Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl36/crypto/ec/ecp_nistp384.c
Line
Count
Source
1
/*
2
 * Copyright 2023-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2023 IBM Corp.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * Designed for 56-bit limbs by Rohan McLure <rohan.mclure@linux.ibm.com>.
28
 * The layout is based on that of ecp_nistp{224,521}.c, allowing even for asm
29
 * acceleration of felem_{square,mul} as supported in these files.
30
 */
31
32
#include <openssl/e_os2.h>
33
34
#include <string.h>
35
#include <openssl/err.h>
36
#include "ec_local.h"
37
38
#include "internal/numbers.h"
39
40
#ifndef INT128_MAX
41
#error "Your compiler doesn't appear to support 128-bit integer types"
42
#endif
43
44
typedef uint8_t u8;
45
typedef uint64_t u64;
46
47
/*
48
 * The underlying field. P384 operates over GF(2^384-2^128-2^96+2^32-1). We
49
 * can serialize an element of this field into 48 bytes. We call this an
50
 * felem_bytearray.
51
 */
52
53
typedef u8 felem_bytearray[48];
54
55
/*
56
 * These are the parameters of P384, taken from FIPS 186-3, section D.1.2.4.
57
 * These values are big-endian.
58
 */
59
static const felem_bytearray nistp384_curve_params[5] = {
60
    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
61
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
62
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
63
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF },
64
    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a = -3 */
65
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
66
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
67
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC },
68
    { 0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B, /* b */
69
        0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12,
70
        0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D,
71
        0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF },
72
    { 0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, /* x */
73
        0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98,
74
        0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D,
75
        0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7 },
76
    { 0x36, 0x17, 0xDE, 0x4A, 0x96, 0x26, 0x2C, 0x6F, 0x5D, 0x9E, 0x98, 0xBF, /* y */
77
        0x92, 0x92, 0xDC, 0x29, 0xF8, 0xF4, 0x1D, 0xBD, 0x28, 0x9A, 0x14, 0x7C,
78
        0xE9, 0xDA, 0x31, 0x13, 0xB5, 0xF0, 0xB8, 0xC0, 0x0A, 0x60, 0xB1, 0xCE,
79
        0x1D, 0x7E, 0x81, 0x9D, 0x7A, 0x43, 0x1D, 0x7C, 0x90, 0xEA, 0x0E, 0x5F },
80
};
81
82
/*-
83
 * The representation of field elements.
84
 * ------------------------------------
85
 *
86
 * We represent field elements with seven values. These values are either 64 or
87
 * 128 bits and the field element represented is:
88
 *   v[0]*2^0 + v[1]*2^56 + v[2]*2^112 + ... + v[6]*2^336  (mod p)
89
 * Each of the seven values is called a 'limb'. Since the limbs are spaced only
90
 * 56 bits apart, but are greater than 56 bits in length, the most significant
91
 * bits of each limb overlap with the least significant bits of the next
92
 *
93
 * This representation is considered to be 'redundant' in the sense that
94
 * intermediate values can each contain more than a 56-bit value in each limb.
95
 * Reduction causes all but the final limb to be reduced to contain a value less
96
 * than 2^56, with the final value represented allowed to be larger than 2^384,
97
 * inasmuch as we can be sure that arithmetic overflow remains impossible. The
98
 * reduced value must of course be congruent to the unreduced value.
99
 *
100
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
101
 * 'widefelem', featuring enough bits to store the result of a multiplication
102
 * and even some further arithmetic without need for immediate reduction.
103
 */
104
105
636M
#define NLIMBS 7
106
107
typedef uint64_t limb;
108
typedef uint128_t widelimb;
109
typedef limb limb_aX __attribute((__aligned__(1)));
110
typedef limb felem[NLIMBS];
111
typedef widelimb widefelem[2 * NLIMBS - 1];
112
113
static const limb bottom56bits = 0xffffffffffffff;
114
115
/* Helper functions (de)serialising reduced field elements in little endian */
116
static void bin48_to_felem(felem out, const u8 in[48])
117
29.7k
{
118
29.7k
    memset(out, 0, 56);
119
29.7k
    out[0] = (*((limb *)&in[0])) & bottom56bits;
120
29.7k
    out[1] = (*((limb_aX *)&in[7])) & bottom56bits;
121
29.7k
    out[2] = (*((limb_aX *)&in[14])) & bottom56bits;
122
29.7k
    out[3] = (*((limb_aX *)&in[21])) & bottom56bits;
123
29.7k
    out[4] = (*((limb_aX *)&in[28])) & bottom56bits;
124
29.7k
    out[5] = (*((limb_aX *)&in[35])) & bottom56bits;
125
29.7k
    memmove(&out[6], &in[42], 6);
126
29.7k
}
127
128
static void felem_to_bin48(u8 out[48], const felem in)
129
45.0k
{
130
45.0k
    memset(out, 0, 48);
131
45.0k
    (*((limb *)&out[0])) |= (in[0] & bottom56bits);
132
45.0k
    (*((limb_aX *)&out[7])) |= (in[1] & bottom56bits);
133
45.0k
    (*((limb_aX *)&out[14])) |= (in[2] & bottom56bits);
134
45.0k
    (*((limb_aX *)&out[21])) |= (in[3] & bottom56bits);
135
45.0k
    (*((limb_aX *)&out[28])) |= (in[4] & bottom56bits);
136
45.0k
    (*((limb_aX *)&out[35])) |= (in[5] & bottom56bits);
137
45.0k
    memmove(&out[42], &in[6], 6);
138
45.0k
}
139
140
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
141
static int BN_to_felem(felem out, const BIGNUM *bn)
142
29.7k
{
143
29.7k
    felem_bytearray b_out;
144
29.7k
    int num_bytes;
145
146
29.7k
    if (BN_is_negative(bn)) {
147
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
148
0
        return 0;
149
0
    }
150
29.7k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
151
29.7k
    if (num_bytes < 0) {
152
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
153
0
        return 0;
154
0
    }
155
29.7k
    bin48_to_felem(out, b_out);
156
29.7k
    return 1;
157
29.7k
}
158
159
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
160
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
161
45.0k
{
162
45.0k
    felem_bytearray b_out;
163
164
45.0k
    felem_to_bin48(b_out, in);
165
45.0k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
166
45.0k
}
167
168
/*-
169
 * Field operations
170
 * ----------------
171
 */
172
173
static void felem_one(felem out)
174
0
{
175
0
    out[0] = 1;
176
0
    memset(&out[1], 0, sizeof(limb) * (NLIMBS - 1));
177
0
}
178
179
static void felem_assign(felem out, const felem in)
180
8.79M
{
181
8.79M
    memcpy(out, in, sizeof(felem));
182
8.79M
}
183
184
/* felem_sum64 sets out = out + in. */
185
static void felem_sum64(felem out, const felem in)
186
3.80M
{
187
3.80M
    unsigned int i;
188
189
30.4M
    for (i = 0; i < NLIMBS; i++)
190
26.6M
        out[i] += in[i];
191
3.80M
}
192
193
/* felem_scalar sets out = in * scalar */
194
static void felem_scalar(felem out, const felem in, limb scalar)
195
11.5M
{
196
11.5M
    unsigned int i;
197
198
92.4M
    for (i = 0; i < NLIMBS; i++)
199
80.8M
        out[i] = in[i] * scalar;
200
11.5M
}
201
202
/* felem_scalar64 sets out = out * scalar */
203
static void felem_scalar64(felem out, limb scalar)
204
5.36M
{
205
5.36M
    unsigned int i;
206
207
42.9M
    for (i = 0; i < NLIMBS; i++)
208
37.5M
        out[i] *= scalar;
209
5.36M
}
210
211
/* felem_scalar128 sets out = out * scalar */
212
static void felem_scalar128(widefelem out, limb scalar)
213
1.78M
{
214
1.78M
    unsigned int i;
215
216
25.0M
    for (i = 0; i < 2 * NLIMBS - 1; i++)
217
23.2M
        out[i] *= scalar;
218
1.78M
}
219
220
/*-
221
 * felem_neg sets |out| to |-in|
222
 * On entry:
223
 *   in[i] < 2^60 - 2^29
224
 * On exit:
225
 *   out[i] < 2^60
226
 */
227
static void felem_neg(felem out, const felem in)
228
160k
{
229
    /*
230
     * In order to prevent underflow, we add a multiple of p before subtracting.
231
     * Use telescopic sums to represent 2^12 * p redundantly with each limb
232
     * of the form 2^60 + ...
233
     */
234
160k
    static const limb two60m52m4 = (((limb)1) << 60)
235
160k
        - (((limb)1) << 52)
236
160k
        - (((limb)1) << 4);
237
160k
    static const limb two60p44m12 = (((limb)1) << 60)
238
160k
        + (((limb)1) << 44)
239
160k
        - (((limb)1) << 12);
240
160k
    static const limb two60m28m4 = (((limb)1) << 60)
241
160k
        - (((limb)1) << 28)
242
160k
        - (((limb)1) << 4);
243
160k
    static const limb two60m4 = (((limb)1) << 60)
244
160k
        - (((limb)1) << 4);
245
246
160k
    out[0] = two60p44m12 - in[0];
247
160k
    out[1] = two60m52m4 - in[1];
248
160k
    out[2] = two60m28m4 - in[2];
249
160k
    out[3] = two60m4 - in[3];
250
160k
    out[4] = two60m4 - in[4];
251
160k
    out[5] = two60m4 - in[5];
252
160k
    out[6] = two60m4 - in[6];
253
160k
}
254
255
#if defined(ECP_NISTP384_ASM)
256
void p384_felem_diff64(felem out, const felem in);
257
void p384_felem_diff128(widefelem out, const widefelem in);
258
void p384_felem_diff_128_64(widefelem out, const felem in);
259
260
#define felem_diff64 p384_felem_diff64
261
#define felem_diff128 p384_felem_diff128
262
#define felem_diff_128_64 p384_felem_diff_128_64
263
264
#else
265
/*-
266
 * felem_diff64 subtracts |in| from |out|
267
 * On entry:
268
 *   in[i] < 2^60 - 2^52 - 2^4
269
 * On exit:
270
 *   out[i] < out_orig[i] + 2^60 + 2^44
271
 */
272
static void felem_diff64(felem out, const felem in)
273
3.00M
{
274
    /*
275
     * In order to prevent underflow, we add a multiple of p before subtracting.
276
     * Use telescopic sums to represent 2^12 * p redundantly with each limb
277
     * of the form 2^60 + ...
278
     */
279
280
3.00M
    static const limb two60m52m4 = (((limb)1) << 60)
281
3.00M
        - (((limb)1) << 52)
282
3.00M
        - (((limb)1) << 4);
283
3.00M
    static const limb two60p44m12 = (((limb)1) << 60)
284
3.00M
        + (((limb)1) << 44)
285
3.00M
        - (((limb)1) << 12);
286
3.00M
    static const limb two60m28m4 = (((limb)1) << 60)
287
3.00M
        - (((limb)1) << 28)
288
3.00M
        - (((limb)1) << 4);
289
3.00M
    static const limb two60m4 = (((limb)1) << 60)
290
3.00M
        - (((limb)1) << 4);
291
292
3.00M
    out[0] += two60p44m12 - in[0];
293
3.00M
    out[1] += two60m52m4 - in[1];
294
3.00M
    out[2] += two60m28m4 - in[2];
295
3.00M
    out[3] += two60m4 - in[3];
296
3.00M
    out[4] += two60m4 - in[4];
297
3.00M
    out[5] += two60m4 - in[5];
298
3.00M
    out[6] += two60m4 - in[6];
299
3.00M
}
300
301
/*
302
 * in[i] < 2^63
303
 * out[i] < out_orig[i] + 2^64 + 2^48
304
 */
305
static void felem_diff_128_64(widefelem out, const felem in)
306
5.08M
{
307
    /*
308
     * In order to prevent underflow, we add a multiple of p before subtracting.
309
     * Use telescopic sums to represent 2^16 * p redundantly with each limb
310
     * of the form 2^64 + ...
311
     */
312
313
5.08M
    static const widelimb two64m56m8 = (((widelimb)1) << 64)
314
5.08M
        - (((widelimb)1) << 56)
315
5.08M
        - (((widelimb)1) << 8);
316
5.08M
    static const widelimb two64m32m8 = (((widelimb)1) << 64)
317
5.08M
        - (((widelimb)1) << 32)
318
5.08M
        - (((widelimb)1) << 8);
319
5.08M
    static const widelimb two64m8 = (((widelimb)1) << 64)
320
5.08M
        - (((widelimb)1) << 8);
321
5.08M
    static const widelimb two64p48m16 = (((widelimb)1) << 64)
322
5.08M
        + (((widelimb)1) << 48)
323
5.08M
        - (((widelimb)1) << 16);
324
5.08M
    unsigned int i;
325
326
5.08M
    out[0] += two64p48m16;
327
5.08M
    out[1] += two64m56m8;
328
5.08M
    out[2] += two64m32m8;
329
5.08M
    out[3] += two64m8;
330
5.08M
    out[4] += two64m8;
331
5.08M
    out[5] += two64m8;
332
5.08M
    out[6] += two64m8;
333
334
40.6M
    for (i = 0; i < NLIMBS; i++)
335
35.5M
        out[i] -= in[i];
336
5.08M
}
337
338
/*
339
 * in[i] < 2^127 - 2^119 - 2^71
340
 * out[i] < out_orig[i] + 2^127 + 2^111
341
 */
342
static void felem_diff128(widefelem out, const widefelem in)
343
1.78M
{
344
    /*
345
     * In order to prevent underflow, we add a multiple of p before subtracting.
346
     * Use telescopic sums to represent 2^415 * p redundantly with each limb
347
     * of the form 2^127 + ...
348
     */
349
350
1.78M
    static const widelimb two127 = ((widelimb)1) << 127;
351
1.78M
    static const widelimb two127m71 = (((widelimb)1) << 127)
352
1.78M
        - (((widelimb)1) << 71);
353
1.78M
    static const widelimb two127p111m79m71 = (((widelimb)1) << 127)
354
1.78M
        + (((widelimb)1) << 111)
355
1.78M
        - (((widelimb)1) << 79)
356
1.78M
        - (((widelimb)1) << 71);
357
1.78M
    static const widelimb two127m119m71 = (((widelimb)1) << 127)
358
1.78M
        - (((widelimb)1) << 119)
359
1.78M
        - (((widelimb)1) << 71);
360
1.78M
    static const widelimb two127m95m71 = (((widelimb)1) << 127)
361
1.78M
        - (((widelimb)1) << 95)
362
1.78M
        - (((widelimb)1) << 71);
363
1.78M
    unsigned int i;
364
365
1.78M
    out[0] += two127;
366
1.78M
    out[1] += two127m71;
367
1.78M
    out[2] += two127m71;
368
1.78M
    out[3] += two127m71;
369
1.78M
    out[4] += two127m71;
370
1.78M
    out[5] += two127m71;
371
1.78M
    out[6] += two127p111m79m71;
372
1.78M
    out[7] += two127m119m71;
373
1.78M
    out[8] += two127m95m71;
374
1.78M
    out[9] += two127m71;
375
1.78M
    out[10] += two127m71;
376
1.78M
    out[11] += two127m71;
377
1.78M
    out[12] += two127m71;
378
379
25.0M
    for (i = 0; i < 2 * NLIMBS - 1; i++)
380
23.2M
        out[i] -= in[i];
381
1.78M
}
382
#endif /* ECP_NISTP384_ASM */
383
384
static void felem_square_ref(widefelem out, const felem in)
385
11.1M
{
386
11.1M
    felem inx2;
387
11.1M
    felem_scalar(inx2, in, 2);
388
389
11.1M
    out[0] = ((uint128_t)in[0]) * in[0];
390
391
11.1M
    out[1] = ((uint128_t)in[0]) * inx2[1];
392
393
11.1M
    out[2] = ((uint128_t)in[0]) * inx2[2]
394
11.1M
        + ((uint128_t)in[1]) * in[1];
395
396
11.1M
    out[3] = ((uint128_t)in[0]) * inx2[3]
397
11.1M
        + ((uint128_t)in[1]) * inx2[2];
398
399
11.1M
    out[4] = ((uint128_t)in[0]) * inx2[4]
400
11.1M
        + ((uint128_t)in[1]) * inx2[3]
401
11.1M
        + ((uint128_t)in[2]) * in[2];
402
403
11.1M
    out[5] = ((uint128_t)in[0]) * inx2[5]
404
11.1M
        + ((uint128_t)in[1]) * inx2[4]
405
11.1M
        + ((uint128_t)in[2]) * inx2[3];
406
407
11.1M
    out[6] = ((uint128_t)in[0]) * inx2[6]
408
11.1M
        + ((uint128_t)in[1]) * inx2[5]
409
11.1M
        + ((uint128_t)in[2]) * inx2[4]
410
11.1M
        + ((uint128_t)in[3]) * in[3];
411
412
11.1M
    out[7] = ((uint128_t)in[1]) * inx2[6]
413
11.1M
        + ((uint128_t)in[2]) * inx2[5]
414
11.1M
        + ((uint128_t)in[3]) * inx2[4];
415
416
11.1M
    out[8] = ((uint128_t)in[2]) * inx2[6]
417
11.1M
        + ((uint128_t)in[3]) * inx2[5]
418
11.1M
        + ((uint128_t)in[4]) * in[4];
419
420
11.1M
    out[9] = ((uint128_t)in[3]) * inx2[6]
421
11.1M
        + ((uint128_t)in[4]) * inx2[5];
422
423
11.1M
    out[10] = ((uint128_t)in[4]) * inx2[6]
424
11.1M
        + ((uint128_t)in[5]) * in[5];
425
426
11.1M
    out[11] = ((uint128_t)in[5]) * inx2[6];
427
428
11.1M
    out[12] = ((uint128_t)in[6]) * in[6];
429
11.1M
}
430
431
static void felem_mul_ref(widefelem out, const felem in1, const felem in2)
432
8.91M
{
433
8.91M
    out[0] = ((uint128_t)in1[0]) * in2[0];
434
435
8.91M
    out[1] = ((uint128_t)in1[0]) * in2[1]
436
8.91M
        + ((uint128_t)in1[1]) * in2[0];
437
438
8.91M
    out[2] = ((uint128_t)in1[0]) * in2[2]
439
8.91M
        + ((uint128_t)in1[1]) * in2[1]
440
8.91M
        + ((uint128_t)in1[2]) * in2[0];
441
442
8.91M
    out[3] = ((uint128_t)in1[0]) * in2[3]
443
8.91M
        + ((uint128_t)in1[1]) * in2[2]
444
8.91M
        + ((uint128_t)in1[2]) * in2[1]
445
8.91M
        + ((uint128_t)in1[3]) * in2[0];
446
447
8.91M
    out[4] = ((uint128_t)in1[0]) * in2[4]
448
8.91M
        + ((uint128_t)in1[1]) * in2[3]
449
8.91M
        + ((uint128_t)in1[2]) * in2[2]
450
8.91M
        + ((uint128_t)in1[3]) * in2[1]
451
8.91M
        + ((uint128_t)in1[4]) * in2[0];
452
453
8.91M
    out[5] = ((uint128_t)in1[0]) * in2[5]
454
8.91M
        + ((uint128_t)in1[1]) * in2[4]
455
8.91M
        + ((uint128_t)in1[2]) * in2[3]
456
8.91M
        + ((uint128_t)in1[3]) * in2[2]
457
8.91M
        + ((uint128_t)in1[4]) * in2[1]
458
8.91M
        + ((uint128_t)in1[5]) * in2[0];
459
460
8.91M
    out[6] = ((uint128_t)in1[0]) * in2[6]
461
8.91M
        + ((uint128_t)in1[1]) * in2[5]
462
8.91M
        + ((uint128_t)in1[2]) * in2[4]
463
8.91M
        + ((uint128_t)in1[3]) * in2[3]
464
8.91M
        + ((uint128_t)in1[4]) * in2[2]
465
8.91M
        + ((uint128_t)in1[5]) * in2[1]
466
8.91M
        + ((uint128_t)in1[6]) * in2[0];
467
468
8.91M
    out[7] = ((uint128_t)in1[1]) * in2[6]
469
8.91M
        + ((uint128_t)in1[2]) * in2[5]
470
8.91M
        + ((uint128_t)in1[3]) * in2[4]
471
8.91M
        + ((uint128_t)in1[4]) * in2[3]
472
8.91M
        + ((uint128_t)in1[5]) * in2[2]
473
8.91M
        + ((uint128_t)in1[6]) * in2[1];
474
475
8.91M
    out[8] = ((uint128_t)in1[2]) * in2[6]
476
8.91M
        + ((uint128_t)in1[3]) * in2[5]
477
8.91M
        + ((uint128_t)in1[4]) * in2[4]
478
8.91M
        + ((uint128_t)in1[5]) * in2[3]
479
8.91M
        + ((uint128_t)in1[6]) * in2[2];
480
481
8.91M
    out[9] = ((uint128_t)in1[3]) * in2[6]
482
8.91M
        + ((uint128_t)in1[4]) * in2[5]
483
8.91M
        + ((uint128_t)in1[5]) * in2[4]
484
8.91M
        + ((uint128_t)in1[6]) * in2[3];
485
486
8.91M
    out[10] = ((uint128_t)in1[4]) * in2[6]
487
8.91M
        + ((uint128_t)in1[5]) * in2[5]
488
8.91M
        + ((uint128_t)in1[6]) * in2[4];
489
490
8.91M
    out[11] = ((uint128_t)in1[5]) * in2[6]
491
8.91M
        + ((uint128_t)in1[6]) * in2[5];
492
493
8.91M
    out[12] = ((uint128_t)in1[6]) * in2[6];
494
8.91M
}
495
496
/*-
497
 * Reduce thirteen 128-bit coefficients to seven 64-bit coefficients.
498
 * in[i] < 2^128 - 2^125
499
 * out[i] < 2^56 for i < 6,
500
 * out[6] <= 2^48
501
 *
502
 * The technique in use here stems from the format of the prime modulus:
503
 * P384 = 2^384 - delta
504
 *
505
 * Thus we can reduce numbers of the form (X + 2^384 * Y) by substituting
506
 * them with (X + delta Y), with delta = 2^128 + 2^96 + (-2^32 + 1). These
507
 * coefficients are still quite large, and so we repeatedly apply this
508
 * technique on high-order bits in order to guarantee the desired bounds on
509
 * the size of our output.
510
 *
511
 * The three phases of elimination are as follows:
512
 * [1]: Y = 2^120 (in[12] | in[11] | in[10] | in[9])
513
 * [2]: Y = 2^8 (acc[8] | acc[7])
514
 * [3]: Y = 2^48 (acc[6] >> 48)
515
 * (Where a | b | c | d = (2^56)^3 a + (2^56)^2 b + (2^56) c + d)
516
 */
517
static void felem_reduce_ref(felem out, const widefelem in)
518
18.2M
{
519
    /*
520
     * In order to prevent underflow, we add a multiple of p before subtracting.
521
     * Use telescopic sums to represent 2^76 * p redundantly with each limb
522
     * of the form 2^124 + ...
523
     */
524
18.2M
    static const widelimb two124m68 = (((widelimb)1) << 124)
525
18.2M
        - (((widelimb)1) << 68);
526
18.2M
    static const widelimb two124m116m68 = (((widelimb)1) << 124)
527
18.2M
        - (((widelimb)1) << 116)
528
18.2M
        - (((widelimb)1) << 68);
529
18.2M
    static const widelimb two124p108m76 = (((widelimb)1) << 124)
530
18.2M
        + (((widelimb)1) << 108)
531
18.2M
        - (((widelimb)1) << 76);
532
18.2M
    static const widelimb two124m92m68 = (((widelimb)1) << 124)
533
18.2M
        - (((widelimb)1) << 92)
534
18.2M
        - (((widelimb)1) << 68);
535
18.2M
    widelimb temp, acc[9];
536
18.2M
    unsigned int i;
537
538
18.2M
    memcpy(acc, in, sizeof(widelimb) * 9);
539
540
18.2M
    acc[0] += two124p108m76;
541
18.2M
    acc[1] += two124m116m68;
542
18.2M
    acc[2] += two124m92m68;
543
18.2M
    acc[3] += two124m68;
544
18.2M
    acc[4] += two124m68;
545
18.2M
    acc[5] += two124m68;
546
18.2M
    acc[6] += two124m68;
547
548
    /* [1]: Eliminate in[9], ..., in[12] */
549
18.2M
    acc[8] += in[12] >> 32;
550
18.2M
    acc[7] += (in[12] & 0xffffffff) << 24;
551
18.2M
    acc[7] += in[12] >> 8;
552
18.2M
    acc[6] += (in[12] & 0xff) << 48;
553
18.2M
    acc[6] -= in[12] >> 16;
554
18.2M
    acc[5] -= (in[12] & 0xffff) << 40;
555
18.2M
    acc[6] += in[12] >> 48;
556
18.2M
    acc[5] += (in[12] & 0xffffffffffff) << 8;
557
558
18.2M
    acc[7] += in[11] >> 32;
559
18.2M
    acc[6] += (in[11] & 0xffffffff) << 24;
560
18.2M
    acc[6] += in[11] >> 8;
561
18.2M
    acc[5] += (in[11] & 0xff) << 48;
562
18.2M
    acc[5] -= in[11] >> 16;
563
18.2M
    acc[4] -= (in[11] & 0xffff) << 40;
564
18.2M
    acc[5] += in[11] >> 48;
565
18.2M
    acc[4] += (in[11] & 0xffffffffffff) << 8;
566
567
18.2M
    acc[6] += in[10] >> 32;
568
18.2M
    acc[5] += (in[10] & 0xffffffff) << 24;
569
18.2M
    acc[5] += in[10] >> 8;
570
18.2M
    acc[4] += (in[10] & 0xff) << 48;
571
18.2M
    acc[4] -= in[10] >> 16;
572
18.2M
    acc[3] -= (in[10] & 0xffff) << 40;
573
18.2M
    acc[4] += in[10] >> 48;
574
18.2M
    acc[3] += (in[10] & 0xffffffffffff) << 8;
575
576
18.2M
    acc[5] += in[9] >> 32;
577
18.2M
    acc[4] += (in[9] & 0xffffffff) << 24;
578
18.2M
    acc[4] += in[9] >> 8;
579
18.2M
    acc[3] += (in[9] & 0xff) << 48;
580
18.2M
    acc[3] -= in[9] >> 16;
581
18.2M
    acc[2] -= (in[9] & 0xffff) << 40;
582
18.2M
    acc[3] += in[9] >> 48;
583
18.2M
    acc[2] += (in[9] & 0xffffffffffff) << 8;
584
585
    /*
586
     * [2]: Eliminate acc[7], acc[8], that is the 7 and eighth limbs, as
587
     * well as the contributions made from eliminating higher limbs.
588
     * acc[7] < in[7] + 2^120 + 2^56 < in[7] + 2^121
589
     * acc[8] < in[8] + 2^96
590
     */
591
18.2M
    acc[4] += acc[8] >> 32;
592
18.2M
    acc[3] += (acc[8] & 0xffffffff) << 24;
593
18.2M
    acc[3] += acc[8] >> 8;
594
18.2M
    acc[2] += (acc[8] & 0xff) << 48;
595
18.2M
    acc[2] -= acc[8] >> 16;
596
18.2M
    acc[1] -= (acc[8] & 0xffff) << 40;
597
18.2M
    acc[2] += acc[8] >> 48;
598
18.2M
    acc[1] += (acc[8] & 0xffffffffffff) << 8;
599
600
18.2M
    acc[3] += acc[7] >> 32;
601
18.2M
    acc[2] += (acc[7] & 0xffffffff) << 24;
602
18.2M
    acc[2] += acc[7] >> 8;
603
18.2M
    acc[1] += (acc[7] & 0xff) << 48;
604
18.2M
    acc[1] -= acc[7] >> 16;
605
18.2M
    acc[0] -= (acc[7] & 0xffff) << 40;
606
18.2M
    acc[1] += acc[7] >> 48;
607
18.2M
    acc[0] += (acc[7] & 0xffffffffffff) << 8;
608
609
    /*-
610
     * acc[k] < in[k] + 2^124 + 2^121
611
     *        < in[k] + 2^125
612
     *        < 2^128, for k <= 6
613
     */
614
615
    /*
616
     * Carry 4 -> 5 -> 6
617
     * This has the effect of ensuring that these more significant limbs
618
     * will be small in value after eliminating high bits from acc[6].
619
     */
620
18.2M
    acc[5] += acc[4] >> 56;
621
18.2M
    acc[4] &= 0x00ffffffffffffff;
622
623
18.2M
    acc[6] += acc[5] >> 56;
624
18.2M
    acc[5] &= 0x00ffffffffffffff;
625
626
    /*-
627
     * acc[6] < in[6] + 2^124 + 2^121 + 2^72 + 2^16
628
     *        < in[6] + 2^125
629
     *        < 2^128
630
     */
631
632
    /* [3]: Eliminate high bits of acc[6] */
633
18.2M
    temp = acc[6] >> 48;
634
18.2M
    acc[6] &= 0x0000ffffffffffff;
635
636
    /* temp < 2^80 */
637
638
18.2M
    acc[3] += temp >> 40;
639
18.2M
    acc[2] += (temp & 0xffffffffff) << 16;
640
18.2M
    acc[2] += temp >> 16;
641
18.2M
    acc[1] += (temp & 0xffff) << 40;
642
18.2M
    acc[1] -= temp >> 24;
643
18.2M
    acc[0] -= (temp & 0xffffff) << 32;
644
18.2M
    acc[0] += temp;
645
646
    /*-
647
     * acc[k] < acc_old[k] + 2^64 + 2^56
648
     *        < in[k] + 2^124 + 2^121 + 2^72 + 2^64 + 2^56 + 2^16 , k < 4
649
     */
650
651
    /* Carry 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
652
18.2M
    acc[1] += acc[0] >> 56; /* acc[1] < acc_old[1] + 2^72 */
653
18.2M
    acc[0] &= 0x00ffffffffffffff;
654
655
18.2M
    acc[2] += acc[1] >> 56; /* acc[2] < acc_old[2] + 2^72 + 2^16 */
656
18.2M
    acc[1] &= 0x00ffffffffffffff;
657
658
18.2M
    acc[3] += acc[2] >> 56; /* acc[3] < acc_old[3] + 2^72 + 2^16 */
659
18.2M
    acc[2] &= 0x00ffffffffffffff;
660
661
    /*-
662
     * acc[k] < acc_old[k] + 2^72 + 2^16
663
     *        < in[k] + 2^124 + 2^121 + 2^73 + 2^64 + 2^56 + 2^17
664
     *        < in[k] + 2^125
665
     *        < 2^128 , k < 4
666
     */
667
668
18.2M
    acc[4] += acc[3] >> 56; /*-
669
                             * acc[4] < acc_old[4] + 2^72 + 2^16
670
                             *        < 2^72 + 2^56 + 2^16
671
                             */
672
18.2M
    acc[3] &= 0x00ffffffffffffff;
673
674
18.2M
    acc[5] += acc[4] >> 56; /*-
675
                             * acc[5] < acc_old[5] + 2^16 + 1
676
                             *        < 2^56 + 2^16 + 1
677
                             */
678
18.2M
    acc[4] &= 0x00ffffffffffffff;
679
680
18.2M
    acc[6] += acc[5] >> 56; /* acc[6] < 2^48 + 1 <= 2^48 */
681
18.2M
    acc[5] &= 0x00ffffffffffffff;
682
683
146M
    for (i = 0; i < NLIMBS; i++)
684
127M
        out[i] = acc[i];
685
18.2M
}
686
687
static ossl_inline void felem_square_reduce_ref(felem out, const felem in)
688
6.75M
{
689
6.75M
    widefelem tmp;
690
691
6.75M
    felem_square_ref(tmp, in);
692
6.75M
    felem_reduce_ref(out, tmp);
693
6.75M
}
694
695
static ossl_inline void felem_mul_reduce_ref(felem out, const felem in1, const felem in2)
696
5.36M
{
697
5.36M
    widefelem tmp;
698
699
5.36M
    felem_mul_ref(tmp, in1, in2);
700
5.36M
    felem_reduce_ref(out, tmp);
701
5.36M
}
702
703
#if defined(ECP_NISTP384_ASM)
704
static void felem_square_wrapper(widefelem out, const felem in);
705
static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2);
706
707
static void (*felem_square_p)(widefelem out, const felem in) = felem_square_wrapper;
708
static void (*felem_mul_p)(widefelem out, const felem in1, const felem in2) = felem_mul_wrapper;
709
710
static void (*felem_reduce_p)(felem out, const widefelem in) = felem_reduce_ref;
711
712
static void (*felem_square_reduce_p)(felem out, const felem in) = felem_square_reduce_ref;
713
static void (*felem_mul_reduce_p)(felem out, const felem in1, const felem in2) = felem_mul_reduce_ref;
714
715
void p384_felem_square(widefelem out, const felem in);
716
void p384_felem_mul(widefelem out, const felem in1, const felem in2);
717
void p384_felem_reduce(felem out, const widefelem in);
718
719
void p384_felem_square_reduce(felem out, const felem in);
720
void p384_felem_mul_reduce(felem out, const felem in1, const felem in2);
721
722
#if defined(_ARCH_PPC64)
723
#include "crypto/ppc_arch.h"
724
#endif
725
726
static void felem_select(void)
727
{
728
#if defined(_ARCH_PPC64)
729
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
730
        felem_square_p = p384_felem_square;
731
        felem_mul_p = p384_felem_mul;
732
        felem_reduce_p = p384_felem_reduce;
733
        felem_square_reduce_p = p384_felem_square_reduce;
734
        felem_mul_reduce_p = p384_felem_mul_reduce;
735
736
        return;
737
    }
738
#endif
739
740
    /* Default */
741
    felem_square_p = felem_square_ref;
742
    felem_mul_p = felem_mul_ref;
743
    felem_reduce_p = felem_reduce_ref;
744
    felem_square_reduce_p = felem_square_reduce_ref;
745
    felem_mul_reduce_p = felem_mul_reduce_ref;
746
}
747
748
static void felem_square_wrapper(widefelem out, const felem in)
749
{
750
    felem_select();
751
    felem_square_p(out, in);
752
}
753
754
static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2)
755
{
756
    felem_select();
757
    felem_mul_p(out, in1, in2);
758
}
759
760
#define felem_square felem_square_p
761
#define felem_mul felem_mul_p
762
#define felem_reduce felem_reduce_p
763
764
#define felem_square_reduce felem_square_reduce_p
765
#define felem_mul_reduce felem_mul_reduce_p
766
#else
767
4.39M
#define felem_square felem_square_ref
768
3.54M
#define felem_mul felem_mul_ref
769
6.15M
#define felem_reduce felem_reduce_ref
770
771
6.75M
#define felem_square_reduce felem_square_reduce_ref
772
5.36M
#define felem_mul_reduce felem_mul_reduce_ref
773
#endif
774
775
/*-
776
 * felem_inv calculates |out| = |in|^{-1}
777
 *
778
 * Based on Fermat's Little Theorem:
779
 *   a^p = a (mod p)
780
 *   a^{p-1} = 1 (mod p)
781
 *   a^{p-2} = a^{-1} (mod p)
782
 */
783
static void felem_inv(felem out, const felem in)
784
7.84k
{
785
7.84k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6;
786
7.84k
    unsigned int i = 0;
787
788
7.84k
    felem_square_reduce(ftmp, in); /* 2^1 */
789
7.84k
    felem_mul_reduce(ftmp, ftmp, in); /* 2^1 + 2^0 */
790
7.84k
    felem_assign(ftmp2, ftmp);
791
792
7.84k
    felem_square_reduce(ftmp, ftmp); /* 2^2 + 2^1 */
793
7.84k
    felem_mul_reduce(ftmp, ftmp, in); /* 2^2 + 2^1 * 2^0 */
794
7.84k
    felem_assign(ftmp3, ftmp);
795
796
31.3k
    for (i = 0; i < 3; i++)
797
23.5k
        felem_square_reduce(ftmp, ftmp); /* 2^5 + 2^4 + 2^3 */
798
7.84k
    felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 */
799
7.84k
    felem_assign(ftmp4, ftmp);
800
801
54.9k
    for (i = 0; i < 6; i++)
802
47.0k
        felem_square_reduce(ftmp, ftmp); /* 2^11 + ... + 2^6 */
803
7.84k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^11 + ... + 2^0 */
804
805
31.3k
    for (i = 0; i < 3; i++)
806
23.5k
        felem_square_reduce(ftmp, ftmp); /* 2^14 + ... + 2^3 */
807
7.84k
    felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^14 + ... + 2^0 */
808
7.84k
    felem_assign(ftmp5, ftmp);
809
810
125k
    for (i = 0; i < 15; i++)
811
117k
        felem_square_reduce(ftmp, ftmp); /* 2^29 + ... + 2^15 */
812
7.84k
    felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^29 + ... + 2^0 */
813
7.84k
    felem_assign(ftmp6, ftmp);
814
815
243k
    for (i = 0; i < 30; i++)
816
235k
        felem_square_reduce(ftmp, ftmp); /* 2^59 + ... + 2^30 */
817
7.84k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^59 + ... + 2^0 */
818
7.84k
    felem_assign(ftmp4, ftmp);
819
820
478k
    for (i = 0; i < 60; i++)
821
470k
        felem_square_reduce(ftmp, ftmp); /* 2^119 + ... + 2^60 */
822
7.84k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^119 + ... + 2^0 */
823
7.84k
    felem_assign(ftmp4, ftmp);
824
825
949k
    for (i = 0; i < 120; i++)
826
941k
        felem_square_reduce(ftmp, ftmp); /* 2^239 + ... + 2^120 */
827
7.84k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^239 + ... + 2^0 */
828
829
125k
    for (i = 0; i < 15; i++)
830
117k
        felem_square_reduce(ftmp, ftmp); /* 2^254 + ... + 2^15 */
831
7.84k
    felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^254 + ... + 2^0 */
832
833
251k
    for (i = 0; i < 31; i++)
834
243k
        felem_square_reduce(ftmp, ftmp); /* 2^285 + ... + 2^31 */
835
7.84k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^285 + ... + 2^31 + 2^29 + ... + 2^0 */
836
837
23.5k
    for (i = 0; i < 2; i++)
838
15.6k
        felem_square_reduce(ftmp, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^2 */
839
7.84k
    felem_mul_reduce(ftmp, ftmp2, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^0 */
840
841
745k
    for (i = 0; i < 94; i++)
842
737k
        felem_square_reduce(ftmp, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 */
843
7.84k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 + 2^29 + ... + 2^0 */
844
845
23.5k
    for (i = 0; i < 2; i++)
846
15.6k
        felem_square_reduce(ftmp, ftmp); /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 */
847
7.84k
    felem_mul_reduce(ftmp, in, ftmp); /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 + 2^0 */
848
849
7.84k
    memcpy(out, ftmp, sizeof(felem));
850
7.84k
}
851
852
/*
853
 * Zero-check: returns a limb with all bits set if |in| == 0 (mod p)
854
 * and 0 otherwise. We know that field elements are reduced to
855
 * 0 < in < 2p, so we only need to check two cases:
856
 * 0 and 2^384 - 2^128 - 2^96 + 2^32 - 1
857
 *   in[k] < 2^56, k < 6
858
 *   in[6] <= 2^48
859
 */
860
static limb felem_is_zero(const felem in)
861
2.31M
{
862
2.31M
    limb zero, p384;
863
864
2.31M
    zero = in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6];
865
2.31M
    zero = ((int64_t)(zero)-1) >> 63;
866
2.31M
    p384 = (in[0] ^ 0x000000ffffffff) | (in[1] ^ 0xffff0000000000)
867
2.31M
        | (in[2] ^ 0xfffffffffeffff) | (in[3] ^ 0xffffffffffffff)
868
2.31M
        | (in[4] ^ 0xffffffffffffff) | (in[5] ^ 0xffffffffffffff)
869
2.31M
        | (in[6] ^ 0xffffffffffff);
870
2.31M
    p384 = ((int64_t)(p384)-1) >> 63;
871
872
2.31M
    return (zero | p384);
873
2.31M
}
874
875
static int felem_is_zero_int(const void *in)
876
0
{
877
0
    return (int)(felem_is_zero(in) & ((limb)1));
878
0
}
879
880
/*-
881
 * felem_contract converts |in| to its unique, minimal representation.
882
 * Assume we've removed all redundant bits.
883
 * On entry:
884
 *   in[k] < 2^56, k < 6
885
 *   in[6] <= 2^48
886
 */
887
static void felem_contract(felem out, const felem in)
888
34.2k
{
889
34.2k
    static const int64_t two56 = ((limb)1) << 56;
890
891
    /*
892
     * We know for a fact that 0 <= |in| < 2*p, for p = 2^384 - 2^128 - 2^96 + 2^32 - 1
893
     * Perform two successive, idempotent subtractions to reduce if |in| >= p.
894
     */
895
896
34.2k
    int64_t tmp[NLIMBS], cond[5], a;
897
34.2k
    unsigned int i;
898
899
34.2k
    memcpy(tmp, in, sizeof(felem));
900
901
    /* Case 1: a = 1 iff |in| >= 2^384 */
902
34.2k
    a = (in[6] >> 48);
903
34.2k
    tmp[0] += a;
904
34.2k
    tmp[0] -= a << 32;
905
34.2k
    tmp[1] += a << 40;
906
34.2k
    tmp[2] += a << 16;
907
34.2k
    tmp[6] &= 0x0000ffffffffffff;
908
909
    /*
910
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
911
     * non-zero, so we only need one step
912
     */
913
914
34.2k
    a = tmp[0] >> 63;
915
34.2k
    tmp[0] += a & two56;
916
34.2k
    tmp[1] -= a & 1;
917
918
    /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
919
34.2k
    tmp[2] += tmp[1] >> 56;
920
34.2k
    tmp[1] &= 0x00ffffffffffffff;
921
922
34.2k
    tmp[3] += tmp[2] >> 56;
923
34.2k
    tmp[2] &= 0x00ffffffffffffff;
924
925
34.2k
    tmp[4] += tmp[3] >> 56;
926
34.2k
    tmp[3] &= 0x00ffffffffffffff;
927
928
34.2k
    tmp[5] += tmp[4] >> 56;
929
34.2k
    tmp[4] &= 0x00ffffffffffffff;
930
931
34.2k
    tmp[6] += tmp[5] >> 56; /* tmp[6] < 2^48 */
932
34.2k
    tmp[5] &= 0x00ffffffffffffff;
933
934
    /*
935
     * Case 2: a = all ones if p <= |in| < 2^384, 0 otherwise
936
     */
937
938
    /* 0 iff (2^129..2^383) are all one */
939
34.2k
    cond[0] = ((tmp[6] | 0xff000000000000) & tmp[5] & tmp[4] & tmp[3] & (tmp[2] | 0x0000000001ffff)) + 1;
940
    /* 0 iff 2^128 bit is one */
941
34.2k
    cond[1] = (tmp[2] | ~0x00000000010000) + 1;
942
    /* 0 iff (2^96..2^127) bits are all one */
943
34.2k
    cond[2] = ((tmp[2] | 0xffffffffff0000) & (tmp[1] | 0x0000ffffffffff)) + 1;
944
    /* 0 iff (2^32..2^95) bits are all zero */
945
34.2k
    cond[3] = (tmp[1] & ~0xffff0000000000) | (tmp[0] & ~((int64_t)0x000000ffffffff));
946
    /* 0 iff (2^0..2^31) bits are all one */
947
34.2k
    cond[4] = (tmp[0] | 0xffffff00000000) + 1;
948
949
    /*
950
     * In effect, invert our conditions, so that 0 values become all 1's,
951
     * any non-zero value in the low-order 56 bits becomes all 0's
952
     */
953
205k
    for (i = 0; i < 5; i++)
954
171k
        cond[i] = ((cond[i] & 0x00ffffffffffffff) - 1) >> 63;
955
956
    /*
957
     * The condition for determining whether in is greater than our
958
     * prime is given by the following condition.
959
     */
960
961
    /* First subtract 2^384 - 2^129 cheaply */
962
34.2k
    a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
963
34.2k
    tmp[6] &= ~a;
964
34.2k
    tmp[5] &= ~a;
965
34.2k
    tmp[4] &= ~a;
966
34.2k
    tmp[3] &= ~a;
967
34.2k
    tmp[2] &= ~a | 0x0000000001ffff;
968
969
    /*
970
     * Subtract 2^128 - 2^96 by
971
     * means of disjoint cases.
972
     */
973
974
    /* subtract 2^128 if that bit is present, and add 2^96 */
975
34.2k
    a = cond[0] & cond[1];
976
34.2k
    tmp[2] &= ~a | 0xfffffffffeffff;
977
34.2k
    tmp[1] += a & ((int64_t)1 << 40);
978
979
    /* otherwise, clear bits 2^127 .. 2^96  */
980
34.2k
    a = cond[0] & ~cond[1] & (cond[2] & (~cond[3] | cond[4]));
981
34.2k
    tmp[2] &= ~a | 0xffffffffff0000;
982
34.2k
    tmp[1] &= ~a | 0x0000ffffffffff;
983
984
    /* finally, subtract the last 2^32 - 1 */
985
34.2k
    a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
986
34.2k
    tmp[0] += a & (-((int64_t)1 << 32) + 1);
987
988
    /*
989
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
990
     * non-zero, so we only need one step
991
     */
992
34.2k
    a = tmp[0] >> 63;
993
34.2k
    tmp[0] += a & two56;
994
34.2k
    tmp[1] -= a & 1;
995
996
    /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
997
34.2k
    tmp[2] += tmp[1] >> 56;
998
34.2k
    tmp[1] &= 0x00ffffffffffffff;
999
1000
34.2k
    tmp[3] += tmp[2] >> 56;
1001
34.2k
    tmp[2] &= 0x00ffffffffffffff;
1002
1003
34.2k
    tmp[4] += tmp[3] >> 56;
1004
34.2k
    tmp[3] &= 0x00ffffffffffffff;
1005
1006
34.2k
    tmp[5] += tmp[4] >> 56;
1007
34.2k
    tmp[4] &= 0x00ffffffffffffff;
1008
1009
34.2k
    tmp[6] += tmp[5] >> 56;
1010
34.2k
    tmp[5] &= 0x00ffffffffffffff;
1011
1012
34.2k
    memcpy(out, tmp, sizeof(felem));
1013
34.2k
}
1014
1015
/*-
1016
 * Group operations
1017
 * ----------------
1018
 *
1019
 * Building on top of the field operations we have the operations on the
1020
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1021
 * coordinates
1022
 */
1023
1024
/*-
1025
 * point_double calculates 2*(x_in, y_in, z_in)
1026
 *
1027
 * The method is taken from:
1028
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1029
 *
1030
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1031
 * while x_out == y_in is not (maybe this works, but it's not tested).
1032
 */
1033
static void
1034
point_double(felem x_out, felem y_out, felem z_out,
1035
    const felem x_in, const felem y_in, const felem z_in)
1036
1.21M
{
1037
1.21M
    widefelem tmp, tmp2;
1038
1.21M
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1039
1040
1.21M
    felem_assign(ftmp, x_in);
1041
1.21M
    felem_assign(ftmp2, x_in);
1042
1043
    /* delta = z^2 */
1044
1.21M
    felem_square_reduce(delta, z_in); /* delta[i] < 2^56 */
1045
1046
    /* gamma = y^2 */
1047
1.21M
    felem_square_reduce(gamma, y_in); /* gamma[i] < 2^56 */
1048
1049
    /* beta = x*gamma */
1050
1.21M
    felem_mul_reduce(beta, x_in, gamma); /* beta[i] < 2^56 */
1051
1052
    /* alpha = 3*(x-delta)*(x+delta) */
1053
1.21M
    felem_diff64(ftmp, delta); /* ftmp[i] < 2^60 + 2^58 + 2^44 */
1054
1.21M
    felem_sum64(ftmp2, delta); /* ftmp2[i] < 2^59 */
1055
1.21M
    felem_scalar64(ftmp2, 3); /* ftmp2[i] < 2^61 */
1056
1.21M
    felem_mul_reduce(alpha, ftmp, ftmp2); /* alpha[i] < 2^56 */
1057
1058
    /* x' = alpha^2 - 8*beta */
1059
1.21M
    felem_square(tmp, alpha); /* tmp[i] < 2^115 */
1060
1.21M
    felem_assign(ftmp, beta); /* ftmp[i] < 2^56 */
1061
1.21M
    felem_scalar64(ftmp, 8); /* ftmp[i] < 2^59 */
1062
1.21M
    felem_diff_128_64(tmp, ftmp); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1063
1.21M
    felem_reduce(x_out, tmp); /* x_out[i] < 2^56 */
1064
1065
    /* z' = (y + z)^2 - gamma - delta */
1066
1.21M
    felem_sum64(delta, gamma); /* delta[i] < 2^57 */
1067
1.21M
    felem_assign(ftmp, y_in); /* ftmp[i] < 2^56 */
1068
1.21M
    felem_sum64(ftmp, z_in); /* ftmp[i] < 2^56 */
1069
1.21M
    felem_square(tmp, ftmp); /* tmp[i] < 2^115 */
1070
1.21M
    felem_diff_128_64(tmp, delta); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1071
1.21M
    felem_reduce(z_out, tmp); /* z_out[i] < 2^56 */
1072
1073
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1074
1.21M
    felem_scalar64(beta, 4); /* beta[i] < 2^58 */
1075
1.21M
    felem_diff64(beta, x_out); /* beta[i] < 2^60 + 2^58 + 2^44 */
1076
1.21M
    felem_mul(tmp, alpha, beta); /* tmp[i] < 2^119 */
1077
1.21M
    felem_square(tmp2, gamma); /* tmp2[i] < 2^115 */
1078
1.21M
    felem_scalar128(tmp2, 8); /* tmp2[i] < 2^118 */
1079
1.21M
    felem_diff128(tmp, tmp2); /* tmp[i] < 2^127 + 2^119 + 2^111 */
1080
1.21M
    felem_reduce(y_out, tmp); /* tmp[i] < 2^56 */
1081
1.21M
}
1082
1083
/* copy_conditional copies in to out iff mask is all ones. */
1084
static void copy_conditional(felem out, const felem in, limb mask)
1085
3.63M
{
1086
3.63M
    unsigned int i;
1087
1088
29.0M
    for (i = 0; i < NLIMBS; i++)
1089
25.4M
        out[i] ^= mask & (in[i] ^ out[i]);
1090
3.63M
}
1091
1092
/*-
1093
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1094
 *
1095
 * The method is taken from
1096
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1097
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1098
 *
1099
 * This function includes a branch for checking whether the two input points
1100
 * are equal (while not equal to the point at infinity). See comment below
1101
 * on constant-time.
1102
 */
1103
static void point_add(felem x3, felem y3, felem z3,
1104
    const felem x1, const felem y1, const felem z1,
1105
    const int mixed, const felem x2, const felem y2,
1106
    const felem z2)
1107
578k
{
1108
578k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1109
578k
    widefelem tmp, tmp2;
1110
578k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1111
578k
    limb points_equal;
1112
1113
578k
    z1_is_zero = felem_is_zero(z1);
1114
578k
    z2_is_zero = felem_is_zero(z2);
1115
1116
    /* ftmp = z1z1 = z1**2 */
1117
578k
    felem_square_reduce(ftmp, z1); /* ftmp[i] < 2^56 */
1118
1119
578k
    if (!mixed) {
1120
        /* ftmp2 = z2z2 = z2**2 */
1121
172k
        felem_square_reduce(ftmp2, z2); /* ftmp2[i] < 2^56 */
1122
1123
        /* u1 = ftmp3 = x1*z2z2 */
1124
172k
        felem_mul_reduce(ftmp3, x1, ftmp2); /* ftmp3[i] < 2^56 */
1125
1126
        /* ftmp5 = z1 + z2 */
1127
172k
        felem_assign(ftmp5, z1); /* ftmp5[i] < 2^56 */
1128
172k
        felem_sum64(ftmp5, z2); /* ftmp5[i] < 2^57 */
1129
1130
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1131
172k
        felem_square(tmp, ftmp5); /* tmp[i] < 2^117 */
1132
172k
        felem_diff_128_64(tmp, ftmp); /* tmp[i] < 2^117 + 2^64 + 2^48 */
1133
172k
        felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^65 + 2^49 */
1134
172k
        felem_reduce(ftmp5, tmp); /* ftmp5[i] < 2^56 */
1135
1136
        /* ftmp2 = z2 * z2z2 */
1137
172k
        felem_mul_reduce(ftmp2, ftmp2, z2); /* ftmp2[i] < 2^56 */
1138
1139
        /* s1 = ftmp6 = y1 * z2**3 */
1140
172k
        felem_mul_reduce(ftmp6, y1, ftmp2); /* ftmp6[i] < 2^56 */
1141
405k
    } else {
1142
        /*
1143
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1144
         */
1145
1146
        /* u1 = ftmp3 = x1*z2z2 */
1147
405k
        felem_assign(ftmp3, x1); /* ftmp3[i] < 2^56 */
1148
1149
        /* ftmp5 = 2*z1z2 */
1150
405k
        felem_scalar(ftmp5, z1, 2); /* ftmp5[i] < 2^57 */
1151
1152
        /* s1 = ftmp6 = y1 * z2**3 */
1153
405k
        felem_assign(ftmp6, y1); /* ftmp6[i] < 2^56 */
1154
405k
    }
1155
    /* ftmp3[i] < 2^56, ftmp5[i] < 2^57, ftmp6[i] < 2^56 */
1156
1157
    /* u2 = x2*z1z1 */
1158
578k
    felem_mul(tmp, x2, ftmp); /* tmp[i] < 2^115 */
1159
1160
    /* h = ftmp4 = u2 - u1 */
1161
578k
    felem_diff_128_64(tmp, ftmp3); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1162
578k
    felem_reduce(ftmp4, tmp); /* ftmp[4] < 2^56 */
1163
1164
578k
    x_equal = felem_is_zero(ftmp4);
1165
1166
    /* z_out = ftmp5 * h */
1167
578k
    felem_mul_reduce(z_out, ftmp5, ftmp4); /* z_out[i] < 2^56 */
1168
1169
    /* ftmp = z1 * z1z1 */
1170
578k
    felem_mul_reduce(ftmp, ftmp, z1); /* ftmp[i] < 2^56 */
1171
1172
    /* s2 = tmp = y2 * z1**3 */
1173
578k
    felem_mul(tmp, y2, ftmp); /* tmp[i] < 2^115 */
1174
1175
    /* r = ftmp5 = (s2 - s1)*2 */
1176
578k
    felem_diff_128_64(tmp, ftmp6); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1177
578k
    felem_reduce(ftmp5, tmp); /* ftmp5[i] < 2^56 */
1178
578k
    y_equal = felem_is_zero(ftmp5);
1179
578k
    felem_scalar64(ftmp5, 2); /* ftmp5[i] < 2^57 */
1180
1181
    /*
1182
     * The formulae are incorrect if the points are equal, in affine coordinates
1183
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1184
     * happens.
1185
     *
1186
     * We use bitwise operations to avoid potential side-channels introduced by
1187
     * the short-circuiting behaviour of boolean operators.
1188
     *
1189
     * The special case of either point being the point at infinity (z1 and/or
1190
     * z2 are zero), is handled separately later on in this function, so we
1191
     * avoid jumping to point_double here in those special cases.
1192
     *
1193
     * Notice the comment below on the implications of this branching for timing
1194
     * leaks and why it is considered practically irrelevant.
1195
     */
1196
578k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1197
1198
578k
    if (points_equal) {
1199
        /*
1200
         * This is obviously not constant-time but it will almost-never happen
1201
         * for ECDH / ECDSA.
1202
         */
1203
0
        point_double(x3, y3, z3, x1, y1, z1);
1204
0
        return;
1205
0
    }
1206
1207
    /* I = ftmp = (2h)**2 */
1208
578k
    felem_assign(ftmp, ftmp4); /* ftmp[i] < 2^56 */
1209
578k
    felem_scalar64(ftmp, 2); /* ftmp[i] < 2^57 */
1210
578k
    felem_square_reduce(ftmp, ftmp); /* ftmp[i] < 2^56 */
1211
1212
    /* J = ftmp2 = h * I */
1213
578k
    felem_mul_reduce(ftmp2, ftmp4, ftmp); /* ftmp2[i] < 2^56 */
1214
1215
    /* V = ftmp4 = U1 * I */
1216
578k
    felem_mul_reduce(ftmp4, ftmp3, ftmp); /* ftmp4[i] < 2^56 */
1217
1218
    /* x_out = r**2 - J - 2V */
1219
578k
    felem_square(tmp, ftmp5); /* tmp[i] < 2^117 */
1220
578k
    felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^64 + 2^48 */
1221
578k
    felem_assign(ftmp3, ftmp4); /* ftmp3[i] < 2^56 */
1222
578k
    felem_scalar64(ftmp4, 2); /* ftmp4[i] < 2^57 */
1223
578k
    felem_diff_128_64(tmp, ftmp4); /* tmp[i] < 2^117 + 2^65 + 2^49 */
1224
578k
    felem_reduce(x_out, tmp); /* x_out[i] < 2^56 */
1225
1226
    /* y_out = r(V-x_out) - 2 * s1 * J */
1227
578k
    felem_diff64(ftmp3, x_out); /* ftmp3[i] < 2^60 + 2^56 + 2^44 */
1228
578k
    felem_mul(tmp, ftmp5, ftmp3); /* tmp[i] < 2^116 */
1229
578k
    felem_mul(tmp2, ftmp6, ftmp2); /* tmp2[i] < 2^115 */
1230
578k
    felem_scalar128(tmp2, 2); /* tmp2[i] < 2^116 */
1231
578k
    felem_diff128(tmp, tmp2); /* tmp[i] < 2^127 + 2^116 + 2^111 */
1232
578k
    felem_reduce(y_out, tmp); /* y_out[i] < 2^56 */
1233
1234
578k
    copy_conditional(x_out, x2, z1_is_zero);
1235
578k
    copy_conditional(x_out, x1, z2_is_zero);
1236
578k
    copy_conditional(y_out, y2, z1_is_zero);
1237
578k
    copy_conditional(y_out, y1, z2_is_zero);
1238
578k
    copy_conditional(z_out, z2, z1_is_zero);
1239
578k
    copy_conditional(z_out, z1, z2_is_zero);
1240
578k
    felem_assign(x3, x_out);
1241
578k
    felem_assign(y3, y_out);
1242
578k
    felem_assign(z3, z_out);
1243
578k
}
1244
1245
/*-
1246
 * Base point pre computation
1247
 * --------------------------
1248
 *
1249
 * Two different sorts of precomputed tables are used in the following code.
1250
 * Each contain various points on the curve, where each point is three field
1251
 * elements (x, y, z).
1252
 *
1253
 * For the base point table, z is usually 1 (0 for the point at infinity).
1254
 * This table has 16 elements:
1255
 * index | bits    | point
1256
 * ------+---------+------------------------------
1257
 *     0 | 0 0 0 0 | 0G
1258
 *     1 | 0 0 0 1 | 1G
1259
 *     2 | 0 0 1 0 | 2^95G
1260
 *     3 | 0 0 1 1 | (2^95 + 1)G
1261
 *     4 | 0 1 0 0 | 2^190G
1262
 *     5 | 0 1 0 1 | (2^190 + 1)G
1263
 *     6 | 0 1 1 0 | (2^190 + 2^95)G
1264
 *     7 | 0 1 1 1 | (2^190 + 2^95 + 1)G
1265
 *     8 | 1 0 0 0 | 2^285G
1266
 *     9 | 1 0 0 1 | (2^285 + 1)G
1267
 *    10 | 1 0 1 0 | (2^285 + 2^95)G
1268
 *    11 | 1 0 1 1 | (2^285 + 2^95 + 1)G
1269
 *    12 | 1 1 0 0 | (2^285 + 2^190)G
1270
 *    13 | 1 1 0 1 | (2^285 + 2^190 + 1)G
1271
 *    14 | 1 1 1 0 | (2^285 + 2^190 + 2^95)G
1272
 *    15 | 1 1 1 1 | (2^285 + 2^190 + 2^95 + 1)G
1273
 *
1274
 * The reason for this is so that we can clock bits into four different
1275
 * locations when doing simple scalar multiplies against the base point.
1276
 *
1277
 * Tables for other points have table[i] = iG for i in 0 .. 16.
1278
 */
1279
1280
/* gmul is the table of precomputed base points */
1281
static const felem gmul[16][3] = {
1282
    { { 0, 0, 0, 0, 0, 0, 0 },
1283
        { 0, 0, 0, 0, 0, 0, 0 },
1284
        { 0, 0, 0, 0, 0, 0, 0 } },
1285
    { { 0x00545e3872760ab7, 0x00f25dbf55296c3a, 0x00e082542a385502, 0x008ba79b9859f741,
1286
          0x0020ad746e1d3b62, 0x0005378eb1c71ef3, 0x0000aa87ca22be8b },
1287
        { 0x00431d7c90ea0e5f, 0x00b1ce1d7e819d7a, 0x0013b5f0b8c00a60, 0x00289a147ce9da31,
1288
            0x0092dc29f8f41dbd, 0x002c6f5d9e98bf92, 0x00003617de4a9626 },
1289
        { 1, 0, 0, 0, 0, 0, 0 } },
1290
    { { 0x00024711cc902a90, 0x00acb2e579ab4fe1, 0x00af818a4b4d57b1, 0x00a17c7bec49c3de,
1291
          0x004280482d726a8b, 0x00128dd0f0a90f3b, 0x00004387c1c3fa3c },
1292
        { 0x002ce76543cf5c3a, 0x00de6cee5ef58f0a, 0x00403e42fa561ca6, 0x00bc54d6f9cb9731,
1293
            0x007155f925fb4ff1, 0x004a9ce731b7b9bc, 0x00002609076bd7b2 },
1294
        { 1, 0, 0, 0, 0, 0, 0 } },
1295
    { { 0x00e74c9182f0251d, 0x0039bf54bb111974, 0x00b9d2f2eec511d2, 0x0036b1594eb3a6a4,
1296
          0x00ac3bb82d9d564b, 0x00f9313f4615a100, 0x00006716a9a91b10 },
1297
        { 0x0046698116e2f15c, 0x00f34347067d3d33, 0x008de4ccfdebd002, 0x00e838c6b8e8c97b,
1298
            0x006faf0798def346, 0x007349794a57563c, 0x00002629e7e6ad84 },
1299
        { 1, 0, 0, 0, 0, 0, 0 } },
1300
    { { 0x0075300e34fd163b, 0x0092e9db4e8d0ad3, 0x00254be9f625f760, 0x00512c518c72ae68,
1301
          0x009bfcf162bede5a, 0x00bf9341566ce311, 0x0000cd6175bd41cf },
1302
        { 0x007dfe52af4ac70f, 0x0002159d2d5c4880, 0x00b504d16f0af8d0, 0x0014585e11f5e64c,
1303
            0x0089c6388e030967, 0x00ffb270cbfa5f71, 0x00009a15d92c3947 },
1304
        { 1, 0, 0, 0, 0, 0, 0 } },
1305
    { { 0x0033fc1278dc4fe5, 0x00d53088c2caa043, 0x0085558827e2db66, 0x00c192bef387b736,
1306
          0x00df6405a2225f2c, 0x0075205aa90fd91a, 0x0000137e3f12349d },
1307
        { 0x00ce5b115efcb07e, 0x00abc3308410deeb, 0x005dc6fc1de39904, 0x00907c1c496f36b4,
1308
            0x0008e6ad3926cbe1, 0x00110747b787928c, 0x0000021b9162eb7e },
1309
        { 1, 0, 0, 0, 0, 0, 0 } },
1310
    { { 0x008180042cfa26e1, 0x007b826a96254967, 0x0082473694d6b194, 0x007bd6880a45b589,
1311
          0x00c0a5097072d1a3, 0x0019186555e18b4e, 0x000020278190e5ca },
1312
        { 0x00b4bef17de61ac0, 0x009535e3c38ed348, 0x002d4aa8e468ceab, 0x00ef40b431036ad3,
1313
            0x00defd52f4542857, 0x0086edbf98234266, 0x00002025b3a7814d },
1314
        { 1, 0, 0, 0, 0, 0, 0 } },
1315
    { { 0x00b238aa97b886be, 0x00ef3192d6dd3a32, 0x0079f9e01fd62df8, 0x00742e890daba6c5,
1316
          0x008e5289144408ce, 0x0073bbcc8e0171a5, 0x0000c4fd329d3b52 },
1317
        { 0x00c6f64a15ee23e7, 0x00dcfb7b171cad8b, 0x00039f6cbd805867, 0x00de024e428d4562,
1318
            0x00be6a594d7c64c5, 0x0078467b70dbcd64, 0x0000251f2ed7079b },
1319
        { 1, 0, 0, 0, 0, 0, 0 } },
1320
    { { 0x000e5cc25fc4b872, 0x005ebf10d31ef4e1, 0x0061e0ebd11e8256, 0x0076e026096f5a27,
1321
          0x0013e6fc44662e9a, 0x0042b00289d3597e, 0x000024f089170d88 },
1322
        { 0x001604d7e0effbe6, 0x0048d77cba64ec2c, 0x008166b16da19e36, 0x006b0d1a0f28c088,
1323
            0x000259fcd47754fd, 0x00cc643e4d725f9a, 0x00007b10f3c79c14 },
1324
        { 1, 0, 0, 0, 0, 0, 0 } },
1325
    { { 0x00430155e3b908af, 0x00b801e4fec25226, 0x00b0d4bcfe806d26, 0x009fc4014eb13d37,
1326
          0x0066c94e44ec07e8, 0x00d16adc03874ba2, 0x000030c917a0d2a7 },
1327
        { 0x00edac9e21eb891c, 0x00ef0fb768102eff, 0x00c088cef272a5f3, 0x00cbf782134e2964,
1328
            0x0001044a7ba9a0e3, 0x00e363f5b194cf3c, 0x00009ce85249e372 },
1329
        { 1, 0, 0, 0, 0, 0, 0 } },
1330
    { { 0x001dd492dda5a7eb, 0x008fd577be539fd1, 0x002ff4b25a5fc3f1, 0x0074a8a1b64df72f,
1331
          0x002ba3d8c204a76c, 0x009d5cff95c8235a, 0x0000e014b9406e0f },
1332
        { 0x008c2e4dbfc98aba, 0x00f30bb89f1a1436, 0x00b46f7aea3e259c, 0x009224454ac02f54,
1333
            0x00906401f5645fa2, 0x003a1d1940eabc77, 0x00007c9351d680e6 },
1334
        { 1, 0, 0, 0, 0, 0, 0 } },
1335
    { { 0x005a35d872ef967c, 0x0049f1b7884e1987, 0x0059d46d7e31f552, 0x00ceb4869d2d0fb6,
1336
          0x00e8e89eee56802a, 0x0049d806a774aaf2, 0x0000147e2af0ae24 },
1337
        { 0x005fd1bd852c6e5e, 0x00b674b7b3de6885, 0x003b9ea5eb9b6c08, 0x005c9f03babf3ef7,
1338
            0x00605337fecab3c7, 0x009a3f85b11bbcc8, 0x0000455470f330ec },
1339
        { 1, 0, 0, 0, 0, 0, 0 } },
1340
    { { 0x002197ff4d55498d, 0x00383e8916c2d8af, 0x00eb203f34d1c6d2, 0x0080367cbd11b542,
1341
          0x00769b3be864e4f5, 0x0081a8458521c7bb, 0x0000c531b34d3539 },
1342
        { 0x00e2a3d775fa2e13, 0x00534fc379573844, 0x00ff237d2a8db54a, 0x00d301b2335a8882,
1343
            0x000f75ea96103a80, 0x0018fecb3cdd96fa, 0x0000304bf61e94eb },
1344
        { 1, 0, 0, 0, 0, 0, 0 } },
1345
    { { 0x00b2afc332a73dbd, 0x0029a0d5bb007bc5, 0x002d628eb210f577, 0x009f59a36dd05f50,
1346
          0x006d339de4eca613, 0x00c75a71addc86bc, 0x000060384c5ea93c },
1347
        { 0x00aa9641c32a30b4, 0x00cc73ae8cce565d, 0x00ec911a4df07f61, 0x00aa4b762ea4b264,
1348
            0x0096d395bb393629, 0x004efacfb7632fe0, 0x00006f252f46fa3f },
1349
        { 1, 0, 0, 0, 0, 0, 0 } },
1350
    { { 0x00567eec597c7af6, 0x0059ba6795204413, 0x00816d4e6f01196f, 0x004ae6b3eb57951d,
1351
          0x00420f5abdda2108, 0x003401d1f57ca9d9, 0x0000cf5837b0b67a },
1352
        { 0x00eaa64b8aeeabf9, 0x00246ddf16bcb4de, 0x000e7e3c3aecd751, 0x0008449f04fed72e,
1353
            0x00307b67ccf09183, 0x0017108c3556b7b1, 0x0000229b2483b3bf },
1354
        { 1, 0, 0, 0, 0, 0, 0 } },
1355
    { { 0x00e7c491a7bb78a1, 0x00eafddd1d3049ab, 0x00352c05e2bc7c98, 0x003d6880c165fa5c,
1356
          0x00b6ac61cc11c97d, 0x00beeb54fcf90ce5, 0x0000dc1f0b455edc },
1357
        { 0x002db2e7aee34d60, 0x0073b5f415a2d8c0, 0x00dd84e4193e9a0c, 0x00d02d873467c572,
1358
            0x0018baaeda60aee5, 0x0013fb11d697c61e, 0x000083aafcc3a973 },
1359
        { 1, 0, 0, 0, 0, 0, 0 } }
1360
};
1361
1362
/*
1363
 * select_point selects the |idx|th point from a precomputation table and
1364
 * copies it to out.
1365
 *
1366
 * pre_comp below is of the size provided in |size|.
1367
 */
1368
static void select_point(const limb idx, unsigned int size,
1369
    const felem pre_comp[][3], felem out[3])
1370
570k
{
1371
570k
    unsigned int i, j;
1372
570k
    limb *outlimbs = &out[0][0];
1373
1374
570k
    memset(out, 0, sizeof(*out) * 3);
1375
1376
9.85M
    for (i = 0; i < size; i++) {
1377
9.28M
        const limb *inlimbs = &pre_comp[i][0][0];
1378
9.28M
        limb mask = i ^ idx;
1379
1380
9.28M
        mask |= mask >> 4;
1381
9.28M
        mask |= mask >> 2;
1382
9.28M
        mask |= mask >> 1;
1383
9.28M
        mask &= 1;
1384
9.28M
        mask--;
1385
204M
        for (j = 0; j < NLIMBS * 3; j++)
1386
195M
            outlimbs[j] |= inlimbs[j] & mask;
1387
9.28M
    }
1388
570k
}
1389
1390
/* get_bit returns the |i|th bit in |in| */
1391
static char get_bit(const felem_bytearray in, int i)
1392
2.55M
{
1393
2.55M
    if (i < 0 || i >= 384)
1394
4.16k
        return 0;
1395
2.54M
    return (in[i >> 3] >> (i & 7)) & 1;
1396
2.55M
}
1397
1398
/*
1399
 * Interleaved point multiplication using precomputed point multiples: The
1400
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1401
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1402
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1403
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1404
 */
1405
static void batch_mul(felem x_out, felem y_out, felem z_out,
1406
    const felem_bytearray scalars[],
1407
    const unsigned int num_points, const u8 *g_scalar,
1408
    const int mixed, const felem pre_comp[][17][3],
1409
    const felem g_pre_comp[16][3])
1410
6.19k
{
1411
6.19k
    int i, skip;
1412
6.19k
    unsigned int num, gen_mul = (g_scalar != NULL);
1413
6.19k
    felem nq[3], tmp[4];
1414
6.19k
    limb bits;
1415
6.19k
    u8 sign, digit;
1416
1417
    /* set nq to the point at infinity */
1418
6.19k
    memset(nq, 0, sizeof(nq));
1419
1420
    /*
1421
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1422
     * of the generator (last quarter of rounds) and additions of other
1423
     * points multiples (every 5th round).
1424
     */
1425
6.19k
    skip = 1; /* save two point operations in the first
1426
               * round */
1427
1.20M
    for (i = (num_points ? 380 : 98); i >= 0; --i) {
1428
        /* double */
1429
1.20M
        if (!skip)
1430
1.19M
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1431
1432
        /* add multiples of the generator */
1433
1.20M
        if (gen_mul && (i <= 98)) {
1434
410k
            bits = get_bit(g_scalar, i + 285) << 3;
1435
410k
            if (i < 95) {
1436
393k
                bits |= get_bit(g_scalar, i + 190) << 2;
1437
393k
                bits |= get_bit(g_scalar, i + 95) << 1;
1438
393k
                bits |= get_bit(g_scalar, i);
1439
393k
            }
1440
            /* select the point to add, in constant time */
1441
410k
            select_point(bits, 16, g_pre_comp, tmp);
1442
410k
            if (!skip) {
1443
                /* The 1 argument below is for "mixed" */
1444
405k
                point_add(nq[0], nq[1], nq[2],
1445
405k
                    nq[0], nq[1], nq[2], 1,
1446
405k
                    tmp[0], tmp[1], tmp[2]);
1447
405k
            } else {
1448
4.10k
                memcpy(nq, tmp, 3 * sizeof(felem));
1449
4.10k
                skip = 0;
1450
4.10k
            }
1451
410k
        }
1452
1453
        /* do other additions every 5 doublings */
1454
1.20M
        if (num_points && (i % 5 == 0)) {
1455
            /* loop over all scalars */
1456
320k
            for (num = 0; num < num_points; ++num) {
1457
160k
                bits = get_bit(scalars[num], i + 4) << 5;
1458
160k
                bits |= get_bit(scalars[num], i + 3) << 4;
1459
160k
                bits |= get_bit(scalars[num], i + 2) << 3;
1460
160k
                bits |= get_bit(scalars[num], i + 1) << 2;
1461
160k
                bits |= get_bit(scalars[num], i) << 1;
1462
160k
                bits |= get_bit(scalars[num], i - 1);
1463
160k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1464
1465
                /*
1466
                 * select the point to add or subtract, in constant time
1467
                 */
1468
160k
                select_point(digit, 17, pre_comp[num], tmp);
1469
160k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1470
                                            * point */
1471
160k
                copy_conditional(tmp[1], tmp[3], (-(limb)sign));
1472
1473
160k
                if (!skip) {
1474
158k
                    point_add(nq[0], nq[1], nq[2],
1475
158k
                        nq[0], nq[1], nq[2], mixed,
1476
158k
                        tmp[0], tmp[1], tmp[2]);
1477
158k
                } else {
1478
2.08k
                    memcpy(nq, tmp, 3 * sizeof(felem));
1479
2.08k
                    skip = 0;
1480
2.08k
                }
1481
160k
            }
1482
160k
        }
1483
1.20M
    }
1484
6.19k
    felem_assign(x_out, nq[0]);
1485
6.19k
    felem_assign(y_out, nq[1]);
1486
6.19k
    felem_assign(z_out, nq[2]);
1487
6.19k
}
1488
1489
/* Precomputation for the group generator. */
1490
struct nistp384_pre_comp_st {
1491
    felem g_pre_comp[16][3];
1492
    CRYPTO_REF_COUNT references;
1493
};
1494
1495
const EC_METHOD *ossl_ec_GFp_nistp384_method(void)
1496
16.2k
{
1497
16.2k
    static const EC_METHOD ret = {
1498
16.2k
        EC_FLAGS_DEFAULT_OCT,
1499
16.2k
        NID_X9_62_prime_field,
1500
16.2k
        ossl_ec_GFp_nistp384_group_init,
1501
16.2k
        ossl_ec_GFp_simple_group_finish,
1502
16.2k
        ossl_ec_GFp_simple_group_clear_finish,
1503
16.2k
        ossl_ec_GFp_nist_group_copy,
1504
16.2k
        ossl_ec_GFp_nistp384_group_set_curve,
1505
16.2k
        ossl_ec_GFp_simple_group_get_curve,
1506
16.2k
        ossl_ec_GFp_simple_group_get_degree,
1507
16.2k
        ossl_ec_group_simple_order_bits,
1508
16.2k
        ossl_ec_GFp_simple_group_check_discriminant,
1509
16.2k
        ossl_ec_GFp_simple_point_init,
1510
16.2k
        ossl_ec_GFp_simple_point_finish,
1511
16.2k
        ossl_ec_GFp_simple_point_clear_finish,
1512
16.2k
        ossl_ec_GFp_simple_point_copy,
1513
16.2k
        ossl_ec_GFp_simple_point_set_to_infinity,
1514
16.2k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1515
16.2k
        ossl_ec_GFp_nistp384_point_get_affine_coordinates,
1516
16.2k
        0, /* point_set_compressed_coordinates */
1517
16.2k
        0, /* point2oct */
1518
16.2k
        0, /* oct2point */
1519
16.2k
        ossl_ec_GFp_simple_add,
1520
16.2k
        ossl_ec_GFp_simple_dbl,
1521
16.2k
        ossl_ec_GFp_simple_invert,
1522
16.2k
        ossl_ec_GFp_simple_is_at_infinity,
1523
16.2k
        ossl_ec_GFp_simple_is_on_curve,
1524
16.2k
        ossl_ec_GFp_simple_cmp,
1525
16.2k
        ossl_ec_GFp_simple_make_affine,
1526
16.2k
        ossl_ec_GFp_simple_points_make_affine,
1527
16.2k
        ossl_ec_GFp_nistp384_points_mul,
1528
16.2k
        ossl_ec_GFp_nistp384_precompute_mult,
1529
16.2k
        ossl_ec_GFp_nistp384_have_precompute_mult,
1530
16.2k
        ossl_ec_GFp_nist_field_mul,
1531
16.2k
        ossl_ec_GFp_nist_field_sqr,
1532
16.2k
        0, /* field_div */
1533
16.2k
        ossl_ec_GFp_simple_field_inv,
1534
16.2k
        0, /* field_encode */
1535
16.2k
        0, /* field_decode */
1536
16.2k
        0, /* field_set_to_one */
1537
16.2k
        ossl_ec_key_simple_priv2oct,
1538
16.2k
        ossl_ec_key_simple_oct2priv,
1539
16.2k
        0, /* set private */
1540
16.2k
        ossl_ec_key_simple_generate_key,
1541
16.2k
        ossl_ec_key_simple_check_key,
1542
16.2k
        ossl_ec_key_simple_generate_public_key,
1543
16.2k
        0, /* keycopy */
1544
16.2k
        0, /* keyfinish */
1545
16.2k
        ossl_ecdh_simple_compute_key,
1546
16.2k
        ossl_ecdsa_simple_sign_setup,
1547
16.2k
        ossl_ecdsa_simple_sign_sig,
1548
16.2k
        ossl_ecdsa_simple_verify_sig,
1549
16.2k
        0, /* field_inverse_mod_ord */
1550
16.2k
        0, /* blind_coordinates */
1551
16.2k
        0, /* ladder_pre */
1552
16.2k
        0, /* ladder_step */
1553
16.2k
        0 /* ladder_post */
1554
16.2k
    };
1555
1556
16.2k
    return &ret;
1557
16.2k
}
1558
1559
/******************************************************************************/
1560
/*
1561
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1562
 */
1563
1564
static NISTP384_PRE_COMP *nistp384_pre_comp_new(void)
1565
0
{
1566
0
    NISTP384_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1567
1568
0
    if (ret == NULL)
1569
0
        return ret;
1570
1571
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1572
0
        OPENSSL_free(ret);
1573
0
        return NULL;
1574
0
    }
1575
0
    return ret;
1576
0
}
1577
1578
NISTP384_PRE_COMP *ossl_ec_nistp384_pre_comp_dup(NISTP384_PRE_COMP *p)
1579
0
{
1580
0
    int i;
1581
1582
0
    if (p != NULL)
1583
0
        CRYPTO_UP_REF(&p->references, &i);
1584
0
    return p;
1585
0
}
1586
1587
void ossl_ec_nistp384_pre_comp_free(NISTP384_PRE_COMP *p)
1588
0
{
1589
0
    int i;
1590
1591
0
    if (p == NULL)
1592
0
        return;
1593
1594
0
    CRYPTO_DOWN_REF(&p->references, &i);
1595
0
    REF_PRINT_COUNT("ossl_ec_nistp384", i, p);
1596
0
    if (i > 0)
1597
0
        return;
1598
0
    REF_ASSERT_ISNT(i < 0);
1599
1600
0
    CRYPTO_FREE_REF(&p->references);
1601
0
    OPENSSL_free(p);
1602
0
}
1603
1604
/******************************************************************************/
1605
/*
1606
 * OPENSSL EC_METHOD FUNCTIONS
1607
 */
1608
1609
int ossl_ec_GFp_nistp384_group_init(EC_GROUP *group)
1610
34.3k
{
1611
34.3k
    int ret;
1612
1613
34.3k
    ret = ossl_ec_GFp_simple_group_init(group);
1614
34.3k
    group->a_is_minus3 = 1;
1615
34.3k
    return ret;
1616
34.3k
}
1617
1618
int ossl_ec_GFp_nistp384_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1619
    const BIGNUM *a, const BIGNUM *b,
1620
    BN_CTX *ctx)
1621
16.2k
{
1622
16.2k
    int ret = 0;
1623
16.2k
    BIGNUM *curve_p, *curve_a, *curve_b;
1624
16.2k
#ifndef FIPS_MODULE
1625
16.2k
    BN_CTX *new_ctx = NULL;
1626
1627
16.2k
    if (ctx == NULL)
1628
0
        ctx = new_ctx = BN_CTX_new();
1629
16.2k
#endif
1630
16.2k
    if (ctx == NULL)
1631
0
        return 0;
1632
1633
16.2k
    BN_CTX_start(ctx);
1634
16.2k
    curve_p = BN_CTX_get(ctx);
1635
16.2k
    curve_a = BN_CTX_get(ctx);
1636
16.2k
    curve_b = BN_CTX_get(ctx);
1637
16.2k
    if (curve_b == NULL)
1638
0
        goto err;
1639
16.2k
    BN_bin2bn(nistp384_curve_params[0], sizeof(felem_bytearray), curve_p);
1640
16.2k
    BN_bin2bn(nistp384_curve_params[1], sizeof(felem_bytearray), curve_a);
1641
16.2k
    BN_bin2bn(nistp384_curve_params[2], sizeof(felem_bytearray), curve_b);
1642
16.2k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1643
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1644
0
        goto err;
1645
0
    }
1646
16.2k
    group->field_mod_func = BN_nist_mod_384;
1647
16.2k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1648
16.2k
err:
1649
16.2k
    BN_CTX_end(ctx);
1650
16.2k
#ifndef FIPS_MODULE
1651
16.2k
    BN_CTX_free(new_ctx);
1652
16.2k
#endif
1653
16.2k
    return ret;
1654
16.2k
}
1655
1656
/*
1657
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1658
 * (X/Z^2, Y/Z^3)
1659
 */
1660
int ossl_ec_GFp_nistp384_point_get_affine_coordinates(const EC_GROUP *group,
1661
    const EC_POINT *point,
1662
    BIGNUM *x, BIGNUM *y,
1663
    BN_CTX *ctx)
1664
7.84k
{
1665
7.84k
    felem z1, z2, x_in, y_in, x_out, y_out;
1666
7.84k
    widefelem tmp;
1667
1668
7.84k
    if (EC_POINT_is_at_infinity(group, point)) {
1669
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1670
0
        return 0;
1671
0
    }
1672
7.84k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z)))
1673
0
        return 0;
1674
7.84k
    felem_inv(z2, z1);
1675
7.84k
    felem_square(tmp, z2);
1676
7.84k
    felem_reduce(z1, tmp);
1677
7.84k
    felem_mul(tmp, x_in, z1);
1678
7.84k
    felem_reduce(x_in, tmp);
1679
7.84k
    felem_contract(x_out, x_in);
1680
7.84k
    if (x != NULL) {
1681
7.84k
        if (!felem_to_BN(x, x_out)) {
1682
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1683
0
            return 0;
1684
0
        }
1685
7.84k
    }
1686
7.84k
    felem_mul(tmp, z1, z2);
1687
7.84k
    felem_reduce(z1, tmp);
1688
7.84k
    felem_mul(tmp, y_in, z1);
1689
7.84k
    felem_reduce(y_in, tmp);
1690
7.84k
    felem_contract(y_out, y_in);
1691
7.84k
    if (y != NULL) {
1692
6.18k
        if (!felem_to_BN(y, y_out)) {
1693
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1694
0
            return 0;
1695
0
        }
1696
6.18k
    }
1697
7.84k
    return 1;
1698
7.84k
}
1699
1700
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1701
static void make_points_affine(size_t num, felem points[][3],
1702
    felem tmp_felems[])
1703
0
{
1704
    /*
1705
     * Runs in constant time, unless an input is the point at infinity (which
1706
     * normally shouldn't happen).
1707
     */
1708
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1709
0
        points,
1710
0
        sizeof(felem),
1711
0
        tmp_felems,
1712
0
        (void (*)(void *))felem_one,
1713
0
        felem_is_zero_int,
1714
0
        (void (*)(void *, const void *))
1715
0
            felem_assign,
1716
0
        (void (*)(void *, const void *))
1717
0
            felem_square_reduce,
1718
0
        (void (*)(void *, const void *, const void *))
1719
0
            felem_mul_reduce,
1720
0
        (void (*)(void *, const void *))
1721
0
            felem_inv,
1722
0
        (void (*)(void *, const void *))
1723
0
            felem_contract);
1724
0
}
1725
1726
/*
1727
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1728
 * values Result is stored in r (r can equal one of the inputs).
1729
 */
1730
int ossl_ec_GFp_nistp384_points_mul(const EC_GROUP *group, EC_POINT *r,
1731
    const BIGNUM *scalar, size_t num,
1732
    const EC_POINT *points[],
1733
    const BIGNUM *scalars[], BN_CTX *ctx)
1734
6.19k
{
1735
6.19k
    int ret = 0;
1736
6.19k
    int j;
1737
6.19k
    int mixed = 0;
1738
6.19k
    BIGNUM *x, *y, *z, *tmp_scalar;
1739
6.19k
    felem_bytearray g_secret;
1740
6.19k
    felem_bytearray *secrets = NULL;
1741
6.19k
    felem(*pre_comp)[17][3] = NULL;
1742
6.19k
    felem *tmp_felems = NULL;
1743
6.19k
    unsigned int i;
1744
6.19k
    int num_bytes;
1745
6.19k
    int have_pre_comp = 0;
1746
6.19k
    size_t num_points = num;
1747
6.19k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1748
6.19k
    NISTP384_PRE_COMP *pre = NULL;
1749
6.19k
    felem(*g_pre_comp)[3] = NULL;
1750
6.19k
    EC_POINT *generator = NULL;
1751
6.19k
    const EC_POINT *p = NULL;
1752
6.19k
    const BIGNUM *p_scalar = NULL;
1753
1754
6.19k
    BN_CTX_start(ctx);
1755
6.19k
    x = BN_CTX_get(ctx);
1756
6.19k
    y = BN_CTX_get(ctx);
1757
6.19k
    z = BN_CTX_get(ctx);
1758
6.19k
    tmp_scalar = BN_CTX_get(ctx);
1759
6.19k
    if (tmp_scalar == NULL)
1760
0
        goto err;
1761
1762
6.19k
    if (scalar != NULL) {
1763
4.14k
        pre = group->pre_comp.nistp384;
1764
4.14k
        if (pre)
1765
            /* we have precomputation, try to use it */
1766
0
            g_pre_comp = &pre->g_pre_comp[0];
1767
4.14k
        else
1768
            /* try to use the standard precomputation */
1769
4.14k
            g_pre_comp = (felem(*)[3])gmul;
1770
4.14k
        generator = EC_POINT_new(group);
1771
4.14k
        if (generator == NULL)
1772
0
            goto err;
1773
        /* get the generator from precomputation */
1774
4.14k
        if (!felem_to_BN(x, g_pre_comp[1][0]) || !felem_to_BN(y, g_pre_comp[1][1]) || !felem_to_BN(z, g_pre_comp[1][2])) {
1775
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1776
0
            goto err;
1777
0
        }
1778
4.14k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1779
4.14k
                generator,
1780
4.14k
                x, y, z, ctx))
1781
0
            goto err;
1782
4.14k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1783
            /* precomputation matches generator */
1784
4.14k
            have_pre_comp = 1;
1785
0
        else
1786
            /*
1787
             * we don't have valid precomputation: treat the generator as a
1788
             * random point
1789
             */
1790
0
            num_points++;
1791
4.14k
    }
1792
1793
6.19k
    if (num_points > 0) {
1794
2.08k
        if (num_points >= 2) {
1795
            /*
1796
             * unless we precompute multiples for just one point, converting
1797
             * those into affine form is time well spent
1798
             */
1799
0
            mixed = 1;
1800
0
        }
1801
2.08k
        secrets = OPENSSL_calloc(num_points, sizeof(*secrets));
1802
2.08k
        pre_comp = OPENSSL_calloc(num_points, sizeof(*pre_comp));
1803
2.08k
        if (mixed)
1804
0
            tmp_felems = OPENSSL_malloc_array(num_points * 17 + 1, sizeof(*tmp_felems));
1805
2.08k
        if ((secrets == NULL) || (pre_comp == NULL)
1806
2.08k
            || (mixed && (tmp_felems == NULL)))
1807
0
            goto err;
1808
1809
        /*
1810
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1811
         * i.e., they contribute nothing to the linear combination
1812
         */
1813
4.16k
        for (i = 0; i < num_points; ++i) {
1814
2.08k
            if (i == num) {
1815
                /*
1816
                 * we didn't have a valid precomputation, so we pick the
1817
                 * generator
1818
                 */
1819
0
                p = EC_GROUP_get0_generator(group);
1820
0
                p_scalar = scalar;
1821
2.08k
            } else {
1822
                /* the i^th point */
1823
2.08k
                p = points[i];
1824
2.08k
                p_scalar = scalars[i];
1825
2.08k
            }
1826
2.08k
            if (p_scalar != NULL && p != NULL) {
1827
                /* reduce scalar to 0 <= scalar < 2^384 */
1828
2.08k
                if ((BN_num_bits(p_scalar) > 384)
1829
2.08k
                    || (BN_is_negative(p_scalar))) {
1830
                    /*
1831
                     * this is an unusual input, and we don't guarantee
1832
                     * constant-timeness
1833
                     */
1834
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1835
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1836
0
                        goto err;
1837
0
                    }
1838
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1839
0
                        secrets[i], sizeof(secrets[i]));
1840
2.08k
                } else {
1841
2.08k
                    num_bytes = BN_bn2lebinpad(p_scalar,
1842
2.08k
                        secrets[i], sizeof(secrets[i]));
1843
2.08k
                }
1844
2.08k
                if (num_bytes < 0) {
1845
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1846
0
                    goto err;
1847
0
                }
1848
                /* precompute multiples */
1849
2.08k
                if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z)))
1850
0
                    goto err;
1851
2.08k
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1852
2.08k
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1853
2.08k
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1854
33.3k
                for (j = 2; j <= 16; ++j) {
1855
31.2k
                    if (j & 1) {
1856
14.5k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1857
14.5k
                            pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], 0,
1858
14.5k
                            pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]);
1859
16.6k
                    } else {
1860
16.6k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1861
16.6k
                            pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
1862
16.6k
                    }
1863
31.2k
                }
1864
2.08k
            }
1865
2.08k
        }
1866
2.08k
        if (mixed)
1867
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1868
2.08k
    }
1869
1870
    /* the scalar for the generator */
1871
6.19k
    if (scalar != NULL && have_pre_comp) {
1872
4.14k
        memset(g_secret, 0, sizeof(g_secret));
1873
        /* reduce scalar to 0 <= scalar < 2^384 */
1874
4.14k
        if ((BN_num_bits(scalar) > 384) || (BN_is_negative(scalar))) {
1875
            /*
1876
             * this is an unusual input, and we don't guarantee
1877
             * constant-timeness
1878
             */
1879
51
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1880
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1881
0
                goto err;
1882
0
            }
1883
51
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1884
4.09k
        } else {
1885
4.09k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1886
4.09k
        }
1887
        /* do the multiplication with generator precomputation */
1888
4.14k
        batch_mul(x_out, y_out, z_out,
1889
4.14k
            (const felem_bytearray(*))secrets, num_points,
1890
4.14k
            g_secret,
1891
4.14k
            mixed, (const felem(*)[17][3])pre_comp,
1892
4.14k
            (const felem(*)[3])g_pre_comp);
1893
4.14k
    } else {
1894
        /* do the multiplication without generator precomputation */
1895
2.04k
        batch_mul(x_out, y_out, z_out,
1896
2.04k
            (const felem_bytearray(*))secrets, num_points,
1897
2.04k
            NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1898
2.04k
    }
1899
    /* reduce the output to its unique minimal representation */
1900
6.19k
    felem_contract(x_in, x_out);
1901
6.19k
    felem_contract(y_in, y_out);
1902
6.19k
    felem_contract(z_in, z_out);
1903
6.19k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) {
1904
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1905
0
        goto err;
1906
0
    }
1907
6.19k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1908
6.19k
        ctx);
1909
1910
6.19k
err:
1911
6.19k
    BN_CTX_end(ctx);
1912
6.19k
    EC_POINT_free(generator);
1913
6.19k
    OPENSSL_free(secrets);
1914
6.19k
    OPENSSL_free(pre_comp);
1915
6.19k
    OPENSSL_free(tmp_felems);
1916
6.19k
    return ret;
1917
6.19k
}
1918
1919
int ossl_ec_GFp_nistp384_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1920
0
{
1921
0
    int ret = 0;
1922
0
    NISTP384_PRE_COMP *pre = NULL;
1923
0
    int i, j;
1924
0
    BIGNUM *x, *y;
1925
0
    EC_POINT *generator = NULL;
1926
0
    felem tmp_felems[16];
1927
0
#ifndef FIPS_MODULE
1928
0
    BN_CTX *new_ctx = NULL;
1929
0
#endif
1930
1931
    /* throw away old precomputation */
1932
0
    EC_pre_comp_free(group);
1933
1934
0
#ifndef FIPS_MODULE
1935
0
    if (ctx == NULL)
1936
0
        ctx = new_ctx = BN_CTX_new();
1937
0
#endif
1938
0
    if (ctx == NULL)
1939
0
        return 0;
1940
1941
0
    BN_CTX_start(ctx);
1942
0
    x = BN_CTX_get(ctx);
1943
0
    y = BN_CTX_get(ctx);
1944
0
    if (y == NULL)
1945
0
        goto err;
1946
    /* get the generator */
1947
0
    if (group->generator == NULL)
1948
0
        goto err;
1949
0
    generator = EC_POINT_new(group);
1950
0
    if (generator == NULL)
1951
0
        goto err;
1952
0
    BN_bin2bn(nistp384_curve_params[3], sizeof(felem_bytearray), x);
1953
0
    BN_bin2bn(nistp384_curve_params[4], sizeof(felem_bytearray), y);
1954
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1955
0
        goto err;
1956
0
    if ((pre = nistp384_pre_comp_new()) == NULL)
1957
0
        goto err;
1958
    /*
1959
     * if the generator is the standard one, use built-in precomputation
1960
     */
1961
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1962
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1963
0
        goto done;
1964
0
    }
1965
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
1966
0
        goto err;
1967
    /* compute 2^95*G, 2^190*G, 2^285*G */
1968
0
    for (i = 1; i <= 4; i <<= 1) {
1969
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
1970
0
            pre->g_pre_comp[i][0], pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
1971
0
        for (j = 0; j < 94; ++j) {
1972
0
            point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
1973
0
                pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2]);
1974
0
        }
1975
0
    }
1976
    /* g_pre_comp[0] is the point at infinity */
1977
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
1978
    /* the remaining multiples */
1979
    /* 2^95*G + 2^190*G */
1980
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], pre->g_pre_comp[6][2],
1981
0
        pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], 0,
1982
0
        pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]);
1983
    /* 2^95*G + 2^285*G */
1984
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], pre->g_pre_comp[10][2],
1985
0
        pre->g_pre_comp[8][0], pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], 0,
1986
0
        pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]);
1987
    /* 2^190*G + 2^285*G */
1988
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
1989
0
        pre->g_pre_comp[8][0], pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], 0,
1990
0
        pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], pre->g_pre_comp[4][2]);
1991
    /* 2^95*G + 2^190*G + 2^285*G */
1992
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], pre->g_pre_comp[14][2],
1993
0
        pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], 0,
1994
0
        pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]);
1995
0
    for (i = 1; i < 8; ++i) {
1996
        /* odd multiples: add G */
1997
0
        point_add(pre->g_pre_comp[2 * i + 1][0], pre->g_pre_comp[2 * i + 1][1], pre->g_pre_comp[2 * i + 1][2],
1998
0
            pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
1999
0
            pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], pre->g_pre_comp[1][2]);
2000
0
    }
2001
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2002
2003
0
done:
2004
0
    SETPRECOMP(group, nistp384, pre);
2005
0
    ret = 1;
2006
0
    pre = NULL;
2007
0
err:
2008
0
    BN_CTX_end(ctx);
2009
0
    EC_POINT_free(generator);
2010
0
#ifndef FIPS_MODULE
2011
0
    BN_CTX_free(new_ctx);
2012
0
#endif
2013
0
    ossl_ec_nistp384_pre_comp_free(pre);
2014
0
    return ret;
2015
0
}
2016
2017
int ossl_ec_GFp_nistp384_have_precompute_mult(const EC_GROUP *group)
2018
0
{
2019
    return HAVEPRECOMP(group, nistp384);
2020
0
}