/src/openssl36/providers/implementations/kem/ml_kem_kem.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | /* clang-format off */ |
10 | | |
11 | | /* clang-format on */ |
12 | | |
13 | | #include <string.h> |
14 | | #include <openssl/crypto.h> |
15 | | #include <openssl/evp.h> |
16 | | #include <openssl/core_dispatch.h> |
17 | | #include <openssl/core_names.h> |
18 | | #include <openssl/params.h> |
19 | | #include <openssl/err.h> |
20 | | #include <openssl/proverr.h> |
21 | | #include "crypto/ml_kem.h" |
22 | | #include "internal/cryptlib.h" |
23 | | #include "prov/provider_ctx.h" |
24 | | #include "prov/implementations.h" |
25 | | #include "prov/securitycheck.h" |
26 | | #include "prov/providercommon.h" |
27 | | |
28 | | static OSSL_FUNC_kem_newctx_fn ml_kem_newctx; |
29 | | static OSSL_FUNC_kem_freectx_fn ml_kem_freectx; |
30 | | static OSSL_FUNC_kem_encapsulate_init_fn ml_kem_encapsulate_init; |
31 | | static OSSL_FUNC_kem_encapsulate_fn ml_kem_encapsulate; |
32 | | static OSSL_FUNC_kem_decapsulate_init_fn ml_kem_decapsulate_init; |
33 | | static OSSL_FUNC_kem_decapsulate_fn ml_kem_decapsulate; |
34 | | static OSSL_FUNC_kem_set_ctx_params_fn ml_kem_set_ctx_params; |
35 | | static OSSL_FUNC_kem_settable_ctx_params_fn ml_kem_settable_ctx_params; |
36 | | |
37 | | typedef struct { |
38 | | ML_KEM_KEY *key; |
39 | | uint8_t entropy_buf[ML_KEM_RANDOM_BYTES]; |
40 | | uint8_t *entropy; |
41 | | int op; |
42 | | } PROV_ML_KEM_CTX; |
43 | | |
44 | | static void *ml_kem_newctx(void *provctx) |
45 | 228 | { |
46 | 228 | PROV_ML_KEM_CTX *ctx; |
47 | | |
48 | 228 | if ((ctx = OPENSSL_malloc(sizeof(*ctx))) == NULL) |
49 | 0 | return NULL; |
50 | | |
51 | 228 | ctx->key = NULL; |
52 | 228 | ctx->entropy = NULL; |
53 | 228 | ctx->op = 0; |
54 | 228 | return ctx; |
55 | 228 | } |
56 | | |
57 | | static void ml_kem_freectx(void *vctx) |
58 | 228 | { |
59 | 228 | PROV_ML_KEM_CTX *ctx = vctx; |
60 | | |
61 | 228 | if (ctx->entropy != NULL) |
62 | 0 | OPENSSL_cleanse(ctx->entropy, ML_KEM_RANDOM_BYTES); |
63 | 228 | OPENSSL_free(ctx); |
64 | 228 | } |
65 | | |
66 | | static int ml_kem_init(void *vctx, int op, void *key, |
67 | | const OSSL_PARAM params[]) |
68 | 118 | { |
69 | 118 | PROV_ML_KEM_CTX *ctx = vctx; |
70 | | |
71 | 118 | if (!ossl_prov_is_running()) |
72 | 0 | return 0; |
73 | 118 | ctx->key = key; |
74 | 118 | ctx->op = op; |
75 | 118 | return ml_kem_set_ctx_params(vctx, params); |
76 | 118 | } |
77 | | |
78 | | static int ml_kem_encapsulate_init(void *vctx, void *vkey, |
79 | | const OSSL_PARAM params[]) |
80 | 128 | { |
81 | 128 | ML_KEM_KEY *key = vkey; |
82 | | |
83 | 128 | if (!ossl_ml_kem_have_pubkey(key)) { |
84 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); |
85 | 0 | return 0; |
86 | 0 | } |
87 | 128 | return ml_kem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, key, params); |
88 | 128 | } |
89 | | |
90 | | static int ml_kem_decapsulate_init(void *vctx, void *vkey, |
91 | | const OSSL_PARAM params[]) |
92 | 100 | { |
93 | 100 | ML_KEM_KEY *key = vkey; |
94 | | |
95 | 100 | if (!ossl_ml_kem_have_prvkey(key)) { |
96 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); |
97 | 0 | return 0; |
98 | 0 | } |
99 | 100 | return ml_kem_init(vctx, EVP_PKEY_OP_DECAPSULATE, key, params); |
100 | 100 | } |
101 | | |
102 | | /* clang-format off */ |
103 | | /* Machine generated by util/perl/OpenSSL/paramnames.pm */ |
104 | | #ifndef ml_kem_set_ctx_params_list |
105 | | static const OSSL_PARAM ml_kem_set_ctx_params_list[] = { |
106 | | OSSL_PARAM_octet_string(OSSL_KEM_PARAM_IKME, NULL, 0), |
107 | | OSSL_PARAM_END |
108 | | }; |
109 | | #endif |
110 | | |
111 | | #ifndef ml_kem_set_ctx_params_st |
112 | | struct ml_kem_set_ctx_params_st { |
113 | | OSSL_PARAM *ikme; |
114 | | }; |
115 | | #endif |
116 | | |
117 | | #ifndef ml_kem_set_ctx_params_decoder |
118 | | static int ml_kem_set_ctx_params_decoder |
119 | | (const OSSL_PARAM *p, struct ml_kem_set_ctx_params_st *r) |
120 | 178 | { |
121 | 178 | const char *s; |
122 | | |
123 | 178 | memset(r, 0, sizeof(*r)); |
124 | 178 | if (p != NULL) |
125 | 0 | for (; (s = p->key) != NULL; p++) |
126 | 0 | if (ossl_likely(strcmp("ikme", s + 0) == 0)) { |
127 | | /* OSSL_KEM_PARAM_IKME */ |
128 | 0 | if (ossl_unlikely(r->ikme != NULL)) { |
129 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_REPEATED_PARAMETER, |
130 | 0 | "param %s is repeated", s); |
131 | 0 | return 0; |
132 | 0 | } |
133 | 0 | r->ikme = (OSSL_PARAM *)p; |
134 | 0 | } |
135 | 178 | return 1; |
136 | 178 | } |
137 | | #endif |
138 | | /* End of machine generated */ |
139 | | /* clang-format on */ |
140 | | |
141 | | static int ml_kem_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
142 | 68 | { |
143 | 68 | PROV_ML_KEM_CTX *ctx = vctx; |
144 | 68 | struct ml_kem_set_ctx_params_st p; |
145 | | |
146 | 68 | if (ctx == NULL || !ml_kem_set_ctx_params_decoder(params, &p)) |
147 | 0 | return 0; |
148 | | |
149 | 68 | if (ctx->op == EVP_PKEY_OP_DECAPSULATE && ctx->entropy != NULL) { |
150 | | /* Decapsulation is deterministic */ |
151 | 0 | OPENSSL_cleanse(ctx->entropy, ML_KEM_RANDOM_BYTES); |
152 | 0 | ctx->entropy = NULL; |
153 | 0 | } |
154 | | |
155 | | /* Encapsulation ephemeral input key material "ikmE" */ |
156 | 68 | if (ctx->op == EVP_PKEY_OP_ENCAPSULATE && p.ikme != NULL) { |
157 | 0 | size_t len = ML_KEM_RANDOM_BYTES; |
158 | |
|
159 | 0 | ctx->entropy = ctx->entropy_buf; |
160 | 0 | if (OSSL_PARAM_get_octet_string(p.ikme, (void **)&ctx->entropy, |
161 | 0 | len, &len) |
162 | 0 | && len == ML_KEM_RANDOM_BYTES) |
163 | 0 | return 1; |
164 | | |
165 | | /* Possibly, but much less likely wrong type */ |
166 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_SEED_LENGTH); |
167 | 0 | ctx->entropy = NULL; |
168 | 0 | return 0; |
169 | 0 | } |
170 | | |
171 | 68 | return 1; |
172 | 68 | } |
173 | | |
174 | | static const OSSL_PARAM *ml_kem_settable_ctx_params(ossl_unused void *vctx, |
175 | | ossl_unused void *provctx) |
176 | 18 | { |
177 | 18 | return ml_kem_set_ctx_params_list; |
178 | 18 | } |
179 | | |
180 | | static int ml_kem_encapsulate(void *vctx, unsigned char *ctext, size_t *clen, |
181 | | unsigned char *shsec, size_t *slen) |
182 | 128 | { |
183 | 128 | PROV_ML_KEM_CTX *ctx = vctx; |
184 | 128 | ML_KEM_KEY *key = ctx->key; |
185 | 128 | const ML_KEM_VINFO *v; |
186 | 128 | size_t encap_clen; |
187 | 128 | size_t encap_slen; |
188 | 128 | int ret = 0; |
189 | | |
190 | 128 | if (!ossl_ml_kem_have_pubkey(key)) { |
191 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); |
192 | 0 | goto end; |
193 | 0 | } |
194 | 128 | v = ossl_ml_kem_key_vinfo(key); |
195 | 128 | encap_clen = v->ctext_bytes; |
196 | 128 | encap_slen = ML_KEM_SHARED_SECRET_BYTES; |
197 | | |
198 | 128 | if (ctext == NULL) { |
199 | 0 | if (clen == NULL && slen == NULL) |
200 | 0 | return 0; |
201 | 0 | if (clen != NULL) |
202 | 0 | *clen = encap_clen; |
203 | 0 | if (slen != NULL) |
204 | 0 | *slen = encap_slen; |
205 | 0 | return 1; |
206 | 0 | } |
207 | 128 | if (shsec == NULL) { |
208 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_NULL_OUTPUT_BUFFER, |
209 | 0 | "NULL shared-secret buffer"); |
210 | 0 | goto end; |
211 | 0 | } |
212 | | |
213 | 128 | if (clen == NULL) { |
214 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_NULL_LENGTH_POINTER, |
215 | 0 | "null ciphertext input/output length pointer"); |
216 | 0 | goto end; |
217 | 128 | } else if (*clen < encap_clen) { |
218 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL, |
219 | 0 | "ciphertext buffer too small"); |
220 | 0 | goto end; |
221 | 128 | } else { |
222 | 128 | *clen = encap_clen; |
223 | 128 | } |
224 | | |
225 | 128 | if (slen == NULL) { |
226 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_NULL_LENGTH_POINTER, |
227 | 0 | "null shared secret input/output length pointer"); |
228 | 0 | goto end; |
229 | 128 | } else if (*slen < encap_slen) { |
230 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL, |
231 | 0 | "shared-secret buffer too small"); |
232 | 0 | goto end; |
233 | 128 | } else { |
234 | 128 | *slen = encap_slen; |
235 | 128 | } |
236 | | |
237 | 128 | if (ctx->entropy != NULL) |
238 | 0 | ret = ossl_ml_kem_encap_seed(ctext, encap_clen, shsec, encap_slen, |
239 | 0 | ctx->entropy, ML_KEM_RANDOM_BYTES, key); |
240 | 128 | else |
241 | 128 | ret = ossl_ml_kem_encap_rand(ctext, encap_clen, shsec, encap_slen, key); |
242 | | |
243 | 128 | end: |
244 | | /* |
245 | | * One shot entropy, each encapsulate call must either provide a new |
246 | | * "ikmE", or else will use a random value. If a caller sets an explicit |
247 | | * ikmE once for testing, and later performs multiple encapsulations |
248 | | * without again calling encapsulate_init(), these should not share the |
249 | | * original entropy. |
250 | | */ |
251 | 128 | if (ctx->entropy != NULL) { |
252 | 0 | OPENSSL_cleanse(ctx->entropy, ML_KEM_RANDOM_BYTES); |
253 | 0 | ctx->entropy = NULL; |
254 | 0 | } |
255 | 128 | return ret; |
256 | 128 | } |
257 | | |
258 | | static int ml_kem_decapsulate(void *vctx, uint8_t *shsec, size_t *slen, |
259 | | const uint8_t *ctext, size_t clen) |
260 | 100 | { |
261 | 100 | PROV_ML_KEM_CTX *ctx = vctx; |
262 | 100 | ML_KEM_KEY *key = ctx->key; |
263 | 100 | size_t decap_slen = ML_KEM_SHARED_SECRET_BYTES; |
264 | | |
265 | 100 | if (!ossl_ml_kem_have_prvkey(key)) { |
266 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); |
267 | 0 | return 0; |
268 | 0 | } |
269 | | |
270 | 100 | if (shsec == NULL) { |
271 | 0 | if (slen == NULL) |
272 | 0 | return 0; |
273 | 0 | *slen = ML_KEM_SHARED_SECRET_BYTES; |
274 | 0 | return 1; |
275 | 0 | } |
276 | | |
277 | | /* For now tolerate newly-deprecated NULL length pointers. */ |
278 | 100 | if (slen == NULL) { |
279 | 0 | slen = &decap_slen; |
280 | 100 | } else if (*slen < decap_slen) { |
281 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL, |
282 | 0 | "shared-secret buffer too small"); |
283 | 0 | return 0; |
284 | 100 | } else { |
285 | 100 | *slen = decap_slen; |
286 | 100 | } |
287 | | |
288 | | /* ML-KEM decap handles incorrect ciphertext lengths internally */ |
289 | 100 | return ossl_ml_kem_decap(shsec, decap_slen, ctext, clen, key); |
290 | 100 | } |
291 | | |
292 | | const OSSL_DISPATCH ossl_ml_kem_asym_kem_functions[] = { |
293 | | { OSSL_FUNC_KEM_NEWCTX, (OSSL_FUNC)ml_kem_newctx }, |
294 | | { OSSL_FUNC_KEM_ENCAPSULATE_INIT, (OSSL_FUNC)ml_kem_encapsulate_init }, |
295 | | { OSSL_FUNC_KEM_ENCAPSULATE, (OSSL_FUNC)ml_kem_encapsulate }, |
296 | | { OSSL_FUNC_KEM_DECAPSULATE_INIT, (OSSL_FUNC)ml_kem_decapsulate_init }, |
297 | | { OSSL_FUNC_KEM_DECAPSULATE, (OSSL_FUNC)ml_kem_decapsulate }, |
298 | | { OSSL_FUNC_KEM_FREECTX, (OSSL_FUNC)ml_kem_freectx }, |
299 | | { OSSL_FUNC_KEM_SET_CTX_PARAMS, (OSSL_FUNC)ml_kem_set_ctx_params }, |
300 | | { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS, (OSSL_FUNC)ml_kem_settable_ctx_params }, |
301 | | OSSL_DISPATCH_END |
302 | | }; |