/src/openssl36/providers/implementations/kem/ec_kem.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2022-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | /* clang-format off */ |
10 | | |
11 | | /* clang-format on */ |
12 | | |
13 | | /* |
14 | | * The following implementation is part of RFC 9180 related to DHKEM using |
15 | | * EC keys (i.e. P-256, P-384 and P-521) |
16 | | * References to Sections in the comments below refer to RFC 9180. |
17 | | */ |
18 | | |
19 | | #include "internal/deprecated.h" |
20 | | |
21 | | #include <openssl/crypto.h> |
22 | | #include <openssl/evp.h> |
23 | | #include <openssl/core_dispatch.h> |
24 | | #include <openssl/core_names.h> |
25 | | #include <openssl/ec.h> |
26 | | #include <openssl/params.h> |
27 | | #include <openssl/err.h> |
28 | | #include <openssl/proverr.h> |
29 | | #include <openssl/kdf.h> |
30 | | #include <openssl/rand.h> |
31 | | #include "internal/cryptlib.h" |
32 | | #include "prov/provider_ctx.h" |
33 | | #include "prov/implementations.h" |
34 | | #include "prov/securitycheck.h" |
35 | | #include "prov/providercommon.h" |
36 | | |
37 | | #include <openssl/hpke.h> |
38 | | #include "internal/hpke_util.h" |
39 | | #include "crypto/ec.h" |
40 | | #include "prov/ecx.h" |
41 | | #include "prov/eckem.h" |
42 | | |
43 | | typedef struct { |
44 | | EC_KEY *recipient_key; |
45 | | EC_KEY *sender_authkey; |
46 | | OSSL_LIB_CTX *libctx; |
47 | | char *propq; |
48 | | unsigned int mode; |
49 | | unsigned int op; |
50 | | unsigned char *ikm; |
51 | | size_t ikmlen; |
52 | | const char *kdfname; |
53 | | const OSSL_HPKE_KEM_INFO *info; |
54 | | } PROV_EC_CTX; |
55 | | |
56 | | static OSSL_FUNC_kem_newctx_fn eckem_newctx; |
57 | | static OSSL_FUNC_kem_encapsulate_init_fn eckem_encapsulate_init; |
58 | | static OSSL_FUNC_kem_auth_encapsulate_init_fn eckem_auth_encapsulate_init; |
59 | | static OSSL_FUNC_kem_encapsulate_fn eckem_encapsulate; |
60 | | static OSSL_FUNC_kem_decapsulate_init_fn eckem_decapsulate_init; |
61 | | static OSSL_FUNC_kem_auth_decapsulate_init_fn eckem_auth_decapsulate_init; |
62 | | static OSSL_FUNC_kem_decapsulate_fn eckem_decapsulate; |
63 | | static OSSL_FUNC_kem_freectx_fn eckem_freectx; |
64 | | static OSSL_FUNC_kem_set_ctx_params_fn eckem_set_ctx_params; |
65 | | static OSSL_FUNC_kem_settable_ctx_params_fn eckem_settable_ctx_params; |
66 | | |
67 | | /* ASCII: "KEM", in hex for EBCDIC compatibility */ |
68 | | static const char LABEL_KEM[] = "\x4b\x45\x4d"; |
69 | | |
70 | | static int eckey_check(const EC_KEY *ec, int requires_privatekey) |
71 | 0 | { |
72 | 0 | int rv = 0; |
73 | 0 | BN_CTX *bnctx = NULL; |
74 | 0 | BIGNUM *rem = NULL; |
75 | 0 | const BIGNUM *priv = EC_KEY_get0_private_key(ec); |
76 | 0 | const EC_POINT *pub = EC_KEY_get0_public_key(ec); |
77 | | |
78 | | /* Keys always require a public component */ |
79 | 0 | if (pub == NULL) { |
80 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY); |
81 | 0 | return 0; |
82 | 0 | } |
83 | 0 | if (priv == NULL) { |
84 | 0 | return (requires_privatekey == 0); |
85 | 0 | } else { |
86 | | /* If there is a private key, check that is non zero (mod order) */ |
87 | 0 | const EC_GROUP *group = EC_KEY_get0_group(ec); |
88 | 0 | const BIGNUM *order = EC_GROUP_get0_order(group); |
89 | |
|
90 | 0 | bnctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(ec)); |
91 | 0 | rem = BN_new(); |
92 | |
|
93 | 0 | if (order != NULL && rem != NULL && bnctx != NULL) { |
94 | 0 | rv = BN_mod(rem, priv, order, bnctx) |
95 | 0 | && !BN_is_zero(rem); |
96 | 0 | } |
97 | 0 | } |
98 | 0 | BN_free(rem); |
99 | 0 | BN_CTX_free(bnctx); |
100 | 0 | return rv; |
101 | 0 | } |
102 | | |
103 | | /* Returns NULL if the curve is not supported */ |
104 | | static const char *ec_curvename_get0(const EC_KEY *ec) |
105 | 0 | { |
106 | 0 | const EC_GROUP *group = EC_KEY_get0_group(ec); |
107 | |
|
108 | 0 | return EC_curve_nid2nist(EC_GROUP_get_curve_name(group)); |
109 | 0 | } |
110 | | |
111 | | /* |
112 | | * Set the recipient key, and free any existing key. |
113 | | * ec can be NULL. |
114 | | * The ec key may have only a private or public component |
115 | | * (but it must have a group). |
116 | | */ |
117 | | static int recipient_key_set(PROV_EC_CTX *ctx, EC_KEY *ec) |
118 | 0 | { |
119 | 0 | EC_KEY_free(ctx->recipient_key); |
120 | 0 | ctx->recipient_key = NULL; |
121 | |
|
122 | 0 | if (ec != NULL) { |
123 | 0 | const char *curve = ec_curvename_get0(ec); |
124 | |
|
125 | 0 | if (curve == NULL) |
126 | 0 | return -2; |
127 | 0 | ctx->info = ossl_HPKE_KEM_INFO_find_curve(curve); |
128 | 0 | if (ctx->info == NULL) |
129 | 0 | return -2; |
130 | 0 | if (!EC_KEY_up_ref(ec)) |
131 | 0 | return 0; |
132 | 0 | ctx->recipient_key = ec; |
133 | 0 | ctx->kdfname = "HKDF"; |
134 | 0 | } |
135 | 0 | return 1; |
136 | 0 | } |
137 | | |
138 | | /* |
139 | | * Set the senders auth key, and free any existing auth key. |
140 | | * ec can be NULL. |
141 | | */ |
142 | | static int sender_authkey_set(PROV_EC_CTX *ctx, EC_KEY *ec) |
143 | 0 | { |
144 | 0 | EC_KEY_free(ctx->sender_authkey); |
145 | 0 | ctx->sender_authkey = NULL; |
146 | |
|
147 | 0 | if (ec != NULL) { |
148 | 0 | if (!EC_KEY_up_ref(ec)) |
149 | 0 | return 0; |
150 | 0 | ctx->sender_authkey = ec; |
151 | 0 | } |
152 | 0 | return 1; |
153 | 0 | } |
154 | | |
155 | | /* |
156 | | * Serializes a encoded public key buffer into a EC public key. |
157 | | * Params: |
158 | | * in Contains the group. |
159 | | * pubbuf The encoded public key buffer |
160 | | * Returns: The created public EC key, or NULL if there is an error. |
161 | | */ |
162 | | static EC_KEY *eckey_frompub(EC_KEY *in, |
163 | | const unsigned char *pubbuf, size_t pubbuflen) |
164 | 0 | { |
165 | 0 | EC_KEY *key; |
166 | |
|
167 | 0 | key = EC_KEY_new_ex(ossl_ec_key_get_libctx(in), ossl_ec_key_get0_propq(in)); |
168 | 0 | if (key == NULL) |
169 | 0 | goto err; |
170 | 0 | if (!EC_KEY_set_group(key, EC_KEY_get0_group(in))) |
171 | 0 | goto err; |
172 | 0 | if (!EC_KEY_oct2key(key, pubbuf, pubbuflen, NULL)) |
173 | 0 | goto err; |
174 | 0 | return key; |
175 | 0 | err: |
176 | 0 | EC_KEY_free(key); |
177 | 0 | return NULL; |
178 | 0 | } |
179 | | |
180 | | /* |
181 | | * Deserialises a EC public key into a encoded byte array. |
182 | | * Returns: 1 if successful or 0 otherwise. |
183 | | */ |
184 | | static int ecpubkey_todata(const EC_KEY *ec, unsigned char *out, size_t *outlen, |
185 | | size_t maxoutlen) |
186 | 0 | { |
187 | 0 | const EC_POINT *pub; |
188 | 0 | const EC_GROUP *group; |
189 | |
|
190 | 0 | group = EC_KEY_get0_group(ec); |
191 | 0 | pub = EC_KEY_get0_public_key(ec); |
192 | 0 | *outlen = EC_POINT_point2oct(group, pub, POINT_CONVERSION_UNCOMPRESSED, |
193 | 0 | out, maxoutlen, NULL); |
194 | 0 | return *outlen != 0; |
195 | 0 | } |
196 | | |
197 | | static void *eckem_newctx(void *provctx) |
198 | 0 | { |
199 | 0 | PROV_EC_CTX *ctx = OPENSSL_zalloc(sizeof(PROV_EC_CTX)); |
200 | |
|
201 | 0 | if (ctx == NULL) |
202 | 0 | return NULL; |
203 | 0 | ctx->libctx = PROV_LIBCTX_OF(provctx); |
204 | 0 | ctx->mode = KEM_MODE_DHKEM; |
205 | |
|
206 | 0 | return ctx; |
207 | 0 | } |
208 | | |
209 | | static void eckem_freectx(void *vectx) |
210 | 0 | { |
211 | 0 | PROV_EC_CTX *ctx = (PROV_EC_CTX *)vectx; |
212 | |
|
213 | 0 | OPENSSL_clear_free(ctx->ikm, ctx->ikmlen); |
214 | 0 | recipient_key_set(ctx, NULL); |
215 | 0 | sender_authkey_set(ctx, NULL); |
216 | 0 | OPENSSL_free(ctx); |
217 | 0 | } |
218 | | |
219 | | static int ossl_ec_match_params(const EC_KEY *key1, const EC_KEY *key2) |
220 | 0 | { |
221 | 0 | int ret; |
222 | 0 | BN_CTX *ctx = NULL; |
223 | 0 | const EC_GROUP *group1 = EC_KEY_get0_group(key1); |
224 | 0 | const EC_GROUP *group2 = EC_KEY_get0_group(key2); |
225 | |
|
226 | 0 | ctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(key1)); |
227 | 0 | if (ctx == NULL) |
228 | 0 | return 0; |
229 | | |
230 | 0 | ret = group1 != NULL |
231 | 0 | && group2 != NULL |
232 | 0 | && EC_GROUP_cmp(group1, group2, ctx) == 0; |
233 | 0 | if (!ret) |
234 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISMATCHING_DOMAIN_PARAMETERS); |
235 | 0 | BN_CTX_free(ctx); |
236 | 0 | return ret; |
237 | 0 | } |
238 | | |
239 | | static int eckem_init(void *vctx, int operation, void *vec, void *vauth, |
240 | | const OSSL_PARAM params[]) |
241 | 0 | { |
242 | 0 | int rv; |
243 | 0 | PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx; |
244 | 0 | EC_KEY *ec = vec; |
245 | 0 | EC_KEY *auth = vauth; |
246 | |
|
247 | 0 | if (!ossl_prov_is_running()) |
248 | 0 | return 0; |
249 | | |
250 | 0 | if (!eckey_check(ec, operation == EVP_PKEY_OP_DECAPSULATE)) |
251 | 0 | return 0; |
252 | 0 | rv = recipient_key_set(ctx, ec); |
253 | 0 | if (rv <= 0) |
254 | 0 | return rv; |
255 | | |
256 | 0 | if (auth != NULL) { |
257 | 0 | if (!ossl_ec_match_params(ec, auth) |
258 | 0 | || !eckey_check(auth, operation == EVP_PKEY_OP_ENCAPSULATE) |
259 | 0 | || !sender_authkey_set(ctx, auth)) |
260 | 0 | return 0; |
261 | 0 | } |
262 | | |
263 | 0 | ctx->op = operation; |
264 | 0 | return eckem_set_ctx_params(vctx, params); |
265 | 0 | } |
266 | | |
267 | | static int eckem_encapsulate_init(void *vctx, void *vec, |
268 | | const OSSL_PARAM params[]) |
269 | 0 | { |
270 | 0 | return eckem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, vec, NULL, params); |
271 | 0 | } |
272 | | |
273 | | static int eckem_decapsulate_init(void *vctx, void *vec, |
274 | | const OSSL_PARAM params[]) |
275 | 0 | { |
276 | 0 | return eckem_init(vctx, EVP_PKEY_OP_DECAPSULATE, vec, NULL, params); |
277 | 0 | } |
278 | | |
279 | | static int eckem_auth_encapsulate_init(void *vctx, void *vecx, void *vauthpriv, |
280 | | const OSSL_PARAM params[]) |
281 | 0 | { |
282 | 0 | return eckem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, vecx, vauthpriv, params); |
283 | 0 | } |
284 | | |
285 | | static int eckem_auth_decapsulate_init(void *vctx, void *vecx, void *vauthpub, |
286 | | const OSSL_PARAM params[]) |
287 | 0 | { |
288 | 0 | return eckem_init(vctx, EVP_PKEY_OP_DECAPSULATE, vecx, vauthpub, params); |
289 | 0 | } |
290 | | |
291 | | /* clang-format off */ |
292 | | /* Machine generated by util/perl/OpenSSL/paramnames.pm */ |
293 | | #ifndef eckem_set_ctx_params_list |
294 | | static const OSSL_PARAM eckem_set_ctx_params_list[] = { |
295 | | OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0), |
296 | | OSSL_PARAM_octet_string(OSSL_KEM_PARAM_IKME, NULL, 0), |
297 | | OSSL_PARAM_END |
298 | | }; |
299 | | #endif |
300 | | |
301 | | #ifndef eckem_set_ctx_params_st |
302 | | struct eckem_set_ctx_params_st { |
303 | | OSSL_PARAM *ikme; |
304 | | OSSL_PARAM *op; |
305 | | }; |
306 | | #endif |
307 | | |
308 | | #ifndef eckem_set_ctx_params_decoder |
309 | | static int eckem_set_ctx_params_decoder |
310 | | (const OSSL_PARAM *p, struct eckem_set_ctx_params_st *r) |
311 | 0 | { |
312 | 0 | const char *s; |
313 | |
|
314 | 0 | memset(r, 0, sizeof(*r)); |
315 | 0 | if (p != NULL) |
316 | 0 | for (; (s = p->key) != NULL; p++) |
317 | 0 | switch(s[0]) { |
318 | 0 | default: |
319 | 0 | break; |
320 | 0 | case 'i': |
321 | 0 | if (ossl_likely(strcmp("kme", s + 1) == 0)) { |
322 | | /* OSSL_KEM_PARAM_IKME */ |
323 | 0 | if (ossl_unlikely(r->ikme != NULL)) { |
324 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER, |
325 | 0 | "param %s is repeated", s); |
326 | 0 | return 0; |
327 | 0 | } |
328 | 0 | r->ikme = (OSSL_PARAM *)p; |
329 | 0 | } |
330 | 0 | break; |
331 | 0 | case 'o': |
332 | 0 | if (ossl_likely(strcmp("peration", s + 1) == 0)) { |
333 | | /* OSSL_KEM_PARAM_OPERATION */ |
334 | 0 | if (ossl_unlikely(r->op != NULL)) { |
335 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER, |
336 | 0 | "param %s is repeated", s); |
337 | 0 | return 0; |
338 | 0 | } |
339 | 0 | r->op = (OSSL_PARAM *)p; |
340 | 0 | } |
341 | 0 | } |
342 | 0 | return 1; |
343 | 0 | } |
344 | | #endif |
345 | | /* End of machine generated */ |
346 | | /* clang-format on */ |
347 | | |
348 | | static int eckem_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
349 | 0 | { |
350 | 0 | PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx; |
351 | 0 | struct eckem_set_ctx_params_st p; |
352 | 0 | int mode; |
353 | |
|
354 | 0 | if (ctx == NULL || !eckem_set_ctx_params_decoder(params, &p)) |
355 | 0 | return 0; |
356 | | |
357 | 0 | if (p.ikme != NULL) { |
358 | 0 | void *tmp = NULL; |
359 | 0 | size_t tmplen = 0; |
360 | |
|
361 | 0 | if (p.ikme->data != NULL && p.ikme->data_size != 0) { |
362 | 0 | if (!OSSL_PARAM_get_octet_string(p.ikme, &tmp, 0, &tmplen)) |
363 | 0 | return 0; |
364 | 0 | } |
365 | 0 | OPENSSL_clear_free(ctx->ikm, ctx->ikmlen); |
366 | | /* Set the ephemeral seed */ |
367 | 0 | ctx->ikm = tmp; |
368 | 0 | ctx->ikmlen = tmplen; |
369 | 0 | } |
370 | | |
371 | 0 | if (p.op != NULL) { |
372 | 0 | if (p.op->data_type != OSSL_PARAM_UTF8_STRING) |
373 | 0 | return 0; |
374 | 0 | mode = ossl_eckem_modename2id(p.op->data); |
375 | 0 | if (mode == KEM_MODE_UNDEFINED) |
376 | 0 | return 0; |
377 | 0 | ctx->mode = mode; |
378 | 0 | } |
379 | 0 | return 1; |
380 | 0 | } |
381 | | |
382 | | static const OSSL_PARAM *eckem_settable_ctx_params(ossl_unused void *vctx, |
383 | | ossl_unused void *provctx) |
384 | 5 | { |
385 | 5 | return eckem_set_ctx_params_list; |
386 | 5 | } |
387 | | |
388 | | /* |
389 | | * See Section 4.1 DH-Based KEM (DHKEM) ExtractAndExpand |
390 | | */ |
391 | | static int dhkem_extract_and_expand(EVP_KDF_CTX *kctx, |
392 | | unsigned char *okm, size_t okmlen, |
393 | | uint16_t kemid, |
394 | | const unsigned char *dhkm, size_t dhkmlen, |
395 | | const unsigned char *kemctx, |
396 | | size_t kemctxlen) |
397 | 0 | { |
398 | 0 | uint8_t suiteid[2]; |
399 | 0 | uint8_t prk[EVP_MAX_MD_SIZE]; |
400 | 0 | size_t prklen = okmlen; |
401 | 0 | int ret; |
402 | |
|
403 | 0 | if (prklen > sizeof(prk)) |
404 | 0 | return 0; |
405 | | |
406 | 0 | suiteid[0] = (kemid >> 8) & 0xff; |
407 | 0 | suiteid[1] = kemid & 0xff; |
408 | |
|
409 | 0 | ret = ossl_hpke_labeled_extract(kctx, prk, prklen, |
410 | 0 | NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid), |
411 | 0 | OSSL_DHKEM_LABEL_EAE_PRK, dhkm, dhkmlen) |
412 | 0 | && ossl_hpke_labeled_expand(kctx, okm, okmlen, prk, prklen, |
413 | 0 | LABEL_KEM, suiteid, sizeof(suiteid), |
414 | 0 | OSSL_DHKEM_LABEL_SHARED_SECRET, |
415 | 0 | kemctx, kemctxlen); |
416 | 0 | OPENSSL_cleanse(prk, prklen); |
417 | 0 | return ret; |
418 | 0 | } |
419 | | |
420 | | /* |
421 | | * See Section 7.1.3 DeriveKeyPair. |
422 | | * |
423 | | * This function is used by ec keygen. |
424 | | * (For this reason it does not use any of the state stored in PROV_EC_CTX). |
425 | | * |
426 | | * Params: |
427 | | * ec An initialized ec key. |
428 | | * priv The buffer to store the generated private key into (it is assumed |
429 | | * this is of length alg->encodedprivlen). |
430 | | * ikm buffer containing the input key material (seed). This must be set. |
431 | | * ikmlen size of the ikm buffer in bytes |
432 | | * Returns: |
433 | | * 1 if successful or 0 otherwise. |
434 | | */ |
435 | | int ossl_ec_dhkem_derive_private(EC_KEY *ec, BIGNUM *priv, |
436 | | const unsigned char *ikm, size_t ikmlen) |
437 | 0 | { |
438 | 0 | int ret = 0; |
439 | 0 | EVP_KDF_CTX *kdfctx = NULL; |
440 | 0 | uint8_t suiteid[2]; |
441 | 0 | unsigned char prk[OSSL_HPKE_MAX_SECRET]; |
442 | 0 | unsigned char privbuf[OSSL_HPKE_MAX_PRIVATE]; |
443 | 0 | const BIGNUM *order; |
444 | 0 | unsigned char counter = 0; |
445 | 0 | const char *curve = ec_curvename_get0(ec); |
446 | 0 | const OSSL_HPKE_KEM_INFO *info; |
447 | |
|
448 | 0 | if (curve == NULL) |
449 | 0 | return -2; |
450 | | |
451 | 0 | info = ossl_HPKE_KEM_INFO_find_curve(curve); |
452 | 0 | if (info == NULL) |
453 | 0 | return -2; |
454 | | |
455 | 0 | kdfctx = ossl_kdf_ctx_create("HKDF", info->mdname, |
456 | 0 | ossl_ec_key_get_libctx(ec), |
457 | 0 | ossl_ec_key_get0_propq(ec)); |
458 | 0 | if (kdfctx == NULL) |
459 | 0 | return 0; |
460 | | |
461 | | /* ikmlen should have a length of at least Nsk */ |
462 | 0 | if (ikmlen < info->Nsk) { |
463 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_INPUT_LENGTH, |
464 | 0 | "ikm length is :%zu, should be at least %zu", |
465 | 0 | ikmlen, info->Nsk); |
466 | 0 | goto err; |
467 | 0 | } |
468 | | |
469 | 0 | suiteid[0] = info->kem_id / 256; |
470 | 0 | suiteid[1] = info->kem_id % 256; |
471 | |
|
472 | 0 | if (!ossl_hpke_labeled_extract(kdfctx, prk, info->Nsecret, |
473 | 0 | NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid), |
474 | 0 | OSSL_DHKEM_LABEL_DKP_PRK, ikm, ikmlen)) |
475 | 0 | goto err; |
476 | | |
477 | 0 | order = EC_GROUP_get0_order(EC_KEY_get0_group(ec)); |
478 | 0 | do { |
479 | 0 | if (!ossl_hpke_labeled_expand(kdfctx, privbuf, info->Nsk, |
480 | 0 | prk, info->Nsecret, |
481 | 0 | LABEL_KEM, suiteid, sizeof(suiteid), |
482 | 0 | OSSL_DHKEM_LABEL_CANDIDATE, |
483 | 0 | &counter, 1)) |
484 | 0 | goto err; |
485 | 0 | privbuf[0] &= info->bitmask; |
486 | 0 | if (BN_bin2bn(privbuf, (int)info->Nsk, priv) == NULL) |
487 | 0 | goto err; |
488 | 0 | if (counter == 0xFF) { |
489 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GENERATE_KEY); |
490 | 0 | goto err; |
491 | 0 | } |
492 | 0 | counter++; |
493 | 0 | } while (BN_is_zero(priv) || BN_cmp(priv, order) >= 0); |
494 | 0 | ret = 1; |
495 | 0 | err: |
496 | 0 | OPENSSL_cleanse(prk, sizeof(prk)); |
497 | 0 | OPENSSL_cleanse(privbuf, sizeof(privbuf)); |
498 | 0 | EVP_KDF_CTX_free(kdfctx); |
499 | 0 | return ret; |
500 | 0 | } |
501 | | |
502 | | /* |
503 | | * Do a keygen operation without having to use EVP_PKEY. |
504 | | * Params: |
505 | | * ctx Context object |
506 | | * ikm The seed material - if this is NULL, then a random seed is used. |
507 | | * Returns: |
508 | | * The generated EC key, or NULL on failure. |
509 | | */ |
510 | | static EC_KEY *derivekey(PROV_EC_CTX *ctx, |
511 | | const unsigned char *ikm, size_t ikmlen) |
512 | 0 | { |
513 | 0 | int ret = 0; |
514 | 0 | EC_KEY *key; |
515 | 0 | unsigned char *seed = (unsigned char *)ikm; |
516 | 0 | size_t seedlen = ikmlen; |
517 | 0 | unsigned char tmpbuf[OSSL_HPKE_MAX_PRIVATE]; |
518 | |
|
519 | 0 | key = EC_KEY_new_ex(ctx->libctx, ctx->propq); |
520 | 0 | if (key == NULL) |
521 | 0 | goto err; |
522 | 0 | if (!EC_KEY_set_group(key, EC_KEY_get0_group(ctx->recipient_key))) |
523 | 0 | goto err; |
524 | | |
525 | | /* Generate a random seed if there is no input ikm */ |
526 | 0 | if (seed == NULL || seedlen == 0) { |
527 | 0 | seedlen = ctx->info->Nsk; |
528 | 0 | if (seedlen > sizeof(tmpbuf)) |
529 | 0 | goto err; |
530 | 0 | if (RAND_priv_bytes_ex(ctx->libctx, tmpbuf, seedlen, 0) <= 0) |
531 | 0 | goto err; |
532 | 0 | seed = tmpbuf; |
533 | 0 | } |
534 | 0 | ret = ossl_ec_generate_key_dhkem(key, seed, seedlen); |
535 | 0 | err: |
536 | 0 | if (seed != ikm) |
537 | 0 | OPENSSL_cleanse(seed, seedlen); |
538 | 0 | if (ret <= 0) { |
539 | 0 | EC_KEY_free(key); |
540 | 0 | key = NULL; |
541 | 0 | } |
542 | 0 | return key; |
543 | 0 | } |
544 | | |
545 | | /* |
546 | | * Before doing a key exchange the public key of the peer needs to be checked |
547 | | * Note that the group check is not done here as we have already checked |
548 | | * that it only uses one of the approved curve names when the key was set. |
549 | | * |
550 | | * Returns 1 if the public key is valid, or 0 if it fails. |
551 | | */ |
552 | | static int check_publickey(const EC_KEY *pub) |
553 | 0 | { |
554 | 0 | int ret = 0; |
555 | 0 | BN_CTX *bnctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(pub)); |
556 | |
|
557 | 0 | if (bnctx == NULL) |
558 | 0 | return 0; |
559 | 0 | ret = ossl_ec_key_public_check(pub, bnctx); |
560 | 0 | BN_CTX_free(bnctx); |
561 | |
|
562 | 0 | return ret; |
563 | 0 | } |
564 | | |
565 | | /* |
566 | | * Do an ecdh key exchange. |
567 | | * dhkm = DH(sender, peer) |
568 | | * |
569 | | * NOTE: Instead of using EVP_PKEY_derive() API's, we use EC_KEY operations |
570 | | * to avoid messy conversions back to EVP_PKEY. |
571 | | * |
572 | | * Returns the size of the secret if successful, or 0 otherwise, |
573 | | */ |
574 | | static int generate_ecdhkm(const EC_KEY *sender, const EC_KEY *peer, |
575 | | unsigned char *out, size_t maxout, |
576 | | unsigned int secretsz) |
577 | 0 | { |
578 | 0 | const EC_GROUP *group = EC_KEY_get0_group(sender); |
579 | 0 | size_t secretlen = (EC_GROUP_get_degree(group) + 7) / 8; |
580 | |
|
581 | 0 | if (secretlen != secretsz || secretlen > maxout) { |
582 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "secretsz invalid"); |
583 | 0 | return 0; |
584 | 0 | } |
585 | | |
586 | 0 | if (!check_publickey(peer)) |
587 | 0 | return 0; |
588 | 0 | return ECDH_compute_key(out, secretlen, EC_KEY_get0_public_key(peer), |
589 | 0 | sender, NULL) |
590 | 0 | > 0; |
591 | 0 | } |
592 | | |
593 | | /* |
594 | | * Derive a secret using ECDH (code is shared by the encap and decap) |
595 | | * |
596 | | * dhkm = Concat(ecdh(privkey1, peerkey1), ecdh(privkey2, peerkey2) |
597 | | * kemctx = Concat(sender_pub, recipient_pub, ctx->sender_authkey) |
598 | | * secret = dhkem_extract_and_expand(kemid, dhkm, kemctx); |
599 | | * |
600 | | * Params: |
601 | | * ctx Object that contains algorithm state and constants. |
602 | | * secret The returned secret (with a length ctx->alg->secretlen bytes). |
603 | | * privkey1 A private key used for ECDH key derivation. |
604 | | * peerkey1 A public key used for ECDH key derivation with privkey1 |
605 | | * privkey2 A optional private key used for a second ECDH key derivation. |
606 | | * It can be NULL. |
607 | | * peerkey2 A optional public key used for a second ECDH key derivation |
608 | | * with privkey2,. It can be NULL. |
609 | | * sender_pub The senders public key in encoded form. |
610 | | * recipient_pub The recipients public key in encoded form. |
611 | | * Notes: |
612 | | * The second ecdh() is only used for the HPKE auth modes when both privkey2 |
613 | | * and peerkey2 are non NULL (i.e. ctx->sender_authkey is not NULL). |
614 | | */ |
615 | | static int derive_secret(PROV_EC_CTX *ctx, unsigned char *secret, |
616 | | const EC_KEY *privkey1, const EC_KEY *peerkey1, |
617 | | const EC_KEY *privkey2, const EC_KEY *peerkey2, |
618 | | const unsigned char *sender_pub, |
619 | | const unsigned char *recipient_pub) |
620 | 0 | { |
621 | 0 | int ret = 0; |
622 | 0 | EVP_KDF_CTX *kdfctx = NULL; |
623 | 0 | unsigned char sender_authpub[OSSL_HPKE_MAX_PUBLIC]; |
624 | 0 | unsigned char dhkm[OSSL_HPKE_MAX_PRIVATE * 2]; |
625 | 0 | unsigned char kemctx[OSSL_HPKE_MAX_PUBLIC * 3]; |
626 | 0 | size_t sender_authpublen; |
627 | 0 | size_t kemctxlen = 0, dhkmlen = 0; |
628 | 0 | const OSSL_HPKE_KEM_INFO *info = ctx->info; |
629 | 0 | size_t encodedpublen = info->Npk; |
630 | 0 | size_t encodedprivlen = info->Nsk; |
631 | 0 | int auth = ctx->sender_authkey != NULL; |
632 | |
|
633 | 0 | if (!generate_ecdhkm(privkey1, peerkey1, dhkm, sizeof(dhkm), |
634 | 0 | (unsigned int)encodedprivlen)) |
635 | 0 | goto err; |
636 | 0 | dhkmlen = encodedprivlen; |
637 | 0 | kemctxlen = 2 * encodedpublen; |
638 | | |
639 | | /* Concat the optional second ECDH (used for Auth) */ |
640 | 0 | if (auth) { |
641 | | /* Get the public key of the auth sender in encoded form */ |
642 | 0 | if (!ecpubkey_todata(ctx->sender_authkey, sender_authpub, |
643 | 0 | &sender_authpublen, sizeof(sender_authpub))) |
644 | 0 | goto err; |
645 | 0 | if (sender_authpublen != encodedpublen) { |
646 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, |
647 | 0 | "Invalid sender auth public key"); |
648 | 0 | goto err; |
649 | 0 | } |
650 | 0 | if (!generate_ecdhkm(privkey2, peerkey2, |
651 | 0 | dhkm + dhkmlen, sizeof(dhkm) - dhkmlen, |
652 | 0 | (unsigned int)encodedprivlen)) |
653 | 0 | goto err; |
654 | 0 | dhkmlen += encodedprivlen; |
655 | 0 | kemctxlen += encodedpublen; |
656 | 0 | } |
657 | 0 | if (kemctxlen > sizeof(kemctx)) |
658 | 0 | goto err; |
659 | | |
660 | | /* kemctx is the concat of both sides encoded public key */ |
661 | 0 | memcpy(kemctx, sender_pub, info->Npk); |
662 | 0 | memcpy(kemctx + info->Npk, recipient_pub, info->Npk); |
663 | 0 | if (auth) |
664 | 0 | memcpy(kemctx + 2 * encodedpublen, sender_authpub, encodedpublen); |
665 | 0 | kdfctx = ossl_kdf_ctx_create(ctx->kdfname, info->mdname, |
666 | 0 | ctx->libctx, ctx->propq); |
667 | 0 | if (kdfctx == NULL) |
668 | 0 | goto err; |
669 | 0 | if (!dhkem_extract_and_expand(kdfctx, secret, info->Nsecret, |
670 | 0 | info->kem_id, dhkm, dhkmlen, |
671 | 0 | kemctx, kemctxlen)) |
672 | 0 | goto err; |
673 | 0 | ret = 1; |
674 | 0 | err: |
675 | 0 | OPENSSL_cleanse(dhkm, dhkmlen); |
676 | 0 | EVP_KDF_CTX_free(kdfctx); |
677 | 0 | return ret; |
678 | 0 | } |
679 | | |
680 | | /* |
681 | | * Do a DHKEM encapsulate operation. |
682 | | * |
683 | | * See Section 4.1 Encap() and AuthEncap() |
684 | | * |
685 | | * Params: |
686 | | * ctx A context object holding the recipients public key and the |
687 | | * optional senders auth private key. |
688 | | * enc A buffer to return the senders ephemeral public key. |
689 | | * Setting this to NULL allows the enclen and secretlen to return |
690 | | * values, without calculating the secret. |
691 | | * enclen Passes in the max size of the enc buffer and returns the |
692 | | * encoded public key length. |
693 | | * secret A buffer to return the calculated shared secret. |
694 | | * secretlen Passes in the max size of the secret buffer and returns the |
695 | | * secret length. |
696 | | * Returns: 1 on success or 0 otherwise. |
697 | | */ |
698 | | static int dhkem_encap(PROV_EC_CTX *ctx, |
699 | | unsigned char *enc, size_t *enclen, |
700 | | unsigned char *secret, size_t *secretlen) |
701 | 0 | { |
702 | 0 | int ret = 0; |
703 | 0 | EC_KEY *sender_ephemkey = NULL; |
704 | 0 | unsigned char sender_pub[OSSL_HPKE_MAX_PUBLIC]; |
705 | 0 | unsigned char recipient_pub[OSSL_HPKE_MAX_PUBLIC]; |
706 | 0 | size_t sender_publen, recipient_publen; |
707 | 0 | const OSSL_HPKE_KEM_INFO *info = ctx->info; |
708 | |
|
709 | 0 | if (enc == NULL) { |
710 | 0 | if (enclen == NULL && secretlen == NULL) |
711 | 0 | return 0; |
712 | 0 | if (enclen != NULL) |
713 | 0 | *enclen = info->Nenc; |
714 | 0 | if (secretlen != NULL) |
715 | 0 | *secretlen = info->Nsecret; |
716 | 0 | return 1; |
717 | 0 | } |
718 | | |
719 | 0 | if (*secretlen < info->Nsecret) { |
720 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small"); |
721 | 0 | return 0; |
722 | 0 | } |
723 | 0 | if (*enclen < info->Nenc) { |
724 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*enclen too small"); |
725 | 0 | return 0; |
726 | 0 | } |
727 | | |
728 | | /* Create an ephemeral key */ |
729 | 0 | sender_ephemkey = derivekey(ctx, ctx->ikm, ctx->ikmlen); |
730 | 0 | if (sender_ephemkey == NULL) |
731 | 0 | goto err; |
732 | 0 | if (!ecpubkey_todata(sender_ephemkey, sender_pub, &sender_publen, |
733 | 0 | sizeof(sender_pub)) |
734 | 0 | || !ecpubkey_todata(ctx->recipient_key, recipient_pub, |
735 | 0 | &recipient_publen, sizeof(recipient_pub))) |
736 | 0 | goto err; |
737 | | |
738 | 0 | if (sender_publen != info->Npk |
739 | 0 | || recipient_publen != sender_publen) { |
740 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid public key"); |
741 | 0 | goto err; |
742 | 0 | } |
743 | | |
744 | 0 | if (!derive_secret(ctx, secret, |
745 | 0 | sender_ephemkey, ctx->recipient_key, |
746 | 0 | ctx->sender_authkey, ctx->recipient_key, |
747 | 0 | sender_pub, recipient_pub)) |
748 | 0 | goto err; |
749 | | |
750 | | /* Return the senders ephemeral public key in encoded form */ |
751 | 0 | memcpy(enc, sender_pub, sender_publen); |
752 | 0 | *enclen = sender_publen; |
753 | 0 | *secretlen = info->Nsecret; |
754 | 0 | ret = 1; |
755 | 0 | err: |
756 | 0 | EC_KEY_free(sender_ephemkey); |
757 | 0 | return ret; |
758 | 0 | } |
759 | | |
760 | | /* |
761 | | * Do a DHKEM decapsulate operation. |
762 | | * See Section 4.1 Decap() and Auth Decap() |
763 | | * |
764 | | * Params: |
765 | | * ctx A context object holding the recipients private key and the |
766 | | * optional senders auth public key. |
767 | | * secret A buffer to return the calculated shared secret. Setting this to |
768 | | * NULL can be used to return the secretlen. |
769 | | * secretlen Passes in the max size of the secret buffer and returns the |
770 | | * secret length. |
771 | | * enc A buffer containing the senders ephemeral public key that was returned |
772 | | * from dhkem_encap(). |
773 | | * enclen The length in bytes of enc. |
774 | | * Returns: 1 If the shared secret is returned or 0 on error. |
775 | | */ |
776 | | static int dhkem_decap(PROV_EC_CTX *ctx, |
777 | | unsigned char *secret, size_t *secretlen, |
778 | | const unsigned char *enc, size_t enclen) |
779 | 0 | { |
780 | 0 | int ret = 0; |
781 | 0 | EC_KEY *sender_ephempubkey = NULL; |
782 | 0 | const OSSL_HPKE_KEM_INFO *info = ctx->info; |
783 | 0 | unsigned char recipient_pub[OSSL_HPKE_MAX_PUBLIC]; |
784 | 0 | size_t recipient_publen; |
785 | 0 | size_t encodedpublen = info->Npk; |
786 | |
|
787 | 0 | if (secret == NULL) { |
788 | 0 | *secretlen = info->Nsecret; |
789 | 0 | return 1; |
790 | 0 | } |
791 | | |
792 | 0 | if (*secretlen < info->Nsecret) { |
793 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small"); |
794 | 0 | return 0; |
795 | 0 | } |
796 | 0 | if (enclen != encodedpublen) { |
797 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid enc public key"); |
798 | 0 | return 0; |
799 | 0 | } |
800 | | |
801 | 0 | sender_ephempubkey = eckey_frompub(ctx->recipient_key, enc, enclen); |
802 | 0 | if (sender_ephempubkey == NULL) |
803 | 0 | goto err; |
804 | 0 | if (!ecpubkey_todata(ctx->recipient_key, recipient_pub, &recipient_publen, |
805 | 0 | sizeof(recipient_pub))) |
806 | 0 | goto err; |
807 | 0 | if (recipient_publen != encodedpublen) { |
808 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid recipient public key"); |
809 | 0 | goto err; |
810 | 0 | } |
811 | | |
812 | 0 | if (!derive_secret(ctx, secret, |
813 | 0 | ctx->recipient_key, sender_ephempubkey, |
814 | 0 | ctx->recipient_key, ctx->sender_authkey, |
815 | 0 | enc, recipient_pub)) |
816 | 0 | goto err; |
817 | 0 | *secretlen = info->Nsecret; |
818 | 0 | ret = 1; |
819 | 0 | err: |
820 | 0 | EC_KEY_free(sender_ephempubkey); |
821 | 0 | return ret; |
822 | 0 | } |
823 | | |
824 | | static int eckem_encapsulate(void *vctx, unsigned char *out, size_t *outlen, |
825 | | unsigned char *secret, size_t *secretlen) |
826 | 0 | { |
827 | 0 | PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx; |
828 | |
|
829 | 0 | switch (ctx->mode) { |
830 | 0 | case KEM_MODE_DHKEM: |
831 | 0 | return dhkem_encap(ctx, out, outlen, secret, secretlen); |
832 | 0 | default: |
833 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE); |
834 | 0 | return -2; |
835 | 0 | } |
836 | 0 | } |
837 | | |
838 | | static int eckem_decapsulate(void *vctx, unsigned char *out, size_t *outlen, |
839 | | const unsigned char *in, size_t inlen) |
840 | 0 | { |
841 | 0 | PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx; |
842 | |
|
843 | 0 | switch (ctx->mode) { |
844 | 0 | case KEM_MODE_DHKEM: |
845 | 0 | return dhkem_decap(ctx, out, outlen, in, inlen); |
846 | 0 | default: |
847 | | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE); |
848 | 0 | return -2; |
849 | 0 | } |
850 | 0 | } |
851 | | |
852 | | const OSSL_DISPATCH ossl_ec_asym_kem_functions[] = { |
853 | | { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))eckem_newctx }, |
854 | | { OSSL_FUNC_KEM_ENCAPSULATE_INIT, |
855 | | (void (*)(void))eckem_encapsulate_init }, |
856 | | { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))eckem_encapsulate }, |
857 | | { OSSL_FUNC_KEM_DECAPSULATE_INIT, |
858 | | (void (*)(void))eckem_decapsulate_init }, |
859 | | { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))eckem_decapsulate }, |
860 | | { OSSL_FUNC_KEM_FREECTX, (void (*)(void))eckem_freectx }, |
861 | | { OSSL_FUNC_KEM_SET_CTX_PARAMS, |
862 | | (void (*)(void))eckem_set_ctx_params }, |
863 | | { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS, |
864 | | (void (*)(void))eckem_settable_ctx_params }, |
865 | | { OSSL_FUNC_KEM_AUTH_ENCAPSULATE_INIT, |
866 | | (void (*)(void))eckem_auth_encapsulate_init }, |
867 | | { OSSL_FUNC_KEM_AUTH_DECAPSULATE_INIT, |
868 | | (void (*)(void))eckem_auth_decapsulate_init }, |
869 | | OSSL_DISPATCH_END |
870 | | }; |