/src/openssl/providers/implementations/kdfs/srtpkdf.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2026 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdlib.h> |
11 | | #include <stdarg.h> |
12 | | #include <string.h> |
13 | | #include <openssl/evp.h> |
14 | | #include <openssl/kdf.h> |
15 | | #include <openssl/bn.h> |
16 | | #include <openssl/core_names.h> |
17 | | #include <openssl/proverr.h> |
18 | | #include "internal/cryptlib.h" |
19 | | #include "internal/fips.h" |
20 | | #include "internal/numbers.h" |
21 | | #include "crypto/evp.h" |
22 | | #include "prov/provider_ctx.h" |
23 | | #include "prov/providercommon.h" |
24 | | #include "prov/implementations.h" |
25 | | #include "prov/provider_util.h" |
26 | | #include "providers/implementations/kdfs/srtpkdf.inc" |
27 | | |
28 | 2 | #define KDF_SRTP_AUTH_KEY_LEN 20 |
29 | 2 | #define KDF_SRTP_SALT_KEY_LEN 14 |
30 | 1 | #define KDF_SRTCP_AUTH_KEY_LEN KDF_SRTP_AUTH_KEY_LEN |
31 | 1 | #define KDF_SRTCP_SALT_KEY_LEN KDF_SRTP_SALT_KEY_LEN |
32 | 87 | #define KDF_SRTP_SALT_LEN 14 |
33 | | #define KDF_SRTP_KDR_LEN 6 |
34 | 11 | #define KDF_SRTP_IDX_LEN 6 |
35 | 3 | #define KDF_SRTCP_IDX_LEN 4 |
36 | 56 | #define KDF_SRTP_IV_LEN 16 |
37 | 12 | #define KDF_SRTP_MAX_KDR 24 |
38 | 15 | #define KDF_SRTP_MAX_LABEL 7 |
39 | 42 | #define KDF_SRTP_MAX_SALT_LEN (KDF_SRTP_SALT_LEN + 2) |
40 | | |
41 | | /* See RFC 3711, Section 4.3.3 */ |
42 | | static OSSL_FUNC_kdf_newctx_fn kdf_srtpkdf_new; |
43 | | static OSSL_FUNC_kdf_dupctx_fn kdf_srtpkdf_dup; |
44 | | static OSSL_FUNC_kdf_freectx_fn kdf_srtpkdf_free; |
45 | | static OSSL_FUNC_kdf_reset_fn kdf_srtpkdf_reset; |
46 | | static OSSL_FUNC_kdf_derive_fn kdf_srtpkdf_derive; |
47 | | static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_srtpkdf_settable_ctx_params; |
48 | | static OSSL_FUNC_kdf_set_ctx_params_fn kdf_srtpkdf_set_ctx_params; |
49 | | static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_srtpkdf_gettable_ctx_params; |
50 | | static OSSL_FUNC_kdf_get_ctx_params_fn kdf_srtpkdf_get_ctx_params; |
51 | | |
52 | | static int SRTPKDF(OSSL_LIB_CTX *provctx, const EVP_CIPHER *cipher, |
53 | | const unsigned char *mkey, const unsigned char *msalt, const unsigned char *index, |
54 | | const uint32_t kdr, const uint32_t kdr_n, |
55 | | const uint32_t label, unsigned char *obuffer, const size_t keylen); |
56 | | |
57 | | typedef struct { |
58 | | /* Warning: Any changes to this structure may require you to update kdf_srtpkdf_dup */ |
59 | | void *provctx; |
60 | | PROV_CIPHER cipher; |
61 | | unsigned char *key; |
62 | | size_t key_len; |
63 | | unsigned char *salt; |
64 | | size_t salt_len; |
65 | | unsigned char *index; |
66 | | size_t index_len; |
67 | | uint32_t kdr; |
68 | | uint32_t kdr_n; /* 2 ** kdr_n = kdr */ |
69 | | uint32_t label; |
70 | | } KDF_SRTPKDF; |
71 | | |
72 | | static void *kdf_srtpkdf_new(void *provctx) |
73 | 27 | { |
74 | 27 | KDF_SRTPKDF *ctx; |
75 | | |
76 | 27 | if (!ossl_prov_is_running()) |
77 | 0 | return NULL; |
78 | | |
79 | | #ifdef FIPS_MODULE |
80 | | if (!ossl_deferred_self_test(PROV_LIBCTX_OF(provctx), |
81 | | ST_ID_KDF_SRTPKDF)) |
82 | | return NULL; |
83 | | #endif |
84 | | |
85 | 27 | if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) != NULL) |
86 | 27 | ctx->provctx = provctx; |
87 | 27 | return ctx; |
88 | 27 | } |
89 | | |
90 | | static void *kdf_srtpkdf_dup(void *vsrc) |
91 | 0 | { |
92 | 0 | const KDF_SRTPKDF *src = (const KDF_SRTPKDF *)vsrc; |
93 | 0 | KDF_SRTPKDF *dest; |
94 | |
|
95 | 0 | dest = kdf_srtpkdf_new(src->provctx); |
96 | 0 | if (dest != NULL) { |
97 | 0 | if (!ossl_prov_memdup(src->key, src->key_len, |
98 | 0 | &dest->key, &dest->key_len) |
99 | 0 | || !ossl_prov_memdup(src->salt, src->salt_len, |
100 | 0 | &dest->salt, &dest->salt_len) |
101 | 0 | || !ossl_prov_memdup(src->index, src->index_len, |
102 | 0 | &dest->index, &dest->index_len) |
103 | 0 | || !ossl_prov_cipher_copy(&dest->cipher, &src->cipher)) |
104 | 0 | goto err; |
105 | 0 | dest->kdr = src->kdr; |
106 | 0 | dest->kdr_n = src->kdr_n; |
107 | 0 | dest->label = src->label; |
108 | 0 | } |
109 | 0 | return dest; |
110 | | |
111 | 0 | err: |
112 | 0 | kdf_srtpkdf_free(dest); |
113 | 0 | return NULL; |
114 | 0 | } |
115 | | |
116 | | static void kdf_srtpkdf_free(void *vctx) |
117 | 27 | { |
118 | 27 | KDF_SRTPKDF *ctx = (KDF_SRTPKDF *)vctx; |
119 | | |
120 | 27 | if (ctx != NULL) { |
121 | 27 | kdf_srtpkdf_reset(ctx); |
122 | 27 | OPENSSL_free(ctx); |
123 | 27 | } |
124 | 27 | } |
125 | | |
126 | | static void kdf_srtpkdf_reset(void *vctx) |
127 | 27 | { |
128 | 27 | KDF_SRTPKDF *ctx = (KDF_SRTPKDF *)vctx; |
129 | 27 | void *provctx = ctx->provctx; |
130 | | |
131 | 27 | ossl_prov_cipher_reset(&ctx->cipher); |
132 | 27 | OPENSSL_clear_free(ctx->key, ctx->key_len); |
133 | 27 | OPENSSL_clear_free(ctx->index, ctx->index_len); |
134 | 27 | OPENSSL_clear_free(ctx->salt, ctx->salt_len); |
135 | 27 | memset(ctx, 0, sizeof(*ctx)); |
136 | 27 | ctx->provctx = provctx; |
137 | 27 | } |
138 | | |
139 | | static int srtpkdf_set_membuf(unsigned char **dst, size_t *dst_len, |
140 | | const OSSL_PARAM *p) |
141 | 51 | { |
142 | 51 | OPENSSL_clear_free(*dst, *dst_len); |
143 | 51 | *dst = NULL; |
144 | 51 | *dst_len = 0; |
145 | 51 | return OSSL_PARAM_get_octet_string(p, (void **)dst, 0, dst_len); |
146 | 51 | } |
147 | | |
148 | | static int is_power_of_two(uint32_t x, uint32_t *n) |
149 | 13 | { |
150 | | /* Check if we've been given an exact power of two */ |
151 | 13 | if (x == 0 || (x & (x - 1)) != 0) { |
152 | 1 | *n = 0; |
153 | 1 | return 0; |
154 | 1 | } |
155 | | /* Count the number of trailing bits in the passed value */ |
156 | 12 | #ifdef __GNUC__ |
157 | 12 | *n = __builtin_ctz(x); |
158 | | #else |
159 | | { |
160 | | uint32_t count = 0; |
161 | | while ((x & 1) == 0) { |
162 | | count++; |
163 | | x >>= 1; |
164 | | } |
165 | | *n = count; |
166 | | } |
167 | | #endif |
168 | 12 | return 1; |
169 | 13 | } |
170 | | |
171 | | static int kdf_srtpkdf_derive(void *vctx, unsigned char *key, size_t keylen, |
172 | | const OSSL_PARAM params[]) |
173 | 16 | { |
174 | 16 | KDF_SRTPKDF *ctx = (KDF_SRTPKDF *)vctx; |
175 | 16 | const EVP_CIPHER *cipher; |
176 | 16 | OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); |
177 | | |
178 | 16 | if (!ossl_prov_is_running() || !kdf_srtpkdf_set_ctx_params(ctx, params)) |
179 | 0 | return 0; |
180 | | |
181 | 16 | cipher = ossl_prov_cipher_cipher(&ctx->cipher); |
182 | 16 | if (cipher == NULL) { |
183 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CIPHER); |
184 | 0 | return 0; |
185 | 0 | } |
186 | 16 | if (ctx->key == NULL) { |
187 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); |
188 | 0 | return 0; |
189 | 0 | } |
190 | 16 | if (ctx->salt == NULL) { |
191 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT); |
192 | 0 | return 0; |
193 | 0 | } |
194 | 16 | if (ctx->kdr > 0) { |
195 | 13 | uint32_t n = 0; |
196 | 13 | if (!is_power_of_two(ctx->kdr, &n) |
197 | 12 | || n > KDF_SRTP_MAX_KDR) { |
198 | 1 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KDR); |
199 | 1 | return 0; |
200 | 1 | } |
201 | 12 | ctx->kdr_n = n; |
202 | 12 | } |
203 | 15 | if (ctx->label > KDF_SRTP_MAX_LABEL) { |
204 | 1 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_LABEL); |
205 | 1 | return 0; |
206 | 1 | } |
207 | | |
208 | 14 | return SRTPKDF(libctx, cipher, ctx->key, ctx->salt, ctx->index, |
209 | 14 | ctx->kdr, ctx->kdr_n, ctx->label, key, keylen); |
210 | 15 | } |
211 | | |
212 | | static int kdf_srtpkdf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
213 | 43 | { |
214 | 43 | struct srtp_set_ctx_params_st p; |
215 | 43 | KDF_SRTPKDF *ctx = vctx; |
216 | 43 | OSSL_LIB_CTX *libctx; |
217 | 43 | const EVP_CIPHER *cipher; |
218 | 43 | int key_len; |
219 | | |
220 | 43 | if (params == NULL) |
221 | 16 | return 1; |
222 | | |
223 | 27 | if (ctx == NULL || !srtp_set_ctx_params_decoder(params, &p)) |
224 | 0 | return 0; |
225 | | |
226 | 27 | libctx = PROV_LIBCTX_OF(ctx->provctx); |
227 | | |
228 | 27 | if ((p.cipher != NULL) |
229 | 27 | && !ossl_prov_cipher_load(&ctx->cipher, p.cipher, p.propq, libctx)) |
230 | 5 | return 0; |
231 | | |
232 | 22 | cipher = ossl_prov_cipher_cipher(&ctx->cipher); |
233 | 22 | if (cipher == NULL) |
234 | 0 | return 0; |
235 | | |
236 | 22 | if (!EVP_CIPHER_is_a(cipher, "AES-128-CTR") && !EVP_CIPHER_is_a(cipher, "AES-192-CTR") |
237 | 4 | && !EVP_CIPHER_is_a(cipher, "AES-256-CTR")) |
238 | 4 | return 0; |
239 | | |
240 | 18 | if (p.key != NULL) { |
241 | 18 | key_len = EVP_CIPHER_get_key_length(cipher); |
242 | 18 | if (!srtpkdf_set_membuf(&ctx->key, &ctx->key_len, p.key)) |
243 | 0 | return 0; |
244 | 18 | if (ctx->key_len != (size_t)key_len) |
245 | 1 | return 0; |
246 | 18 | } |
247 | | |
248 | 17 | if (p.salt != NULL) { |
249 | 17 | if (!srtpkdf_set_membuf(&ctx->salt, &ctx->salt_len, p.salt)) |
250 | 0 | return 0; |
251 | 17 | if (ctx->salt_len < KDF_SRTP_SALT_LEN) |
252 | 1 | return 0; |
253 | 17 | } |
254 | | |
255 | 16 | if ((p.index != NULL) |
256 | 16 | && !srtpkdf_set_membuf(&ctx->index, &ctx->index_len, p.index)) |
257 | 0 | return 0; |
258 | | |
259 | 16 | if (p.kdr != NULL) { |
260 | 16 | if (!OSSL_PARAM_get_uint32(p.kdr, &ctx->kdr)) |
261 | 0 | return 0; |
262 | 16 | } |
263 | | |
264 | 16 | if (p.label != NULL) { |
265 | 16 | if (!OSSL_PARAM_get_uint32(p.label, &ctx->label)) |
266 | 0 | return 0; |
267 | 16 | } |
268 | | |
269 | 16 | return 1; |
270 | 16 | } |
271 | | |
272 | | static const OSSL_PARAM *kdf_srtpkdf_settable_ctx_params(ossl_unused void *ctx, |
273 | | ossl_unused void *p_ctx) |
274 | 27 | { |
275 | 27 | return srtp_set_ctx_params_list; |
276 | 27 | } |
277 | | |
278 | | static int kdf_srtpkdf_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
279 | 0 | { |
280 | 0 | struct srtp_get_ctx_params_st p; |
281 | 0 | KDF_SRTPKDF *ctx = vctx; |
282 | |
|
283 | 0 | if (ctx == NULL || !srtp_get_ctx_params_decoder(params, &p)) |
284 | 0 | return 0; |
285 | | |
286 | 0 | if (p.size != NULL) { |
287 | 0 | size_t sz = EVP_CIPHER_key_length(ossl_prov_cipher_cipher(&ctx->cipher)); |
288 | |
|
289 | 0 | if (!OSSL_PARAM_set_size_t(p.size, sz)) |
290 | 0 | return 0; |
291 | 0 | } |
292 | 0 | return 1; |
293 | 0 | } |
294 | | |
295 | | static const OSSL_PARAM *kdf_srtpkdf_gettable_ctx_params(ossl_unused void *ctx, |
296 | | ossl_unused void *p_ctx) |
297 | 0 | { |
298 | 0 | return srtp_get_ctx_params_list; |
299 | 0 | } |
300 | | |
301 | | const OSSL_DISPATCH ossl_kdf_srtpkdf_functions[] = { |
302 | | { OSSL_FUNC_KDF_NEWCTX, (void (*)(void))kdf_srtpkdf_new }, |
303 | | { OSSL_FUNC_KDF_DUPCTX, (void (*)(void))kdf_srtpkdf_dup }, |
304 | | { OSSL_FUNC_KDF_FREECTX, (void (*)(void))kdf_srtpkdf_free }, |
305 | | { OSSL_FUNC_KDF_RESET, (void (*)(void))kdf_srtpkdf_reset }, |
306 | | { OSSL_FUNC_KDF_DERIVE, (void (*)(void))kdf_srtpkdf_derive }, |
307 | | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
308 | | (void (*)(void))kdf_srtpkdf_settable_ctx_params }, |
309 | | { OSSL_FUNC_KDF_SET_CTX_PARAMS, |
310 | | (void (*)(void))kdf_srtpkdf_set_ctx_params }, |
311 | | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
312 | | (void (*)(void))kdf_srtpkdf_gettable_ctx_params }, |
313 | | { OSSL_FUNC_KDF_GET_CTX_PARAMS, |
314 | | (void (*)(void))kdf_srtpkdf_get_ctx_params }, |
315 | | { 0, NULL } |
316 | | }; |
317 | | |
318 | | /* |
319 | | * SRTPKDF - In compliance with SP800-135 and RFC3711, calculate |
320 | | * various keys defined by label using a master key, |
321 | | * master salt, kdr(if non-zero) and index. |
322 | | * |
323 | | * Denote the cryptographic key (encryption key, cipher salt or |
324 | | * authentication key(HMAC key), etc) to be derived as K. The |
325 | | * length of K is denoted by L. Below is a description of the KDF. |
326 | | * |
327 | | * master_salt: a random non-salt value. |
328 | | * kdr: the key derivation rate. kdr is a number from the set |
329 | | * factor of 2. |
330 | | * index: a 48-bit value in RTP or a 32-bit value in RTCP. |
331 | | * See Sections 3.2.1 and 4.3.2 of RFC 3711 for details. |
332 | | * A function, DIV, is defined as followed: |
333 | | * a and x are non-negative integers. |
334 | | * a DIV x = a | x (a DIV x) is represented as a bit string whose |
335 | | * length (in bits) is the same as a. |
336 | | * label: an 8-bit value represented by two hexadecimal numbers from |
337 | | * the set of {0x00,0x01, 0x02, 0x03, 0x04, 0x05}. |
338 | | * https://www.ietf.org/archive/id/draft-ietf-avtcore-srtp-encrypted-header-ext-01.html |
339 | | * The values 06 and 07 are used. |
340 | | * key_id = label || (index DIV kdr) |
341 | | * |
342 | | * Input: |
343 | | * cipher - AES cipher |
344 | | * mkey - pointer to master key |
345 | | * msalt - pointer to master salt |
346 | | * idx - pointer to index |
347 | | * kdr - key derivation rate |
348 | | * kdr_n - power of kdr (2**kdr_n = kdr) |
349 | | * label - 8-bit label |
350 | | * obuffer - buffer for output |
351 | | * keylen - length of output buffer |
352 | | * Output: |
353 | | * obuffer - filled with derived key |
354 | | * return - 1 on pass, 0 fail |
355 | | */ |
356 | | int SRTPKDF(OSSL_LIB_CTX *provctx, const EVP_CIPHER *cipher, |
357 | | const unsigned char *mkey, const unsigned char *msalt, const unsigned char *index, |
358 | | const uint32_t kdr, const uint32_t kdr_n, |
359 | | const uint32_t label, unsigned char *obuffer, const size_t keylen) |
360 | 14 | { |
361 | 14 | EVP_CIPHER_CTX *ctx = NULL; |
362 | 14 | int outl, i, index_len = 0, o_len = 0, salt_len = 0; |
363 | 14 | unsigned char buf[EVP_MAX_KEY_LENGTH]; |
364 | 14 | unsigned char iv[KDF_SRTP_IV_LEN]; |
365 | 14 | unsigned char local_salt[KDF_SRTP_MAX_SALT_LEN]; |
366 | 14 | unsigned char master_salt[KDF_SRTP_MAX_SALT_LEN]; |
367 | 14 | BIGNUM *bn_index = NULL, *bn_salt = NULL; |
368 | 14 | int ret, iv_len = KDF_SRTP_IV_LEN, rv = 0; |
369 | | |
370 | 14 | salt_len = KDF_SRTP_SALT_LEN; |
371 | | |
372 | | /* get label-specific lengths */ |
373 | 14 | switch (label) { |
374 | 5 | case 0: |
375 | 5 | index_len = KDF_SRTP_IDX_LEN; |
376 | 5 | o_len = EVP_CIPHER_key_length(cipher); |
377 | 5 | break; |
378 | 1 | case 1: |
379 | 1 | index_len = KDF_SRTP_IDX_LEN; |
380 | 1 | o_len = KDF_SRTP_AUTH_KEY_LEN; |
381 | 1 | break; |
382 | 1 | case 2: |
383 | 1 | index_len = KDF_SRTP_IDX_LEN; |
384 | 1 | o_len = KDF_SRTP_SALT_KEY_LEN; |
385 | 1 | break; |
386 | 1 | case 3: |
387 | 1 | index_len = KDF_SRTCP_IDX_LEN; |
388 | 1 | o_len = EVP_CIPHER_key_length(cipher); |
389 | 1 | break; |
390 | 1 | case 4: |
391 | 1 | index_len = KDF_SRTCP_IDX_LEN; |
392 | 1 | o_len = KDF_SRTCP_AUTH_KEY_LEN; |
393 | 1 | break; |
394 | 1 | case 5: |
395 | 1 | index_len = KDF_SRTCP_IDX_LEN; |
396 | 1 | o_len = KDF_SRTCP_SALT_KEY_LEN; |
397 | 1 | break; |
398 | 4 | case 6: |
399 | 4 | index_len = KDF_SRTP_IDX_LEN; |
400 | 4 | o_len = EVP_CIPHER_key_length(cipher); |
401 | 4 | break; |
402 | 0 | case 7: |
403 | 0 | index_len = KDF_SRTP_IDX_LEN; |
404 | 0 | o_len = KDF_SRTP_SALT_KEY_LEN; |
405 | 0 | break; |
406 | 0 | default: |
407 | 0 | return rv; |
408 | 14 | } |
409 | | |
410 | 14 | if ((obuffer == NULL) || (keylen > INT_MAX) || (o_len > (int)keylen)) |
411 | 0 | return rv; |
412 | | |
413 | | /* set up a couple of work areas for the final logic on the salt */ |
414 | 14 | memset(iv, 0, KDF_SRTP_IV_LEN); |
415 | 14 | memset(master_salt, 0, KDF_SRTP_MAX_SALT_LEN); |
416 | 14 | memcpy(master_salt, msalt, salt_len); |
417 | | |
418 | | /* gather some bignums for some math */ |
419 | 14 | bn_index = BN_new(); |
420 | 14 | bn_salt = BN_new(); |
421 | 14 | if ((bn_index == NULL) || (bn_salt == NULL)) { |
422 | 0 | BN_free(bn_index); |
423 | 0 | BN_free(bn_salt); |
424 | 0 | return rv; |
425 | 0 | } |
426 | | |
427 | | /* if index is NULL or kdr=0, then index and kdr are not in play */ |
428 | 14 | if ((index != NULL) && (kdr > 0)) { |
429 | 12 | if (!BN_bin2bn(index, index_len, bn_index)) |
430 | 0 | goto err; |
431 | | |
432 | 12 | ret = BN_rshift(bn_salt, bn_index, kdr_n); |
433 | 12 | if (!ret) |
434 | 0 | goto err; |
435 | 12 | iv_len = BN_bn2bin(bn_salt, iv); |
436 | 65 | for (i = 1; i <= iv_len; i++) |
437 | 53 | master_salt[salt_len - i] ^= iv[iv_len - i]; |
438 | 12 | } |
439 | | |
440 | | /* take the munged up salt from above and add the label */ |
441 | 14 | memset(local_salt, 0, KDF_SRTP_MAX_SALT_LEN); |
442 | 14 | memcpy(local_salt, master_salt, salt_len); |
443 | 14 | local_salt[((KDF_SRTP_SALT_LEN - 1) - index_len)] ^= label; |
444 | | |
445 | | /* perform the AES encryption on the master key and derived salt */ |
446 | 14 | memset(buf, 0, o_len); |
447 | 14 | if (!(ctx = EVP_CIPHER_CTX_new()) |
448 | 14 | || (EVP_EncryptInit_ex(ctx, cipher, NULL, mkey, local_salt) <= 0) |
449 | 14 | || (EVP_CIPHER_CTX_set_padding(ctx, 0) <= 0) |
450 | 14 | || (EVP_EncryptUpdate(ctx, (unsigned char *)obuffer, &outl, buf, o_len) <= 0) |
451 | 14 | || (EVP_EncryptFinal_ex(ctx, (unsigned char *)obuffer, &outl) <= 0)) |
452 | 0 | goto err; |
453 | | |
454 | 14 | rv = 1; |
455 | 14 | err: |
456 | 14 | EVP_CIPHER_CTX_free(ctx); |
457 | 14 | OPENSSL_cleanse(iv, KDF_SRTP_IV_LEN); |
458 | 14 | OPENSSL_cleanse(local_salt, KDF_SRTP_MAX_SALT_LEN); |
459 | 14 | OPENSSL_cleanse(master_salt, KDF_SRTP_IV_LEN); |
460 | 14 | BN_clear_free(bn_index); |
461 | 14 | BN_clear_free(bn_salt); |
462 | 14 | return rv; |
463 | 14 | } |