is_zero; |
960 | 0 | result |= ((limb)is_zero) << 64; |
961 | 0 | return result; |
962 | 0 | } |
963 | | |
964 | | static int smallfelem_is_zero_int(const void *small) |
965 | 0 | { |
966 | 0 | return (int)(smallfelem_is_zero(small) & ((limb)1)); |
967 | 0 | } |
968 | | |
969 | | /*- |
970 | | * felem_inv calculates |out| = |in|^{-1} |
971 | | * |
972 | | * Based on Fermat's Little Theorem: |
973 | | * a^p = a (mod p) |
974 | | * a^{p-1} = 1 (mod p) |
975 | | * a^{p-2} = a^{-1} (mod p) |
976 | | */ |
977 | | static void felem_inv(felem out, const felem in) |
978 | 0 | { |
979 | 0 | felem ftmp, ftmp2; |
980 | | /* each e_I will hold |in|^{2^I - 1} */ |
981 | 0 | felem e2, e4, e8, e16, e32, e64; |
982 | 0 | longfelem tmp; |
983 | 0 | unsigned i; |
984 | |
|
985 | 0 | felem_square(tmp, in); |
986 | 0 | felem_reduce(ftmp, tmp); /* 2^1 */ |
987 | 0 | felem_mul(tmp, in, ftmp); |
988 | 0 | felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */ |
989 | 0 | felem_assign(e2, ftmp); |
990 | 0 | felem_square(tmp, ftmp); |
991 | 0 | felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */ |
992 | 0 | felem_square(tmp, ftmp); |
993 | 0 | felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */ |
994 | 0 | felem_mul(tmp, ftmp, e2); |
995 | 0 | felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */ |
996 | 0 | felem_assign(e4, ftmp); |
997 | 0 | felem_square(tmp, ftmp); |
998 | 0 | felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */ |
999 | 0 | felem_square(tmp, ftmp); |
1000 | 0 | felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */ |
1001 | 0 | felem_square(tmp, ftmp); |
1002 | 0 | felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */ |
1003 | 0 | felem_square(tmp, ftmp); |
1004 | 0 | felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */ |
1005 | 0 | felem_mul(tmp, ftmp, e4); |
1006 | 0 | felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */ |
1007 | 0 | felem_assign(e8, ftmp); |
1008 | 0 | for (i = 0; i < 8; i++) { |
1009 | 0 | felem_square(tmp, ftmp); |
1010 | 0 | felem_reduce(ftmp, tmp); |
1011 | 0 | } /* 2^16 - 2^8 */ |
1012 | 0 | felem_mul(tmp, ftmp, e8); |
1013 | 0 | felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */ |
1014 | 0 | felem_assign(e16, ftmp); |
1015 | 0 | for (i = 0; i < 16; i++) { |
1016 | 0 | felem_square(tmp, ftmp); |
1017 | 0 | felem_reduce(ftmp, tmp); |
1018 | 0 | } /* 2^32 - 2^16 */ |
1019 | 0 | felem_mul(tmp, ftmp, e16); |
1020 | 0 | felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */ |
1021 | 0 | felem_assign(e32, ftmp); |
1022 | 0 | for (i = 0; i < 32; i++) { |
1023 | 0 | felem_square(tmp, ftmp); |
1024 | 0 | felem_reduce(ftmp, tmp); |
1025 | 0 | } /* 2^64 - 2^32 */ |
1026 | 0 | felem_assign(e64, ftmp); |
1027 | 0 | felem_mul(tmp, ftmp, in); |
1028 | 0 | felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */ |
1029 | 0 | for (i = 0; i < 192; i++) { |
1030 | 0 | felem_square(tmp, ftmp); |
1031 | 0 | felem_reduce(ftmp, tmp); |
1032 | 0 | } /* 2^256 - 2^224 + 2^192 */ |
1033 | |
|
1034 | 0 | felem_mul(tmp, e64, e32); |
1035 | 0 | felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */ |
1036 | 0 | for (i = 0; i < 16; i++) { |
1037 | 0 | felem_square(tmp, ftmp2); |
1038 | 0 | felem_reduce(ftmp2, tmp); |
1039 | 0 | } /* 2^80 - 2^16 */ |
1040 | 0 | felem_mul(tmp, ftmp2, e16); |
1041 | 0 | felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */ |
1042 | 0 | for (i = 0; i < 8; i++) { |
1043 | 0 | felem_square(tmp, ftmp2); |
1044 | 0 | felem_reduce(ftmp2, tmp); |
1045 | 0 | } /* 2^88 - 2^8 */ |
1046 | 0 | felem_mul(tmp, ftmp2, e8); |
1047 | 0 | felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */ |
1048 | 0 | for (i = 0; i < 4; i++) { |
1049 | 0 | felem_square(tmp, ftmp2); |
1050 | 0 | felem_reduce(ftmp2, tmp); |
1051 | 0 | } /* 2^92 - 2^4 */ |
1052 | 0 | felem_mul(tmp, ftmp2, e4); |
1053 | 0 | felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */ |
1054 | 0 | felem_square(tmp, ftmp2); |
1055 | 0 | felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */ |
1056 | 0 | felem_square(tmp, ftmp2); |
1057 | 0 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */ |
1058 | 0 | felem_mul(tmp, ftmp2, e2); |
1059 | 0 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */ |
1060 | 0 | felem_square(tmp, ftmp2); |
1061 | 0 | felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */ |
1062 | 0 | felem_square(tmp, ftmp2); |
1063 | 0 | felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */ |
1064 | 0 | felem_mul(tmp, ftmp2, in); |
1065 | 0 | felem_reduce(ftmp2, tmp); /* 2^96 - 3 */ |
1066 | |
|
1067 | 0 | felem_mul(tmp, ftmp2, ftmp); |
1068 | 0 | felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ |
1069 | 0 | } |
1070 | | |
1071 | | static void smallfelem_inv_contract(smallfelem out, const smallfelem in) |
1072 | 0 | { |
1073 | 0 | felem tmp; |
1074 | |
|
1075 | 0 | smallfelem_expand(tmp, in); |
1076 | 0 | felem_inv(tmp, tmp); |
1077 | 0 | felem_contract(out, tmp); |
1078 | 0 | } |
1079 | | |
1080 | | /*- |
1081 | | * Group operations |
1082 | | * ---------------- |
1083 | | * |
1084 | | * Building on top of the field operations we have the operations on the |
1085 | | * elliptic curve group itself. Points on the curve are represented in Jacobian |
1086 | | * coordinates |
1087 | | */ |
1088 | | |
1089 | | /*- |
1090 | | * point_double calculates 2*(x_in, y_in, z_in) |
1091 | | * |
1092 | | * The method is taken from: |
1093 | | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
1094 | | * |
1095 | | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. |
1096 | | * while x_out == y_in is not (maybe this works, but it's not tested). |
1097 | | */ |
1098 | | static void |
1099 | | point_double(felem x_out, felem y_out, felem z_out, |
1100 | | const felem x_in, const felem y_in, const felem z_in) |
1101 | 0 | { |
1102 | 0 | longfelem tmp, tmp2; |
1103 | 0 | felem delta, gamma, beta, alpha, ftmp, ftmp2; |
1104 | 0 | smallfelem small1, small2; |
1105 | |
|
1106 | 0 | felem_assign(ftmp, x_in); |
1107 | | /* ftmp[i] < 2^106 */ |
1108 | 0 | felem_assign(ftmp2, x_in); |
1109 | | /* ftmp2[i] < 2^106 */ |
1110 | | |
1111 | | /* delta = z^2 */ |
1112 | 0 | felem_square(tmp, z_in); |
1113 | 0 | felem_reduce(delta, tmp); |
1114 | | /* delta[i] < 2^101 */ |
1115 | | |
1116 | | /* gamma = y^2 */ |
1117 | 0 | felem_square(tmp, y_in); |
1118 | 0 | felem_reduce(gamma, tmp); |
1119 | | /* gamma[i] < 2^101 */ |
1120 | 0 | felem_shrink(small1, gamma); |
1121 | | |
1122 | | /* beta = x*gamma */ |
1123 | 0 | felem_small_mul(tmp, small1, x_in); |
1124 | 0 | felem_reduce(beta, tmp); |
1125 | | /* beta[i] < 2^101 */ |
1126 | | |
1127 | | /* alpha = 3*(x-delta)*(x+delta) */ |
1128 | 0 | felem_diff(ftmp, delta); |
1129 | | /* ftmp[i] < 2^105 + 2^106 < 2^107 */ |
1130 | 0 | felem_sum(ftmp2, delta); |
1131 | | /* ftmp2[i] < 2^105 + 2^106 < 2^107 */ |
1132 | 0 | felem_scalar(ftmp2, 3); |
1133 | | /* ftmp2[i] < 3 * 2^107 < 2^109 */ |
1134 | 0 | felem_mul(tmp, ftmp, ftmp2); |
1135 | 0 | felem_reduce(alpha, tmp); |
1136 | | /* alpha[i] < 2^101 */ |
1137 | 0 | felem_shrink(small2, alpha); |
1138 | | |
1139 | | /* x' = alpha^2 - 8*beta */ |
1140 | 0 | smallfelem_square(tmp, small2); |
1141 | 0 | felem_reduce(x_out, tmp); |
1142 | 0 | felem_assign(ftmp, beta); |
1143 | 0 | felem_scalar(ftmp, 8); |
1144 | | /* ftmp[i] < 8 * 2^101 = 2^104 */ |
1145 | 0 | felem_diff(x_out, ftmp); |
1146 | | /* x_out[i] < 2^105 + 2^101 < 2^106 */ |
1147 | | |
1148 | | /* z' = (y + z)^2 - gamma - delta */ |
1149 | 0 | felem_sum(delta, gamma); |
1150 | | /* delta[i] < 2^101 + 2^101 = 2^102 */ |
1151 | 0 | felem_assign(ftmp, y_in); |
1152 | 0 | felem_sum(ftmp, z_in); |
1153 | | /* ftmp[i] < 2^106 + 2^106 = 2^107 */ |
1154 | 0 | felem_square(tmp, ftmp); |
1155 | 0 | felem_reduce(z_out, tmp); |
1156 | 0 | felem_diff(z_out, delta); |
1157 | | /* z_out[i] < 2^105 + 2^101 < 2^106 */ |
1158 | | |
1159 | | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ |
1160 | 0 | felem_scalar(beta, 4); |
1161 | | /* beta[i] < 4 * 2^101 = 2^103 */ |
1162 | 0 | felem_diff_zero107(beta, x_out); |
1163 | | /* beta[i] < 2^107 + 2^103 < 2^108 */ |
1164 | 0 | felem_small_mul(tmp, small2, beta); |
1165 | | /* tmp[i] < 7 * 2^64 < 2^67 */ |
1166 | 0 | smallfelem_square(tmp2, small1); |
1167 | | /* tmp2[i] < 7 * 2^64 */ |
1168 | 0 | longfelem_scalar(tmp2, 8); |
1169 | | /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */ |
1170 | 0 | longfelem_diff(tmp, tmp2); |
1171 | | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ |
1172 | 0 | felem_reduce_zero105(y_out, tmp); |
1173 | | /* y_out[i] < 2^106 */ |
1174 | 0 | } |
1175 | | |
1176 | | /* |
1177 | | * point_double_small is the same as point_double, except that it operates on |
1178 | | * smallfelems |
1179 | | */ |
1180 | | static void |
1181 | | point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out, |
1182 | | const smallfelem x_in, const smallfelem y_in, |
1183 | | const smallfelem z_in) |
1184 | 0 | { |
1185 | 0 | felem felem_x_out, felem_y_out, felem_z_out; |
1186 | 0 | felem felem_x_in, felem_y_in, felem_z_in; |
1187 | |
|
1188 | 0 | smallfelem_expand(felem_x_in, x_in); |
1189 | 0 | smallfelem_expand(felem_y_in, y_in); |
1190 | 0 | smallfelem_expand(felem_z_in, z_in); |
1191 | 0 | point_double(felem_x_out, felem_y_out, felem_z_out, |
1192 | 0 | felem_x_in, felem_y_in, felem_z_in); |
1193 | 0 | felem_shrink(x_out, felem_x_out); |
1194 | 0 | felem_shrink(y_out, felem_y_out); |
1195 | 0 | felem_shrink(z_out, felem_z_out); |
1196 | 0 | } |
1197 | | |
1198 | | /* copy_conditional copies in to out iff mask is all ones. */ |
1199 | | static void copy_conditional(felem out, const felem in, limb mask) |
1200 | 0 | { |
1201 | 0 | unsigned i; |
1202 | 0 | for (i = 0; i < NLIMBS; ++i) { |
1203 | 0 | const limb tmp = mask & (in[i] ^ out[i]); |
1204 | 0 | out[i] ^= tmp; |
1205 | 0 | } |
1206 | 0 | } |
1207 | | |
1208 | | /* copy_small_conditional copies in to out iff mask is all ones. */ |
1209 | | static void copy_small_conditional(felem out, const smallfelem in, limb mask) |
1210 | 0 | { |
1211 | 0 | unsigned i; |
1212 | 0 | const u64 mask64 = mask; |
1213 | 0 | for (i = 0; i < NLIMBS; ++i) { |
1214 | 0 | out[i] = ((limb)(in[i] & mask64)) | (out[i] & ~mask); |
1215 | 0 | } |
1216 | 0 | } |
1217 | | |
1218 | | /*- |
1219 | | * point_add calculates (x1, y1, z1) + (x2, y2, z2) |
1220 | | * |
1221 | | * The method is taken from: |
1222 | | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, |
1223 | | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). |
1224 | | * |
1225 | | * This function includes a branch for checking whether the two input points |
1226 | | * are equal, (while not equal to the point at infinity). This case never |
1227 | | * happens during single point multiplication, so there is no timing leak for |
1228 | | * ECDH or ECDSA signing. |
1229 | | */ |
1230 | | static void point_add(felem x3, felem y3, felem z3, |
1231 | | const felem x1, const felem y1, const felem z1, |
1232 | | const int mixed, const smallfelem x2, |
1233 | | const smallfelem y2, const smallfelem z2) |
1234 | 0 | { |
1235 | 0 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; |
1236 | 0 | longfelem tmp, tmp2; |
1237 | 0 | smallfelem small1, small2, small3, small4, small5; |
1238 | 0 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; |
1239 | 0 | limb points_equal; |
1240 | |
|
1241 | 0 | felem_shrink(small3, z1); |
1242 | |
|
1243 | 0 | z1_is_zero = smallfelem_is_zero(small3); |
1244 | 0 | z2_is_zero = smallfelem_is_zero(z2); |
1245 | | |
1246 | | /* ftmp = z1z1 = z1**2 */ |
1247 | 0 | smallfelem_square(tmp, small3); |
1248 | 0 | felem_reduce(ftmp, tmp); |
1249 | | /* ftmp[i] < 2^101 */ |
1250 | 0 | felem_shrink(small1, ftmp); |
1251 | |
|
1252 | 0 | if (!mixed) { |
1253 | | /* ftmp2 = z2z2 = z2**2 */ |
1254 | 0 | smallfelem_square(tmp, z2); |
1255 | 0 | felem_reduce(ftmp2, tmp); |
1256 | | /* ftmp2[i] < 2^101 */ |
1257 | 0 | felem_shrink(small2, ftmp2); |
1258 | |
|
1259 | 0 | felem_shrink(small5, x1); |
1260 | | |
1261 | | /* u1 = ftmp3 = x1*z2z2 */ |
1262 | 0 | smallfelem_mul(tmp, small5, small2); |
1263 | 0 | felem_reduce(ftmp3, tmp); |
1264 | | /* ftmp3[i] < 2^101 */ |
1265 | | |
1266 | | /* ftmp5 = z1 + z2 */ |
1267 | 0 | felem_assign(ftmp5, z1); |
1268 | 0 | felem_small_sum(ftmp5, z2); |
1269 | | /* ftmp5[i] < 2^107 */ |
1270 | | |
1271 | | /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */ |
1272 | 0 | felem_square(tmp, ftmp5); |
1273 | 0 | felem_reduce(ftmp5, tmp); |
1274 | | /* ftmp2 = z2z2 + z1z1 */ |
1275 | 0 | felem_sum(ftmp2, ftmp); |
1276 | | /* ftmp2[i] < 2^101 + 2^101 = 2^102 */ |
1277 | 0 | felem_diff(ftmp5, ftmp2); |
1278 | | /* ftmp5[i] < 2^105 + 2^101 < 2^106 */ |
1279 | | |
1280 | | /* ftmp2 = z2 * z2z2 */ |
1281 | 0 | smallfelem_mul(tmp, small2, z2); |
1282 | 0 | felem_reduce(ftmp2, tmp); |
1283 | | |
1284 | | /* s1 = ftmp2 = y1 * z2**3 */ |
1285 | 0 | felem_mul(tmp, y1, ftmp2); |
1286 | 0 | felem_reduce(ftmp6, tmp); |
1287 | | /* ftmp6[i] < 2^101 */ |
1288 | 0 | } else { |
1289 | | /* |
1290 | | * We'll assume z2 = 1 (special case z2 = 0 is handled later) |
1291 | | */ |
1292 | | |
1293 | | /* u1 = ftmp3 = x1*z2z2 */ |
1294 | 0 | felem_assign(ftmp3, x1); |
1295 | | /* ftmp3[i] < 2^106 */ |
1296 | | |
1297 | | /* ftmp5 = 2z1z2 */ |
1298 | 0 | felem_assign(ftmp5, z1); |
1299 | 0 | felem_scalar(ftmp5, 2); |
1300 | | /* ftmp5[i] < 2*2^106 = 2^107 */ |
1301 | | |
1302 | | /* s1 = ftmp2 = y1 * z2**3 */ |
1303 | 0 | felem_assign(ftmp6, y1); |
1304 | | /* ftmp6[i] < 2^106 */ |
1305 | 0 | } |
1306 | | |
1307 | | /* u2 = x2*z1z1 */ |
1308 | 0 | smallfelem_mul(tmp, x2, small1); |
1309 | 0 | felem_reduce(ftmp4, tmp); |
1310 | | |
1311 | | /* h = ftmp4 = u2 - u1 */ |
1312 | 0 | felem_diff_zero107(ftmp4, ftmp3); |
1313 | | /* ftmp4[i] < 2^107 + 2^101 < 2^108 */ |
1314 | 0 | felem_shrink(small4, ftmp4); |
1315 | |
|
1316 | 0 | x_equal = smallfelem_is_zero(small4); |
1317 | | |
1318 | | /* z_out = ftmp5 * h */ |
1319 | 0 | felem_small_mul(tmp, small4, ftmp5); |
1320 | 0 | felem_reduce(z_out, tmp); |
1321 | | /* z_out[i] < 2^101 */ |
1322 | | |
1323 | | /* ftmp = z1 * z1z1 */ |
1324 | 0 | smallfelem_mul(tmp, small1, small3); |
1325 | 0 | felem_reduce(ftmp, tmp); |
1326 | | |
1327 | | /* s2 = tmp = y2 * z1**3 */ |
1328 | 0 | felem_small_mul(tmp, y2, ftmp); |
1329 | 0 | felem_reduce(ftmp5, tmp); |
1330 | | |
1331 | | /* r = ftmp5 = (s2 - s1)*2 */ |
1332 | 0 | felem_diff_zero107(ftmp5, ftmp6); |
1333 | | /* ftmp5[i] < 2^107 + 2^107 = 2^108 */ |
1334 | 0 | felem_scalar(ftmp5, 2); |
1335 | | /* ftmp5[i] < 2^109 */ |
1336 | 0 | felem_shrink(small1, ftmp5); |
1337 | 0 | y_equal = smallfelem_is_zero(small1); |
1338 | | |
1339 | | /* |
1340 | | * The formulae are incorrect if the points are equal, in affine coordinates |
1341 | | * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this |
1342 | | * happens. |
1343 | | * |
1344 | | * We use bitwise operations to avoid potential side-channels introduced by |
1345 | | * the short-circuiting behaviour of boolean operators. |
1346 | | * |
1347 | | * The special case of either point being the point at infinity (z1 and/or |
1348 | | * z2 are zero), is handled separately later on in this function, so we |
1349 | | * avoid jumping to point_double here in those special cases. |
1350 | | */ |
1351 | 0 | points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)); |
1352 | |
|
1353 | 0 | if (points_equal) { |
1354 | | /* |
1355 | | * This is obviously not constant-time but, as mentioned before, this |
1356 | | * case never happens during single point multiplication, so there is no |
1357 | | * timing leak for ECDH or ECDSA signing. |
1358 | | */ |
1359 | 0 | point_double(x3, y3, z3, x1, y1, z1); |
1360 | 0 | return; |
1361 | 0 | } |
1362 | | |
1363 | | /* I = ftmp = (2h)**2 */ |
1364 | 0 | felem_assign(ftmp, ftmp4); |
1365 | 0 | felem_scalar(ftmp, 2); |
1366 | | /* ftmp[i] < 2*2^108 = 2^109 */ |
1367 | 0 | felem_square(tmp, ftmp); |
1368 | 0 | felem_reduce(ftmp, tmp); |
1369 | | |
1370 | | /* J = ftmp2 = h * I */ |
1371 | 0 | felem_mul(tmp, ftmp4, ftmp); |
1372 | 0 | felem_reduce(ftmp2, tmp); |
1373 | | |
1374 | | /* V = ftmp4 = U1 * I */ |
1375 | 0 | felem_mul(tmp, ftmp3, ftmp); |
1376 | 0 | felem_reduce(ftmp4, tmp); |
1377 | | |
1378 | | /* x_out = r**2 - J - 2V */ |
1379 | 0 | smallfelem_square(tmp, small1); |
1380 | 0 | felem_reduce(x_out, tmp); |
1381 | 0 | felem_assign(ftmp3, ftmp4); |
1382 | 0 | felem_scalar(ftmp4, 2); |
1383 | 0 | felem_sum(ftmp4, ftmp2); |
1384 | | /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */ |
1385 | 0 | felem_diff(x_out, ftmp4); |
1386 | | /* x_out[i] < 2^105 + 2^101 */ |
1387 | | |
1388 | | /* y_out = r(V-x_out) - 2 * s1 * J */ |
1389 | 0 | felem_diff_zero107(ftmp3, x_out); |
1390 | | /* ftmp3[i] < 2^107 + 2^101 < 2^108 */ |
1391 | 0 | felem_small_mul(tmp, small1, ftmp3); |
1392 | 0 | felem_mul(tmp2, ftmp6, ftmp2); |
1393 | 0 | longfelem_scalar(tmp2, 2); |
1394 | | /* tmp2[i] < 2*2^67 = 2^68 */ |
1395 | 0 | longfelem_diff(tmp, tmp2); |
1396 | | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ |
1397 | 0 | felem_reduce_zero105(y_out, tmp); |
1398 | | /* y_out[i] < 2^106 */ |
1399 | |
|
1400 | 0 | copy_small_conditional(x_out, x2, z1_is_zero); |
1401 | 0 | copy_conditional(x_out, x1, z2_is_zero); |
1402 | 0 | copy_small_conditional(y_out, y2, z1_is_zero); |
1403 | 0 | copy_conditional(y_out, y1, z2_is_zero); |
1404 | 0 | copy_small_conditional(z_out, z2, z1_is_zero); |
1405 | 0 | copy_conditional(z_out, z1, z2_is_zero); |
1406 | 0 | felem_assign(x3, x_out); |
1407 | 0 | felem_assign(y3, y_out); |
1408 | 0 | felem_assign(z3, z_out); |
1409 | 0 | } |
1410 | | |
1411 | | /* |
1412 | | * point_add_small is the same as point_add, except that it operates on |
1413 | | * smallfelems |
1414 | | */ |
1415 | | static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3, |
1416 | | smallfelem x1, smallfelem y1, smallfelem z1, |
1417 | | smallfelem x2, smallfelem y2, smallfelem z2) |
1418 | 0 | { |
1419 | 0 | felem felem_x3, felem_y3, felem_z3; |
1420 | 0 | felem felem_x1, felem_y1, felem_z1; |
1421 | 0 | smallfelem_expand(felem_x1, x1); |
1422 | 0 | smallfelem_expand(felem_y1, y1); |
1423 | 0 | smallfelem_expand(felem_z1, z1); |
1424 | 0 | point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, |
1425 | 0 | x2, y2, z2); |
1426 | 0 | felem_shrink(x3, felem_x3); |
1427 | 0 | felem_shrink(y3, felem_y3); |
1428 | 0 | felem_shrink(z3, felem_z3); |
1429 | 0 | } |
1430 | | |
1431 | | /*- |
1432 | | * Base point pre computation |
1433 | | * -------------------------- |
1434 | | * |
1435 | | * Two different sorts of precomputed tables are used in the following code. |
1436 | | * Each contain various points on the curve, where each point is three field |
1437 | | * elements (x, y, z). |
1438 | | * |
1439 | | * For the base point table, z is usually 1 (0 for the point at infinity). |
1440 | | * This table has 2 * 16 elements, starting with the following: |
1441 | | * index | bits | point |
1442 | | * ------+---------+------------------------------ |
1443 | | * 0 | 0 0 0 0 | 0G |
1444 | | * 1 | 0 0 0 1 | 1G |
1445 | | * 2 | 0 0 1 0 | 2^64G |
1446 | | * 3 | 0 0 1 1 | (2^64 + 1)G |
1447 | | * 4 | 0 1 0 0 | 2^128G |
1448 | | * 5 | 0 1 0 1 | (2^128 + 1)G |
1449 | | * 6 | 0 1 1 0 | (2^128 + 2^64)G |
1450 | | * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G |
1451 | | * 8 | 1 0 0 0 | 2^192G |
1452 | | * 9 | 1 0 0 1 | (2^192 + 1)G |
1453 | | * 10 | 1 0 1 0 | (2^192 + 2^64)G |
1454 | | * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G |
1455 | | * 12 | 1 1 0 0 | (2^192 + 2^128)G |
1456 | | * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G |
1457 | | * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G |
1458 | | * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G |
1459 | | * followed by a copy of this with each element multiplied by 2^32. |
1460 | | * |
1461 | | * The reason for this is so that we can clock bits into four different |
1462 | | * locations when doing simple scalar multiplies against the base point, |
1463 | | * and then another four locations using the second 16 elements. |
1464 | | * |
1465 | | * Tables for other points have table[i] = iG for i in 0 .. 16. */ |
1466 | | |
1467 | | /* gmul is the table of precomputed base points */ |
1468 | | static const smallfelem gmul[2][16][3] = { |
1469 | | { { { 0, 0, 0, 0 }, |
1470 | | { 0, 0, 0, 0 }, |
1471 | | { 0, 0, 0, 0 } }, |
1472 | | { { 0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, |
1473 | | 0x6b17d1f2e12c4247 }, |
1474 | | { 0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, |
1475 | | 0x4fe342e2fe1a7f9b }, |
1476 | | { 1, 0, 0, 0 } }, |
1477 | | { { 0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, |
1478 | | 0x0fa822bc2811aaa5 }, |
1479 | | { 0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, |
1480 | | 0xbff44ae8f5dba80d }, |
1481 | | { 1, 0, 0, 0 } }, |
1482 | | { { 0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, |
1483 | | 0x300a4bbc89d6726f }, |
1484 | | { 0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, |
1485 | | 0x72aac7e0d09b4644 }, |
1486 | | { 1, 0, 0, 0 } }, |
1487 | | { { 0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, |
1488 | | 0x447d739beedb5e67 }, |
1489 | | { 0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, |
1490 | | 0x2d4825ab834131ee }, |
1491 | | { 1, 0, 0, 0 } }, |
1492 | | { { 0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, |
1493 | | 0xef9519328a9c72ff }, |
1494 | | { 0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, |
1495 | | 0x611e9fc37dbb2c9b }, |
1496 | | { 1, 0, 0, 0 } }, |
1497 | | { { 0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, |
1498 | | 0x550663797b51f5d8 }, |
1499 | | { 0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, |
1500 | | 0x157164848aecb851 }, |
1501 | | { 1, 0, 0, 0 } }, |
1502 | | { { 0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, |
1503 | | 0xeb5d7745b21141ea }, |
1504 | | { 0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, |
1505 | | 0xeafd72ebdbecc17b }, |
1506 | | { 1, 0, 0, 0 } }, |
1507 | | { { 0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, |
1508 | | 0xa6d39677a7849276 }, |
1509 | | { 0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, |
1510 | | 0x674f84749b0b8816 }, |
1511 | | { 1, 0, 0, 0 } }, |
1512 | | { { 0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, |
1513 | | 0x4e769e7672c9ddad }, |
1514 | | { 0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, |
1515 | | 0x42b99082de830663 }, |
1516 | | { 1, 0, 0, 0 } }, |
1517 | | { { 0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, |
1518 | | 0x78878ef61c6ce04d }, |
1519 | | { 0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, |
1520 | | 0xb6cb3f5d7b72c321 }, |
1521 | | { 1, 0, 0, 0 } }, |
1522 | | { { 0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, |
1523 | | 0x0c88bc4d716b1287 }, |
1524 | | { 0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, |
1525 | | 0xdd5ddea3f3901dc6 }, |
1526 | | { 1, 0, 0, 0 } }, |
1527 | | { { 0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, |
1528 | | 0x68f344af6b317466 }, |
1529 | | { 0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, |
1530 | | 0x31b9c405f8540a20 }, |
1531 | | { 1, 0, 0, 0 } }, |
1532 | | { { 0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, |
1533 | | 0x4052bf4b6f461db9 }, |
1534 | | { 0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, |
1535 | | 0xfecf4d5190b0fc61 }, |
1536 | | { 1, 0, 0, 0 } }, |
1537 | | { { 0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, |
1538 | | 0x1eddbae2c802e41a }, |
1539 | | { 0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, |
1540 | | 0x43104d86560ebcfc }, |
1541 | | { 1, 0, 0, 0 } }, |
1542 | | { { 0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, |
1543 | | 0xb48e26b484f7a21c }, |
1544 | | { 0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, |
1545 | | 0xfac015404d4d3dab }, |
1546 | | { 1, 0, 0, 0 } } }, |
1547 | | { { { 0, 0, 0, 0 }, |
1548 | | { 0, 0, 0, 0 }, |
1549 | | { 0, 0, 0, 0 } }, |
1550 | | { { 0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, |
1551 | | 0x7fe36b40af22af89 }, |
1552 | | { 0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, |
1553 | | 0xe697d45825b63624 }, |
1554 | | { 1, 0, 0, 0 } }, |
1555 | | { { 0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, |
1556 | | 0x4a5b506612a677a6 }, |
1557 | | { 0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, |
1558 | | 0xeb13461ceac089f1 }, |
1559 | | { 1, 0, 0, 0 } }, |
1560 | | { { 0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, |
1561 | | 0x0781b8291c6a220a }, |
1562 | | { 0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, |
1563 | | 0x690cde8df0151593 }, |
1564 | | { 1, 0, 0, 0 } }, |
1565 | | { { 0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, |
1566 | | 0x8a535f566ec73617 }, |
1567 | | { 0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, |
1568 | | 0x0455c08468b08bd7 }, |
1569 | | { 1, 0, 0, 0 } }, |
1570 | | { { 0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, |
1571 | | 0x06bada7ab77f8276 }, |
1572 | | { 0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, |
1573 | | 0x5b476dfd0e6cb18a }, |
1574 | | { 1, 0, 0, 0 } }, |
1575 | | { { 0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, |
1576 | | 0x3e29864e8a2ec908 }, |
1577 | | { 0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, |
1578 | | 0x239b90ea3dc31e7e }, |
1579 | | { 1, 0, 0, 0 } }, |
1580 | | { { 0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, |
1581 | | 0x820f4dd949f72ff7 }, |
1582 | | { 0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, |
1583 | | 0x140406ec783a05ec }, |
1584 | | { 1, 0, 0, 0 } }, |
1585 | | { { 0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, |
1586 | | 0x68f6b8542783dfee }, |
1587 | | { 0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, |
1588 | | 0xcbe1feba92e40ce6 }, |
1589 | | { 1, 0, 0, 0 } }, |
1590 | | { { 0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, |
1591 | | 0xd0b2f94d2f420109 }, |
1592 | | { 0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, |
1593 | | 0x971459828b0719e5 }, |
1594 | | { 1, 0, 0, 0 } }, |
1595 | | { { 0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, |
1596 | | 0x961610004a866aba }, |
1597 | | { 0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, |
1598 | | 0x7acb9fadcee75e44 }, |
1599 | | { 1, 0, 0, 0 } }, |
1600 | | { { 0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, |
1601 | | 0x24eb9acca333bf5b }, |
1602 | | { 0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, |
1603 | | 0x69f891c5acd079cc }, |
1604 | | { 1, 0, 0, 0 } }, |
1605 | | { { 0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, |
1606 | | 0xe51f547c5972a107 }, |
1607 | | { 0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, |
1608 | | 0x1c309a2b25bb1387 }, |
1609 | | { 1, 0, 0, 0 } }, |
1610 | | { { 0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, |
1611 | | 0x20b87b8aa2c4e503 }, |
1612 | | { 0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, |
1613 | | 0xf5c6fa49919776be }, |
1614 | | { 1, 0, 0, 0 } }, |
1615 | | { { 0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, |
1616 | | 0x1ed7d1b9332010b9 }, |
1617 | | { 0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, |
1618 | | 0x3a2b03f03217257a }, |
1619 | | { 1, 0, 0, 0 } }, |
1620 | | { { 0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, |
1621 | | 0x15fee545c78dd9f6 }, |
1622 | | { 0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, |
1623 | | 0x4ab5b6b2b8753f81 }, |
1624 | | { 1, 0, 0, 0 } } } |
1625 | | }; |
1626 | | |
1627 | | /* |
1628 | | * select_point selects the |idx|th point from a precomputation table and |
1629 | | * copies it to out. |
1630 | | */ |
1631 | | static void select_point(const u64 idx, unsigned int size, |
1632 | | const smallfelem pre_comp[16][3], smallfelem out[3]) |
1633 | 0 | { |
1634 | 0 | unsigned i, j; |
1635 | 0 | u64 *outlimbs = &out[0][0]; |
1636 | |
|
1637 | 0 | memset(out, 0, sizeof(*out) * 3); |
1638 | |
|
1639 | 0 | for (i = 0; i < size; i++) { |
1640 | 0 | const u64 *inlimbs = (u64 *)&pre_comp[i][0][0]; |
1641 | 0 | u64 mask = i ^ idx; |
1642 | 0 | mask |= mask >> 4; |
1643 | 0 | mask |= mask >> 2; |
1644 | 0 | mask |= mask >> 1; |
1645 | 0 | mask &= 1; |
1646 | 0 | mask--; |
1647 | 0 | for (j = 0; j < NLIMBS * 3; j++) |
1648 | 0 | outlimbs[j] |= inlimbs[j] & mask; |
1649 | 0 | } |
1650 | 0 | } |
1651 | | |
1652 | | /* get_bit returns the |i|th bit in |in| */ |
1653 | | static char get_bit(const felem_bytearray in, int i) |
1654 | 0 | { |
1655 | 0 | if ((i < 0) || (i >= 256)) |
1656 | 0 | return 0; |
1657 | 0 | return (in[i >> 3] >> (i & 7)) & 1; |
1658 | 0 | } |
1659 | | |
1660 | | /* |
1661 | | * Interleaved point multiplication using precomputed point multiples: The |
1662 | | * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars |
1663 | | * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the |
1664 | | * generator, using certain (large) precomputed multiples in g_pre_comp. |
1665 | | * Output point (X, Y, Z) is stored in x_out, y_out, z_out |
1666 | | */ |
1667 | | static void batch_mul(felem x_out, felem y_out, felem z_out, |
1668 | | const felem_bytearray scalars[], |
1669 | | const unsigned num_points, const u8 *g_scalar, |
1670 | | const int mixed, const smallfelem pre_comp[][17][3], |
1671 | | const smallfelem g_pre_comp[2][16][3]) |
1672 | 0 | { |
1673 | 0 | int i, skip; |
1674 | 0 | unsigned num, gen_mul = (g_scalar != NULL); |
1675 | 0 | felem nq[3], ftmp; |
1676 | 0 | smallfelem tmp[3]; |
1677 | 0 | u64 bits; |
1678 | 0 | u8 sign, digit; |
1679 | | |
1680 | | /* set nq to the point at infinity */ |
1681 | 0 | memset(nq, 0, sizeof(nq)); |
1682 | | |
1683 | | /* |
1684 | | * Loop over all scalars msb-to-lsb, interleaving additions of multiples |
1685 | | * of the generator (two in each of the last 32 rounds) and additions of |
1686 | | * other points multiples (every 5th round). |
1687 | | */ |
1688 | 0 | skip = 1; /* save two point operations in the first |
1689 | | * round */ |
1690 | 0 | for (i = (num_points ? 255 : 31); i >= 0; --i) { |
1691 | | /* double */ |
1692 | 0 | if (!skip) |
1693 | 0 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
1694 | | |
1695 | | /* add multiples of the generator */ |
1696 | 0 | if (gen_mul && (i <= 31)) { |
1697 | | /* first, look 32 bits upwards */ |
1698 | 0 | bits = get_bit(g_scalar, i + 224) << 3; |
1699 | 0 | bits |= get_bit(g_scalar, i + 160) << 2; |
1700 | 0 | bits |= get_bit(g_scalar, i + 96) << 1; |
1701 | 0 | bits |= get_bit(g_scalar, i + 32); |
1702 | | /* select the point to add, in constant time */ |
1703 | 0 | select_point(bits, 16, g_pre_comp[1], tmp); |
1704 | |
|
1705 | 0 | if (!skip) { |
1706 | | /* Arg 1 below is for "mixed" */ |
1707 | 0 | point_add(nq[0], nq[1], nq[2], |
1708 | 0 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); |
1709 | 0 | } else { |
1710 | 0 | smallfelem_expand(nq[0], tmp[0]); |
1711 | 0 | smallfelem_expand(nq[1], tmp[1]); |
1712 | 0 | smallfelem_expand(nq[2], tmp[2]); |
1713 | 0 | skip = 0; |
1714 | 0 | } |
1715 | | |
1716 | | /* second, look at the current position */ |
1717 | 0 | bits = get_bit(g_scalar, i + 192) << 3; |
1718 | 0 | bits |= get_bit(g_scalar, i + 128) << 2; |
1719 | 0 | bits |= get_bit(g_scalar, i + 64) << 1; |
1720 | 0 | bits |= get_bit(g_scalar, i); |
1721 | | /* select the point to add, in constant time */ |
1722 | 0 | select_point(bits, 16, g_pre_comp[0], tmp); |
1723 | | /* Arg 1 below is for "mixed" */ |
1724 | 0 | point_add(nq[0], nq[1], nq[2], |
1725 | 0 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); |
1726 | 0 | } |
1727 | | |
1728 | | /* do other additions every 5 doublings */ |
1729 | 0 | if (num_points && (i % 5 == 0)) { |
1730 | | /* loop over all scalars */ |
1731 | 0 | for (num = 0; num < num_points; ++num) { |
1732 | 0 | bits = get_bit(scalars[num], i + 4) << 5; |
1733 | 0 | bits |= get_bit(scalars[num], i + 3) << 4; |
1734 | 0 | bits |= get_bit(scalars[num], i + 2) << 3; |
1735 | 0 | bits |= get_bit(scalars[num], i + 1) << 2; |
1736 | 0 | bits |= get_bit(scalars[num], i) << 1; |
1737 | 0 | bits |= get_bit(scalars[num], i - 1); |
1738 | 0 | ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
1739 | | |
1740 | | /* |
1741 | | * select the point to add or subtract, in constant time |
1742 | | */ |
1743 | 0 | select_point(digit, 17, pre_comp[num], tmp); |
1744 | 0 | smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative |
1745 | | * point */ |
1746 | 0 | copy_small_conditional(ftmp, tmp[1], (((limb)sign) - 1)); |
1747 | 0 | felem_contract(tmp[1], ftmp); |
1748 | |
|
1749 | 0 | if (!skip) { |
1750 | 0 | point_add(nq[0], nq[1], nq[2], |
1751 | 0 | nq[0], nq[1], nq[2], |
1752 | 0 | mixed, tmp[0], tmp[1], tmp[2]); |
1753 | 0 | } else { |
1754 | 0 | smallfelem_expand(nq[0], tmp[0]); |
1755 | 0 | smallfelem_expand(nq[1], tmp[1]); |
1756 | 0 | smallfelem_expand(nq[2], tmp[2]); |
1757 | 0 | skip = 0; |
1758 | 0 | } |
1759 | 0 | } |
1760 | 0 | } |
1761 | 0 | } |
1762 | 0 | felem_assign(x_out, nq[0]); |
1763 | 0 | felem_assign(y_out, nq[1]); |
1764 | 0 | felem_assign(z_out, nq[2]); |
1765 | 0 | } |
1766 | | |
1767 | | /* Precomputation for the group generator. */ |
1768 | | struct nistp256_pre_comp_st { |
1769 | | smallfelem g_pre_comp[2][16][3]; |
1770 | | CRYPTO_REF_COUNT references; |
1771 | | }; |
1772 | | |
1773 | | const EC_METHOD *EC_GFp_nistp256_method(void) |
1774 | 0 | { |
1775 | 0 | static const EC_METHOD ret = { |
1776 | 0 | EC_FLAGS_DEFAULT_OCT, |
1777 | 0 | NID_X9_62_prime_field, |
1778 | 0 | ossl_ec_GFp_nistp256_group_init, |
1779 | 0 | ossl_ec_GFp_simple_group_finish, |
1780 | 0 | ossl_ec_GFp_simple_group_clear_finish, |
1781 | 0 | ossl_ec_GFp_nist_group_copy, |
1782 | 0 | ossl_ec_GFp_nistp256_group_set_curve, |
1783 | 0 | ossl_ec_GFp_simple_group_get_curve, |
1784 | 0 | ossl_ec_GFp_simple_group_get_degree, |
1785 | 0 | ossl_ec_group_simple_order_bits, |
1786 | 0 | ossl_ec_GFp_simple_group_check_discriminant, |
1787 | 0 | ossl_ec_GFp_simple_point_init, |
1788 | 0 | ossl_ec_GFp_simple_point_finish, |
1789 | 0 | ossl_ec_GFp_simple_point_clear_finish, |
1790 | 0 | ossl_ec_GFp_simple_point_copy, |
1791 | 0 | ossl_ec_GFp_simple_point_set_to_infinity, |
1792 | 0 | ossl_ec_GFp_simple_point_set_affine_coordinates, |
1793 | 0 | ossl_ec_GFp_nistp256_point_get_affine_coordinates, |
1794 | 0 | 0 /* point_set_compressed_coordinates */, |
1795 | 0 | 0 /* point2oct */, |
1796 | 0 | 0 /* oct2point */, |
1797 | 0 | ossl_ec_GFp_simple_add, |
1798 | 0 | ossl_ec_GFp_simple_dbl, |
1799 | 0 | ossl_ec_GFp_simple_invert, |
1800 | 0 | ossl_ec_GFp_simple_is_at_infinity, |
1801 | 0 | ossl_ec_GFp_simple_is_on_curve, |
1802 | 0 | ossl_ec_GFp_simple_cmp, |
1803 | 0 | ossl_ec_GFp_simple_make_affine, |
1804 | 0 | ossl_ec_GFp_simple_points_make_affine, |
1805 | 0 | ossl_ec_GFp_nistp256_points_mul, |
1806 | 0 | ossl_ec_GFp_nistp256_precompute_mult, |
1807 | 0 | ossl_ec_GFp_nistp256_have_precompute_mult, |
1808 | 0 | ossl_ec_GFp_nist_field_mul, |
1809 | 0 | ossl_ec_GFp_nist_field_sqr, |
1810 | 0 | 0 /* field_div */, |
1811 | 0 | ossl_ec_GFp_simple_field_inv, |
1812 | 0 | 0 /* field_encode */, |
1813 | 0 | 0 /* field_decode */, |
1814 | 0 | 0, /* field_set_to_one */ |
1815 | 0 | ossl_ec_key_simple_priv2oct, |
1816 | 0 | ossl_ec_key_simple_oct2priv, |
1817 | 0 | 0, /* set private */ |
1818 | 0 | ossl_ec_key_simple_generate_key, |
1819 | 0 | ossl_ec_key_simple_check_key, |
1820 | 0 | ossl_ec_key_simple_generate_public_key, |
1821 | 0 | 0, /* keycopy */ |
1822 | 0 | 0, /* keyfinish */ |
1823 | 0 | ossl_ecdh_simple_compute_key, |
1824 | 0 | ossl_ecdsa_simple_sign_setup, |
1825 | 0 | ossl_ecdsa_simple_sign_sig, |
1826 | 0 | ossl_ecdsa_simple_verify_sig, |
1827 | 0 | 0, /* field_inverse_mod_ord */ |
1828 | 0 | 0, /* blind_coordinates */ |
1829 | 0 | 0, /* ladder_pre */ |
1830 | 0 | 0, /* ladder_step */ |
1831 | 0 | 0 /* ladder_post */ |
1832 | 0 | }; |
1833 | |
|
1834 | 0 | return &ret; |
1835 | 0 | } |
1836 | | |
1837 | | /******************************************************************************/ |
1838 | | /* |
1839 | | * FUNCTIONS TO MANAGE PRECOMPUTATION |
1840 | | */ |
1841 | | |
1842 | | static NISTP256_PRE_COMP *nistp256_pre_comp_new(void) |
1843 | 0 | { |
1844 | 0 | NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); |
1845 | |
|
1846 | 0 | if (ret == NULL) |
1847 | 0 | return ret; |
1848 | | |
1849 | 0 | if (!CRYPTO_NEW_REF(&ret->references, 1)) { |
1850 | 0 | OPENSSL_free(ret); |
1851 | 0 | return NULL; |
1852 | 0 | } |
1853 | 0 | return ret; |
1854 | 0 | } |
1855 | | |
1856 | | NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p) |
1857 | 0 | { |
1858 | 0 | int i; |
1859 | 0 | if (p != NULL) |
1860 | 0 | CRYPTO_UP_REF(&p->references, &i); |
1861 | 0 | return p; |
1862 | 0 | } |
1863 | | |
1864 | | void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre) |
1865 | 0 | { |
1866 | 0 | int i; |
1867 | |
|
1868 | 0 | if (pre == NULL) |
1869 | 0 | return; |
1870 | | |
1871 | 0 | CRYPTO_DOWN_REF(&pre->references, &i); |
1872 | 0 | REF_PRINT_COUNT("EC_nistp256", i, pre); |
1873 | 0 | if (i > 0) |
1874 | 0 | return; |
1875 | 0 | REF_ASSERT_ISNT(i < 0); |
1876 | |
|
1877 | 0 | CRYPTO_FREE_REF(&pre->references); |
1878 | 0 | OPENSSL_free(pre); |
1879 | 0 | } |
1880 | | |
1881 | | /******************************************************************************/ |
1882 | | /* |
1883 | | * OPENSSL EC_METHOD FUNCTIONS |
1884 | | */ |
1885 | | |
1886 | | int ossl_ec_GFp_nistp256_group_init(EC_GROUP *group) |
1887 | 0 | { |
1888 | 0 | int ret; |
1889 | 0 | ret = ossl_ec_GFp_simple_group_init(group); |
1890 | 0 | group->a_is_minus3 = 1; |
1891 | 0 | return ret; |
1892 | 0 | } |
1893 | | |
1894 | | int ossl_ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
1895 | | const BIGNUM *a, const BIGNUM *b, |
1896 | | BN_CTX *ctx) |
1897 | 0 | { |
1898 | 0 | int ret = 0; |
1899 | 0 | BIGNUM *curve_p, *curve_a, *curve_b; |
1900 | 0 | #ifndef FIPS_MODULE |
1901 | 0 | BN_CTX *new_ctx = NULL; |
1902 | |
|
1903 | 0 | if (ctx == NULL) |
1904 | 0 | ctx = new_ctx = BN_CTX_new(); |
1905 | 0 | #endif |
1906 | 0 | if (ctx == NULL) |
1907 | 0 | return 0; |
1908 | | |
1909 | 0 | BN_CTX_start(ctx); |
1910 | 0 | curve_p = BN_CTX_get(ctx); |
1911 | 0 | curve_a = BN_CTX_get(ctx); |
1912 | 0 | curve_b = BN_CTX_get(ctx); |
1913 | 0 | if (curve_b == NULL) |
1914 | 0 | goto err; |
1915 | 0 | BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p); |
1916 | 0 | BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a); |
1917 | 0 | BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b); |
1918 | 0 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { |
1919 | 0 | ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS); |
1920 | 0 | goto err; |
1921 | 0 | } |
1922 | 0 | group->field_mod_func = BN_nist_mod_256; |
1923 | 0 | ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx); |
1924 | 0 | err: |
1925 | 0 | BN_CTX_end(ctx); |
1926 | 0 | #ifndef FIPS_MODULE |
1927 | 0 | BN_CTX_free(new_ctx); |
1928 | 0 | #endif |
1929 | 0 | return ret; |
1930 | 0 | } |
1931 | | |
1932 | | /* |
1933 | | * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = |
1934 | | * (X/Z^2, Y/Z^3) |
1935 | | */ |
1936 | | int ossl_ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, |
1937 | | const EC_POINT *point, |
1938 | | BIGNUM *x, BIGNUM *y, |
1939 | | BN_CTX *ctx) |
1940 | 0 | { |
1941 | 0 | felem z1, z2, x_in, y_in; |
1942 | 0 | smallfelem x_out, y_out; |
1943 | 0 | longfelem tmp; |
1944 | |
|
1945 | 0 | if (EC_POINT_is_at_infinity(group, point)) { |
1946 | 0 | ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY); |
1947 | 0 | return 0; |
1948 | 0 | } |
1949 | 0 | if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z))) |
1950 | 0 | return 0; |
1951 | 0 | felem_inv(z2, z1); |
1952 | 0 | felem_square(tmp, z2); |
1953 | 0 | felem_reduce(z1, tmp); |
1954 | 0 | felem_mul(tmp, x_in, z1); |
1955 | 0 | felem_reduce(x_in, tmp); |
1956 | 0 | felem_contract(x_out, x_in); |
1957 | 0 | if (x != NULL) { |
1958 | 0 | if (!smallfelem_to_BN(x, x_out)) { |
1959 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
1960 | 0 | return 0; |
1961 | 0 | } |
1962 | 0 | } |
1963 | 0 | felem_mul(tmp, z1, z2); |
1964 | 0 | felem_reduce(z1, tmp); |
1965 | 0 | felem_mul(tmp, y_in, z1); |
1966 | 0 | felem_reduce(y_in, tmp); |
1967 | 0 | felem_contract(y_out, y_in); |
1968 | 0 | if (y != NULL) { |
1969 | 0 | if (!smallfelem_to_BN(y, y_out)) { |
1970 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
1971 | 0 | return 0; |
1972 | 0 | } |
1973 | 0 | } |
1974 | 0 | return 1; |
1975 | 0 | } |
1976 | | |
1977 | | /* points below is of size |num|, and tmp_smallfelems is of size |num+1| */ |
1978 | | static void make_points_affine(size_t num, smallfelem points[][3], |
1979 | | smallfelem tmp_smallfelems[]) |
1980 | 0 | { |
1981 | | /* |
1982 | | * Runs in constant time, unless an input is the point at infinity (which |
1983 | | * normally shouldn't happen). |
1984 | | */ |
1985 | 0 | ossl_ec_GFp_nistp_points_make_affine_internal(num, |
1986 | 0 | points, |
1987 | 0 | sizeof(smallfelem), |
1988 | 0 | tmp_smallfelems, |
1989 | 0 | (void (*)(void *))smallfelem_one, |
1990 | 0 | smallfelem_is_zero_int, |
1991 | 0 | (void (*)(void *, const void *)) |
1992 | 0 | smallfelem_assign, |
1993 | 0 | (void (*)(void *, const void *)) |
1994 | 0 | smallfelem_square_contract, |
1995 | 0 | (void (*)(void *, const void *, |
1996 | 0 | const void *)) |
1997 | 0 | smallfelem_mul_contract, |
1998 | 0 | (void (*)(void *, const void *)) |
1999 | 0 | smallfelem_inv_contract, |
2000 | | /* nothing to contract */ |
2001 | 0 | (void (*)(void *, const void *)) |
2002 | 0 | smallfelem_assign); |
2003 | 0 | } |
2004 | | |
2005 | | /* |
2006 | | * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL |
2007 | | * values Result is stored in r (r can equal one of the inputs). |
2008 | | */ |
2009 | | int ossl_ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, |
2010 | | const BIGNUM *scalar, size_t num, |
2011 | | const EC_POINT *points[], |
2012 | | const BIGNUM *scalars[], BN_CTX *ctx) |
2013 | 0 | { |
2014 | 0 | int ret = 0; |
2015 | 0 | int j; |
2016 | 0 | int mixed = 0; |
2017 | 0 | BIGNUM *x, *y, *z, *tmp_scalar; |
2018 | 0 | felem_bytearray g_secret; |
2019 | 0 | felem_bytearray *secrets = NULL; |
2020 | 0 | smallfelem(*pre_comp)[17][3] = NULL; |
2021 | 0 | smallfelem *tmp_smallfelems = NULL; |
2022 | 0 | unsigned i; |
2023 | 0 | int num_bytes; |
2024 | 0 | int have_pre_comp = 0; |
2025 | 0 | size_t num_points = num; |
2026 | 0 | smallfelem x_in, y_in, z_in; |
2027 | 0 | felem x_out, y_out, z_out; |
2028 | 0 | NISTP256_PRE_COMP *pre = NULL; |
2029 | 0 | const smallfelem(*g_pre_comp)[16][3] = NULL; |
2030 | 0 | EC_POINT *generator = NULL; |
2031 | 0 | const EC_POINT *p = NULL; |
2032 | 0 | const BIGNUM *p_scalar = NULL; |
2033 | |
|
2034 | 0 | BN_CTX_start(ctx); |
2035 | 0 | x = BN_CTX_get(ctx); |
2036 | 0 | y = BN_CTX_get(ctx); |
2037 | 0 | z = BN_CTX_get(ctx); |
2038 | 0 | tmp_scalar = BN_CTX_get(ctx); |
2039 | 0 | if (tmp_scalar == NULL) |
2040 | 0 | goto err; |
2041 | | |
2042 | 0 | if (scalar != NULL) { |
2043 | 0 | pre = group->pre_comp.nistp256; |
2044 | 0 | if (pre) |
2045 | | /* we have precomputation, try to use it */ |
2046 | 0 | g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp; |
2047 | 0 | else |
2048 | | /* try to use the standard precomputation */ |
2049 | 0 | g_pre_comp = &gmul[0]; |
2050 | 0 | generator = EC_POINT_new(group); |
2051 | 0 | if (generator == NULL) |
2052 | 0 | goto err; |
2053 | | /* get the generator from precomputation */ |
2054 | 0 | if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) || !smallfelem_to_BN(y, g_pre_comp[0][1][1]) || !smallfelem_to_BN(z, g_pre_comp[0][1][2])) { |
2055 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
2056 | 0 | goto err; |
2057 | 0 | } |
2058 | 0 | if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, |
2059 | 0 | generator, |
2060 | 0 | x, y, z, ctx)) |
2061 | 0 | goto err; |
2062 | 0 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) |
2063 | | /* precomputation matches generator */ |
2064 | 0 | have_pre_comp = 1; |
2065 | 0 | else |
2066 | | /* |
2067 | | * we don't have valid precomputation: treat the generator as a |
2068 | | * random point |
2069 | | */ |
2070 | 0 | num_points++; |
2071 | 0 | } |
2072 | 0 | if (num_points > 0) { |
2073 | 0 | if (num_points >= 3) { |
2074 | | /* |
2075 | | * unless we precompute multiples for just one or two points, |
2076 | | * converting those into affine form is time well spent |
2077 | | */ |
2078 | 0 | mixed = 1; |
2079 | 0 | } |
2080 | 0 | secrets = OPENSSL_calloc(num_points, sizeof(*secrets)); |
2081 | 0 | pre_comp = OPENSSL_calloc(num_points, sizeof(*pre_comp)); |
2082 | 0 | if (mixed) |
2083 | 0 | tmp_smallfelems = OPENSSL_malloc_array(num_points * 17 + 1, |
2084 | 0 | sizeof(*tmp_smallfelems)); |
2085 | 0 | if ((secrets == NULL) || (pre_comp == NULL) |
2086 | 0 | || (mixed && (tmp_smallfelems == NULL))) |
2087 | 0 | goto err; |
2088 | | |
2089 | | /* |
2090 | | * we treat NULL scalars as 0, and NULL points as points at infinity, |
2091 | | * i.e., they contribute nothing to the linear combination |
2092 | | */ |
2093 | 0 | for (i = 0; i < num_points; ++i) { |
2094 | 0 | if (i == num) { |
2095 | | /* |
2096 | | * we didn't have a valid precomputation, so we pick the |
2097 | | * generator |
2098 | | */ |
2099 | 0 | p = EC_GROUP_get0_generator(group); |
2100 | 0 | p_scalar = scalar; |
2101 | 0 | } else { |
2102 | | /* the i^th point */ |
2103 | 0 | p = points[i]; |
2104 | 0 | p_scalar = scalars[i]; |
2105 | 0 | } |
2106 | 0 | if ((p_scalar != NULL) && (p != NULL)) { |
2107 | | /* reduce scalar to 0 <= scalar < 2^256 */ |
2108 | 0 | if ((BN_num_bits(p_scalar) > 256) |
2109 | 0 | || (BN_is_negative(p_scalar))) { |
2110 | | /* |
2111 | | * this is an unusual input, and we don't guarantee |
2112 | | * constant-timeness |
2113 | | */ |
2114 | 0 | if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { |
2115 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
2116 | 0 | goto err; |
2117 | 0 | } |
2118 | 0 | num_bytes = BN_bn2lebinpad(tmp_scalar, |
2119 | 0 | secrets[i], sizeof(secrets[i])); |
2120 | 0 | } else { |
2121 | 0 | num_bytes = BN_bn2lebinpad(p_scalar, |
2122 | 0 | secrets[i], sizeof(secrets[i])); |
2123 | 0 | } |
2124 | 0 | if (num_bytes < 0) { |
2125 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
2126 | 0 | goto err; |
2127 | 0 | } |
2128 | | /* precompute multiples */ |
2129 | 0 | if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z))) |
2130 | 0 | goto err; |
2131 | 0 | felem_shrink(pre_comp[i][1][0], x_out); |
2132 | 0 | felem_shrink(pre_comp[i][1][1], y_out); |
2133 | 0 | felem_shrink(pre_comp[i][1][2], z_out); |
2134 | 0 | for (j = 2; j <= 16; ++j) { |
2135 | 0 | if (j & 1) { |
2136 | 0 | point_add_small(pre_comp[i][j][0], pre_comp[i][j][1], |
2137 | 0 | pre_comp[i][j][2], pre_comp[i][1][0], |
2138 | 0 | pre_comp[i][1][1], pre_comp[i][1][2], |
2139 | 0 | pre_comp[i][j - 1][0], |
2140 | 0 | pre_comp[i][j - 1][1], |
2141 | 0 | pre_comp[i][j - 1][2]); |
2142 | 0 | } else { |
2143 | 0 | point_double_small(pre_comp[i][j][0], |
2144 | 0 | pre_comp[i][j][1], |
2145 | 0 | pre_comp[i][j][2], |
2146 | 0 | pre_comp[i][j / 2][0], |
2147 | 0 | pre_comp[i][j / 2][1], |
2148 | 0 | pre_comp[i][j / 2][2]); |
2149 | 0 | } |
2150 | 0 | } |
2151 | 0 | } |
2152 | 0 | } |
2153 | 0 | if (mixed) |
2154 | 0 | make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems); |
2155 | 0 | } |
2156 | | |
2157 | | /* the scalar for the generator */ |
2158 | 0 | if ((scalar != NULL) && (have_pre_comp)) { |
2159 | 0 | memset(g_secret, 0, sizeof(g_secret)); |
2160 | | /* reduce scalar to 0 <= scalar < 2^256 */ |
2161 | 0 | if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) { |
2162 | | /* |
2163 | | * this is an unusual input, and we don't guarantee |
2164 | | * constant-timeness |
2165 | | */ |
2166 | 0 | if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { |
2167 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
2168 | 0 | goto err; |
2169 | 0 | } |
2170 | 0 | num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); |
2171 | 0 | } else { |
2172 | 0 | num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); |
2173 | 0 | } |
2174 | | /* do the multiplication with generator precomputation */ |
2175 | 0 | batch_mul(x_out, y_out, z_out, |
2176 | 0 | (const felem_bytearray(*))secrets, num_points, |
2177 | 0 | g_secret, |
2178 | 0 | mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp); |
2179 | 0 | } else { |
2180 | | /* do the multiplication without generator precomputation */ |
2181 | 0 | batch_mul(x_out, y_out, z_out, |
2182 | 0 | (const felem_bytearray(*))secrets, num_points, |
2183 | 0 | NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL); |
2184 | 0 | } |
2185 | | /* reduce the output to its unique minimal representation */ |
2186 | 0 | felem_contract(x_in, x_out); |
2187 | 0 | felem_contract(y_in, y_out); |
2188 | 0 | felem_contract(z_in, z_out); |
2189 | 0 | if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) || (!smallfelem_to_BN(z, z_in))) { |
2190 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
2191 | 0 | goto err; |
2192 | 0 | } |
2193 | 0 | ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z, |
2194 | 0 | ctx); |
2195 | |
|
2196 | 0 | err: |
2197 | 0 | BN_CTX_end(ctx); |
2198 | 0 | EC_POINT_free(generator); |
2199 | 0 | OPENSSL_free(secrets); |
2200 | 0 | OPENSSL_free(pre_comp); |
2201 | 0 | OPENSSL_free(tmp_smallfelems); |
2202 | 0 | return ret; |
2203 | 0 | } |
2204 | | |
2205 | | int ossl_ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
2206 | 0 | { |
2207 | 0 | int ret = 0; |
2208 | 0 | NISTP256_PRE_COMP *pre = NULL; |
2209 | 0 | int i, j; |
2210 | 0 | BIGNUM *x, *y; |
2211 | 0 | EC_POINT *generator = NULL; |
2212 | 0 | smallfelem tmp_smallfelems[32]; |
2213 | 0 | felem x_tmp, y_tmp, z_tmp; |
2214 | 0 | #ifndef FIPS_MODULE |
2215 | 0 | BN_CTX *new_ctx = NULL; |
2216 | 0 | #endif |
2217 | | |
2218 | | /* throw away old precomputation */ |
2219 | 0 | EC_pre_comp_free(group); |
2220 | |
|
2221 | 0 | #ifndef FIPS_MODULE |
2222 | 0 | if (ctx == NULL) |
2223 | 0 | ctx = new_ctx = BN_CTX_new(); |
2224 | 0 | #endif |
2225 | 0 | if (ctx == NULL) |
2226 | 0 | return 0; |
2227 | | |
2228 | 0 | BN_CTX_start(ctx); |
2229 | 0 | x = BN_CTX_get(ctx); |
2230 | 0 | y = BN_CTX_get(ctx); |
2231 | 0 | if (y == NULL) |
2232 | 0 | goto err; |
2233 | | /* get the generator */ |
2234 | 0 | if (group->generator == NULL) |
2235 | 0 | goto err; |
2236 | 0 | generator = EC_POINT_new(group); |
2237 | 0 | if (generator == NULL) |
2238 | 0 | goto err; |
2239 | 0 | BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x); |
2240 | 0 | BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y); |
2241 | 0 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) |
2242 | 0 | goto err; |
2243 | 0 | if ((pre = nistp256_pre_comp_new()) == NULL) |
2244 | 0 | goto err; |
2245 | | /* |
2246 | | * if the generator is the standard one, use built-in precomputation |
2247 | | */ |
2248 | 0 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { |
2249 | 0 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); |
2250 | 0 | goto done; |
2251 | 0 | } |
2252 | 0 | if ((!BN_to_felem(x_tmp, group->generator->X)) || (!BN_to_felem(y_tmp, group->generator->Y)) || (!BN_to_felem(z_tmp, group->generator->Z))) |
2253 | 0 | goto err; |
2254 | 0 | felem_shrink(pre->g_pre_comp[0][1][0], x_tmp); |
2255 | 0 | felem_shrink(pre->g_pre_comp[0][1][1], y_tmp); |
2256 | 0 | felem_shrink(pre->g_pre_comp[0][1][2], z_tmp); |
2257 | | /* |
2258 | | * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G, |
2259 | | * 2^160*G, 2^224*G for the second one |
2260 | | */ |
2261 | 0 | for (i = 1; i <= 8; i <<= 1) { |
2262 | 0 | point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], |
2263 | 0 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0], |
2264 | 0 | pre->g_pre_comp[0][i][1], |
2265 | 0 | pre->g_pre_comp[0][i][2]); |
2266 | 0 | for (j = 0; j < 31; ++j) { |
2267 | 0 | point_double_small(pre->g_pre_comp[1][i][0], |
2268 | 0 | pre->g_pre_comp[1][i][1], |
2269 | 0 | pre->g_pre_comp[1][i][2], |
2270 | 0 | pre->g_pre_comp[1][i][0], |
2271 | 0 | pre->g_pre_comp[1][i][1], |
2272 | 0 | pre->g_pre_comp[1][i][2]); |
2273 | 0 | } |
2274 | 0 | if (i == 8) |
2275 | 0 | break; |
2276 | 0 | point_double_small(pre->g_pre_comp[0][2 * i][0], |
2277 | 0 | pre->g_pre_comp[0][2 * i][1], |
2278 | 0 | pre->g_pre_comp[0][2 * i][2], |
2279 | 0 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], |
2280 | 0 | pre->g_pre_comp[1][i][2]); |
2281 | 0 | for (j = 0; j < 31; ++j) { |
2282 | 0 | point_double_small(pre->g_pre_comp[0][2 * i][0], |
2283 | 0 | pre->g_pre_comp[0][2 * i][1], |
2284 | 0 | pre->g_pre_comp[0][2 * i][2], |
2285 | 0 | pre->g_pre_comp[0][2 * i][0], |
2286 | 0 | pre->g_pre_comp[0][2 * i][1], |
2287 | 0 | pre->g_pre_comp[0][2 * i][2]); |
2288 | 0 | } |
2289 | 0 | } |
2290 | 0 | for (i = 0; i < 2; i++) { |
2291 | | /* g_pre_comp[i][0] is the point at infinity */ |
2292 | 0 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); |
2293 | | /* the remaining multiples */ |
2294 | | /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */ |
2295 | 0 | point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], |
2296 | 0 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], |
2297 | 0 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], |
2298 | 0 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
2299 | 0 | pre->g_pre_comp[i][2][2]); |
2300 | | /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */ |
2301 | 0 | point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], |
2302 | 0 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], |
2303 | 0 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], |
2304 | 0 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
2305 | 0 | pre->g_pre_comp[i][2][2]); |
2306 | | /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */ |
2307 | 0 | point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], |
2308 | 0 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], |
2309 | 0 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], |
2310 | 0 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], |
2311 | 0 | pre->g_pre_comp[i][4][2]); |
2312 | | /* |
2313 | | * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G |
2314 | | */ |
2315 | 0 | point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], |
2316 | 0 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], |
2317 | 0 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], |
2318 | 0 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
2319 | 0 | pre->g_pre_comp[i][2][2]); |
2320 | 0 | for (j = 1; j < 8; ++j) { |
2321 | | /* odd multiples: add G resp. 2^32*G */ |
2322 | 0 | point_add_small(pre->g_pre_comp[i][2 * j + 1][0], |
2323 | 0 | pre->g_pre_comp[i][2 * j + 1][1], |
2324 | 0 | pre->g_pre_comp[i][2 * j + 1][2], |
2325 | 0 | pre->g_pre_comp[i][2 * j][0], |
2326 | 0 | pre->g_pre_comp[i][2 * j][1], |
2327 | 0 | pre->g_pre_comp[i][2 * j][2], |
2328 | 0 | pre->g_pre_comp[i][1][0], |
2329 | 0 | pre->g_pre_comp[i][1][1], |
2330 | 0 | pre->g_pre_comp[i][1][2]); |
2331 | 0 | } |
2332 | 0 | } |
2333 | 0 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems); |
2334 | |
|
2335 | 0 | done: |
2336 | 0 | SETPRECOMP(group, nistp256, pre); |
2337 | 0 | pre = NULL; |
2338 | 0 | ret = 1; |
2339 | |
|
2340 | 0 | err: |
2341 | 0 | BN_CTX_end(ctx); |
2342 | 0 | EC_POINT_free(generator); |
2343 | 0 | #ifndef FIPS_MODULE |
2344 | 0 | BN_CTX_free(new_ctx); |
2345 | 0 | #endif |
2346 | 0 | EC_nistp256_pre_comp_free(pre); |
2347 | 0 | return ret; |
2348 | 0 | } |
2349 | | |
2350 | | int ossl_ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group) |
2351 | 0 | { |
2352 | | return HAVEPRECOMP(group, nistp256); |
2353 | 0 | } |