Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl36/ssl/t1_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <ctype.h>
13
#include <openssl/objects.h>
14
#include <openssl/evp.h>
15
#include <openssl/hmac.h>
16
#include <openssl/core_names.h>
17
#include <openssl/ocsp.h>
18
#include <openssl/conf.h>
19
#include <openssl/x509v3.h>
20
#include <openssl/dh.h>
21
#include <openssl/bn.h>
22
#include <openssl/provider.h>
23
#include <openssl/param_build.h>
24
#include "internal/nelem.h"
25
#include "internal/sizes.h"
26
#include "internal/tlsgroups.h"
27
#include "internal/ssl_unwrap.h"
28
#include "ssl_local.h"
29
#include "quic/quic_local.h"
30
#include <openssl/ct.h>
31
32
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35
SSL3_ENC_METHOD const TLSv1_enc_data = {
36
    tls1_setup_key_block,
37
    tls1_generate_master_secret,
38
    tls1_change_cipher_state,
39
    tls1_final_finish_mac,
40
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
    tls1_alert_code,
43
    tls1_export_keying_material,
44
    0,
45
    ssl3_set_handshake_header,
46
    tls_close_construct_packet,
47
    ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
    tls1_setup_key_block,
52
    tls1_generate_master_secret,
53
    tls1_change_cipher_state,
54
    tls1_final_finish_mac,
55
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57
    tls1_alert_code,
58
    tls1_export_keying_material,
59
    0,
60
    ssl3_set_handshake_header,
61
    tls_close_construct_packet,
62
    ssl3_handshake_write
63
};
64
65
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66
    tls1_setup_key_block,
67
    tls1_generate_master_secret,
68
    tls1_change_cipher_state,
69
    tls1_final_finish_mac,
70
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72
    tls1_alert_code,
73
    tls1_export_keying_material,
74
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76
    ssl3_set_handshake_header,
77
    tls_close_construct_packet,
78
    ssl3_handshake_write
79
};
80
81
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82
    tls13_setup_key_block,
83
    tls13_generate_master_secret,
84
    tls13_change_cipher_state,
85
    tls13_final_finish_mac,
86
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88
    tls13_alert_code,
89
    tls13_export_keying_material,
90
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91
    ssl3_set_handshake_header,
92
    tls_close_construct_packet,
93
    ssl3_handshake_write
94
};
95
96
OSSL_TIME tls1_default_timeout(void)
97
119k
{
98
    /*
99
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100
     * http, the cache would over fill
101
     */
102
119k
    return ossl_seconds2time(60 * 60 * 2);
103
119k
}
104
105
int tls1_new(SSL *s)
106
119k
{
107
119k
    if (!ssl3_new(s))
108
0
        return 0;
109
119k
    if (!s->method->ssl_clear(s))
110
0
        return 0;
111
112
119k
    return 1;
113
119k
}
114
115
void tls1_free(SSL *s)
116
64.4k
{
117
64.4k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119
64.4k
    if (sc == NULL)
120
0
        return;
121
122
64.4k
    OPENSSL_free(sc->ext.session_ticket);
123
64.4k
    ssl3_free(s);
124
64.4k
}
125
126
int tls1_clear(SSL *s)
127
257k
{
128
257k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130
257k
    if (sc == NULL)
131
0
        return 0;
132
133
257k
    if (!ssl3_clear(s))
134
0
        return 0;
135
136
257k
    if (s->method->version == TLS_ANY_VERSION)
137
257k
        sc->version = TLS_MAX_VERSION_INTERNAL;
138
0
    else
139
0
        sc->version = s->method->version;
140
141
257k
    return 1;
142
257k
}
143
144
/* Legacy NID to group_id mapping. Only works for groups we know about */
145
static const struct {
146
    int nid;
147
    uint16_t group_id;
148
} nid_to_group[] = {
149
    { NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1 },
150
    { NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1 },
151
    { NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2 },
152
    { NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1 },
153
    { NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2 },
154
    { NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1 },
155
    { NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1 },
156
    { NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1 },
157
    { NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1 },
158
    { NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1 },
159
    { NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1 },
160
    { NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1 },
161
    { NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1 },
162
    { NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1 },
163
    { NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1 },
164
    { NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1 },
165
    { NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2 },
166
    { NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1 },
167
    { NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1 },
168
    { NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1 },
169
    { NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1 },
170
    { NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1 },
171
    { NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1 },
172
    { NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1 },
173
    { NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1 },
174
    { NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1 },
175
    { NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1 },
176
    { NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1 },
177
    { EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519 },
178
    { EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448 },
179
    { NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13 },
180
    { NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13 },
181
    { NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13 },
182
    { NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A },
183
    { NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B },
184
    { NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C },
185
    { NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D },
186
    { NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A },
187
    { NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B },
188
    { NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C },
189
    { NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048 },
190
    { NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072 },
191
    { NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096 },
192
    { NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144 },
193
    { NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192 }
194
};
195
196
static const unsigned char ecformats_default[] = {
197
    TLSEXT_ECPOINTFORMAT_uncompressed
198
};
199
200
static const unsigned char ecformats_all[] = {
201
    TLSEXT_ECPOINTFORMAT_uncompressed,
202
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
203
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
204
};
205
206
/* Group list string of the built-in pseudo group DEFAULT */
207
#define DEFAULT_GROUP_NAME "DEFAULT"
208
#define TLS_DEFAULT_GROUP_LIST \
209
    "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
210
211
static const uint16_t suiteb_curves[] = {
212
    OSSL_TLS_GROUP_ID_secp256r1,
213
    OSSL_TLS_GROUP_ID_secp384r1,
214
};
215
216
/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
217
#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
218
#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
219
220
struct provider_ctx_data_st {
221
    SSL_CTX *ctx;
222
    OSSL_PROVIDER *provider;
223
};
224
225
1.08M
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
226
static OSSL_CALLBACK add_provider_groups;
227
static int add_provider_groups(const OSSL_PARAM params[], void *data)
228
5.35M
{
229
5.35M
    struct provider_ctx_data_st *pgd = data;
230
5.35M
    SSL_CTX *ctx = pgd->ctx;
231
5.35M
    const OSSL_PARAM *p;
232
5.35M
    TLS_GROUP_INFO *ginf = NULL;
233
5.35M
    EVP_KEYMGMT *keymgmt;
234
5.35M
    unsigned int gid;
235
5.35M
    unsigned int is_kem = 0;
236
5.35M
    int ret = 0;
237
238
5.35M
    if (ctx->group_list_max_len == ctx->group_list_len) {
239
544k
        TLS_GROUP_INFO *tmp = NULL;
240
241
544k
        if (ctx->group_list_max_len == 0)
242
90.6k
            tmp = OPENSSL_malloc_array(TLS_GROUP_LIST_MALLOC_BLOCK_SIZE,
243
544k
                sizeof(TLS_GROUP_INFO));
244
453k
        else
245
453k
            tmp = OPENSSL_realloc_array(ctx->group_list,
246
544k
                ctx->group_list_max_len
247
544k
                    + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE,
248
544k
                sizeof(TLS_GROUP_INFO));
249
544k
        if (tmp == NULL)
250
0
            return 0;
251
544k
        ctx->group_list = tmp;
252
544k
        memset(tmp + ctx->group_list_max_len,
253
544k
            0,
254
544k
            sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
255
544k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
256
544k
    }
257
258
5.35M
    ginf = &ctx->group_list[ctx->group_list_len];
259
260
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
261
5.35M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
262
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
263
0
        goto err;
264
0
    }
265
5.35M
    ginf->tlsname = OPENSSL_strdup(p->data);
266
5.35M
    if (ginf->tlsname == NULL)
267
0
        goto err;
268
269
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
270
5.35M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
271
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
272
0
        goto err;
273
0
    }
274
5.35M
    ginf->realname = OPENSSL_strdup(p->data);
275
5.35M
    if (ginf->realname == NULL)
276
0
        goto err;
277
278
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
279
5.35M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
280
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
281
0
        goto err;
282
0
    }
283
5.35M
    ginf->group_id = (uint16_t)gid;
284
285
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
286
5.35M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
5.35M
    ginf->algorithm = OPENSSL_strdup(p->data);
291
5.35M
    if (ginf->algorithm == NULL)
292
0
        goto err;
293
294
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
295
5.35M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
296
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
297
0
        goto err;
298
0
    }
299
300
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
301
5.35M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
302
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
303
0
        goto err;
304
0
    }
305
5.35M
    ginf->is_kem = 1 & is_kem;
306
307
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
308
5.35M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
313
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
314
5.35M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
315
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
316
0
        goto err;
317
0
    }
318
319
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
320
5.35M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
321
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
322
0
        goto err;
323
0
    }
324
325
5.35M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
326
5.35M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
327
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
328
0
        goto err;
329
0
    }
330
    /*
331
     * Now check that the algorithm is actually usable for our property query
332
     * string. Regardless of the result we still return success because we have
333
     * successfully processed this group, even though we may decide not to use
334
     * it.
335
     */
336
5.35M
    ret = 1;
337
5.35M
    ERR_set_mark();
338
5.35M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
339
5.35M
    if (keymgmt != NULL) {
340
        /* We have successfully fetched the algorithm, we can use the group. */
341
5.35M
        ctx->group_list_len++;
342
5.35M
        ginf = NULL;
343
5.35M
        EVP_KEYMGMT_free(keymgmt);
344
5.35M
    }
345
5.35M
    ERR_pop_to_mark();
346
5.35M
err:
347
5.35M
    if (ginf != NULL) {
348
0
        OPENSSL_free(ginf->tlsname);
349
0
        OPENSSL_free(ginf->realname);
350
0
        OPENSSL_free(ginf->algorithm);
351
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
352
0
    }
353
5.35M
    return ret;
354
5.35M
}
355
356
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
357
327k
{
358
327k
    struct provider_ctx_data_st pgd;
359
360
327k
    pgd.ctx = vctx;
361
327k
    pgd.provider = provider;
362
327k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
363
327k
        add_provider_groups, &pgd);
364
327k
}
365
366
int ssl_load_groups(SSL_CTX *ctx)
367
90.6k
{
368
90.6k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
369
0
        return 0;
370
371
90.6k
    return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
372
90.6k
}
373
374
static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
375
544k
{
376
544k
    return (sinf->keytype != NULL
377
544k
            ? sinf->keytype
378
544k
            : (sinf->sig_name != NULL
379
544k
                      ? sinf->sig_name
380
544k
                      : sinf->sigalg_name));
381
544k
}
382
383
181k
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
384
static OSSL_CALLBACK add_provider_sigalgs;
385
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
386
272k
{
387
272k
    struct provider_ctx_data_st *pgd = data;
388
272k
    SSL_CTX *ctx = pgd->ctx;
389
272k
    OSSL_PROVIDER *provider = pgd->provider;
390
272k
    const OSSL_PARAM *p;
391
272k
    TLS_SIGALG_INFO *sinf = NULL;
392
272k
    EVP_KEYMGMT *keymgmt;
393
272k
    const char *keytype;
394
272k
    unsigned int code_point = 0;
395
272k
    int ret = 0;
396
397
272k
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
398
90.6k
        TLS_SIGALG_INFO *tmp = NULL;
399
400
90.6k
        if (ctx->sigalg_list_max_len == 0)
401
90.6k
            tmp = OPENSSL_malloc_array(TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE,
402
90.6k
                sizeof(TLS_SIGALG_INFO));
403
0
        else
404
0
            tmp = OPENSSL_realloc_array(ctx->sigalg_list,
405
90.6k
                ctx->sigalg_list_max_len
406
90.6k
                    + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE,
407
90.6k
                sizeof(TLS_SIGALG_INFO));
408
90.6k
        if (tmp == NULL)
409
0
            return 0;
410
90.6k
        ctx->sigalg_list = tmp;
411
90.6k
        memset(tmp + ctx->sigalg_list_max_len, 0,
412
90.6k
            sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
413
90.6k
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
414
90.6k
    }
415
416
272k
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
417
418
    /* First, mandatory parameters */
419
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
420
272k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
421
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
422
0
        goto err;
423
0
    }
424
272k
    OPENSSL_free(sinf->sigalg_name);
425
272k
    sinf->sigalg_name = OPENSSL_strdup(p->data);
426
272k
    if (sinf->sigalg_name == NULL)
427
0
        goto err;
428
429
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
430
272k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
431
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
432
0
        goto err;
433
0
    }
434
272k
    OPENSSL_free(sinf->name);
435
272k
    sinf->name = OPENSSL_strdup(p->data);
436
272k
    if (sinf->name == NULL)
437
0
        goto err;
438
439
272k
    p = OSSL_PARAM_locate_const(params,
440
272k
        OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
441
272k
    if (p == NULL
442
272k
        || !OSSL_PARAM_get_uint(p, &code_point)
443
272k
        || code_point > UINT16_MAX) {
444
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
445
0
        goto err;
446
0
    }
447
272k
    sinf->code_point = (uint16_t)code_point;
448
449
272k
    p = OSSL_PARAM_locate_const(params,
450
272k
        OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
451
272k
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
452
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
453
0
        goto err;
454
0
    }
455
456
    /* Now, optional parameters */
457
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
458
272k
    if (p == NULL) {
459
0
        sinf->sigalg_oid = NULL;
460
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
461
0
        goto err;
462
272k
    } else {
463
272k
        OPENSSL_free(sinf->sigalg_oid);
464
272k
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
465
272k
        if (sinf->sigalg_oid == NULL)
466
0
            goto err;
467
272k
    }
468
469
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
470
272k
    if (p == NULL) {
471
272k
        sinf->sig_name = NULL;
472
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
473
0
        goto err;
474
0
    } else {
475
0
        OPENSSL_free(sinf->sig_name);
476
0
        sinf->sig_name = OPENSSL_strdup(p->data);
477
0
        if (sinf->sig_name == NULL)
478
0
            goto err;
479
0
    }
480
481
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
482
272k
    if (p == NULL) {
483
272k
        sinf->sig_oid = NULL;
484
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
485
0
        goto err;
486
0
    } else {
487
0
        OPENSSL_free(sinf->sig_oid);
488
0
        sinf->sig_oid = OPENSSL_strdup(p->data);
489
0
        if (sinf->sig_oid == NULL)
490
0
            goto err;
491
0
    }
492
493
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
494
272k
    if (p == NULL) {
495
272k
        sinf->hash_name = NULL;
496
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
497
0
        goto err;
498
0
    } else {
499
0
        OPENSSL_free(sinf->hash_name);
500
0
        sinf->hash_name = OPENSSL_strdup(p->data);
501
0
        if (sinf->hash_name == NULL)
502
0
            goto err;
503
0
    }
504
505
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
506
272k
    if (p == NULL) {
507
272k
        sinf->hash_oid = NULL;
508
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
509
0
        goto err;
510
0
    } else {
511
0
        OPENSSL_free(sinf->hash_oid);
512
0
        sinf->hash_oid = OPENSSL_strdup(p->data);
513
0
        if (sinf->hash_oid == NULL)
514
0
            goto err;
515
0
    }
516
517
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
518
272k
    if (p == NULL) {
519
272k
        sinf->keytype = NULL;
520
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
521
0
        goto err;
522
0
    } else {
523
0
        OPENSSL_free(sinf->keytype);
524
0
        sinf->keytype = OPENSSL_strdup(p->data);
525
0
        if (sinf->keytype == NULL)
526
0
            goto err;
527
0
    }
528
529
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
530
272k
    if (p == NULL) {
531
272k
        sinf->keytype_oid = NULL;
532
272k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
533
0
        goto err;
534
0
    } else {
535
0
        OPENSSL_free(sinf->keytype_oid);
536
0
        sinf->keytype_oid = OPENSSL_strdup(p->data);
537
0
        if (sinf->keytype_oid == NULL)
538
0
            goto err;
539
0
    }
540
541
    /* Optional, not documented prior to 3.5 */
542
272k
    sinf->mindtls = sinf->maxdtls = -1;
543
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
544
272k
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
545
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
546
0
        goto err;
547
0
    }
548
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
549
272k
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
550
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
551
0
        goto err;
552
0
    }
553
    /* DTLS version numbers grow downward */
554
272k
    if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) && ((sinf->maxdtls > sinf->mindtls))) {
555
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
556
0
        goto err;
557
0
    }
558
    /* No provider sigalgs are supported in DTLS, reset after checking. */
559
272k
    sinf->mindtls = sinf->maxdtls = -1;
560
561
    /* The remaining parameters below are mandatory again */
562
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
563
272k
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
564
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
565
0
        goto err;
566
0
    }
567
272k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
568
272k
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
569
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
570
0
        goto err;
571
0
    }
572
272k
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < sinf->mintls))) {
573
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
574
0
        goto err;
575
0
    }
576
272k
    if ((sinf->mintls != 0) && (sinf->mintls != -1) && ((sinf->mintls > TLS1_3_VERSION)))
577
0
        sinf->mintls = sinf->maxtls = -1;
578
272k
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < TLS1_3_VERSION)))
579
0
        sinf->mintls = sinf->maxtls = -1;
580
581
    /* Ignore unusable sigalgs */
582
272k
    if (sinf->mintls == -1 && sinf->mindtls == -1) {
583
0
        ret = 1;
584
0
        goto err;
585
0
    }
586
587
    /*
588
     * Now check that the algorithm is actually usable for our property query
589
     * string. Regardless of the result we still return success because we have
590
     * successfully processed this signature, even though we may decide not to
591
     * use it.
592
     */
593
272k
    ret = 1;
594
272k
    ERR_set_mark();
595
272k
    keytype = inferred_keytype(sinf);
596
272k
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
597
272k
    if (keymgmt != NULL) {
598
        /*
599
         * We have successfully fetched the algorithm - however if the provider
600
         * doesn't match this one then we ignore it.
601
         *
602
         * Note: We're cheating a little here. Technically if the same algorithm
603
         * is available from more than one provider then it is undefined which
604
         * implementation you will get back. Theoretically this could be
605
         * different every time...we assume here that you'll always get the
606
         * same one back if you repeat the exact same fetch. Is this a reasonable
607
         * assumption to make (in which case perhaps we should document this
608
         * behaviour)?
609
         */
610
272k
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
611
            /*
612
             * We have a match - so we could use this signature;
613
             * Check proper object registration first, though.
614
             * Don't care about return value as this may have been
615
             * done within providers or previous calls to
616
             * add_provider_sigalgs.
617
             */
618
272k
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
619
            /* sanity check: Without successful registration don't use alg */
620
272k
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) || (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
621
0
                ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
622
0
                goto err;
623
0
            }
624
272k
            if (sinf->sig_name != NULL)
625
0
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
626
272k
            if (sinf->keytype != NULL)
627
0
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
628
272k
            if (sinf->hash_name != NULL)
629
0
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
630
272k
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
631
272k
                (sinf->hash_name != NULL
632
272k
                        ? OBJ_txt2nid(sinf->hash_name)
633
272k
                        : NID_undef),
634
272k
                OBJ_txt2nid(keytype));
635
272k
            ctx->sigalg_list_len++;
636
272k
            sinf = NULL;
637
272k
        }
638
272k
        EVP_KEYMGMT_free(keymgmt);
639
272k
    }
640
272k
    ERR_pop_to_mark();
641
272k
err:
642
272k
    if (sinf != NULL) {
643
0
        OPENSSL_free(sinf->name);
644
0
        sinf->name = NULL;
645
0
        OPENSSL_free(sinf->sigalg_name);
646
0
        sinf->sigalg_name = NULL;
647
0
        OPENSSL_free(sinf->sigalg_oid);
648
0
        sinf->sigalg_oid = NULL;
649
0
        OPENSSL_free(sinf->sig_name);
650
0
        sinf->sig_name = NULL;
651
0
        OPENSSL_free(sinf->sig_oid);
652
0
        sinf->sig_oid = NULL;
653
0
        OPENSSL_free(sinf->hash_name);
654
0
        sinf->hash_name = NULL;
655
0
        OPENSSL_free(sinf->hash_oid);
656
0
        sinf->hash_oid = NULL;
657
0
        OPENSSL_free(sinf->keytype);
658
0
        sinf->keytype = NULL;
659
0
        OPENSSL_free(sinf->keytype_oid);
660
0
        sinf->keytype_oid = NULL;
661
0
    }
662
272k
    return ret;
663
272k
}
664
665
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
666
304k
{
667
304k
    struct provider_ctx_data_st pgd;
668
669
304k
    pgd.ctx = vctx;
670
304k
    pgd.provider = provider;
671
304k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
672
304k
        add_provider_sigalgs, &pgd);
673
    /*
674
     * Always OK, even if provider doesn't support the capability:
675
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
676
     */
677
304k
    return 1;
678
304k
}
679
680
int ssl_load_sigalgs(SSL_CTX *ctx)
681
152k
{
682
152k
    size_t i;
683
152k
    SSL_CERT_LOOKUP lu;
684
685
152k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
686
0
        return 0;
687
688
    /* now populate ctx->ssl_cert_info */
689
152k
    if (ctx->sigalg_list_len > 0) {
690
90.6k
        OPENSSL_free(ctx->ssl_cert_info);
691
90.6k
        ctx->ssl_cert_info = OPENSSL_calloc(ctx->sigalg_list_len, sizeof(lu));
692
90.6k
        if (ctx->ssl_cert_info == NULL)
693
0
            return 0;
694
362k
        for (i = 0; i < ctx->sigalg_list_len; i++) {
695
272k
            const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
696
272k
            ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
697
272k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
698
272k
        }
699
90.6k
    }
700
701
    /*
702
     * For now, leave it at this: legacy sigalgs stay in their own
703
     * data structures until "legacy cleanup" occurs.
704
     */
705
706
152k
    return 1;
707
152k
}
708
709
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
710
725k
{
711
725k
    size_t i;
712
713
4.08M
    for (i = 0; i < ctx->group_list_len; i++) {
714
4.08M
        if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
715
3.35M
            || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
716
725k
            return ctx->group_list[i].group_id;
717
4.08M
    }
718
719
0
    return 0;
720
725k
}
721
722
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
723
3.20M
{
724
3.20M
    size_t i;
725
726
69.8M
    for (i = 0; i < ctx->group_list_len; i++) {
727
69.8M
        if (ctx->group_list[i].group_id == group_id)
728
3.20M
            return &ctx->group_list[i];
729
69.8M
    }
730
731
0
    return NULL;
732
3.20M
}
733
734
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
735
0
{
736
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
737
738
0
    if (tls_group_info == NULL)
739
0
        return NULL;
740
741
0
    return tls_group_info->tlsname;
742
0
}
743
744
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
745
1.40M
{
746
1.40M
    size_t i;
747
748
1.40M
    if (group_id == 0)
749
0
        return NID_undef;
750
751
    /*
752
     * Return well known Group NIDs - for backwards compatibility. This won't
753
     * work for groups we don't know about.
754
     */
755
44.8M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
756
44.7M
        if (nid_to_group[i].group_id == group_id)
757
1.30M
            return nid_to_group[i].nid;
758
44.7M
    }
759
100k
    if (!include_unknown)
760
100k
        return NID_undef;
761
0
    return TLSEXT_nid_unknown | (int)group_id;
762
100k
}
763
764
uint16_t tls1_nid2group_id(int nid)
765
28.1k
{
766
28.1k
    size_t i;
767
768
    /*
769
     * Return well known Group ids - for backwards compatibility. This won't
770
     * work for groups we don't know about.
771
     */
772
647k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
773
647k
        if (nid_to_group[i].nid == nid)
774
28.1k
            return nid_to_group[i].group_id;
775
647k
    }
776
777
6
    return 0;
778
28.1k
}
779
780
/*
781
 * Set *pgroups to the supported groups list and *pgroupslen to
782
 * the number of groups supported.
783
 */
784
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
785
    size_t *pgroupslen)
786
460k
{
787
460k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
788
789
    /* For Suite B mode only include P-256, P-384 */
790
460k
    switch (tls1_suiteb(s)) {
791
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
792
0
        *pgroups = suiteb_curves;
793
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
794
0
        break;
795
796
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
797
0
        *pgroups = suiteb_curves;
798
0
        *pgroupslen = 1;
799
0
        break;
800
801
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
802
0
        *pgroups = suiteb_curves + 1;
803
0
        *pgroupslen = 1;
804
0
        break;
805
806
460k
    default:
807
460k
        if (s->ext.supportedgroups == NULL) {
808
231k
            *pgroups = sctx->ext.supportedgroups;
809
231k
            *pgroupslen = sctx->ext.supportedgroups_len;
810
231k
        } else {
811
228k
            *pgroups = s->ext.supportedgroups;
812
228k
            *pgroupslen = s->ext.supportedgroups_len;
813
228k
        }
814
460k
        break;
815
460k
    }
816
460k
}
817
818
/*
819
 * Some comments for the function below:
820
 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
821
 * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
822
 * eligible group from the legacy list. Therefore, we provide the entire list of supported
823
 * groups in this case.
824
 *
825
 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
826
 * but the groupID to 0.
827
 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
828
 * the "list of requested key share groups" is used, or the "list of supported groups" in
829
 * combination with setting add_only_one = 1 is applied.
830
 */
831
void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
832
    size_t *pgroupslen)
833
49.5k
{
834
49.5k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
835
836
49.5k
    if (s->ext.supportedgroups == NULL) {
837
0
        *pgroups = sctx->ext.supportedgroups;
838
0
        *pgroupslen = sctx->ext.supportedgroups_len;
839
49.5k
    } else {
840
49.5k
        *pgroups = s->ext.keyshares;
841
49.5k
        *pgroupslen = s->ext.keyshares_len;
842
49.5k
    }
843
49.5k
}
844
845
void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
846
    size_t *ptupleslen)
847
2.28k
{
848
2.28k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
849
850
2.28k
    if (s->ext.supportedgroups == NULL) {
851
0
        *ptuples = sctx->ext.tuples;
852
0
        *ptupleslen = sctx->ext.tuples_len;
853
2.28k
    } else {
854
2.28k
        *ptuples = s->ext.tuples;
855
2.28k
        *ptupleslen = s->ext.tuples_len;
856
2.28k
    }
857
2.28k
}
858
859
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
860
    int minversion, int maxversion,
861
    int isec, int *okfortls13)
862
1.48M
{
863
1.48M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
864
1.48M
        group_id);
865
1.48M
    int ret;
866
1.48M
    int group_minversion, group_maxversion;
867
868
1.48M
    if (okfortls13 != NULL)
869
978k
        *okfortls13 = 0;
870
871
1.48M
    if (ginfo == NULL)
872
0
        return 0;
873
874
1.48M
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
875
1.48M
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
876
877
1.48M
    if (group_minversion < 0 || group_maxversion < 0)
878
131k
        return 0;
879
1.35M
    if (group_maxversion == 0)
880
1.35M
        ret = 1;
881
0
    else
882
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
883
1.35M
    if (group_minversion > 0)
884
1.35M
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
885
886
1.35M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
887
1.17M
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
888
737k
            *okfortls13 = (group_maxversion == 0)
889
0
                || (group_maxversion >= TLS1_3_VERSION);
890
1.17M
    }
891
1.35M
    ret &= !isec
892
324k
        || strcmp(ginfo->algorithm, "EC") == 0
893
323k
        || strcmp(ginfo->algorithm, "X25519") == 0
894
100k
        || strcmp(ginfo->algorithm, "X448") == 0;
895
896
1.35M
    return ret;
897
1.48M
}
898
899
/* See if group is allowed by security callback */
900
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
901
1.40M
{
902
1.40M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
903
1.40M
        group);
904
1.40M
    unsigned char gtmp[2];
905
906
1.40M
    if (ginfo == NULL)
907
0
        return 0;
908
909
1.40M
    gtmp[0] = group >> 8;
910
1.40M
    gtmp[1] = group & 0xff;
911
1.40M
    return ssl_security(s, op, ginfo->secbits,
912
1.40M
        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
913
1.40M
}
914
915
/* Return 1 if "id" is in "list" */
916
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
917
102k
{
918
102k
    size_t i;
919
687k
    for (i = 0; i < listlen; i++)
920
631k
        if (list[i] == id)
921
46.6k
            return 1;
922
55.5k
    return 0;
923
102k
}
924
925
typedef struct {
926
    TLS_GROUP_INFO *grp;
927
    size_t ix;
928
} TLS_GROUP_IX;
929
930
DEFINE_STACK_OF(TLS_GROUP_IX)
931
932
static void free_wrapper(TLS_GROUP_IX *a)
933
0
{
934
0
    OPENSSL_free(a);
935
0
}
936
937
static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
938
    const TLS_GROUP_IX *const *b)
939
0
{
940
0
    int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
941
0
    int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
942
0
    int ixcmpab = (*a)->ix < (*b)->ix;
943
0
    int ixcmpba = (*b)->ix < (*a)->ix;
944
945
    /* Ascending by group id */
946
0
    if (idcmpab != idcmpba)
947
0
        return (idcmpba - idcmpab);
948
    /* Ascending by original appearance index */
949
0
    return ixcmpba - ixcmpab;
950
0
}
951
952
int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
953
    TLS_GROUP_INFO *grps, size_t num, long all,
954
    STACK_OF(OPENSSL_CSTRING) *out)
955
0
{
956
0
    STACK_OF(TLS_GROUP_IX) *collect = NULL;
957
0
    TLS_GROUP_IX *gix;
958
0
    uint16_t id = 0;
959
0
    int ret = 0;
960
0
    int ix;
961
962
0
    if (grps == NULL || out == NULL || num > INT_MAX)
963
0
        return 0;
964
0
    if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
965
0
        return 0;
966
0
    for (ix = 0; ix < (int)num; ++ix, ++grps) {
967
0
        if (grps->mintls > 0 && max_proto_version > 0
968
0
            && grps->mintls > max_proto_version)
969
0
            continue;
970
0
        if (grps->maxtls > 0 && min_proto_version > 0
971
0
            && grps->maxtls < min_proto_version)
972
0
            continue;
973
974
0
        if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
975
0
            goto end;
976
0
        gix->grp = grps;
977
0
        gix->ix = ix;
978
0
        if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
979
0
            OPENSSL_free(gix);
980
0
            goto end;
981
0
        }
982
0
    }
983
984
0
    sk_TLS_GROUP_IX_sort(collect);
985
0
    num = sk_TLS_GROUP_IX_num(collect);
986
0
    for (ix = 0; ix < (int)num; ++ix) {
987
0
        gix = sk_TLS_GROUP_IX_value(collect, ix);
988
0
        if (!all && gix->grp->group_id == id)
989
0
            continue;
990
0
        id = gix->grp->group_id;
991
0
        if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
992
0
            goto end;
993
0
    }
994
0
    ret = 1;
995
996
0
end:
997
0
    sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
998
0
    return ret;
999
0
}
1000
1001
/*-
1002
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
1003
 * if there is no match.
1004
 * For nmatch == -1, return number of matches
1005
 * For nmatch == -2, return the id of the group to use for
1006
 * a tmp key, or 0 if there is no match.
1007
 */
1008
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1009
44.4k
{
1010
44.4k
    const uint16_t *pref, *supp;
1011
44.4k
    size_t num_pref, num_supp, i;
1012
44.4k
    int k;
1013
44.4k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1014
1015
    /* Can't do anything on client side */
1016
44.4k
    if (s->server == 0)
1017
0
        return 0;
1018
44.4k
    if (nmatch == -2) {
1019
10.9k
        if (tls1_suiteb(s)) {
1020
            /*
1021
             * For Suite B ciphersuite determines curve: we already know
1022
             * these are acceptable due to previous checks.
1023
             */
1024
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
1025
1026
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1027
0
                return OSSL_TLS_GROUP_ID_secp256r1;
1028
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1029
0
                return OSSL_TLS_GROUP_ID_secp384r1;
1030
            /* Should never happen */
1031
0
            return 0;
1032
0
        }
1033
        /* If not Suite B just return first preference shared curve */
1034
10.9k
        nmatch = 0;
1035
10.9k
    }
1036
    /*
1037
     * If server preference set, our groups are the preference order
1038
     * otherwise peer decides.
1039
     */
1040
44.4k
    if (s->options & SSL_OP_SERVER_PREFERENCE) {
1041
0
        tls1_get_supported_groups(s, &pref, &num_pref);
1042
0
        tls1_get_peer_groups(s, &supp, &num_supp);
1043
44.4k
    } else {
1044
44.4k
        tls1_get_peer_groups(s, &pref, &num_pref);
1045
44.4k
        tls1_get_supported_groups(s, &supp, &num_supp);
1046
44.4k
    }
1047
1048
94.2k
    for (k = 0, i = 0; i < num_pref; i++) {
1049
72.1k
        uint16_t id = pref[i];
1050
72.1k
        const TLS_GROUP_INFO *inf;
1051
72.1k
        int minversion, maxversion;
1052
1053
72.1k
        if (!tls1_in_list(id, supp, num_supp)
1054
28.4k
            || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1055
43.6k
            continue;
1056
28.4k
        inf = tls1_group_id_lookup(ctx, id);
1057
28.4k
        if (!ossl_assert(inf != NULL))
1058
0
            return 0;
1059
1060
28.4k
        minversion = SSL_CONNECTION_IS_DTLS(s)
1061
28.4k
            ? inf->mindtls
1062
28.4k
            : inf->mintls;
1063
28.4k
        maxversion = SSL_CONNECTION_IS_DTLS(s)
1064
28.4k
            ? inf->maxdtls
1065
28.4k
            : inf->maxtls;
1066
28.4k
        if (maxversion == -1)
1067
3.78k
            continue;
1068
24.6k
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1069
22.2k
            || (maxversion != 0
1070
0
                && ssl_version_cmp(s, s->version, maxversion) > 0))
1071
2.43k
            continue;
1072
1073
22.2k
        if (nmatch == k)
1074
22.2k
            return id;
1075
0
        k++;
1076
0
    }
1077
22.1k
    if (nmatch == -1)
1078
0
        return k;
1079
    /* Out of range (nmatch > k). */
1080
22.1k
    return 0;
1081
22.1k
}
1082
1083
int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1084
    uint16_t **ksext, size_t *ksextlen,
1085
    size_t **tplext, size_t *tplextlen,
1086
    int *groups, size_t ngroups)
1087
0
{
1088
0
    uint16_t *glist = NULL, *kslist = NULL;
1089
0
    size_t *tpllist = NULL;
1090
0
    size_t i;
1091
    /*
1092
     * Bitmap of groups included to detect duplicates: two variables are added
1093
     * to detect duplicates as some values are more than 32.
1094
     */
1095
0
    unsigned long *dup_list = NULL;
1096
0
    unsigned long dup_list_egrp = 0;
1097
0
    unsigned long dup_list_dhgrp = 0;
1098
1099
0
    if (ngroups == 0) {
1100
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1101
0
        return 0;
1102
0
    }
1103
0
    if ((glist = OPENSSL_malloc_array(ngroups, sizeof(*glist))) == NULL)
1104
0
        goto err;
1105
0
    if ((kslist = OPENSSL_malloc_array(1, sizeof(*kslist))) == NULL)
1106
0
        goto err;
1107
0
    if ((tpllist = OPENSSL_malloc_array(1, sizeof(*tpllist))) == NULL)
1108
0
        goto err;
1109
0
    for (i = 0; i < ngroups; i++) {
1110
0
        unsigned long idmask;
1111
0
        uint16_t id;
1112
0
        id = tls1_nid2group_id(groups[i]);
1113
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1114
0
            goto err;
1115
0
        idmask = 1L << (id & 0x00FF);
1116
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1117
0
        if (!id || ((*dup_list) & idmask))
1118
0
            goto err;
1119
0
        *dup_list |= idmask;
1120
0
        glist[i] = id;
1121
0
    }
1122
0
    OPENSSL_free(*grpext);
1123
0
    OPENSSL_free(*ksext);
1124
0
    OPENSSL_free(*tplext);
1125
0
    *grpext = glist;
1126
0
    *grpextlen = ngroups;
1127
    /*
1128
     * No * prefix was used, let tls_construct_ctos_key_share choose a key
1129
     * share. This has the advantage that it will filter unsupported groups
1130
     * before choosing one, which this function does not do. See also the
1131
     * comment for tls1_get_requested_keyshare_groups.
1132
     */
1133
0
    kslist[0] = 0;
1134
0
    *ksext = kslist;
1135
0
    *ksextlen = 1;
1136
0
    tpllist[0] = ngroups;
1137
0
    *tplext = tpllist;
1138
0
    *tplextlen = 1;
1139
0
    return 1;
1140
0
err:
1141
0
    OPENSSL_free(glist);
1142
0
    OPENSSL_free(kslist);
1143
0
    OPENSSL_free(tpllist);
1144
0
    return 0;
1145
0
}
1146
1147
/*
1148
 * Definition of DEFAULT[_XYZ] pseudo group names.
1149
 * A pseudo group name is actually a full list of groups, including prefixes
1150
 * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1151
 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1152
 * groups not backed by a provider will always silently be ignored, even without '?' prefix
1153
 */
1154
typedef struct {
1155
    const char *list_name; /* The name of this pseudo group */
1156
    const char *group_string; /* The group string of this pseudo group */
1157
} default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
1158
1159
/* Built-in pseudo group-names must start with a (D or d) */
1160
static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1161
1162
/* The list of all built-in pseudo-group-name structures */
1163
static const default_group_string_st default_group_strings[] = {
1164
    { DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST },
1165
    { SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST }
1166
};
1167
1168
/*
1169
 * Some GOST names are not resolved by tls1_group_name2id,
1170
 * hence we'll check for those manually
1171
 */
1172
typedef struct {
1173
    const char *group_name;
1174
    uint16_t groupID;
1175
} name2id_st;
1176
static const name2id_st name2id_arr[] = {
1177
    { "GC256A", OSSL_TLS_GROUP_ID_gc256A },
1178
    { "GC256B", OSSL_TLS_GROUP_ID_gc256B },
1179
    { "GC256C", OSSL_TLS_GROUP_ID_gc256C },
1180
    { "GC256D", OSSL_TLS_GROUP_ID_gc256D },
1181
    { "GC512A", OSSL_TLS_GROUP_ID_gc512A },
1182
    { "GC512B", OSSL_TLS_GROUP_ID_gc512B },
1183
    { "GC512C", OSSL_TLS_GROUP_ID_gc512C },
1184
};
1185
1186
/*
1187
 * Group list management:
1188
 * We establish three lists along with their related size counters:
1189
 * 1) List of (unique) groups
1190
 * 2) List of number of groups per group-priority-tuple
1191
 * 3) List of (unique) key share groups
1192
 */
1193
272k
#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1194
#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1195
1196
/*
1197
 * Preparation of the prefix used to indicate the desire to send a key share,
1198
 * the characters used as separators between groups or tuples of groups, the
1199
 * character to indicate that an unknown group should be ignored, and the
1200
 * character to indicate that a group should be deleted from a list
1201
 */
1202
#ifndef TUPLE_DELIMITER_CHARACTER
1203
/* The prefix characters to indicate group tuple boundaries */
1204
90.6k
#define TUPLE_DELIMITER_CHARACTER '/'
1205
#endif
1206
#ifndef GROUP_DELIMITER_CHARACTER
1207
/* The prefix characters to indicate group tuple boundaries */
1208
362k
#define GROUP_DELIMITER_CHARACTER ':'
1209
#endif
1210
#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1211
/* The prefix character to ignore unknown groups */
1212
725k
#define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1213
#endif
1214
#ifndef KEY_SHARE_INDICATOR_CHARACTER
1215
/* The prefix character to trigger a key share addition */
1216
181k
#define KEY_SHARE_INDICATOR_CHARACTER '*'
1217
#endif
1218
#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1219
/* The prefix character to trigger a key share removal */
1220
0
#define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1221
#endif
1222
static const char prefixes[] = { TUPLE_DELIMITER_CHARACTER,
1223
    GROUP_DELIMITER_CHARACTER,
1224
    IGNORE_UNKNOWN_GROUP_CHARACTER,
1225
    KEY_SHARE_INDICATOR_CHARACTER,
1226
    REMOVE_GROUP_INDICATOR_CHARACTER,
1227
    '\0' };
1228
1229
/*
1230
 * High-level description of how group strings are analyzed:
1231
 * A first call back function (tuple_cb) is used to process group tuples, and a
1232
 * second callback function (gid_cb) is used to process the groups inside a tuple.
1233
 * Those callback functions are (indirectly) called by CONF_parse_list with
1234
 * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1235
 * is used to keep track of the parsing results between the various calls
1236
 */
1237
1238
typedef struct {
1239
    SSL_CTX *ctx;
1240
    /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1241
    size_t gidmax; /* The memory allocation chunk size for the group IDs */
1242
    size_t gidcnt; /* Number of groups */
1243
    uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1244
    size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1245
    size_t tplcnt; /* Number of tuples */
1246
    size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1247
    size_t ksidmax; /* The memory allocation chunk size */
1248
    size_t ksidcnt; /* Number of key shares */
1249
    uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1250
    /* Variable to keep state between execution of callback or helper functions */
1251
    size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1252
    int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1253
} gid_cb_st;
1254
1255
/* Forward declaration of tuple callback function */
1256
static int tuple_cb(const char *tuple, int len, void *arg);
1257
1258
/*
1259
 * Extract and process the individual groups (and their prefixes if present)
1260
 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1261
 * and must be appended by a \0 if used as \0-terminated string
1262
 */
1263
static int gid_cb(const char *elem, int len, void *arg)
1264
725k
{
1265
725k
    gid_cb_st *garg = arg;
1266
725k
    size_t i, j, k;
1267
725k
    uint16_t gid = 0;
1268
725k
    int found_group = 0;
1269
725k
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1270
725k
    int retval = 1; /* We assume success */
1271
725k
    char *current_prefix;
1272
725k
    int ignore_unknown = 0;
1273
725k
    int add_keyshare = 0;
1274
725k
    int remove_group = 0;
1275
725k
    size_t restored_prefix_index = 0;
1276
725k
    char *restored_default_group_string;
1277
725k
    int continue_while_loop = 1;
1278
1279
    /* Sanity checks */
1280
725k
    if (garg == NULL || elem == NULL || len <= 0) {
1281
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1282
0
        return 0;
1283
0
    }
1284
1285
    /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1286
1.63M
    while (continue_while_loop && len > 0
1287
1.63M
        && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1288
906k
            || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1289
1290
906k
        switch (*current_prefix) {
1291
0
        case TUPLE_DELIMITER_CHARACTER:
1292
            /* tuple delimiter not allowed here -> syntax error */
1293
0
            return -1;
1294
0
            break;
1295
0
        case GROUP_DELIMITER_CHARACTER:
1296
0
            return -1; /* Not a valid prefix for a single group name-> syntax error */
1297
0
            break;
1298
181k
        case KEY_SHARE_INDICATOR_CHARACTER:
1299
181k
            if (add_keyshare)
1300
0
                return -1; /* Only single key share prefix allowed -> syntax error */
1301
181k
            add_keyshare = 1;
1302
181k
            ++elem;
1303
181k
            --len;
1304
181k
            break;
1305
0
        case REMOVE_GROUP_INDICATOR_CHARACTER:
1306
0
            if (remove_group)
1307
0
                return -1; /* Only single remove group prefix allowed -> syntax error */
1308
0
            remove_group = 1;
1309
0
            ++elem;
1310
0
            --len;
1311
0
            break;
1312
725k
        case IGNORE_UNKNOWN_GROUP_CHARACTER:
1313
725k
            if (ignore_unknown)
1314
0
                return -1; /* Only single ? allowed -> syntax error */
1315
725k
            ignore_unknown = 1;
1316
725k
            ++elem;
1317
725k
            --len;
1318
725k
            break;
1319
0
        default:
1320
            /*
1321
             * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1322
             * list of groups) should be added
1323
             */
1324
0
            for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1325
0
                if ((size_t)len == (strlen(default_group_strings[i].list_name))
1326
0
                    && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1327
                    /*
1328
                     * We're asked to insert an entire list of groups from a
1329
                     * DEFAULT[_XYZ] 'pseudo group' which we do by
1330
                     * recursively calling this function (indirectly via
1331
                     * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1332
                     * group string like a tuple which is appended to the current tuple
1333
                     * rather then starting a new tuple. Variable tuple_mode is the flag which
1334
                     * controls append tuple vs start new tuple.
1335
                     */
1336
1337
0
                    if (ignore_unknown || remove_group)
1338
0
                        return -1; /* removal or ignore not allowed here -> syntax error */
1339
1340
                    /*
1341
                     * First, we restore any keyshare prefix in a new zero-terminated string
1342
                     * (if not already present)
1343
                     */
1344
0
                    restored_default_group_string = OPENSSL_malloc(1 /* max prefix length */ + strlen(default_group_strings[i].group_string) + 1 /* \0 */);
1345
0
                    if (restored_default_group_string == NULL)
1346
0
                        return 0;
1347
0
                    if (add_keyshare
1348
                        /* Remark: we tolerate a duplicated keyshare indicator here */
1349
0
                        && default_group_strings[i].group_string[0]
1350
0
                            != KEY_SHARE_INDICATOR_CHARACTER)
1351
0
                        restored_default_group_string[restored_prefix_index++] = KEY_SHARE_INDICATOR_CHARACTER;
1352
1353
0
                    memcpy(restored_default_group_string + restored_prefix_index,
1354
0
                        default_group_strings[i].group_string,
1355
0
                        strlen(default_group_strings[i].group_string));
1356
0
                    restored_default_group_string[strlen(default_group_strings[i].group_string) + restored_prefix_index] = '\0';
1357
                    /* We execute the recursive call */
1358
0
                    garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1359
                    /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1360
0
                    garg->tuple_mode = 0;
1361
                    /* We use the tuple_cb callback to process the pseudo group tuple */
1362
0
                    retval = CONF_parse_list(restored_default_group_string,
1363
0
                        TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1364
0
                    garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1365
0
                    garg->ignore_unknown_default = 0; /* reset to original value */
1366
                    /* We don't need the \0-terminated string anymore */
1367
0
                    OPENSSL_free(restored_default_group_string);
1368
1369
0
                    return retval;
1370
0
                }
1371
0
            }
1372
            /*
1373
             * If we reached this point, a group name started with a 'd' or 'D', but no request
1374
             * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1375
             * name can continue as usual (= the while loop checking prefixes can end)
1376
             */
1377
0
            continue_while_loop = 0;
1378
0
            break;
1379
906k
        }
1380
906k
    }
1381
1382
725k
    if (len == 0)
1383
0
        return -1; /* Seems we have prefxes without a group name -> syntax error */
1384
1385
725k
    if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1386
0
        ignore_unknown = 1;
1387
1388
    /* Memory management in case more groups are present compared to initial allocation */
1389
725k
    if (garg->gidcnt == garg->gidmax) {
1390
0
        uint16_t *tmp = OPENSSL_realloc_array(garg->gid_arr,
1391
0
            garg->gidmax + GROUPLIST_INCREMENT,
1392
0
            sizeof(*garg->gid_arr));
1393
1394
0
        if (tmp == NULL)
1395
0
            return 0;
1396
1397
0
        garg->gidmax += GROUPLIST_INCREMENT;
1398
0
        garg->gid_arr = tmp;
1399
0
    }
1400
    /* Memory management for key share groups */
1401
725k
    if (garg->ksidcnt == garg->ksidmax) {
1402
0
        uint16_t *tmp = OPENSSL_realloc_array(garg->ksid_arr,
1403
0
            garg->ksidmax + GROUPLIST_INCREMENT,
1404
0
            sizeof(*garg->ksid_arr));
1405
1406
0
        if (tmp == NULL)
1407
0
            return 0;
1408
0
        garg->ksidmax += GROUPLIST_INCREMENT;
1409
0
        garg->ksid_arr = tmp;
1410
0
    }
1411
1412
725k
    if (len > (int)(sizeof(etmp) - 1))
1413
0
        return -1; /* group name to long  -> syntax error */
1414
1415
    /*
1416
     * Prepare addition or removal of a single group by converting
1417
     * a group name into its groupID equivalent
1418
     */
1419
1420
    /* Create a \0-terminated string and get the gid for this group if possible */
1421
725k
    memcpy(etmp, elem, len);
1422
725k
    etmp[len] = 0;
1423
1424
    /* Get the groupID */
1425
725k
    gid = tls1_group_name2id(garg->ctx, etmp);
1426
    /*
1427
     * Handle the case where no valid groupID was returned
1428
     * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1429
     */
1430
725k
    if (gid == 0) {
1431
        /* Is it one of the GOST groups ? */
1432
0
        for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1433
0
            if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1434
0
                gid = name2id_arr[i].groupID;
1435
0
                break;
1436
0
            }
1437
0
        }
1438
0
        if (gid == 0) { /* still not found */
1439
            /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1440
0
            retval = ignore_unknown;
1441
0
            goto done;
1442
0
        }
1443
0
    }
1444
1445
    /* Make sure that at least one provider is supporting this groupID */
1446
725k
    found_group = 0;
1447
4.08M
    for (j = 0; j < garg->ctx->group_list_len; j++)
1448
4.08M
        if (garg->ctx->group_list[j].group_id == gid) {
1449
725k
            found_group = 1;
1450
725k
            break;
1451
725k
        }
1452
1453
    /*
1454
     * No provider supports this group - ignore if
1455
     * ignore_unknown; trigger error otherwise
1456
     */
1457
725k
    if (found_group == 0) {
1458
0
        retval = ignore_unknown;
1459
0
        goto done;
1460
0
    }
1461
    /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1462
725k
    if (remove_group) {
1463
        /* Is the current group specified anywhere in the entire list so far? */
1464
0
        found_group = 0;
1465
0
        for (i = 0; i < garg->gidcnt; i++)
1466
0
            if (garg->gid_arr[i] == gid) {
1467
0
                found_group = 1;
1468
0
                break;
1469
0
            }
1470
        /* The group to remove is at position i in the list of (zero indexed) groups */
1471
0
        if (found_group) {
1472
            /* We remove that group from its position (which is at i)... */
1473
0
            for (j = i; j < (garg->gidcnt - 1); j++)
1474
0
                garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1475
0
            garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1476
1477
            /*
1478
             * We also must update the number of groups either in a previous tuple (which we
1479
             * must identify and check whether it becomes empty due to the deletion) or in
1480
             * the current tuple, pending where the deleted group resides
1481
             */
1482
0
            k = 0;
1483
0
            for (j = 0; j < garg->tplcnt; j++) {
1484
0
                k += garg->tuplcnt_arr[j];
1485
                /* Remark: i is zero-indexed, k is one-indexed */
1486
0
                if (k > i) { /* remove from one of the previous tuples */
1487
0
                    garg->tuplcnt_arr[j]--;
1488
0
                    break; /* We took care not to have group duplicates, hence we can stop here */
1489
0
                }
1490
0
            }
1491
0
            if (k <= i) /* remove from current tuple */
1492
0
                garg->tuplcnt_arr[j]--;
1493
1494
            /* We also remove the group from the list of keyshares (if present) */
1495
0
            found_group = 0;
1496
0
            for (i = 0; i < garg->ksidcnt; i++)
1497
0
                if (garg->ksid_arr[i] == gid) {
1498
0
                    found_group = 1;
1499
0
                    break;
1500
0
                }
1501
0
            if (found_group) {
1502
                /* Found, hence we remove that keyshare from its position (which is at i)... */
1503
0
                for (j = i; j < (garg->ksidcnt - 1); j++)
1504
0
                    garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1505
                /* ... and update the book keeping */
1506
0
                garg->ksidcnt--;
1507
0
            }
1508
0
        }
1509
725k
    } else { /* Processing addition of a single new group */
1510
1511
        /* Check for duplicates */
1512
3.26M
        for (i = 0; i < garg->gidcnt; i++)
1513
2.53M
            if (garg->gid_arr[i] == gid) {
1514
                /* Duplicate group anywhere in the list of groups - ignore */
1515
0
                goto done;
1516
0
            }
1517
1518
        /* Add the current group to the 'flat' list of groups */
1519
725k
        garg->gid_arr[garg->gidcnt++] = gid;
1520
        /* and update the book keeping for the number of groups in current tuple */
1521
725k
        garg->tuplcnt_arr[garg->tplcnt]++;
1522
1523
        /* We memorize if needed that we want to add a key share for the current group */
1524
725k
        if (add_keyshare)
1525
181k
            garg->ksid_arr[garg->ksidcnt++] = gid;
1526
725k
    }
1527
1528
725k
done:
1529
725k
    return retval;
1530
725k
}
1531
1532
/* Extract and process a tuple of groups */
1533
static int tuple_cb(const char *tuple, int len, void *arg)
1534
362k
{
1535
362k
    gid_cb_st *garg = arg;
1536
362k
    int retval = 1; /* We assume success */
1537
362k
    char *restored_tuple_string;
1538
1539
    /* Sanity checks */
1540
362k
    if (garg == NULL || tuple == NULL || len <= 0) {
1541
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1542
0
        return 0;
1543
0
    }
1544
1545
    /* Memory management for tuples */
1546
362k
    if (garg->tplcnt == garg->tplmax) {
1547
0
        size_t *tmp = OPENSSL_realloc_array(garg->tuplcnt_arr,
1548
0
            garg->tplmax + GROUPLIST_INCREMENT,
1549
0
            sizeof(*garg->tuplcnt_arr));
1550
1551
0
        if (tmp == NULL)
1552
0
            return 0;
1553
0
        garg->tplmax += GROUPLIST_INCREMENT;
1554
0
        garg->tuplcnt_arr = tmp;
1555
0
    }
1556
1557
    /* Convert to \0-terminated string */
1558
362k
    restored_tuple_string = OPENSSL_malloc(len + 1 /* \0 */);
1559
362k
    if (restored_tuple_string == NULL)
1560
0
        return 0;
1561
362k
    memcpy(restored_tuple_string, tuple, len);
1562
362k
    restored_tuple_string[len] = '\0';
1563
1564
    /* Analyze group list of this tuple */
1565
362k
    retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1566
1567
    /* We don't need the \o-terminated string anymore */
1568
362k
    OPENSSL_free(restored_tuple_string);
1569
1570
362k
    if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1571
362k
        if (garg->tuple_mode) {
1572
            /* We 'close' the tuple */
1573
362k
            garg->tplcnt++;
1574
362k
            garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1575
362k
            garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1576
362k
        }
1577
362k
    }
1578
1579
362k
    return retval;
1580
362k
}
1581
1582
/*
1583
 * Set groups and prepare generation of keyshares based on a string of groupnames,
1584
 * names separated by the group or the tuple delimiter, with per-group prefixes to
1585
 * (1) add a key share for this group, (2) ignore the group if unknown to the current
1586
 * context, (3) delete a previous occurrence of the group in the current tuple.
1587
 *
1588
 * The list parsing is done in two hierarchical steps: The top-level step extracts the
1589
 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1590
 * parse and process the groups inside a tuple
1591
 */
1592
int tls1_set_groups_list(SSL_CTX *ctx,
1593
    uint16_t **grpext, size_t *grpextlen,
1594
    uint16_t **ksext, size_t *ksextlen,
1595
    size_t **tplext, size_t *tplextlen,
1596
    const char *str)
1597
90.6k
{
1598
90.6k
    size_t i = 0, j;
1599
90.6k
    int ret = 0, parse_ret = 0;
1600
90.6k
    gid_cb_st gcb;
1601
1602
    /* Sanity check */
1603
90.6k
    if (ctx == NULL) {
1604
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1605
0
        return 0;
1606
0
    }
1607
1608
90.6k
    memset(&gcb, 0, sizeof(gcb));
1609
90.6k
    gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1610
90.6k
    gcb.ignore_unknown_default = 0;
1611
90.6k
    gcb.gidmax = GROUPLIST_INCREMENT;
1612
90.6k
    gcb.tplmax = GROUPLIST_INCREMENT;
1613
90.6k
    gcb.ksidmax = GROUPLIST_INCREMENT;
1614
90.6k
    gcb.ctx = ctx;
1615
1616
    /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1617
90.6k
    gcb.gid_arr = OPENSSL_malloc_array(gcb.gidmax, sizeof(*gcb.gid_arr));
1618
90.6k
    if (gcb.gid_arr == NULL)
1619
0
        goto end;
1620
90.6k
    gcb.tuplcnt_arr = OPENSSL_malloc_array(gcb.tplmax, sizeof(*gcb.tuplcnt_arr));
1621
90.6k
    if (gcb.tuplcnt_arr == NULL)
1622
0
        goto end;
1623
90.6k
    gcb.tuplcnt_arr[0] = 0;
1624
90.6k
    gcb.ksid_arr = OPENSSL_malloc_array(gcb.ksidmax, sizeof(*gcb.ksid_arr));
1625
90.6k
    if (gcb.ksid_arr == NULL)
1626
0
        goto end;
1627
1628
90.6k
    while (str[0] != '\0' && isspace((unsigned char)*str))
1629
0
        str++;
1630
90.6k
    if (str[0] == '\0')
1631
0
        goto empty_list;
1632
1633
    /*
1634
     * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1635
     * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1636
     */
1637
90.6k
    parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1638
1639
90.6k
    if (parse_ret == 0)
1640
0
        goto end;
1641
90.6k
    if (parse_ret == -1) {
1642
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1643
0
            "Syntax error in '%s'", str);
1644
0
        goto end;
1645
0
    }
1646
1647
    /*
1648
     * We check whether a tuple was completely emptied by using "-" prefix
1649
     * excessively, in which case we remove the tuple
1650
     */
1651
453k
    for (i = j = 0; j < gcb.tplcnt; j++) {
1652
362k
        if (gcb.tuplcnt_arr[j] == 0)
1653
0
            continue;
1654
        /* If there's a gap, move to first unfilled slot */
1655
362k
        if (j == i)
1656
362k
            ++i;
1657
0
        else
1658
0
            gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1659
362k
    }
1660
90.6k
    gcb.tplcnt = i;
1661
1662
90.6k
    if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1663
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1664
0
            "To many keyshares requested in '%s' (max = %d)",
1665
0
            str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1666
0
        goto end;
1667
0
    }
1668
1669
    /*
1670
     * For backward compatibility we let the rest of the code know that a key share
1671
     * for the first valid group should be added if no "*" prefix was used anywhere
1672
     */
1673
90.6k
    if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1674
        /*
1675
         * No key share group prefix character was used, hence we indicate that a single
1676
         * key share should be sent and flag that it should come from the supported_groups list
1677
         */
1678
0
        gcb.ksidcnt = 1;
1679
0
        gcb.ksid_arr[0] = 0;
1680
0
    }
1681
1682
90.6k
empty_list:
1683
    /*
1684
     * A call to tls1_set_groups_list with any of the args (other than ctx) set
1685
     * to NULL only does a syntax check, hence we're done here and report success
1686
     */
1687
90.6k
    if (grpext == NULL || ksext == NULL || tplext == NULL || grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1688
0
        ret = 1;
1689
0
        goto end;
1690
0
    }
1691
1692
    /*
1693
     * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1694
     * can just go ahead and set the results (after disposing the existing)
1695
     */
1696
90.6k
    OPENSSL_free(*grpext);
1697
90.6k
    *grpext = gcb.gid_arr;
1698
90.6k
    *grpextlen = gcb.gidcnt;
1699
90.6k
    OPENSSL_free(*ksext);
1700
90.6k
    *ksext = gcb.ksid_arr;
1701
90.6k
    *ksextlen = gcb.ksidcnt;
1702
90.6k
    OPENSSL_free(*tplext);
1703
90.6k
    *tplext = gcb.tuplcnt_arr;
1704
90.6k
    *tplextlen = gcb.tplcnt;
1705
1706
90.6k
    return 1;
1707
1708
0
end:
1709
0
    OPENSSL_free(gcb.gid_arr);
1710
0
    OPENSSL_free(gcb.tuplcnt_arr);
1711
0
    OPENSSL_free(gcb.ksid_arr);
1712
0
    return ret;
1713
90.6k
}
1714
1715
/* Check a group id matches preferences */
1716
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1717
    int check_own_groups)
1718
36.6k
{
1719
36.6k
    const uint16_t *groups;
1720
36.6k
    size_t groups_len;
1721
1722
36.6k
    if (group_id == 0)
1723
16
        return 0;
1724
1725
    /* Check for Suite B compliance */
1726
36.5k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1727
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1728
1729
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1730
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1731
0
                return 0;
1732
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1733
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1734
0
                return 0;
1735
0
        } else {
1736
            /* Should never happen */
1737
0
            return 0;
1738
0
        }
1739
0
    }
1740
1741
36.5k
    if (check_own_groups) {
1742
        /* Check group is one of our preferences */
1743
8.91k
        tls1_get_supported_groups(s, &groups, &groups_len);
1744
8.91k
        if (!tls1_in_list(group_id, groups, groups_len))
1745
147
            return 0;
1746
8.91k
    }
1747
1748
36.4k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1749
0
        return 0;
1750
1751
    /* For clients, nothing more to check */
1752
36.4k
    if (!s->server)
1753
8.77k
        return 1;
1754
1755
    /* Check group is one of peers preferences */
1756
27.6k
    tls1_get_peer_groups(s, &groups, &groups_len);
1757
1758
    /*
1759
     * RFC 4492 does not require the supported elliptic curves extension
1760
     * so if it is not sent we can just choose any curve.
1761
     * It is invalid to send an empty list in the supported groups
1762
     * extension, so groups_len == 0 always means no extension.
1763
     */
1764
27.6k
    if (groups_len == 0)
1765
13.6k
        return 1;
1766
14.0k
    return tls1_in_list(group_id, groups, groups_len);
1767
27.6k
}
1768
1769
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1770
    size_t *num_formats)
1771
42.7k
{
1772
    /*
1773
     * If we have a custom point format list use it otherwise use default
1774
     */
1775
42.7k
    if (s->ext.ecpointformats) {
1776
0
        *pformats = s->ext.ecpointformats;
1777
0
        *num_formats = s->ext.ecpointformats_len;
1778
42.7k
    } else if ((s->options & SSL_OP_LEGACY_EC_POINT_FORMATS) != 0) {
1779
0
        *pformats = ecformats_all;
1780
        /* For Suite B we don't support char2 fields */
1781
0
        if (tls1_suiteb(s))
1782
0
            *num_formats = sizeof(ecformats_all) - 1;
1783
0
        else
1784
0
            *num_formats = sizeof(ecformats_all);
1785
42.7k
    } else {
1786
42.7k
        *pformats = ecformats_default;
1787
42.7k
        *num_formats = sizeof(ecformats_default);
1788
42.7k
    }
1789
42.7k
}
1790
1791
/* Check a key is compatible with compression extension */
1792
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1793
29.1k
{
1794
29.1k
    unsigned char comp_id;
1795
29.1k
    size_t i;
1796
29.1k
    int point_conv;
1797
1798
    /* If not an EC key nothing to check */
1799
29.1k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1800
0
        return 1;
1801
1802
    /* Get required compression id */
1803
29.1k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1804
29.1k
    if (point_conv == 0)
1805
0
        return 0;
1806
29.1k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1807
29.0k
        comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1808
29.0k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1809
        /*
1810
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1811
         * this check.
1812
         */
1813
0
        return 1;
1814
104
    } else {
1815
104
        int field_type = EVP_PKEY_get_field_type(pkey);
1816
1817
104
        if (field_type == NID_X9_62_prime_field)
1818
98
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1819
6
        else if (field_type == NID_X9_62_characteristic_two_field)
1820
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1821
6
        else
1822
6
            return 0;
1823
104
    }
1824
    /*
1825
     * If point formats extension present check it, otherwise everything is
1826
     * supported (see RFC4492).
1827
     */
1828
29.1k
    if (s->ext.peer_ecpointformats == NULL)
1829
23.1k
        return 1;
1830
1831
10.4k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1832
9.47k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1833
5.04k
            return 1;
1834
9.47k
    }
1835
987
    return 0;
1836
6.03k
}
1837
1838
/* Return group id of a key */
1839
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1840
28.1k
{
1841
28.1k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1842
1843
28.1k
    if (curve_nid == NID_undef)
1844
0
        return 0;
1845
28.1k
    return tls1_nid2group_id(curve_nid);
1846
28.1k
}
1847
1848
/*
1849
 * Check cert parameters compatible with extensions: currently just checks EC
1850
 * certificates have compatible curves and compression.
1851
 */
1852
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1853
85.8k
{
1854
85.8k
    uint16_t group_id;
1855
85.8k
    EVP_PKEY *pkey;
1856
85.8k
    pkey = X509_get0_pubkey(x);
1857
85.8k
    if (pkey == NULL)
1858
0
        return 0;
1859
    /* If not EC nothing to do */
1860
85.8k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1861
57.2k
        return 1;
1862
    /* Check compression */
1863
28.6k
    if (!tls1_check_pkey_comp(s, pkey))
1864
959
        return 0;
1865
27.6k
    group_id = tls1_get_group_id(pkey);
1866
    /*
1867
     * For a server we allow the certificate to not be in our list of supported
1868
     * groups.
1869
     */
1870
27.6k
    if (!tls1_check_group_id(s, group_id, !s->server))
1871
7.29k
        return 0;
1872
    /*
1873
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1874
     * SHA384+P-384.
1875
     */
1876
20.3k
    if (check_ee_md && tls1_suiteb(s)) {
1877
0
        int check_md;
1878
0
        size_t i;
1879
1880
        /* Check to see we have necessary signing algorithm */
1881
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1882
0
            check_md = NID_ecdsa_with_SHA256;
1883
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1884
0
            check_md = NID_ecdsa_with_SHA384;
1885
0
        else
1886
0
            return 0; /* Should never happen */
1887
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1888
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1889
0
                return 1;
1890
0
        }
1891
0
        return 0;
1892
0
    }
1893
20.3k
    return 1;
1894
20.3k
}
1895
1896
/*
1897
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1898
 * @s: SSL connection
1899
 * @cid: Cipher ID we're considering using
1900
 *
1901
 * Checks that the kECDHE cipher suite we're considering using
1902
 * is compatible with the client extensions.
1903
 *
1904
 * Returns 0 when the cipher can't be used or 1 when it can.
1905
 */
1906
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1907
36.5k
{
1908
    /* If not Suite B just need a shared group */
1909
36.5k
    if (!tls1_suiteb(s))
1910
36.5k
        return tls1_shared_group(s, 0) != 0;
1911
    /*
1912
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1913
     * curves permitted.
1914
     */
1915
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1916
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1917
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1918
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1919
1920
0
    return 0;
1921
0
}
1922
1923
/* Default sigalg schemes */
1924
static const uint16_t tls12_sigalgs[] = {
1925
    TLSEXT_SIGALG_mldsa65,
1926
    TLSEXT_SIGALG_mldsa87,
1927
    TLSEXT_SIGALG_mldsa44,
1928
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1929
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1930
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1931
    TLSEXT_SIGALG_ed25519,
1932
    TLSEXT_SIGALG_ed448,
1933
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1934
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1935
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1936
1937
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1938
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1939
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1940
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1941
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1942
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1943
1944
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1945
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1946
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1947
1948
    TLSEXT_SIGALG_ecdsa_sha224,
1949
    TLSEXT_SIGALG_ecdsa_sha1,
1950
1951
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1952
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1953
1954
    TLSEXT_SIGALG_dsa_sha224,
1955
    TLSEXT_SIGALG_dsa_sha1,
1956
1957
    TLSEXT_SIGALG_dsa_sha256,
1958
    TLSEXT_SIGALG_dsa_sha384,
1959
    TLSEXT_SIGALG_dsa_sha512,
1960
1961
#ifndef OPENSSL_NO_GOST
1962
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1963
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1964
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1965
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1966
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1967
#endif
1968
};
1969
1970
static const uint16_t suiteb_sigalgs[] = {
1971
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1972
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1973
};
1974
1975
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1976
    { TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1977
        "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1978
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1979
        NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1980
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1981
    { TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1982
        "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1983
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1984
        NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1985
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1986
    { TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1987
        "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1988
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1989
        NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1990
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1991
1992
    { TLSEXT_SIGALG_ed25519_name,
1993
        NULL, TLSEXT_SIGALG_ed25519,
1994
        NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1995
        NID_undef, NID_undef, 1, 0,
1996
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1997
    { TLSEXT_SIGALG_ed448_name,
1998
        NULL, TLSEXT_SIGALG_ed448,
1999
        NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
2000
        NID_undef, NID_undef, 1, 0,
2001
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2002
2003
    { TLSEXT_SIGALG_ecdsa_sha224_name,
2004
        "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
2005
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2006
        NID_ecdsa_with_SHA224, NID_undef, 1, 0,
2007
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2008
    { TLSEXT_SIGALG_ecdsa_sha1_name,
2009
        "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2010
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2011
        NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2012
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2013
2014
    { TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2015
        TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2016
        TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2017
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2018
        NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2019
        TLS1_3_VERSION, 0, -1, -1 },
2020
    { TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2021
        TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2022
        TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2023
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2024
        NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2025
        TLS1_3_VERSION, 0, -1, -1 },
2026
    { TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2027
        TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2028
        TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2029
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2030
        NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2031
        TLS1_3_VERSION, 0, -1, -1 },
2032
2033
    { TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2034
        "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2035
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2036
        NID_undef, NID_undef, 1, 0,
2037
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2038
    { TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2039
        "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2040
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2041
        NID_undef, NID_undef, 1, 0,
2042
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2043
    { TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2044
        "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2045
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2046
        NID_undef, NID_undef, 1, 0,
2047
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2048
2049
    { TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2050
        NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2051
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2052
        NID_undef, NID_undef, 1, 0,
2053
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2054
    { TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2055
        NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2056
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2057
        NID_undef, NID_undef, 1, 0,
2058
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2059
    { TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2060
        NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2061
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2062
        NID_undef, NID_undef, 1, 0,
2063
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2064
2065
    { TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2066
        "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2067
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2068
        NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2069
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2070
    { TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2071
        "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2072
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2073
        NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2074
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2075
    { TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2076
        "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2077
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2078
        NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2079
        TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2080
2081
    { TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2082
        "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2083
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2084
        NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2085
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2086
    { TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2087
        "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2088
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2089
        NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2090
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2091
2092
    { TLSEXT_SIGALG_dsa_sha256_name,
2093
        "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2094
        NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2095
        NID_dsa_with_SHA256, NID_undef, 1, 0,
2096
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2097
    { TLSEXT_SIGALG_dsa_sha384_name,
2098
        "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2099
        NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2100
        NID_undef, NID_undef, 1, 0,
2101
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2102
    { TLSEXT_SIGALG_dsa_sha512_name,
2103
        "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2104
        NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2105
        NID_undef, NID_undef, 1, 0,
2106
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2107
    { TLSEXT_SIGALG_dsa_sha224_name,
2108
        "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2109
        NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2110
        NID_undef, NID_undef, 1, 0,
2111
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2112
    { TLSEXT_SIGALG_dsa_sha1_name,
2113
        "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2114
        NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2115
        NID_dsaWithSHA1, NID_undef, 1, 0,
2116
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2117
2118
#ifndef OPENSSL_NO_GOST
2119
    { TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2120
        TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2121
        TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2122
        NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2123
        NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2124
        NID_undef, NID_undef, 1, 0,
2125
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2126
    { TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2127
        TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2128
        TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2129
        NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2130
        NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2131
        NID_undef, NID_undef, 1, 0,
2132
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2133
2134
    { TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2135
        NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2136
        NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2137
        NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2138
        NID_undef, NID_undef, 1, 0,
2139
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2140
    { TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2141
        NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2142
        NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2143
        NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2144
        NID_undef, NID_undef, 1, 0,
2145
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2146
    { TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2147
        NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2148
        NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2149
        NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2150
        NID_undef, NID_undef, 1, 0,
2151
        TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2152
#endif
2153
};
2154
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2155
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2156
    "rsa_pkcs1_md5_sha1", NULL, 0,
2157
    NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2158
    EVP_PKEY_RSA, SSL_PKEY_RSA,
2159
    NID_undef, NID_undef, 1, 0,
2160
    TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2161
};
2162
2163
/*
2164
 * Default signature algorithm values used if signature algorithms not present.
2165
 * From RFC5246. Note: order must match certificate index order.
2166
 */
2167
static const uint16_t tls_default_sigalg[] = {
2168
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2169
    0, /* SSL_PKEY_RSA_PSS_SIGN */
2170
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2171
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2172
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2173
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2174
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2175
    0, /* SSL_PKEY_ED25519 */
2176
    0, /* SSL_PKEY_ED448 */
2177
};
2178
2179
int ssl_setup_sigalgs(SSL_CTX *ctx)
2180
90.6k
{
2181
90.6k
    size_t i, cache_idx, sigalgs_len, enabled;
2182
90.6k
    const SIGALG_LOOKUP *lu;
2183
90.6k
    SIGALG_LOOKUP *cache = NULL;
2184
90.6k
    uint16_t *tls12_sigalgs_list = NULL;
2185
90.6k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2186
90.6k
    int istls;
2187
90.6k
    int ret = 0;
2188
2189
90.6k
    if (ctx == NULL)
2190
0
        goto err;
2191
2192
90.6k
    istls = !SSL_CTX_IS_DTLS(ctx);
2193
2194
90.6k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2195
2196
90.6k
    cache = OPENSSL_calloc(sigalgs_len, sizeof(const SIGALG_LOOKUP));
2197
90.6k
    if (cache == NULL || tmpkey == NULL)
2198
0
        goto err;
2199
2200
90.6k
    tls12_sigalgs_list = OPENSSL_calloc(sigalgs_len, sizeof(uint16_t));
2201
90.6k
    if (tls12_sigalgs_list == NULL)
2202
0
        goto err;
2203
2204
90.6k
    ERR_set_mark();
2205
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2206
90.6k
    for (i = 0, lu = sigalg_lookup_tbl;
2207
2.90M
        i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2208
2.81M
        EVP_PKEY_CTX *pctx;
2209
2210
2.81M
        cache[i] = *lu;
2211
2212
        /*
2213
         * Check hash is available.
2214
         * This test is not perfect. A provider could have support
2215
         * for a signature scheme, but not a particular hash. However the hash
2216
         * could be available from some other loaded provider. In that case it
2217
         * could be that the signature is available, and the hash is available
2218
         * independently - but not as a combination. We ignore this for now.
2219
         */
2220
2.81M
        if (lu->hash != NID_undef
2221
2.63M
            && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2222
453k
            cache[i].available = 0;
2223
453k
            continue;
2224
453k
        }
2225
2226
2.35M
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2227
0
            cache[i].available = 0;
2228
0
            continue;
2229
0
        }
2230
2.35M
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2231
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2232
2.35M
        if (pctx == NULL)
2233
0
            cache[i].available = 0;
2234
2.35M
        EVP_PKEY_CTX_free(pctx);
2235
2.35M
    }
2236
2237
    /* Now complete cache and tls12_sigalgs list with provider sig information */
2238
90.6k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2239
362k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
2240
272k
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2241
272k
        cache[cache_idx].name = si.name;
2242
272k
        cache[cache_idx].name12 = si.sigalg_name;
2243
272k
        cache[cache_idx].sigalg = si.code_point;
2244
272k
        tls12_sigalgs_list[cache_idx] = si.code_point;
2245
272k
        cache[cache_idx].hash = si.hash_name ? OBJ_txt2nid(si.hash_name) : NID_undef;
2246
272k
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2247
272k
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2248
272k
        cache[cache_idx].sig_idx = (int)(i + SSL_PKEY_NUM);
2249
272k
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2250
272k
        cache[cache_idx].curve = NID_undef;
2251
272k
        cache[cache_idx].mintls = TLS1_3_VERSION;
2252
272k
        cache[cache_idx].maxtls = TLS1_3_VERSION;
2253
272k
        cache[cache_idx].mindtls = -1;
2254
272k
        cache[cache_idx].maxdtls = -1;
2255
        /* Compatibility with TLS 1.3 is checked on load */
2256
272k
        cache[cache_idx].available = istls;
2257
272k
        cache[cache_idx].advertise = 0;
2258
272k
        cache_idx++;
2259
272k
    }
2260
90.6k
    ERR_pop_to_mark();
2261
2262
90.6k
    enabled = 0;
2263
3.17M
    for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2264
3.08M
        SIGALG_LOOKUP *ent = cache;
2265
3.08M
        size_t j;
2266
2267
53.9M
        for (j = 0; j < sigalgs_len; ent++, j++) {
2268
53.9M
            if (ent->sigalg != tls12_sigalgs[i])
2269
50.8M
                continue;
2270
            /* Dedup by marking cache entry as default enabled. */
2271
3.08M
            if (ent->available && !ent->advertise) {
2272
2.55M
                ent->advertise = 1;
2273
2.55M
                tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2274
2.55M
            }
2275
3.08M
            break;
2276
53.9M
        }
2277
3.08M
    }
2278
2279
    /* Append any provider sigalgs not yet handled */
2280
362k
    for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2281
272k
        SIGALG_LOOKUP *ent = &cache[i];
2282
2283
272k
        if (ent->available && !ent->advertise)
2284
0
            tls12_sigalgs_list[enabled++] = ent->sigalg;
2285
272k
    }
2286
2287
90.6k
    ctx->sigalg_lookup_cache = cache;
2288
90.6k
    ctx->sigalg_lookup_cache_len = sigalgs_len;
2289
90.6k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
2290
90.6k
    ctx->tls12_sigalgs_len = enabled;
2291
90.6k
    cache = NULL;
2292
90.6k
    tls12_sigalgs_list = NULL;
2293
2294
90.6k
    ret = 1;
2295
90.6k
err:
2296
90.6k
    OPENSSL_free(cache);
2297
90.6k
    OPENSSL_free(tls12_sigalgs_list);
2298
90.6k
    EVP_PKEY_free(tmpkey);
2299
90.6k
    return ret;
2300
90.6k
}
2301
2302
0
#define SIGLEN_BUF_INCREMENT 100
2303
2304
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2305
0
{
2306
0
    size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2307
0
    const SIGALG_LOOKUP *lu;
2308
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2309
0
    char *retval = OPENSSL_malloc(maxretlen);
2310
2311
0
    if (retval == NULL)
2312
0
        return NULL;
2313
2314
    /* ensure retval string is NUL terminated */
2315
0
    retval[0] = (char)0;
2316
2317
0
    for (i = 0, lu = sigalg_lookup_tbl;
2318
0
        i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2319
0
        EVP_PKEY_CTX *pctx;
2320
0
        int enabled = 1;
2321
2322
0
        ERR_set_mark();
2323
        /* Check hash is available in some provider. */
2324
0
        if (lu->hash != NID_undef) {
2325
0
            EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2326
2327
            /* If unable to create we assume the hash algorithm is unavailable */
2328
0
            if (hash == NULL) {
2329
0
                enabled = 0;
2330
0
                ERR_pop_to_mark();
2331
0
                continue;
2332
0
            }
2333
0
            EVP_MD_free(hash);
2334
0
        }
2335
2336
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2337
0
            enabled = 0;
2338
0
            ERR_pop_to_mark();
2339
0
            continue;
2340
0
        }
2341
0
        pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2342
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2343
0
        if (pctx == NULL)
2344
0
            enabled = 0;
2345
0
        ERR_pop_to_mark();
2346
0
        EVP_PKEY_CTX_free(pctx);
2347
2348
0
        if (enabled) {
2349
0
            const char *sa = lu->name;
2350
2351
0
            if (sa != NULL) {
2352
0
                if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2353
0
                    char *tmp;
2354
2355
0
                    maxretlen += SIGLEN_BUF_INCREMENT;
2356
0
                    tmp = OPENSSL_realloc(retval, maxretlen);
2357
0
                    if (tmp == NULL) {
2358
0
                        OPENSSL_free(retval);
2359
0
                        return NULL;
2360
0
                    }
2361
0
                    retval = tmp;
2362
0
                }
2363
0
                if (strlen(retval) > 0)
2364
0
                    OPENSSL_strlcat(retval, ":", maxretlen);
2365
0
                OPENSSL_strlcat(retval, sa, maxretlen);
2366
0
            } else {
2367
                /* lu->name must not be NULL */
2368
0
                ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2369
0
            }
2370
0
        }
2371
0
    }
2372
2373
0
    EVP_PKEY_free(tmpkey);
2374
0
    return retval;
2375
0
}
2376
2377
/* Lookup TLS signature algorithm */
2378
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2379
    uint16_t sigalg)
2380
14.5M
{
2381
14.5M
    size_t i;
2382
14.5M
    const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2383
2384
232M
    for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2385
232M
        if (lu->sigalg == sigalg) {
2386
14.2M
            if (!lu->available)
2387
1.13M
                return NULL;
2388
13.0M
            return lu;
2389
14.2M
        }
2390
232M
    }
2391
377k
    return NULL;
2392
14.5M
}
2393
2394
/* Lookup hash: return 0 if invalid or not enabled */
2395
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2396
4.10M
{
2397
4.10M
    const EVP_MD *md;
2398
2399
4.10M
    if (lu == NULL)
2400
0
        return 0;
2401
    /* lu->hash == NID_undef means no associated digest */
2402
4.10M
    if (lu->hash == NID_undef) {
2403
402k
        md = NULL;
2404
3.70M
    } else {
2405
3.70M
        md = ssl_md(ctx, lu->hash_idx);
2406
3.70M
        if (md == NULL)
2407
0
            return 0;
2408
3.70M
    }
2409
4.10M
    if (pmd)
2410
4.01M
        *pmd = md;
2411
4.10M
    return 1;
2412
4.10M
}
2413
2414
/*
2415
 * Check if key is large enough to generate RSA-PSS signature.
2416
 *
2417
 * The key must greater than or equal to 2 * hash length + 2.
2418
 * SHA512 has a hash length of 64 bytes, which is incompatible
2419
 * with a 128 byte (1024 bit) key.
2420
 */
2421
1.32k
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
2422
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2423
    const SIGALG_LOOKUP *lu)
2424
1.32k
{
2425
1.32k
    const EVP_MD *md;
2426
2427
1.32k
    if (pkey == NULL)
2428
0
        return 0;
2429
1.32k
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2430
0
        return 0;
2431
1.32k
    if (EVP_MD_get_size(md) <= 0)
2432
0
        return 0;
2433
1.32k
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2434
0
        return 0;
2435
1.32k
    return 1;
2436
1.32k
}
2437
2438
/*
2439
 * Returns a signature algorithm when the peer did not send a list of supported
2440
 * signature algorithms. The signature algorithm is fixed for the certificate
2441
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2442
 * certificate type from |s| will be used.
2443
 * Returns the signature algorithm to use, or NULL on error.
2444
 */
2445
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2446
    int idx)
2447
276k
{
2448
276k
    if (idx == -1) {
2449
20.4k
        if (s->server) {
2450
20.4k
            size_t i;
2451
2452
            /* Work out index corresponding to ciphersuite */
2453
29.4k
            for (i = 0; i < s->ssl_pkey_num; i++) {
2454
29.4k
                const SSL_CERT_LOOKUP *clu
2455
29.4k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2456
2457
29.4k
                if (clu == NULL)
2458
0
                    continue;
2459
29.4k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2460
20.4k
                    idx = (int)i;
2461
20.4k
                    break;
2462
20.4k
                }
2463
29.4k
            }
2464
2465
            /*
2466
             * Some GOST ciphersuites allow more than one signature algorithms
2467
             * */
2468
20.4k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2469
0
                int real_idx;
2470
2471
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2472
0
                    real_idx--) {
2473
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
2474
0
                        idx = real_idx;
2475
0
                        break;
2476
0
                    }
2477
0
                }
2478
0
            }
2479
            /*
2480
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2481
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2482
             */
2483
20.4k
            else if (idx == SSL_PKEY_GOST12_256) {
2484
0
                int real_idx;
2485
2486
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2487
0
                    real_idx--) {
2488
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
2489
0
                        idx = real_idx;
2490
0
                        break;
2491
0
                    }
2492
0
                }
2493
0
            }
2494
20.4k
        } else {
2495
0
            idx = (int)(s->cert->key - s->cert->pkeys);
2496
0
        }
2497
20.4k
    }
2498
276k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2499
38.9k
        return NULL;
2500
2501
237k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2502
227k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2503
227k
            tls_default_sigalg[idx]);
2504
2505
227k
        if (lu == NULL)
2506
143k
            return NULL;
2507
84.0k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2508
0
            return NULL;
2509
84.0k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2510
0
            return NULL;
2511
84.0k
        return lu;
2512
84.0k
    }
2513
9.94k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2514
0
        return NULL;
2515
9.94k
    return &legacy_rsa_sigalg;
2516
9.94k
}
2517
/* Set peer sigalg based key type */
2518
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2519
1.94k
{
2520
1.94k
    size_t idx;
2521
1.94k
    const SIGALG_LOOKUP *lu;
2522
2523
1.94k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2524
0
        return 0;
2525
1.94k
    lu = tls1_get_legacy_sigalg(s, (int)idx);
2526
1.94k
    if (lu == NULL)
2527
9
        return 0;
2528
1.93k
    s->s3.tmp.peer_sigalg = lu;
2529
1.93k
    return 1;
2530
1.94k
}
2531
2532
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2533
538k
{
2534
    /*
2535
     * If Suite B mode use Suite B sigalgs only, ignore any other
2536
     * preferences.
2537
     */
2538
538k
    switch (tls1_suiteb(s)) {
2539
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
2540
0
        *psigs = suiteb_sigalgs;
2541
0
        return OSSL_NELEM(suiteb_sigalgs);
2542
2543
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2544
0
        *psigs = suiteb_sigalgs;
2545
0
        return 1;
2546
2547
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
2548
0
        *psigs = suiteb_sigalgs + 1;
2549
0
        return 1;
2550
538k
    }
2551
    /*
2552
     *  We use client_sigalgs (if not NULL) if we're a server
2553
     *  and sending a certificate request or if we're a client and
2554
     *  determining which shared algorithm to use.
2555
     */
2556
538k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2557
0
        *psigs = s->cert->client_sigalgs;
2558
0
        return s->cert->client_sigalgslen;
2559
538k
    } else if (s->cert->conf_sigalgs) {
2560
0
        *psigs = s->cert->conf_sigalgs;
2561
0
        return s->cert->conf_sigalgslen;
2562
538k
    } else {
2563
538k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2564
538k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2565
538k
    }
2566
538k
}
2567
2568
/*
2569
 * Called by servers only. Checks that we have a sig alg that supports the
2570
 * specified EC curve.
2571
 */
2572
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2573
0
{
2574
0
    const uint16_t *sigs;
2575
0
    size_t siglen, i;
2576
2577
0
    if (s->cert->conf_sigalgs) {
2578
0
        sigs = s->cert->conf_sigalgs;
2579
0
        siglen = s->cert->conf_sigalgslen;
2580
0
    } else {
2581
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2582
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2583
0
    }
2584
2585
0
    for (i = 0; i < siglen; i++) {
2586
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2587
2588
0
        if (lu == NULL)
2589
0
            continue;
2590
0
        if (lu->sig == EVP_PKEY_EC
2591
0
            && lu->curve != NID_undef
2592
0
            && curve == lu->curve)
2593
0
            return 1;
2594
0
    }
2595
2596
0
    return 0;
2597
0
}
2598
2599
/*
2600
 * Return the number of security bits for the signature algorithm, or 0 on
2601
 * error.
2602
 */
2603
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2604
2.97M
{
2605
2.97M
    const EVP_MD *md = NULL;
2606
2.97M
    int secbits = 0;
2607
2608
2.97M
    if (!tls1_lookup_md(ctx, lu, &md))
2609
0
        return 0;
2610
2.97M
    if (md != NULL) {
2611
2.63M
        int md_type = EVP_MD_get_type(md);
2612
2613
        /* Security bits: half digest bits */
2614
2.63M
        secbits = EVP_MD_get_size(md) * 4;
2615
2.63M
        if (secbits <= 0)
2616
0
            return 0;
2617
        /*
2618
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
2619
         * they're no longer accepted at security level 1. The real values don't
2620
         * really matter as long as they're lower than 80, which is our
2621
         * security level 1.
2622
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2623
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2624
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2625
         * puts a chosen-prefix attack for MD5 at 2^39.
2626
         */
2627
2.63M
        if (md_type == NID_sha1)
2628
247k
            secbits = 64;
2629
2.38M
        else if (md_type == NID_md5_sha1)
2630
7.63k
            secbits = 67;
2631
2.37M
        else if (md_type == NID_md5)
2632
0
            secbits = 39;
2633
2.63M
    } else {
2634
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2635
339k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2636
89.1k
            secbits = 128;
2637
250k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2638
101k
            secbits = 224;
2639
339k
    }
2640
    /*
2641
     * For provider-based sigalgs we have secbits information available
2642
     * in the (provider-loaded) sigalg_list structure
2643
     */
2644
2.97M
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2645
148k
        && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2646
148k
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2647
148k
    }
2648
2.97M
    return secbits;
2649
2.97M
}
2650
2651
static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2652
1.85M
{
2653
1.85M
    int minversion, maxversion;
2654
1.85M
    int minproto, maxproto;
2655
2656
1.85M
    if (!lu->available)
2657
0
        return 0;
2658
2659
1.85M
    if (SSL_CONNECTION_IS_DTLS(sc)) {
2660
386k
        if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2661
378k
            minproto = sc->min_proto_version;
2662
378k
            maxproto = sc->max_proto_version;
2663
378k
        } else {
2664
8.17k
            maxproto = minproto = sc->version;
2665
8.17k
        }
2666
386k
        minversion = lu->mindtls;
2667
386k
        maxversion = lu->maxdtls;
2668
1.47M
    } else {
2669
1.47M
        if (sc->ssl.method->version == TLS_ANY_VERSION) {
2670
1.43M
            minproto = sc->min_proto_version;
2671
1.43M
            maxproto = sc->max_proto_version;
2672
1.43M
        } else {
2673
36.8k
            maxproto = minproto = sc->version;
2674
36.8k
        }
2675
1.47M
        minversion = lu->mintls;
2676
1.47M
        maxversion = lu->maxtls;
2677
1.47M
    }
2678
1.85M
    if (minversion == -1 || maxversion == -1
2679
1.81M
        || (minversion != 0 && maxproto != 0
2680
44.6k
            && ssl_version_cmp(sc, minversion, maxproto) > 0)
2681
1.81M
        || (maxversion != 0 && minproto != 0
2682
364k
            && ssl_version_cmp(sc, maxversion, minproto) < 0)
2683
1.54M
        || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2684
311k
        return 0;
2685
1.54M
    return 1;
2686
1.85M
}
2687
2688
/*
2689
 * Check signature algorithm is consistent with sent supported signature
2690
 * algorithms and if so set relevant digest and signature scheme in
2691
 * s.
2692
 */
2693
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2694
11.7k
{
2695
11.7k
    const uint16_t *sent_sigs;
2696
11.7k
    const EVP_MD *md = NULL;
2697
11.7k
    char sigalgstr[2];
2698
11.7k
    size_t sent_sigslen, i, cidx;
2699
11.7k
    int pkeyid = -1;
2700
11.7k
    const SIGALG_LOOKUP *lu;
2701
11.7k
    int secbits = 0;
2702
2703
11.7k
    pkeyid = EVP_PKEY_get_id(pkey);
2704
2705
11.7k
    if (SSL_CONNECTION_IS_TLS13(s)) {
2706
        /* Disallow DSA for TLS 1.3 */
2707
9.44k
        if (pkeyid == EVP_PKEY_DSA) {
2708
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2709
0
            return 0;
2710
0
        }
2711
        /* Only allow PSS for TLS 1.3 */
2712
9.44k
        if (pkeyid == EVP_PKEY_RSA)
2713
9.42k
            pkeyid = EVP_PKEY_RSA_PSS;
2714
9.44k
    }
2715
2716
    /* Is this code point available and compatible with the protocol */
2717
11.7k
    lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2718
11.7k
    if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2719
107
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2720
107
        return 0;
2721
107
    }
2722
2723
    /* If we don't know the pkey nid yet go and find it */
2724
11.6k
    if (pkeyid == EVP_PKEY_KEYMGMT) {
2725
0
        const SSL_CERT_LOOKUP *scl = ssl_cert_lookup_by_pkey(pkey, NULL, SSL_CONNECTION_GET_CTX(s));
2726
2727
0
        if (scl == NULL) {
2728
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2729
0
            return 0;
2730
0
        }
2731
0
        pkeyid = scl->pkey_nid;
2732
0
    }
2733
2734
    /* Should never happen */
2735
11.6k
    if (pkeyid == -1) {
2736
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2737
0
        return -1;
2738
0
    }
2739
2740
    /*
2741
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2742
     * is consistent with signature: RSA keys can be used for RSA-PSS
2743
     */
2744
11.6k
    if ((SSL_CONNECTION_IS_TLS13(s)
2745
9.40k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2746
11.6k
        || (pkeyid != lu->sig
2747
322
            && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2748
38
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2749
38
        return 0;
2750
38
    }
2751
    /* Check the sigalg is consistent with the key OID */
2752
11.5k
    if (!ssl_cert_lookup_by_nid(
2753
11.5k
            (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2754
11.5k
            &cidx, SSL_CONNECTION_GET_CTX(s))
2755
11.5k
        || lu->sig_idx != (int)cidx) {
2756
8
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2757
8
        return 0;
2758
8
    }
2759
2760
11.5k
    if (pkeyid == EVP_PKEY_EC) {
2761
2762
        /* Check point compression is permitted */
2763
224
        if (!tls1_check_pkey_comp(s, pkey)) {
2764
12
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2765
12
                SSL_R_ILLEGAL_POINT_COMPRESSION);
2766
12
            return 0;
2767
12
        }
2768
2769
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2770
212
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2771
0
            int curve = ssl_get_EC_curve_nid(pkey);
2772
2773
0
            if (lu->curve != NID_undef && curve != lu->curve) {
2774
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2775
0
                return 0;
2776
0
            }
2777
0
        }
2778
212
        if (!SSL_CONNECTION_IS_TLS13(s)) {
2779
            /* Check curve matches extensions */
2780
212
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2781
5
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2782
5
                return 0;
2783
5
            }
2784
207
            if (tls1_suiteb(s)) {
2785
                /* Check sigalg matches a permissible Suite B value */
2786
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2787
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2788
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2789
0
                        SSL_R_WRONG_SIGNATURE_TYPE);
2790
0
                    return 0;
2791
0
                }
2792
0
            }
2793
207
        }
2794
11.3k
    } else if (tls1_suiteb(s)) {
2795
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2796
0
        return 0;
2797
0
    }
2798
2799
    /* Check signature matches a type we sent */
2800
11.5k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2801
189k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2802
189k
        if (sig == *sent_sigs)
2803
11.5k
            break;
2804
189k
    }
2805
    /* Allow fallback to SHA1 if not strict mode */
2806
11.5k
    if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2807
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2808
0
        return 0;
2809
0
    }
2810
11.5k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2811
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2812
0
        return 0;
2813
0
    }
2814
    /*
2815
     * Make sure security callback allows algorithm. For historical
2816
     * reasons we have to pass the sigalg as a two byte char array.
2817
     */
2818
11.5k
    sigalgstr[0] = (sig >> 8) & 0xff;
2819
11.5k
    sigalgstr[1] = sig & 0xff;
2820
11.5k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2821
11.5k
    if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_get_type(md) : NID_undef, (void *)sigalgstr)) {
2822
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2823
0
        return 0;
2824
0
    }
2825
    /* Store the sigalg the peer uses */
2826
11.5k
    s->s3.tmp.peer_sigalg = lu;
2827
11.5k
    return 1;
2828
11.5k
}
2829
2830
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2831
0
{
2832
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2833
2834
0
    if (sc == NULL)
2835
0
        return 0;
2836
2837
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2838
0
        return 0;
2839
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2840
0
    return 1;
2841
0
}
2842
2843
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2844
0
{
2845
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2846
2847
0
    if (sc == NULL)
2848
0
        return 0;
2849
2850
0
    if (sc->s3.tmp.sigalg == NULL)
2851
0
        return 0;
2852
0
    *pnid = sc->s3.tmp.sigalg->sig;
2853
0
    return 1;
2854
0
}
2855
2856
/*
2857
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2858
 * supported, doesn't appear in supported signature algorithms, isn't supported
2859
 * by the enabled protocol versions or by the security level.
2860
 *
2861
 * This function should only be used for checking which ciphers are supported
2862
 * by the client.
2863
 *
2864
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2865
 */
2866
int ssl_set_client_disabled(SSL_CONNECTION *s)
2867
353k
{
2868
353k
    s->s3.tmp.mask_a = 0;
2869
353k
    s->s3.tmp.mask_k = 0;
2870
353k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2871
353k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2872
353k
            &s->s3.tmp.max_ver, NULL)
2873
353k
        != 0)
2874
0
        return 0;
2875
353k
#ifndef OPENSSL_NO_PSK
2876
    /* with PSK there must be client callback set */
2877
353k
    if (!s->psk_client_callback) {
2878
353k
        s->s3.tmp.mask_a |= SSL_aPSK;
2879
353k
        s->s3.tmp.mask_k |= SSL_PSK;
2880
353k
    }
2881
353k
#endif /* OPENSSL_NO_PSK */
2882
353k
#ifndef OPENSSL_NO_SRP
2883
353k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2884
353k
        s->s3.tmp.mask_a |= SSL_aSRP;
2885
353k
        s->s3.tmp.mask_k |= SSL_kSRP;
2886
353k
    }
2887
353k
#endif
2888
353k
    return 1;
2889
353k
}
2890
2891
/*
2892
 * ssl_cipher_disabled - check that a cipher is disabled or not
2893
 * @s: SSL connection that you want to use the cipher on
2894
 * @c: cipher to check
2895
 * @op: Security check that you want to do
2896
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2897
 *
2898
 * Returns 1 when it's disabled, 0 when enabled.
2899
 */
2900
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2901
    int op, int ecdhe)
2902
31.8M
{
2903
31.8M
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2904
31.8M
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2905
2906
31.8M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2907
18.5M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2908
13.2M
        return 1;
2909
18.5M
    if (s->s3.tmp.max_ver == 0)
2910
0
        return 1;
2911
2912
18.5M
    if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2913
        /* For QUIC, only allow these ciphersuites. */
2914
479k
        switch (SSL_CIPHER_get_id(c)) {
2915
152k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2916
325k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2917
479k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2918
479k
            break;
2919
34
        default:
2920
34
            return 1;
2921
479k
        }
2922
2923
    /*
2924
     * For historical reasons we will allow ECHDE to be selected by a server
2925
     * in SSLv3 if we are a client
2926
     */
2927
18.5M
    if (minversion == TLS1_VERSION
2928
1.24M
        && ecdhe
2929
5.47k
        && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2930
5.46k
        minversion = SSL3_VERSION;
2931
2932
18.5M
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2933
18.0M
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2934
453k
        return 1;
2935
2936
18.0M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2937
18.5M
}
2938
2939
int tls_use_ticket(SSL_CONNECTION *s)
2940
165k
{
2941
165k
    if ((s->options & SSL_OP_NO_TICKET))
2942
0
        return 0;
2943
165k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2944
165k
}
2945
2946
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2947
29.6k
{
2948
29.6k
    size_t i;
2949
2950
    /* Clear any shared signature algorithms */
2951
29.6k
    OPENSSL_free(s->shared_sigalgs);
2952
29.6k
    s->shared_sigalgs = NULL;
2953
29.6k
    s->shared_sigalgslen = 0;
2954
2955
    /* Clear certificate validity flags */
2956
29.6k
    if (s->s3.tmp.valid_flags)
2957
113
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2958
29.5k
    else
2959
29.5k
        s->s3.tmp.valid_flags = OPENSSL_calloc(s->ssl_pkey_num, sizeof(uint32_t));
2960
29.6k
    if (s->s3.tmp.valid_flags == NULL) {
2961
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2962
0
        return 0;
2963
0
    }
2964
    /*
2965
     * If peer sent no signature algorithms check to see if we support
2966
     * the default algorithm for each certificate type
2967
     */
2968
29.6k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2969
28.9k
        && s->s3.tmp.peer_sigalgs == NULL) {
2970
21.9k
        const uint16_t *sent_sigs;
2971
21.9k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2972
2973
258k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2974
236k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, (int)i);
2975
236k
            size_t j;
2976
2977
236k
            if (lu == NULL)
2978
170k
                continue;
2979
            /* Check default matches a type we sent */
2980
1.48M
            for (j = 0; j < sent_sigslen; j++) {
2981
1.47M
                if (lu->sigalg == sent_sigs[j]) {
2982
60.4k
                    s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2983
60.4k
                    break;
2984
60.4k
                }
2985
1.47M
            }
2986
65.8k
        }
2987
21.9k
        return 1;
2988
21.9k
    }
2989
2990
7.68k
    if (!tls1_process_sigalgs(s)) {
2991
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2992
0
        return 0;
2993
0
    }
2994
7.68k
    if (s->shared_sigalgs != NULL)
2995
7.57k
        return 1;
2996
2997
    /* Fatal error if no shared signature algorithms */
2998
7.68k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2999
108
        SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
3000
108
    return 0;
3001
7.68k
}
3002
3003
/*-
3004
 * Gets the ticket information supplied by the client if any.
3005
 *
3006
 *   hello: The parsed ClientHello data
3007
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
3008
 *       point to the resulting session.
3009
 */
3010
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
3011
    CLIENTHELLO_MSG *hello,
3012
    SSL_SESSION **ret)
3013
30.3k
{
3014
30.3k
    size_t size;
3015
30.3k
    RAW_EXTENSION *ticketext;
3016
3017
30.3k
    *ret = NULL;
3018
30.3k
    s->ext.ticket_expected = 0;
3019
3020
    /*
3021
     * If tickets disabled or not supported by the protocol version
3022
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3023
     * resumption.
3024
     */
3025
30.3k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3026
0
        return SSL_TICKET_NONE;
3027
3028
30.3k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3029
30.3k
    if (!ticketext->present)
3030
23.9k
        return SSL_TICKET_NONE;
3031
3032
6.47k
    size = PACKET_remaining(&ticketext->data);
3033
3034
6.47k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3035
6.47k
        hello->session_id, hello->session_id_len, ret);
3036
30.3k
}
3037
3038
/*-
3039
 * tls_decrypt_ticket attempts to decrypt a session ticket.
3040
 *
3041
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3042
 * expecting a pre-shared key ciphersuite, in which case we have no use for
3043
 * session tickets and one will never be decrypted, nor will
3044
 * s->ext.ticket_expected be set to 1.
3045
 *
3046
 * Side effects:
3047
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
3048
 *   a new session ticket to the client because the client indicated support
3049
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3050
 *   a session ticket or we couldn't use the one it gave us, or if
3051
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3052
 *   Otherwise, s->ext.ticket_expected is set to 0.
3053
 *
3054
 *   etick: points to the body of the session ticket extension.
3055
 *   eticklen: the length of the session tickets extension.
3056
 *   sess_id: points at the session ID.
3057
 *   sesslen: the length of the session ID.
3058
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
3059
 *       point to the resulting session.
3060
 */
3061
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3062
    const unsigned char *etick,
3063
    size_t eticklen,
3064
    const unsigned char *sess_id,
3065
    size_t sesslen, SSL_SESSION **psess)
3066
7.43k
{
3067
7.43k
    SSL_SESSION *sess = NULL;
3068
7.43k
    unsigned char *sdec;
3069
7.43k
    const unsigned char *p;
3070
7.43k
    int slen, ivlen, renew_ticket = 0, declen;
3071
7.43k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3072
7.43k
    size_t mlen;
3073
7.43k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3074
7.43k
    SSL_HMAC *hctx = NULL;
3075
7.43k
    EVP_CIPHER_CTX *ctx = NULL;
3076
7.43k
    SSL_CTX *tctx = s->session_ctx;
3077
7.43k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3078
3079
7.43k
    if (eticklen == 0) {
3080
        /*
3081
         * The client will accept a ticket but doesn't currently have
3082
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3083
         */
3084
4.04k
        ret = SSL_TICKET_EMPTY;
3085
4.04k
        goto end;
3086
4.04k
    }
3087
3.38k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3088
        /*
3089
         * Indicate that the ticket couldn't be decrypted rather than
3090
         * generating the session from ticket now, trigger
3091
         * abbreviated handshake based on external mechanism to
3092
         * calculate the master secret later.
3093
         */
3094
0
        ret = SSL_TICKET_NO_DECRYPT;
3095
0
        goto end;
3096
0
    }
3097
3098
    /* Need at least keyname + iv */
3099
3.38k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3100
1.01k
        ret = SSL_TICKET_NO_DECRYPT;
3101
1.01k
        goto end;
3102
1.01k
    }
3103
3104
    /* Initialize session ticket encryption and HMAC contexts */
3105
2.36k
    hctx = ssl_hmac_new(tctx);
3106
2.36k
    if (hctx == NULL) {
3107
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3108
0
        goto end;
3109
0
    }
3110
2.36k
    ctx = EVP_CIPHER_CTX_new();
3111
2.36k
    if (ctx == NULL) {
3112
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3113
0
        goto end;
3114
0
    }
3115
2.36k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3116
2.36k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3117
#else
3118
    if (tctx->ext.ticket_key_evp_cb != NULL)
3119
#endif
3120
0
    {
3121
0
        unsigned char *nctick = (unsigned char *)etick;
3122
0
        int rv = 0;
3123
3124
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
3125
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3126
0
                nctick,
3127
0
                nctick + TLSEXT_KEYNAME_LENGTH,
3128
0
                ctx,
3129
0
                ssl_hmac_get0_EVP_MAC_CTX(hctx),
3130
0
                0);
3131
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3132
0
        else if (tctx->ext.ticket_key_cb != NULL)
3133
            /* if 0 is returned, write an empty ticket */
3134
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3135
0
                nctick + TLSEXT_KEYNAME_LENGTH,
3136
0
                ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3137
0
#endif
3138
0
        if (rv < 0) {
3139
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3140
0
            goto end;
3141
0
        }
3142
0
        if (rv == 0) {
3143
0
            ret = SSL_TICKET_NO_DECRYPT;
3144
0
            goto end;
3145
0
        }
3146
0
        if (rv == 2)
3147
0
            renew_ticket = 1;
3148
2.36k
    } else {
3149
2.36k
        EVP_CIPHER *aes256cbc = NULL;
3150
3151
        /* Check key name matches */
3152
2.36k
        if (memcmp(etick, tctx->ext.tick_key_name,
3153
2.36k
                TLSEXT_KEYNAME_LENGTH)
3154
2.36k
            != 0) {
3155
980
            ret = SSL_TICKET_NO_DECRYPT;
3156
980
            goto end;
3157
980
        }
3158
3159
1.38k
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3160
1.38k
            sctx->propq);
3161
1.38k
        if (aes256cbc == NULL
3162
1.38k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3163
1.38k
                   sizeof(tctx->ext.secure->tick_hmac_key),
3164
1.38k
                   "SHA256")
3165
1.38k
                <= 0
3166
1.38k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3167
1.38k
                   tctx->ext.secure->tick_aes_key,
3168
1.38k
                   etick + TLSEXT_KEYNAME_LENGTH)
3169
1.38k
                <= 0) {
3170
0
            EVP_CIPHER_free(aes256cbc);
3171
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3172
0
            goto end;
3173
0
        }
3174
1.38k
        EVP_CIPHER_free(aes256cbc);
3175
1.38k
        if (SSL_CONNECTION_IS_TLS13(s))
3176
626
            renew_ticket = 1;
3177
1.38k
    }
3178
    /*
3179
     * Attempt to process session ticket, first conduct sanity and integrity
3180
     * checks on ticket.
3181
     */
3182
1.38k
    mlen = ssl_hmac_size(hctx);
3183
1.38k
    if (mlen == 0) {
3184
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3185
0
        goto end;
3186
0
    }
3187
3188
1.38k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3189
1.38k
    if (ivlen < 0) {
3190
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3191
0
        goto end;
3192
0
    }
3193
3194
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3195
1.38k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3196
159
        ret = SSL_TICKET_NO_DECRYPT;
3197
159
        goto end;
3198
159
    }
3199
1.23k
    eticklen -= mlen;
3200
    /* Check HMAC of encrypted ticket */
3201
1.23k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3202
1.23k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3203
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3204
0
        goto end;
3205
0
    }
3206
3207
1.23k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3208
193
        ret = SSL_TICKET_NO_DECRYPT;
3209
193
        goto end;
3210
193
    }
3211
    /* Attempt to decrypt session data */
3212
    /* Move p after IV to start of encrypted ticket, update length */
3213
1.03k
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3214
1.03k
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3215
1.03k
    sdec = OPENSSL_malloc(eticklen);
3216
1.03k
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) {
3217
0
        OPENSSL_free(sdec);
3218
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3219
0
        goto end;
3220
0
    }
3221
1.03k
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3222
66
        OPENSSL_free(sdec);
3223
66
        ret = SSL_TICKET_NO_DECRYPT;
3224
66
        goto end;
3225
66
    }
3226
971
    slen += declen;
3227
971
    p = sdec;
3228
3229
971
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3230
971
    slen -= (int)(p - sdec);
3231
971
    OPENSSL_free(sdec);
3232
971
    if (sess) {
3233
        /* Some additional consistency checks */
3234
816
        if (slen != 0) {
3235
12
            SSL_SESSION_free(sess);
3236
12
            sess = NULL;
3237
12
            ret = SSL_TICKET_NO_DECRYPT;
3238
12
            goto end;
3239
12
        }
3240
        /*
3241
         * The session ID, if non-empty, is used by some clients to detect
3242
         * that the ticket has been accepted. So we copy it to the session
3243
         * structure. If it is empty set length to zero as required by
3244
         * standard.
3245
         */
3246
804
        if (sesslen) {
3247
289
            memcpy(sess->session_id, sess_id, sesslen);
3248
289
            sess->session_id_length = sesslen;
3249
289
        }
3250
804
        if (renew_ticket)
3251
493
            ret = SSL_TICKET_SUCCESS_RENEW;
3252
311
        else
3253
311
            ret = SSL_TICKET_SUCCESS;
3254
804
        goto end;
3255
816
    }
3256
155
    ERR_clear_error();
3257
    /*
3258
     * For session parse failure, indicate that we need to send a new ticket.
3259
     */
3260
155
    ret = SSL_TICKET_NO_DECRYPT;
3261
3262
7.43k
end:
3263
7.43k
    EVP_CIPHER_CTX_free(ctx);
3264
7.43k
    ssl_hmac_free(hctx);
3265
3266
    /*
3267
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
3268
     * detected above. The callback is responsible for checking |ret| before it
3269
     * performs any action
3270
     */
3271
7.43k
    if (s->session_ctx->decrypt_ticket_cb != NULL
3272
0
        && (ret == SSL_TICKET_EMPTY
3273
0
            || ret == SSL_TICKET_NO_DECRYPT
3274
0
            || ret == SSL_TICKET_SUCCESS
3275
0
            || ret == SSL_TICKET_SUCCESS_RENEW)) {
3276
0
        size_t keyname_len = eticklen;
3277
0
        int retcb;
3278
3279
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3280
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
3281
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3282
0
            sess, etick, keyname_len,
3283
0
            ret,
3284
0
            s->session_ctx->ticket_cb_data);
3285
0
        switch (retcb) {
3286
0
        case SSL_TICKET_RETURN_ABORT:
3287
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3288
0
            break;
3289
3290
0
        case SSL_TICKET_RETURN_IGNORE:
3291
0
            ret = SSL_TICKET_NONE;
3292
0
            SSL_SESSION_free(sess);
3293
0
            sess = NULL;
3294
0
            break;
3295
3296
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
3297
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3298
0
                ret = SSL_TICKET_NO_DECRYPT;
3299
            /* else the value of |ret| will already do the right thing */
3300
0
            SSL_SESSION_free(sess);
3301
0
            sess = NULL;
3302
0
            break;
3303
3304
0
        case SSL_TICKET_RETURN_USE:
3305
0
        case SSL_TICKET_RETURN_USE_RENEW:
3306
0
            if (ret != SSL_TICKET_SUCCESS
3307
0
                && ret != SSL_TICKET_SUCCESS_RENEW)
3308
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
3309
0
            else if (retcb == SSL_TICKET_RETURN_USE)
3310
0
                ret = SSL_TICKET_SUCCESS;
3311
0
            else
3312
0
                ret = SSL_TICKET_SUCCESS_RENEW;
3313
0
            break;
3314
3315
0
        default:
3316
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3317
0
        }
3318
0
    }
3319
3320
7.43k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3321
7.43k
        switch (ret) {
3322
2.58k
        case SSL_TICKET_NO_DECRYPT:
3323
3.07k
        case SSL_TICKET_SUCCESS_RENEW:
3324
7.11k
        case SSL_TICKET_EMPTY:
3325
7.11k
            s->ext.ticket_expected = 1;
3326
7.43k
        }
3327
7.43k
    }
3328
3329
7.43k
    *psess = sess;
3330
3331
7.43k
    return ret;
3332
7.43k
}
3333
3334
/* Check to see if a signature algorithm is allowed */
3335
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3336
    const SIGALG_LOOKUP *lu)
3337
4.64M
{
3338
4.64M
    unsigned char sigalgstr[2];
3339
4.64M
    int secbits;
3340
3341
4.64M
    if (lu == NULL || !lu->available)
3342
0
        return 0;
3343
    /* DSA is not allowed in TLS 1.3 */
3344
4.64M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3345
9.95k
        return 0;
3346
    /*
3347
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3348
     * spec
3349
     */
3350
4.63M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3351
3.50M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
3352
1.85M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3353
1.19M
            || lu->hash_idx == SSL_MD_MD5_IDX
3354
1.19M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
3355
693k
        return 0;
3356
3357
    /* See if public key algorithm allowed */
3358
3.93M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3359
0
        return 0;
3360
3361
3.93M
    if (lu->sig == NID_id_GostR3410_2012_256
3362
3.93M
        || lu->sig == NID_id_GostR3410_2012_512
3363
3.93M
        || lu->sig == NID_id_GostR3410_2001) {
3364
        /* We never allow GOST sig algs on the server with TLSv1.3 */
3365
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
3366
0
            return 0;
3367
0
        if (!s->server
3368
0
            && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3369
0
            && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3370
0
            int i, num;
3371
0
            STACK_OF(SSL_CIPHER) *sk;
3372
3373
            /*
3374
             * We're a client that could negotiate TLSv1.3. We only allow GOST
3375
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3376
             * ciphersuites enabled.
3377
             */
3378
3379
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3380
0
                return 0;
3381
3382
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3383
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3384
0
            for (i = 0; i < num; i++) {
3385
0
                const SSL_CIPHER *c;
3386
3387
0
                c = sk_SSL_CIPHER_value(sk, i);
3388
                /* Skip disabled ciphers */
3389
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3390
0
                    continue;
3391
3392
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3393
0
                    break;
3394
0
            }
3395
0
            if (i == num)
3396
0
                return 0;
3397
0
        }
3398
0
    }
3399
3400
    /* Finally see if security callback allows it */
3401
3.93M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3402
3.93M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3403
3.93M
    sigalgstr[1] = lu->sigalg & 0xff;
3404
3.93M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3405
3.93M
}
3406
3407
/*
3408
 * Get a mask of disabled public key algorithms based on supported signature
3409
 * algorithms. For example if no signature algorithm supports RSA then RSA is
3410
 * disabled.
3411
 */
3412
3413
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3414
353k
{
3415
353k
    const uint16_t *sigalgs;
3416
353k
    size_t i, sigalgslen;
3417
353k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3418
    /*
3419
     * Go through all signature algorithms seeing if we support any
3420
     * in disabled_mask.
3421
     */
3422
353k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3423
10.7M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
3424
10.3M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3425
10.3M
        const SSL_CERT_LOOKUP *clu;
3426
3427
10.3M
        if (lu == NULL)
3428
790k
            continue;
3429
3430
9.58M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3431
9.58M
            SSL_CONNECTION_GET_CTX(s));
3432
9.58M
        if (clu == NULL)
3433
0
            continue;
3434
3435
        /* If algorithm is disabled see if we can enable it */
3436
9.58M
        if ((clu->amask & disabled_mask) != 0
3437
1.46M
            && tls12_sigalg_allowed(s, op, lu))
3438
959k
            disabled_mask &= ~clu->amask;
3439
9.58M
    }
3440
353k
    *pmask_a |= disabled_mask;
3441
353k
}
3442
3443
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3444
    const uint16_t *psig, size_t psiglen)
3445
116k
{
3446
116k
    size_t i;
3447
116k
    int rv = 0;
3448
3449
3.54M
    for (i = 0; i < psiglen; i++, psig++) {
3450
3.42M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3451
3452
3.42M
        if (lu == NULL || !tls_sigalg_compat(s, lu))
3453
762k
            continue;
3454
2.66M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
3455
0
            return 0;
3456
        /*
3457
         * If TLS 1.3 must have at least one valid TLS 1.3 message
3458
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3459
         */
3460
2.66M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224)))
3461
116k
            rv = 1;
3462
2.66M
    }
3463
116k
    if (rv == 0)
3464
116k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3465
116k
    return rv;
3466
116k
}
3467
3468
/* Given preference and allowed sigalgs set shared sigalgs */
3469
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3470
    const SIGALG_LOOKUP **shsig,
3471
    const uint16_t *pref, size_t preflen,
3472
    const uint16_t *allow, size_t allowlen)
3473
18.5k
{
3474
18.5k
    const uint16_t *ptmp, *atmp;
3475
18.5k
    size_t i, j, nmatch = 0;
3476
457k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3477
439k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3478
3479
        /* Skip disabled hashes or signature algorithms */
3480
439k
        if (lu == NULL
3481
193k
            || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3482
255k
            continue;
3483
2.87M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3484
2.87M
            if (*ptmp == *atmp) {
3485
184k
                nmatch++;
3486
184k
                if (shsig)
3487
92.0k
                    *shsig++ = lu;
3488
184k
                break;
3489
184k
            }
3490
2.87M
        }
3491
184k
    }
3492
18.5k
    return nmatch;
3493
18.5k
}
3494
3495
/* Set shared signature algorithms for SSL structures */
3496
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3497
9.36k
{
3498
9.36k
    const uint16_t *pref, *allow, *conf;
3499
9.36k
    size_t preflen, allowlen, conflen;
3500
9.36k
    size_t nmatch;
3501
9.36k
    const SIGALG_LOOKUP **salgs = NULL;
3502
9.36k
    CERT *c = s->cert;
3503
9.36k
    unsigned int is_suiteb = tls1_suiteb(s);
3504
3505
9.36k
    OPENSSL_free(s->shared_sigalgs);
3506
9.36k
    s->shared_sigalgs = NULL;
3507
9.36k
    s->shared_sigalgslen = 0;
3508
    /* If client use client signature algorithms if not NULL */
3509
9.36k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
3510
0
        conf = c->client_sigalgs;
3511
0
        conflen = c->client_sigalgslen;
3512
9.36k
    } else if (c->conf_sigalgs && !is_suiteb) {
3513
0
        conf = c->conf_sigalgs;
3514
0
        conflen = c->conf_sigalgslen;
3515
0
    } else
3516
9.36k
        conflen = tls12_get_psigalgs(s, 0, &conf);
3517
9.36k
    if (s->options & SSL_OP_SERVER_PREFERENCE || is_suiteb) {
3518
0
        pref = conf;
3519
0
        preflen = conflen;
3520
0
        allow = s->s3.tmp.peer_sigalgs;
3521
0
        allowlen = s->s3.tmp.peer_sigalgslen;
3522
9.36k
    } else {
3523
9.36k
        allow = conf;
3524
9.36k
        allowlen = conflen;
3525
9.36k
        pref = s->s3.tmp.peer_sigalgs;
3526
9.36k
        preflen = s->s3.tmp.peer_sigalgslen;
3527
9.36k
    }
3528
9.36k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3529
9.36k
    if (nmatch) {
3530
9.15k
        if ((salgs = OPENSSL_malloc_array(nmatch, sizeof(*salgs))) == NULL)
3531
0
            return 0;
3532
9.15k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3533
9.15k
    } else {
3534
219
        salgs = NULL;
3535
219
    }
3536
9.36k
    s->shared_sigalgs = salgs;
3537
9.36k
    s->shared_sigalgslen = nmatch;
3538
9.36k
    return 1;
3539
9.36k
}
3540
3541
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3542
30.7k
{
3543
30.7k
    unsigned int stmp;
3544
30.7k
    size_t size, i;
3545
30.7k
    uint16_t *buf;
3546
3547
30.7k
    size = PACKET_remaining(pkt);
3548
3549
    /* Invalid data length */
3550
30.7k
    if (size == 0 || (size & 1) != 0)
3551
68
        return 0;
3552
3553
30.6k
    size >>= 1;
3554
3555
30.6k
    if ((buf = OPENSSL_malloc_array(size, sizeof(*buf))) == NULL)
3556
0
        return 0;
3557
334k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3558
303k
        buf[i] = stmp;
3559
3560
30.6k
    if (i != size) {
3561
0
        OPENSSL_free(buf);
3562
0
        return 0;
3563
0
    }
3564
3565
30.6k
    OPENSSL_free(*pdest);
3566
30.6k
    *pdest = buf;
3567
30.6k
    *pdestlen = size;
3568
3569
30.6k
    return 1;
3570
30.6k
}
3571
3572
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3573
11.3k
{
3574
    /* Extension ignored for inappropriate versions */
3575
11.3k
    if (!SSL_USE_SIGALGS(s))
3576
273
        return 1;
3577
    /* Should never happen */
3578
11.0k
    if (s->cert == NULL)
3579
0
        return 0;
3580
3581
11.0k
    if (cert)
3582
950
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3583
950
            &s->s3.tmp.peer_cert_sigalgslen);
3584
10.1k
    else
3585
10.1k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3586
10.1k
            &s->s3.tmp.peer_sigalgslen);
3587
11.0k
}
3588
3589
/* Set preferred digest for each key type */
3590
3591
int tls1_process_sigalgs(SSL_CONNECTION *s)
3592
9.36k
{
3593
9.36k
    size_t i;
3594
9.36k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
3595
3596
9.36k
    if (!tls1_set_shared_sigalgs(s))
3597
0
        return 0;
3598
3599
108k
    for (i = 0; i < s->ssl_pkey_num; i++)
3600
99.0k
        pvalid[i] = 0;
3601
3602
101k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3603
92.0k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3604
92.0k
        int idx = sigptr->sig_idx;
3605
3606
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
3607
92.0k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3608
2.76k
            continue;
3609
        /* If not disabled indicate we can explicitly sign */
3610
89.2k
        if (pvalid[idx] == 0
3611
17.2k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3612
17.2k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3613
89.2k
    }
3614
9.36k
    return 1;
3615
9.36k
}
3616
3617
int SSL_get_sigalgs(SSL *s, int idx,
3618
    int *psign, int *phash, int *psignhash,
3619
    unsigned char *rsig, unsigned char *rhash)
3620
0
{
3621
0
    uint16_t *psig;
3622
0
    size_t numsigalgs;
3623
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3624
3625
0
    if (sc == NULL)
3626
0
        return 0;
3627
3628
0
    psig = sc->s3.tmp.peer_sigalgs;
3629
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
3630
3631
0
    if (psig == NULL || numsigalgs > INT_MAX)
3632
0
        return 0;
3633
0
    if (idx >= 0) {
3634
0
        const SIGALG_LOOKUP *lu;
3635
3636
0
        if (idx >= (int)numsigalgs)
3637
0
            return 0;
3638
0
        psig += idx;
3639
0
        if (rhash != NULL)
3640
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
3641
0
        if (rsig != NULL)
3642
0
            *rsig = (unsigned char)(*psig & 0xff);
3643
0
        lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3644
0
        if (psign != NULL)
3645
0
            *psign = lu != NULL ? lu->sig : NID_undef;
3646
0
        if (phash != NULL)
3647
0
            *phash = lu != NULL ? lu->hash : NID_undef;
3648
0
        if (psignhash != NULL)
3649
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3650
0
    }
3651
0
    return (int)numsigalgs;
3652
0
}
3653
3654
int SSL_get_shared_sigalgs(SSL *s, int idx,
3655
    int *psign, int *phash, int *psignhash,
3656
    unsigned char *rsig, unsigned char *rhash)
3657
0
{
3658
0
    const SIGALG_LOOKUP *shsigalgs;
3659
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3660
3661
0
    if (sc == NULL)
3662
0
        return 0;
3663
3664
0
    if (sc->shared_sigalgs == NULL
3665
0
        || idx < 0
3666
0
        || idx >= (int)sc->shared_sigalgslen
3667
0
        || sc->shared_sigalgslen > INT_MAX)
3668
0
        return 0;
3669
0
    shsigalgs = sc->shared_sigalgs[idx];
3670
0
    if (phash != NULL)
3671
0
        *phash = shsigalgs->hash;
3672
0
    if (psign != NULL)
3673
0
        *psign = shsigalgs->sig;
3674
0
    if (psignhash != NULL)
3675
0
        *psignhash = shsigalgs->sigandhash;
3676
0
    if (rsig != NULL)
3677
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3678
0
    if (rhash != NULL)
3679
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3680
0
    return (int)sc->shared_sigalgslen;
3681
0
}
3682
3683
/* Maximum possible number of unique entries in sigalgs array */
3684
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3685
3686
typedef struct {
3687
    size_t sigalgcnt;
3688
    /* TLSEXT_SIGALG_XXX values */
3689
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3690
    SSL_CTX *ctx;
3691
} sig_cb_st;
3692
3693
static void get_sigorhash(int *psig, int *phash, const char *str)
3694
0
{
3695
0
    if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3696
0
        *psig = EVP_PKEY_RSA;
3697
0
    } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3698
0
        || OPENSSL_strcasecmp(str, "PSS") == 0) {
3699
0
        *psig = EVP_PKEY_RSA_PSS;
3700
0
    } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3701
0
        *psig = EVP_PKEY_DSA;
3702
0
    } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3703
0
        *psig = EVP_PKEY_EC;
3704
0
    } else {
3705
0
        *phash = OBJ_sn2nid(str);
3706
0
        if (*phash == NID_undef)
3707
0
            *phash = OBJ_ln2nid(str);
3708
0
    }
3709
0
}
3710
/* Maximum length of a signature algorithm string component */
3711
#define TLS_MAX_SIGSTRING_LEN 40
3712
3713
static int sig_cb(const char *elem, int len, void *arg)
3714
0
{
3715
0
    sig_cb_st *sarg = arg;
3716
0
    size_t i = 0;
3717
0
    const SIGALG_LOOKUP *s;
3718
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3719
0
    const char *iana, *alias;
3720
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
3721
0
    int ignore_unknown = 0;
3722
3723
0
    if (elem == NULL)
3724
0
        return 0;
3725
0
    if (elem[0] == '?') {
3726
0
        ignore_unknown = 1;
3727
0
        ++elem;
3728
0
        --len;
3729
0
    }
3730
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3731
0
        return 0;
3732
0
    if (len > (int)(sizeof(etmp) - 1))
3733
0
        return 0;
3734
0
    memcpy(etmp, elem, len);
3735
0
    etmp[len] = 0;
3736
0
    p = strchr(etmp, '+');
3737
    /*
3738
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3739
     * if there's no '+' in the provided name, look for the new-style combined
3740
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3741
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3742
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
3743
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
3744
     * in the table.
3745
     */
3746
0
    if (p == NULL) {
3747
0
        if (sarg->ctx != NULL) {
3748
0
            for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3749
0
                iana = sarg->ctx->sigalg_lookup_cache[i].name;
3750
0
                alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3751
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3752
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3753
                    /* Ignore known, but unavailable sigalgs. */
3754
0
                    if (!sarg->ctx->sigalg_lookup_cache[i].available)
3755
0
                        return 1;
3756
0
                    sarg->sigalgs[sarg->sigalgcnt++] = sarg->ctx->sigalg_lookup_cache[i].sigalg;
3757
0
                    goto found;
3758
0
                }
3759
0
            }
3760
0
        } else {
3761
            /* Syntax checks use the built-in sigalgs */
3762
0
            for (i = 0, s = sigalg_lookup_tbl;
3763
0
                i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3764
0
                iana = s->name;
3765
0
                alias = s->name12;
3766
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3767
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3768
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3769
0
                    goto found;
3770
0
                }
3771
0
            }
3772
0
        }
3773
0
    } else {
3774
0
        *p = 0;
3775
0
        p++;
3776
0
        if (*p == 0)
3777
0
            return 0;
3778
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
3779
0
        get_sigorhash(&sig_alg, &hash_alg, p);
3780
0
        if (sig_alg != NID_undef && hash_alg != NID_undef) {
3781
0
            if (sarg->ctx != NULL) {
3782
0
                for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3783
0
                    s = &sarg->ctx->sigalg_lookup_cache[i];
3784
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3785
                        /* Ignore known, but unavailable sigalgs. */
3786
0
                        if (!sarg->ctx->sigalg_lookup_cache[i].available)
3787
0
                            return 1;
3788
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3789
0
                        goto found;
3790
0
                    }
3791
0
                }
3792
0
            } else {
3793
0
                for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3794
0
                    s = &sigalg_lookup_tbl[i];
3795
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3796
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3797
0
                        goto found;
3798
0
                    }
3799
0
                }
3800
0
            }
3801
0
        }
3802
0
    }
3803
    /* Ignore unknown algorithms if ignore_unknown */
3804
0
    return ignore_unknown;
3805
3806
0
found:
3807
    /* Ignore duplicates */
3808
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3809
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3810
0
            sarg->sigalgcnt--;
3811
0
            return 1;
3812
0
        }
3813
0
    }
3814
0
    return 1;
3815
0
}
3816
3817
/*
3818
 * Set supported signature algorithms based on a colon separated list of the
3819
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3820
 */
3821
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3822
0
{
3823
0
    sig_cb_st sig;
3824
0
    sig.sigalgcnt = 0;
3825
3826
0
    if (ctx != NULL)
3827
0
        sig.ctx = ctx;
3828
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3829
0
        return 0;
3830
0
    if (sig.sigalgcnt == 0) {
3831
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3832
0
            "No valid signature algorithms in '%s'", str);
3833
0
        return 0;
3834
0
    }
3835
0
    if (c == NULL)
3836
0
        return 1;
3837
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3838
0
}
3839
3840
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3841
    int client)
3842
0
{
3843
0
    uint16_t *sigalgs;
3844
3845
0
    if ((sigalgs = OPENSSL_malloc_array(salglen, sizeof(*sigalgs))) == NULL)
3846
0
        return 0;
3847
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3848
3849
0
    if (client) {
3850
0
        OPENSSL_free(c->client_sigalgs);
3851
0
        c->client_sigalgs = sigalgs;
3852
0
        c->client_sigalgslen = salglen;
3853
0
    } else {
3854
0
        OPENSSL_free(c->conf_sigalgs);
3855
0
        c->conf_sigalgs = sigalgs;
3856
0
        c->conf_sigalgslen = salglen;
3857
0
    }
3858
3859
0
    return 1;
3860
0
}
3861
3862
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3863
0
{
3864
0
    uint16_t *sigalgs, *sptr;
3865
0
    size_t i;
3866
3867
0
    if (salglen & 1)
3868
0
        return 0;
3869
0
    if ((sigalgs = OPENSSL_malloc_array(salglen / 2, sizeof(*sigalgs))) == NULL)
3870
0
        return 0;
3871
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3872
0
        size_t j;
3873
0
        const SIGALG_LOOKUP *curr;
3874
0
        int md_id = *psig_nids++;
3875
0
        int sig_id = *psig_nids++;
3876
3877
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3878
0
            j++, curr++) {
3879
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3880
0
                *sptr++ = curr->sigalg;
3881
0
                break;
3882
0
            }
3883
0
        }
3884
3885
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3886
0
            goto err;
3887
0
    }
3888
3889
0
    if (client) {
3890
0
        OPENSSL_free(c->client_sigalgs);
3891
0
        c->client_sigalgs = sigalgs;
3892
0
        c->client_sigalgslen = salglen / 2;
3893
0
    } else {
3894
0
        OPENSSL_free(c->conf_sigalgs);
3895
0
        c->conf_sigalgs = sigalgs;
3896
0
        c->conf_sigalgslen = salglen / 2;
3897
0
    }
3898
3899
0
    return 1;
3900
3901
0
err:
3902
0
    OPENSSL_free(sigalgs);
3903
0
    return 0;
3904
0
}
3905
3906
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3907
0
{
3908
0
    int sig_nid, use_pc_sigalgs = 0;
3909
0
    size_t i;
3910
0
    const SIGALG_LOOKUP *sigalg;
3911
0
    size_t sigalgslen;
3912
3913
    /*-
3914
     * RFC 8446, section 4.2.3:
3915
     *
3916
     * The signatures on certificates that are self-signed or certificates
3917
     * that are trust anchors are not validated, since they begin a
3918
     * certification path (see [RFC5280], Section 3.2).  A certificate that
3919
     * begins a certification path MAY use a signature algorithm that is not
3920
     * advertised as being supported in the "signature_algorithms"
3921
     * extension.
3922
     */
3923
0
    if (default_nid == -1 || X509_self_signed(x, 0))
3924
0
        return 1;
3925
0
    sig_nid = X509_get_signature_nid(x);
3926
0
    if (default_nid)
3927
0
        return sig_nid == default_nid ? 1 : 0;
3928
3929
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3930
        /*
3931
         * If we're in TLSv1.3 then we only get here if we're checking the
3932
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3933
         * otherwise we default to normal sigalgs.
3934
         */
3935
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3936
0
        use_pc_sigalgs = 1;
3937
0
    } else {
3938
0
        sigalgslen = s->shared_sigalgslen;
3939
0
    }
3940
0
    for (i = 0; i < sigalgslen; i++) {
3941
0
        int mdnid, pknid;
3942
3943
0
        sigalg = use_pc_sigalgs
3944
0
            ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3945
0
                  s->s3.tmp.peer_cert_sigalgs[i])
3946
0
            : s->shared_sigalgs[i];
3947
0
        if (sigalg == NULL)
3948
0
            continue;
3949
0
        if (sig_nid == sigalg->sigandhash)
3950
0
            return 1;
3951
0
        if (sigalg->sig != EVP_PKEY_RSA_PSS)
3952
0
            continue;
3953
        /*
3954
         * Accept RSA PKCS#1 signatures in certificates when the signature
3955
         * algorithms include RSA-PSS with a matching digest algorithm.
3956
         *
3957
         * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3958
         * points, and we're doing strict checking of the certificate chain (in
3959
         * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3960
         * certificates in the chain, but the TLS requirement on PSS should not
3961
         * extend to certificates.  Though the peer can in fact list the legacy
3962
         * sigalgs for just this purpose, it is not likely that a better chain
3963
         * signed with RSA-PSS is available.
3964
         */
3965
0
        if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3966
0
            continue;
3967
0
        if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3968
0
            return 1;
3969
0
    }
3970
0
    return 0;
3971
0
}
3972
3973
/* Check to see if a certificate issuer name matches list of CA names */
3974
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3975
0
{
3976
0
    const X509_NAME *nm;
3977
0
    int i;
3978
0
    nm = X509_get_issuer_name(x);
3979
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3980
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3981
0
            return 1;
3982
0
    }
3983
0
    return 0;
3984
0
}
3985
3986
/*
3987
 * Check certificate chain is consistent with TLS extensions and is usable by
3988
 * server. This servers two purposes: it allows users to check chains before
3989
 * passing them to the server and it allows the server to check chains before
3990
 * attempting to use them.
3991
 */
3992
3993
/* Flags which need to be set for a certificate when strict mode not set */
3994
3995
#define CERT_PKEY_VALID_FLAGS \
3996
0
    (CERT_PKEY_EE_SIGNATURE | CERT_PKEY_EE_PARAM)
3997
/* Strict mode flags */
3998
#define CERT_PKEY_STRICT_FLAGS                                           \
3999
0
    (CERT_PKEY_VALID_FLAGS | CERT_PKEY_CA_SIGNATURE | CERT_PKEY_CA_PARAM \
4000
0
        | CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE)
4001
4002
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
4003
    STACK_OF(X509) *chain, int idx)
4004
236k
{
4005
236k
    int i;
4006
236k
    int rv = 0;
4007
236k
    int check_flags = 0, strict_mode;
4008
236k
    CERT_PKEY *cpk = NULL;
4009
236k
    CERT *c = s->cert;
4010
236k
    uint32_t *pvalid;
4011
236k
    unsigned int suiteb_flags = tls1_suiteb(s);
4012
4013
    /*
4014
     * Meaning of idx:
4015
     * idx == -1 means SSL_check_chain() invocation
4016
     * idx == -2 means checking client certificate chains
4017
     * idx >= 0 means checking SSL_PKEY index
4018
     *
4019
     * For RPK, where there may be no cert, we ignore -1
4020
     */
4021
236k
    if (idx != -1) {
4022
236k
        if (idx == -2) {
4023
0
            cpk = c->key;
4024
0
            idx = (int)(cpk - c->pkeys);
4025
0
        } else
4026
236k
            cpk = c->pkeys + idx;
4027
236k
        pvalid = s->s3.tmp.valid_flags + idx;
4028
236k
        x = cpk->x509;
4029
236k
        pk = cpk->privatekey;
4030
236k
        chain = cpk->chain;
4031
236k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4032
236k
        if (tls12_rpk_and_privkey(s, idx)) {
4033
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4034
0
                return 0;
4035
0
            *pvalid = rv = CERT_PKEY_RPK;
4036
0
            return rv;
4037
0
        }
4038
        /* If no cert or key, forget it */
4039
236k
        if (x == NULL || pk == NULL)
4040
157k
            goto end;
4041
236k
    } else {
4042
0
        size_t certidx;
4043
4044
0
        if (x == NULL || pk == NULL)
4045
0
            return 0;
4046
4047
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
4048
0
                SSL_CONNECTION_GET_CTX(s))
4049
0
            == NULL)
4050
0
            return 0;
4051
0
        idx = (int)certidx;
4052
0
        pvalid = s->s3.tmp.valid_flags + idx;
4053
4054
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4055
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
4056
0
        else
4057
0
            check_flags = CERT_PKEY_VALID_FLAGS;
4058
0
        strict_mode = 1;
4059
0
    }
4060
4061
78.8k
    if (suiteb_flags) {
4062
0
        int ok;
4063
0
        if (check_flags)
4064
0
            check_flags |= CERT_PKEY_SUITEB;
4065
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4066
0
        if (ok == X509_V_OK)
4067
0
            rv |= CERT_PKEY_SUITEB;
4068
0
        else if (!check_flags)
4069
0
            goto end;
4070
0
    }
4071
4072
    /*
4073
     * Check all signature algorithms are consistent with signature
4074
     * algorithms extension if TLS 1.2 or later and strict mode.
4075
     */
4076
78.8k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4077
32.3k
        && strict_mode) {
4078
0
        int default_nid;
4079
0
        int rsign = 0;
4080
4081
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
4082
0
            || s->s3.tmp.peer_sigalgs != NULL) {
4083
0
            default_nid = 0;
4084
            /* If no sigalgs extension use defaults from RFC5246 */
4085
0
        } else {
4086
0
            switch (idx) {
4087
0
            case SSL_PKEY_RSA:
4088
0
                rsign = EVP_PKEY_RSA;
4089
0
                default_nid = NID_sha1WithRSAEncryption;
4090
0
                break;
4091
4092
0
            case SSL_PKEY_DSA_SIGN:
4093
0
                rsign = EVP_PKEY_DSA;
4094
0
                default_nid = NID_dsaWithSHA1;
4095
0
                break;
4096
4097
0
            case SSL_PKEY_ECC:
4098
0
                rsign = EVP_PKEY_EC;
4099
0
                default_nid = NID_ecdsa_with_SHA1;
4100
0
                break;
4101
4102
0
            case SSL_PKEY_GOST01:
4103
0
                rsign = NID_id_GostR3410_2001;
4104
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4105
0
                break;
4106
4107
0
            case SSL_PKEY_GOST12_256:
4108
0
                rsign = NID_id_GostR3410_2012_256;
4109
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4110
0
                break;
4111
4112
0
            case SSL_PKEY_GOST12_512:
4113
0
                rsign = NID_id_GostR3410_2012_512;
4114
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4115
0
                break;
4116
4117
0
            default:
4118
0
                default_nid = -1;
4119
0
                break;
4120
0
            }
4121
0
        }
4122
        /*
4123
         * If peer sent no signature algorithms extension and we have set
4124
         * preferred signature algorithms check we support sha1.
4125
         */
4126
0
        if (default_nid > 0 && c->conf_sigalgs) {
4127
0
            size_t j;
4128
0
            const uint16_t *p = c->conf_sigalgs;
4129
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4130
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4131
4132
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4133
0
                    break;
4134
0
            }
4135
0
            if (j == c->conf_sigalgslen) {
4136
0
                if (check_flags)
4137
0
                    goto skip_sigs;
4138
0
                else
4139
0
                    goto end;
4140
0
            }
4141
0
        }
4142
        /* Check signature algorithm of each cert in chain */
4143
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
4144
            /*
4145
             * We only get here if the application has called SSL_check_chain(),
4146
             * so check_flags is always set.
4147
             */
4148
0
            if (find_sig_alg(s, x, pk) != NULL)
4149
0
                rv |= CERT_PKEY_EE_SIGNATURE;
4150
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4151
0
            if (!check_flags)
4152
0
                goto end;
4153
0
        } else
4154
0
            rv |= CERT_PKEY_EE_SIGNATURE;
4155
0
        rv |= CERT_PKEY_CA_SIGNATURE;
4156
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4157
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4158
0
                if (check_flags) {
4159
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
4160
0
                    break;
4161
0
                } else
4162
0
                    goto end;
4163
0
            }
4164
0
        }
4165
0
    }
4166
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4167
78.8k
    else if (check_flags)
4168
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4169
78.8k
skip_sigs:
4170
    /* Check cert parameters are consistent */
4171
78.8k
    if (tls1_check_cert_param(s, x, 1))
4172
71.1k
        rv |= CERT_PKEY_EE_PARAM;
4173
7.63k
    else if (!check_flags)
4174
7.63k
        goto end;
4175
71.1k
    if (!s->server)
4176
0
        rv |= CERT_PKEY_CA_PARAM;
4177
    /* In strict mode check rest of chain too */
4178
71.1k
    else if (strict_mode) {
4179
0
        rv |= CERT_PKEY_CA_PARAM;
4180
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4181
0
            X509 *ca = sk_X509_value(chain, i);
4182
0
            if (!tls1_check_cert_param(s, ca, 0)) {
4183
0
                if (check_flags) {
4184
0
                    rv &= ~CERT_PKEY_CA_PARAM;
4185
0
                    break;
4186
0
                } else
4187
0
                    goto end;
4188
0
            }
4189
0
        }
4190
0
    }
4191
71.1k
    if (!s->server && strict_mode) {
4192
0
        STACK_OF(X509_NAME) *ca_dn;
4193
0
        int check_type = 0;
4194
4195
0
        if (EVP_PKEY_is_a(pk, "RSA"))
4196
0
            check_type = TLS_CT_RSA_SIGN;
4197
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
4198
0
            check_type = TLS_CT_DSS_SIGN;
4199
0
        else if (EVP_PKEY_is_a(pk, "EC"))
4200
0
            check_type = TLS_CT_ECDSA_SIGN;
4201
4202
0
        if (check_type) {
4203
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
4204
0
            size_t j;
4205
4206
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4207
0
                if (*ctypes == check_type) {
4208
0
                    rv |= CERT_PKEY_CERT_TYPE;
4209
0
                    break;
4210
0
                }
4211
0
            }
4212
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4213
0
                goto end;
4214
0
        } else {
4215
0
            rv |= CERT_PKEY_CERT_TYPE;
4216
0
        }
4217
4218
0
        ca_dn = s->s3.tmp.peer_ca_names;
4219
4220
0
        if (ca_dn == NULL
4221
0
            || sk_X509_NAME_num(ca_dn) == 0
4222
0
            || ssl_check_ca_name(ca_dn, x))
4223
0
            rv |= CERT_PKEY_ISSUER_NAME;
4224
0
        else
4225
0
            for (i = 0; i < sk_X509_num(chain); i++) {
4226
0
                X509 *xtmp = sk_X509_value(chain, i);
4227
4228
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
4229
0
                    rv |= CERT_PKEY_ISSUER_NAME;
4230
0
                    break;
4231
0
                }
4232
0
            }
4233
4234
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4235
0
            goto end;
4236
0
    } else
4237
71.1k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4238
4239
71.1k
    if (!check_flags || (rv & check_flags) == check_flags)
4240
71.1k
        rv |= CERT_PKEY_VALID;
4241
4242
236k
end:
4243
4244
236k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4245
97.0k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4246
139k
    else
4247
139k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4248
4249
    /*
4250
     * When checking a CERT_PKEY structure all flags are irrelevant if the
4251
     * chain is invalid.
4252
     */
4253
236k
    if (!check_flags) {
4254
236k
        if (rv & CERT_PKEY_VALID) {
4255
71.1k
            *pvalid = rv;
4256
165k
        } else {
4257
            /* Preserve sign and explicit sign flag, clear rest */
4258
165k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4259
165k
            return 0;
4260
165k
        }
4261
236k
    }
4262
71.1k
    return rv;
4263
236k
}
4264
4265
/* Set validity of certificates in an SSL structure */
4266
void tls1_set_cert_validity(SSL_CONNECTION *s)
4267
28.6k
{
4268
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4269
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4270
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4271
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4272
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4273
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4274
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4275
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4276
28.6k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4277
28.6k
}
4278
4279
/* User level utility function to check a chain is suitable */
4280
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4281
0
{
4282
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4283
4284
0
    if (sc == NULL)
4285
0
        return 0;
4286
4287
0
    return tls1_check_chain(sc, x, pk, chain, -1);
4288
0
}
4289
4290
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4291
0
{
4292
0
    EVP_PKEY *dhp = NULL;
4293
0
    BIGNUM *p;
4294
0
    int dh_secbits = 80, sec_level_bits;
4295
0
    EVP_PKEY_CTX *pctx = NULL;
4296
0
    OSSL_PARAM_BLD *tmpl = NULL;
4297
0
    OSSL_PARAM *params = NULL;
4298
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4299
4300
0
    if (s->cert->dh_tmp_auto != 2) {
4301
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4302
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
4303
0
                dh_secbits = 128;
4304
0
            else
4305
0
                dh_secbits = 80;
4306
0
        } else {
4307
0
            if (s->s3.tmp.cert == NULL)
4308
0
                return NULL;
4309
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4310
0
        }
4311
0
    }
4312
4313
    /* Do not pick a prime that is too weak for the current security level */
4314
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4315
0
        NULL, NULL);
4316
0
    if (dh_secbits < sec_level_bits)
4317
0
        dh_secbits = sec_level_bits;
4318
4319
0
    if (dh_secbits >= 192)
4320
0
        p = BN_get_rfc3526_prime_8192(NULL);
4321
0
    else if (dh_secbits >= 152)
4322
0
        p = BN_get_rfc3526_prime_4096(NULL);
4323
0
    else if (dh_secbits >= 128)
4324
0
        p = BN_get_rfc3526_prime_3072(NULL);
4325
0
    else if (dh_secbits >= 112)
4326
0
        p = BN_get_rfc3526_prime_2048(NULL);
4327
0
    else
4328
0
        p = BN_get_rfc2409_prime_1024(NULL);
4329
0
    if (p == NULL)
4330
0
        goto err;
4331
4332
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4333
0
    if (pctx == NULL
4334
0
        || EVP_PKEY_fromdata_init(pctx) != 1)
4335
0
        goto err;
4336
4337
0
    tmpl = OSSL_PARAM_BLD_new();
4338
0
    if (tmpl == NULL
4339
0
        || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4340
0
        || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4341
0
        goto err;
4342
4343
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
4344
0
    if (params == NULL
4345
0
        || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4346
0
        goto err;
4347
4348
0
err:
4349
0
    OSSL_PARAM_free(params);
4350
0
    OSSL_PARAM_BLD_free(tmpl);
4351
0
    EVP_PKEY_CTX_free(pctx);
4352
0
    BN_free(p);
4353
0
    return dhp;
4354
0
}
4355
4356
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4357
    int op)
4358
164k
{
4359
164k
    int secbits = -1;
4360
164k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
4361
4362
164k
    if (pkey) {
4363
        /*
4364
         * If no parameters this will return -1 and fail using the default
4365
         * security callback for any non-zero security level. This will
4366
         * reject keys which omit parameters but this only affects DSA and
4367
         * omission of parameters is never (?) done in practice.
4368
         */
4369
164k
        secbits = EVP_PKEY_get_security_bits(pkey);
4370
164k
    }
4371
164k
    if (s != NULL)
4372
24.5k
        return ssl_security(s, op, secbits, 0, x);
4373
140k
    else
4374
140k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
4375
164k
}
4376
4377
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4378
    int op)
4379
164k
{
4380
    /* Lookup signature algorithm digest */
4381
164k
    int secbits, nid, pknid;
4382
4383
    /* Don't check signature if self signed */
4384
164k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4385
164k
        return 1;
4386
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4387
0
        secbits = -1;
4388
    /* If digest NID not defined use signature NID */
4389
0
    if (nid == NID_undef)
4390
0
        nid = pknid;
4391
0
    if (s != NULL)
4392
0
        return ssl_security(s, op, secbits, nid, x);
4393
0
    else
4394
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
4395
0
}
4396
4397
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4398
    int is_ee)
4399
181k
{
4400
181k
    if (vfy)
4401
0
        vfy = SSL_SECOP_PEER;
4402
181k
    if (is_ee) {
4403
181k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4404
0
            return SSL_R_EE_KEY_TOO_SMALL;
4405
181k
    } else {
4406
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4407
0
            return SSL_R_CA_KEY_TOO_SMALL;
4408
0
    }
4409
181k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4410
0
        return SSL_R_CA_MD_TOO_WEAK;
4411
181k
    return 1;
4412
181k
}
4413
4414
/*
4415
 * Check security of a chain, if |sk| includes the end entity certificate then
4416
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4417
 * one to the peer. Return values: 1 if ok otherwise error code to use
4418
 */
4419
4420
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4421
    X509 *x, int vfy)
4422
26.7k
{
4423
26.7k
    int rv, start_idx, i;
4424
4425
26.7k
    if (x == NULL) {
4426
26.7k
        x = sk_X509_value(sk, 0);
4427
26.7k
        if (x == NULL)
4428
0
            return ERR_R_INTERNAL_ERROR;
4429
26.7k
        start_idx = 1;
4430
26.7k
    } else
4431
0
        start_idx = 0;
4432
4433
26.7k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
4434
26.7k
    if (rv != 1)
4435
0
        return rv;
4436
4437
26.7k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
4438
0
        x = sk_X509_value(sk, i);
4439
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
4440
0
        if (rv != 1)
4441
0
            return rv;
4442
0
    }
4443
26.7k
    return 1;
4444
26.7k
}
4445
4446
/*
4447
 * For TLS 1.2 servers check if we have a certificate which can be used
4448
 * with the signature algorithm "lu" and return index of certificate.
4449
 */
4450
4451
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4452
    const SIGALG_LOOKUP *lu)
4453
29.3k
{
4454
29.3k
    int sig_idx = lu->sig_idx;
4455
29.3k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4456
29.3k
        SSL_CONNECTION_GET_CTX(s));
4457
4458
    /* If not recognised or not supported by cipher mask it is not suitable */
4459
29.3k
    if (clu == NULL
4460
29.3k
        || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4461
18.4k
        || (clu->pkey_nid == EVP_PKEY_RSA_PSS
4462
1.22k
            && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4463
11.5k
        return -1;
4464
4465
    /* If doing RPK, the CERT_PKEY won't be "valid" */
4466
17.7k
    if (tls12_rpk_and_privkey(s, sig_idx))
4467
0
        return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4468
4469
17.7k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4470
17.7k
}
4471
4472
/*
4473
 * Checks the given cert against signature_algorithm_cert restrictions sent by
4474
 * the peer (if any) as well as whether the hash from the sigalg is usable with
4475
 * the key.
4476
 * Returns true if the cert is usable and false otherwise.
4477
 */
4478
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4479
    X509 *x, EVP_PKEY *pkey)
4480
47.4k
{
4481
47.4k
    const SIGALG_LOOKUP *lu;
4482
47.4k
    int mdnid, pknid, supported;
4483
47.4k
    size_t i;
4484
47.4k
    const char *mdname = NULL;
4485
47.4k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4486
4487
    /*
4488
     * If the given EVP_PKEY cannot support signing with this digest,
4489
     * the answer is simply 'no'.
4490
     */
4491
47.4k
    if (sig->hash != NID_undef)
4492
47.4k
        mdname = OBJ_nid2sn(sig->hash);
4493
47.4k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4494
47.4k
        mdname,
4495
47.4k
        sctx->propq);
4496
47.4k
    if (supported <= 0)
4497
0
        return 0;
4498
4499
    /*
4500
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
4501
     * on the sigalg with which the certificate was signed (by its issuer).
4502
     */
4503
47.4k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4504
21.7k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4505
0
            return 0;
4506
121k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4507
100k
            lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4508
100k
                s->s3.tmp.peer_cert_sigalgs[i]);
4509
100k
            if (lu == NULL)
4510
72.3k
                continue;
4511
4512
            /*
4513
             * This does not differentiate between the
4514
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4515
             * have a chain here that lets us look at the key OID in the
4516
             * signing certificate.
4517
             */
4518
27.8k
            if (mdnid == lu->hash && pknid == lu->sig)
4519
52
                return 1;
4520
27.8k
        }
4521
21.7k
        return 0;
4522
21.7k
    }
4523
4524
    /*
4525
     * Without signat_algorithms_cert, any certificate for which we have
4526
     * a viable public key is permitted.
4527
     */
4528
25.6k
    return 1;
4529
47.4k
}
4530
4531
/*
4532
 * Returns true if |s| has a usable certificate configured for use
4533
 * with signature scheme |sig|.
4534
 * "Usable" includes a check for presence as well as applying
4535
 * the signature_algorithm_cert restrictions sent by the peer (if any).
4536
 * Returns false if no usable certificate is found.
4537
 */
4538
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4539
47.7k
{
4540
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4541
47.7k
    if (idx == -1)
4542
7.21k
        idx = sig->sig_idx;
4543
47.7k
    if (!ssl_has_cert(s, idx))
4544
354
        return 0;
4545
4546
47.4k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4547
47.4k
        s->cert->pkeys[idx].privatekey);
4548
47.7k
}
4549
4550
/*
4551
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
4552
 * specified signature scheme |sig|, or false otherwise.
4553
 */
4554
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4555
    EVP_PKEY *pkey)
4556
0
{
4557
0
    size_t idx;
4558
4559
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4560
0
        return 0;
4561
4562
    /* Check the key is consistent with the sig alg */
4563
0
    if ((int)idx != sig->sig_idx)
4564
0
        return 0;
4565
4566
0
    return check_cert_usable(s, sig, x, pkey);
4567
0
}
4568
4569
/*
4570
 * Find a signature scheme that works with the supplied certificate |x| and key
4571
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4572
 * available certs/keys to find one that works.
4573
 */
4574
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4575
    EVP_PKEY *pkey)
4576
2.06k
{
4577
2.06k
    const SIGALG_LOOKUP *lu = NULL;
4578
2.06k
    size_t i;
4579
2.06k
    int curve = -1;
4580
2.06k
    EVP_PKEY *tmppkey;
4581
2.06k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4582
4583
    /* Look for a shared sigalgs matching possible certificates */
4584
5.86k
    for (i = 0; i < s->shared_sigalgslen; i++) {
4585
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4586
5.77k
        lu = s->shared_sigalgs[i];
4587
5.77k
        if (lu->hash == NID_sha1
4588
4.88k
            || lu->hash == NID_sha224
4589
4.65k
            || lu->sig == EVP_PKEY_DSA
4590
4.65k
            || lu->sig == EVP_PKEY_RSA
4591
3.70k
            || !tls_sigalg_compat(s, lu))
4592
2.06k
            continue;
4593
4594
        /* Check that we have a cert, and signature_algorithms_cert */
4595
3.70k
        if (!tls1_lookup_md(sctx, lu, NULL))
4596
0
            continue;
4597
3.70k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4598
3.54k
            || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4599
160
            continue;
4600
4601
3.54k
        tmppkey = (pkey != NULL) ? pkey
4602
3.54k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
4603
4604
3.54k
        if (lu->sig == EVP_PKEY_EC) {
4605
3.03k
            if (curve == -1)
4606
1.67k
                curve = ssl_get_EC_curve_nid(tmppkey);
4607
3.03k
            if (lu->curve != NID_undef && curve != lu->curve)
4608
1.57k
                continue;
4609
3.03k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4610
            /* validate that key is large enough for the signature algorithm */
4611
504
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4612
0
                continue;
4613
504
        }
4614
1.96k
        break;
4615
3.54k
    }
4616
4617
2.06k
    if (i == s->shared_sigalgslen)
4618
95
        return NULL;
4619
4620
1.96k
    return lu;
4621
2.06k
}
4622
4623
/*
4624
 * Choose an appropriate signature algorithm based on available certificates
4625
 * Sets chosen certificate and signature algorithm.
4626
 *
4627
 * For servers if we fail to find a required certificate it is a fatal error,
4628
 * an appropriate error code is set and a TLS alert is sent.
4629
 *
4630
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4631
 * a fatal error: we will either try another certificate or not present one
4632
 * to the server. In this case no error is set.
4633
 */
4634
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4635
16.7k
{
4636
16.7k
    const SIGALG_LOOKUP *lu = NULL;
4637
16.7k
    int sig_idx = -1;
4638
4639
16.7k
    s->s3.tmp.cert = NULL;
4640
16.7k
    s->s3.tmp.sigalg = NULL;
4641
4642
16.7k
    if (SSL_CONNECTION_IS_TLS13(s)) {
4643
2.06k
        lu = find_sig_alg(s, NULL, NULL);
4644
2.06k
        if (lu == NULL) {
4645
95
            if (!fatalerrs)
4646
0
                return 1;
4647
95
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4648
95
                SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4649
95
            return 0;
4650
95
        }
4651
14.6k
    } else {
4652
        /* If ciphersuite doesn't require a cert nothing to do */
4653
14.6k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4654
1.04k
            return 1;
4655
13.6k
        if (!s->server && !ssl_has_cert(s, (int)(s->cert->key - s->cert->pkeys)))
4656
28
            return 1;
4657
4658
13.6k
        if (SSL_USE_SIGALGS(s)) {
4659
10.8k
            size_t i;
4660
10.8k
            if (s->s3.tmp.peer_sigalgs != NULL) {
4661
2.30k
                int curve = -1;
4662
2.30k
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4663
4664
                /* For Suite B need to match signature algorithm to curve */
4665
2.30k
                if (tls1_suiteb(s))
4666
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4667
0
                            .privatekey);
4668
4669
                /*
4670
                 * Find highest preference signature algorithm matching
4671
                 * cert type
4672
                 */
4673
18.1k
                for (i = 0; i < s->shared_sigalgslen; i++) {
4674
                    /* Check the sigalg version bounds */
4675
17.6k
                    lu = s->shared_sigalgs[i];
4676
17.6k
                    if (!tls_sigalg_compat(s, lu))
4677
94
                        continue;
4678
17.5k
                    if (s->server) {
4679
17.5k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4680
7.82k
                            continue;
4681
17.5k
                    } else {
4682
0
                        int cc_idx = (int)(s->cert->key - s->cert->pkeys);
4683
4684
0
                        sig_idx = lu->sig_idx;
4685
0
                        if (cc_idx != sig_idx)
4686
0
                            continue;
4687
0
                    }
4688
                    /* Check that we have a cert, and sig_algs_cert */
4689
9.70k
                    if (!has_usable_cert(s, lu, sig_idx))
4690
7.98k
                        continue;
4691
1.72k
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
4692
                        /* validate that key is large enough for the signature algorithm */
4693
552
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4694
4695
552
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4696
0
                            continue;
4697
552
                    }
4698
1.72k
                    if (curve == -1 || lu->curve == curve)
4699
1.72k
                        break;
4700
1.72k
                }
4701
2.30k
#ifndef OPENSSL_NO_GOST
4702
                /*
4703
                 * Some Windows-based implementations do not send GOST algorithms indication
4704
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4705
                 * we have to assume GOST support.
4706
                 */
4707
2.30k
                if (i == s->shared_sigalgslen
4708
571
                    && (s->s3.tmp.new_cipher->algorithm_auth
4709
571
                           & (SSL_aGOST01 | SSL_aGOST12))
4710
571
                        != 0) {
4711
0
                    if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4712
0
                        if (!fatalerrs)
4713
0
                            return 1;
4714
0
                        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4715
0
                            SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4716
0
                        return 0;
4717
0
                    } else {
4718
0
                        i = 0;
4719
0
                        sig_idx = lu->sig_idx;
4720
0
                    }
4721
0
                }
4722
2.30k
#endif
4723
2.30k
                if (i == s->shared_sigalgslen) {
4724
571
                    if (!fatalerrs)
4725
0
                        return 1;
4726
571
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4727
571
                        SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4728
571
                    return 0;
4729
571
                }
4730
8.58k
            } else {
4731
                /*
4732
                 * If we have no sigalg use defaults
4733
                 */
4734
8.58k
                const uint16_t *sent_sigs;
4735
8.58k
                size_t sent_sigslen;
4736
4737
8.58k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4738
0
                    if (!fatalerrs)
4739
0
                        return 1;
4740
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4741
0
                        SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4742
0
                    return 0;
4743
0
                }
4744
4745
                /* Check signature matches a type we sent */
4746
8.58k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4747
190k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4748
190k
                    if (lu->sigalg == *sent_sigs
4749
8.58k
                        && has_usable_cert(s, lu, lu->sig_idx))
4750
8.58k
                        break;
4751
190k
                }
4752
8.58k
                if (i == sent_sigslen) {
4753
0
                    if (!fatalerrs)
4754
0
                        return 1;
4755
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4756
0
                        SSL_R_WRONG_SIGNATURE_TYPE);
4757
0
                    return 0;
4758
0
                }
4759
8.58k
            }
4760
10.8k
        } else {
4761
2.71k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4762
0
                if (!fatalerrs)
4763
0
                    return 1;
4764
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4765
0
                    SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4766
0
                return 0;
4767
0
            }
4768
2.71k
        }
4769
13.6k
    }
4770
14.9k
    if (sig_idx == -1)
4771
13.2k
        sig_idx = lu->sig_idx;
4772
14.9k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4773
14.9k
    s->cert->key = s->s3.tmp.cert;
4774
14.9k
    s->s3.tmp.sigalg = lu;
4775
14.9k
    return 1;
4776
16.7k
}
4777
4778
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4779
0
{
4780
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4781
0
        && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4782
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4783
0
        return 0;
4784
0
    }
4785
4786
0
    ctx->ext.max_fragment_len_mode = mode;
4787
0
    return 1;
4788
0
}
4789
4790
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4791
0
{
4792
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4793
4794
0
    if (sc == NULL
4795
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4796
0
        return 0;
4797
4798
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4799
0
        && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4800
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4801
0
        return 0;
4802
0
    }
4803
4804
0
    sc->ext.max_fragment_len_mode = mode;
4805
0
    return 1;
4806
0
}
4807
4808
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4809
0
{
4810
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4811
0
        return TLSEXT_max_fragment_length_DISABLED;
4812
0
    return session->ext.max_fragment_len_mode;
4813
0
}
4814
4815
/*
4816
 * Helper functions for HMAC access with legacy support included.
4817
 */
4818
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4819
2.40k
{
4820
2.40k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4821
2.40k
    EVP_MAC *mac = NULL;
4822
4823
2.40k
    if (ret == NULL)
4824
0
        return NULL;
4825
2.40k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4826
2.40k
    if (ctx->ext.ticket_key_evp_cb == NULL
4827
2.40k
        && ctx->ext.ticket_key_cb != NULL) {
4828
0
        if (!ssl_hmac_old_new(ret))
4829
0
            goto err;
4830
0
        return ret;
4831
0
    }
4832
2.40k
#endif
4833
2.40k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4834
2.40k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4835
0
        goto err;
4836
2.40k
    EVP_MAC_free(mac);
4837
2.40k
    return ret;
4838
0
err:
4839
0
    EVP_MAC_CTX_free(ret->ctx);
4840
0
    EVP_MAC_free(mac);
4841
0
    OPENSSL_free(ret);
4842
0
    return NULL;
4843
2.40k
}
4844
4845
void ssl_hmac_free(SSL_HMAC *ctx)
4846
7.46k
{
4847
7.46k
    if (ctx != NULL) {
4848
2.40k
        EVP_MAC_CTX_free(ctx->ctx);
4849
2.40k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4850
2.40k
        ssl_hmac_old_free(ctx);
4851
2.40k
#endif
4852
2.40k
        OPENSSL_free(ctx);
4853
2.40k
    }
4854
7.46k
}
4855
4856
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4857
0
{
4858
0
    return ctx->ctx;
4859
0
}
4860
4861
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4862
1.42k
{
4863
1.42k
    OSSL_PARAM params[2], *p = params;
4864
4865
1.42k
    if (ctx->ctx != NULL) {
4866
1.42k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4867
1.42k
        *p = OSSL_PARAM_construct_end();
4868
1.42k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
4869
1.42k
            return 1;
4870
1.42k
    }
4871
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4872
0
    if (ctx->old_ctx != NULL)
4873
0
        return ssl_hmac_old_init(ctx, key, len, md);
4874
0
#endif
4875
0
    return 0;
4876
0
}
4877
4878
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4879
1.26k
{
4880
1.26k
    if (ctx->ctx != NULL)
4881
1.26k
        return EVP_MAC_update(ctx->ctx, data, len);
4882
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4883
0
    if (ctx->old_ctx != NULL)
4884
0
        return ssl_hmac_old_update(ctx, data, len);
4885
0
#endif
4886
0
    return 0;
4887
0
}
4888
4889
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4890
    size_t max_size)
4891
1.26k
{
4892
1.26k
    if (ctx->ctx != NULL)
4893
1.26k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4894
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4895
0
    if (ctx->old_ctx != NULL)
4896
0
        return ssl_hmac_old_final(ctx, md, len);
4897
0
#endif
4898
0
    return 0;
4899
0
}
4900
4901
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4902
1.38k
{
4903
1.38k
    if (ctx->ctx != NULL)
4904
1.38k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4905
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4906
0
    if (ctx->old_ctx != NULL)
4907
0
        return ssl_hmac_old_size(ctx);
4908
0
#endif
4909
0
    return 0;
4910
0
}
4911
4912
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4913
31.5k
{
4914
31.5k
    char gname[OSSL_MAX_NAME_SIZE];
4915
4916
31.5k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4917
31.5k
        return OBJ_txt2nid(gname);
4918
4919
0
    return NID_undef;
4920
31.5k
}
4921
4922
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4923
    const unsigned char *enckey,
4924
    size_t enckeylen)
4925
28.6k
{
4926
28.6k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4927
161
        int bits = EVP_PKEY_get_bits(pkey);
4928
4929
161
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4930
            /* the encoded key must be padded to the length of the p */
4931
12
            return 0;
4932
28.4k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4933
199
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4934
193
            || enckey[0] != 0x04)
4935
50
            return 0;
4936
199
    }
4937
4938
28.5k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4939
28.6k
}