Coverage Report

Created: 2026-02-14 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/crypto/ec/ecp_nistp224.c
Line
Count
Source
1
/*
2
 * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
#error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
93
    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE },
96
    { 0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
        0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
        0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4 },
99
    { 0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
        0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
        0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21 },
102
    { 0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
        0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
        0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34 }
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
    { { { 0, 0, 0, 0 },
140
          { 0, 0, 0, 0 },
141
          { 0, 0, 0, 0 } },
142
        { { 0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf },
143
            { 0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723 },
144
            { 1, 0, 0, 0 } },
145
        { { 0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5 },
146
            { 0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321 },
147
            { 1, 0, 0, 0 } },
148
        { { 0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748 },
149
            { 0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17 },
150
            { 1, 0, 0, 0 } },
151
        { { 0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe },
152
            { 0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b },
153
            { 1, 0, 0, 0 } },
154
        { { 0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3 },
155
            { 0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a },
156
            { 1, 0, 0, 0 } },
157
        { { 0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c },
158
            { 0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244 },
159
            { 1, 0, 0, 0 } },
160
        { { 0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849 },
161
            { 0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112 },
162
            { 1, 0, 0, 0 } },
163
        { { 0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47 },
164
            { 0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394 },
165
            { 1, 0, 0, 0 } },
166
        { { 0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d },
167
            { 0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7 },
168
            { 1, 0, 0, 0 } },
169
        { { 0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24 },
170
            { 0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881 },
171
            { 1, 0, 0, 0 } },
172
        { { 0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984 },
173
            { 0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369 },
174
            { 1, 0, 0, 0 } },
175
        { { 0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3 },
176
            { 0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60 },
177
            { 1, 0, 0, 0 } },
178
        { { 0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057 },
179
            { 0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9 },
180
            { 1, 0, 0, 0 } },
181
        { { 0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9 },
182
            { 0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc },
183
            { 1, 0, 0, 0 } },
184
        { { 0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58 },
185
            { 0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558 },
186
            { 1, 0, 0, 0 } } },
187
    { { { 0, 0, 0, 0 },
188
          { 0, 0, 0, 0 },
189
          { 0, 0, 0, 0 } },
190
        { { 0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31 },
191
            { 0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d },
192
            { 1, 0, 0, 0 } },
193
        { { 0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3 },
194
            { 0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a },
195
            { 1, 0, 0, 0 } },
196
        { { 0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33 },
197
            { 0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100 },
198
            { 1, 0, 0, 0 } },
199
        { { 0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5 },
200
            { 0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea },
201
            { 1, 0, 0, 0 } },
202
        { { 0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be },
203
            { 0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51 },
204
            { 1, 0, 0, 0 } },
205
        { { 0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1 },
206
            { 0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb },
207
            { 1, 0, 0, 0 } },
208
        { { 0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233 },
209
            { 0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def },
210
            { 1, 0, 0, 0 } },
211
        { { 0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae },
212
            { 0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45 },
213
            { 1, 0, 0, 0 } },
214
        { { 0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e },
215
            { 0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb },
216
            { 1, 0, 0, 0 } },
217
        { { 0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de },
218
            { 0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3 },
219
            { 1, 0, 0, 0 } },
220
        { { 0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05 },
221
            { 0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58 },
222
            { 1, 0, 0, 0 } },
223
        { { 0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb },
224
            { 0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0 },
225
            { 1, 0, 0, 0 } },
226
        { { 0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9 },
227
            { 0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea },
228
            { 1, 0, 0, 0 } },
229
        { { 0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba },
230
            { 0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405 },
231
            { 1, 0, 0, 0 } },
232
        { { 0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e },
233
            { 0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e },
234
            { 1, 0, 0, 0 } } }
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
    CRYPTO_RWLOCK *lock;
242
};
243
244
const EC_METHOD *EC_GFp_nistp224_method(void)
245
54.8k
{
246
54.8k
    static const EC_METHOD ret = {
247
54.8k
        EC_FLAGS_DEFAULT_OCT,
248
54.8k
        NID_X9_62_prime_field,
249
54.8k
        ossl_ec_GFp_nistp224_group_init,
250
54.8k
        ossl_ec_GFp_simple_group_finish,
251
54.8k
        ossl_ec_GFp_simple_group_clear_finish,
252
54.8k
        ossl_ec_GFp_nist_group_copy,
253
54.8k
        ossl_ec_GFp_nistp224_group_set_curve,
254
54.8k
        ossl_ec_GFp_simple_group_get_curve,
255
54.8k
        ossl_ec_GFp_simple_group_get_degree,
256
54.8k
        ossl_ec_group_simple_order_bits,
257
54.8k
        ossl_ec_GFp_simple_group_check_discriminant,
258
54.8k
        ossl_ec_GFp_simple_point_init,
259
54.8k
        ossl_ec_GFp_simple_point_finish,
260
54.8k
        ossl_ec_GFp_simple_point_clear_finish,
261
54.8k
        ossl_ec_GFp_simple_point_copy,
262
54.8k
        ossl_ec_GFp_simple_point_set_to_infinity,
263
54.8k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
264
54.8k
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
265
54.8k
        0 /* point_set_compressed_coordinates */,
266
54.8k
        0 /* point2oct */,
267
54.8k
        0 /* oct2point */,
268
54.8k
        ossl_ec_GFp_simple_add,
269
54.8k
        ossl_ec_GFp_simple_dbl,
270
54.8k
        ossl_ec_GFp_simple_invert,
271
54.8k
        ossl_ec_GFp_simple_is_at_infinity,
272
54.8k
        ossl_ec_GFp_simple_is_on_curve,
273
54.8k
        ossl_ec_GFp_simple_cmp,
274
54.8k
        ossl_ec_GFp_simple_make_affine,
275
54.8k
        ossl_ec_GFp_simple_points_make_affine,
276
54.8k
        ossl_ec_GFp_nistp224_points_mul,
277
54.8k
        ossl_ec_GFp_nistp224_precompute_mult,
278
54.8k
        ossl_ec_GFp_nistp224_have_precompute_mult,
279
54.8k
        ossl_ec_GFp_nist_field_mul,
280
54.8k
        ossl_ec_GFp_nist_field_sqr,
281
54.8k
        0 /* field_div */,
282
54.8k
        ossl_ec_GFp_simple_field_inv,
283
54.8k
        0 /* field_encode */,
284
54.8k
        0 /* field_decode */,
285
54.8k
        0, /* field_set_to_one */
286
54.8k
        ossl_ec_key_simple_priv2oct,
287
54.8k
        ossl_ec_key_simple_oct2priv,
288
54.8k
        0, /* set private */
289
54.8k
        ossl_ec_key_simple_generate_key,
290
54.8k
        ossl_ec_key_simple_check_key,
291
54.8k
        ossl_ec_key_simple_generate_public_key,
292
54.8k
        0, /* keycopy */
293
54.8k
        0, /* keyfinish */
294
54.8k
        ossl_ecdh_simple_compute_key,
295
54.8k
        ossl_ecdsa_simple_sign_setup,
296
54.8k
        ossl_ecdsa_simple_sign_sig,
297
54.8k
        ossl_ecdsa_simple_verify_sig,
298
54.8k
        0, /* field_inverse_mod_ord */
299
54.8k
        0, /* blind_coordinates */
300
54.8k
        0, /* ladder_pre */
301
54.8k
        0, /* ladder_step */
302
54.8k
        0 /* ladder_post */
303
54.8k
    };
304
305
54.8k
    return &ret;
306
54.8k
}
307
308
/*
309
 * Helper functions to convert field elements to/from internal representation
310
 */
311
static void bin28_to_felem(felem out, const u8 in[28])
312
20.3k
{
313
20.3k
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
314
20.3k
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
315
20.3k
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
316
20.3k
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
317
20.3k
}
318
319
static void felem_to_bin28(u8 out[28], const felem in)
320
29.5k
{
321
29.5k
    unsigned i;
322
236k
    for (i = 0; i < 7; ++i) {
323
207k
        out[i] = in[0] >> (8 * i);
324
207k
        out[i + 7] = in[1] >> (8 * i);
325
207k
        out[i + 14] = in[2] >> (8 * i);
326
207k
        out[i + 21] = in[3] >> (8 * i);
327
207k
    }
328
29.5k
}
329
330
/* From OpenSSL BIGNUM to internal representation */
331
static int BN_to_felem(felem out, const BIGNUM *bn)
332
20.3k
{
333
20.3k
    felem_bytearray b_out;
334
20.3k
    int num_bytes;
335
336
20.3k
    if (BN_is_negative(bn)) {
337
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
338
0
        return 0;
339
0
    }
340
20.3k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
341
20.3k
    if (num_bytes < 0) {
342
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
343
0
        return 0;
344
0
    }
345
20.3k
    bin28_to_felem(out, b_out);
346
20.3k
    return 1;
347
20.3k
}
348
349
/* From internal representation to OpenSSL BIGNUM */
350
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
351
29.5k
{
352
29.5k
    felem_bytearray b_out;
353
29.5k
    felem_to_bin28(b_out, in);
354
29.5k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
355
29.5k
}
356
357
/******************************************************************************/
358
/*-
359
 *                              FIELD OPERATIONS
360
 *
361
 * Field operations, using the internal representation of field elements.
362
 * NB! These operations are specific to our point multiplication and cannot be
363
 * expected to be correct in general - e.g., multiplication with a large scalar
364
 * will cause an overflow.
365
 *
366
 */
367
368
static void felem_one(felem out)
369
0
{
370
0
    out[0] = 1;
371
0
    out[1] = 0;
372
0
    out[2] = 0;
373
0
    out[3] = 0;
374
0
}
375
376
static void felem_assign(felem out, const felem in)
377
1.80M
{
378
1.80M
    out[0] = in[0];
379
1.80M
    out[1] = in[1];
380
1.80M
    out[2] = in[2];
381
1.80M
    out[3] = in[3];
382
1.80M
}
383
384
/* Sum two field elements: out += in */
385
static void felem_sum(felem out, const felem in)
386
424k
{
387
424k
    out[0] += in[0];
388
424k
    out[1] += in[1];
389
424k
    out[2] += in[2];
390
424k
    out[3] += in[3];
391
424k
}
392
393
/* Subtract field elements: out -= in */
394
/* Assumes in[i] < 2^57 */
395
static void felem_diff(felem out, const felem in)
396
442k
{
397
442k
    static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
398
442k
    static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
399
442k
    static const limb two58m42m2 = (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
400
401
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
402
442k
    out[0] += two58p2;
403
442k
    out[1] += two58m42m2;
404
442k
    out[2] += two58m2;
405
442k
    out[3] += two58m2;
406
407
442k
    out[0] -= in[0];
408
442k
    out[1] -= in[1];
409
442k
    out[2] -= in[2];
410
442k
    out[3] -= in[3];
411
442k
}
412
413
/* Subtract in unreduced 128-bit mode: out -= in */
414
/* Assumes in[i] < 2^119 */
415
static void widefelem_diff(widefelem out, const widefelem in)
416
301k
{
417
301k
    static const widelimb two120 = ((widelimb)1) << 120;
418
301k
    static const widelimb two120m64 = (((widelimb)1) << 120) - (((widelimb)1) << 64);
419
301k
    static const widelimb two120m104m64 = (((widelimb)1) << 120) - (((widelimb)1) << 104) - (((widelimb)1) << 64);
420
421
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
422
301k
    out[0] += two120;
423
301k
    out[1] += two120m64;
424
301k
    out[2] += two120m64;
425
301k
    out[3] += two120;
426
301k
    out[4] += two120m104m64;
427
301k
    out[5] += two120m64;
428
301k
    out[6] += two120m64;
429
430
301k
    out[0] -= in[0];
431
301k
    out[1] -= in[1];
432
301k
    out[2] -= in[2];
433
301k
    out[3] -= in[3];
434
301k
    out[4] -= in[4];
435
301k
    out[5] -= in[5];
436
301k
    out[6] -= in[6];
437
301k
}
438
439
/* Subtract in mixed mode: out128 -= in64 */
440
/* in[i] < 2^63 */
441
static void felem_diff_128_64(widefelem out, const felem in)
442
935k
{
443
935k
    static const widelimb two64p8 = (((widelimb)1) << 64) + (((widelimb)1) << 8);
444
935k
    static const widelimb two64m8 = (((widelimb)1) << 64) - (((widelimb)1) << 8);
445
935k
    static const widelimb two64m48m8 = (((widelimb)1) << 64) - (((widelimb)1) << 48) - (((widelimb)1) << 8);
446
447
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
448
935k
    out[0] += two64p8;
449
935k
    out[1] += two64m48m8;
450
935k
    out[2] += two64m8;
451
935k
    out[3] += two64m8;
452
453
935k
    out[0] -= in[0];
454
935k
    out[1] -= in[1];
455
935k
    out[2] -= in[2];
456
935k
    out[3] -= in[3];
457
935k
}
458
459
/*
460
 * Multiply a field element by a scalar: out = out * scalar The scalars we
461
 * actually use are small, so results fit without overflow
462
 */
463
static void felem_scalar(felem out, const limb scalar)
464
583k
{
465
583k
    out[0] *= scalar;
466
583k
    out[1] *= scalar;
467
583k
    out[2] *= scalar;
468
583k
    out[3] *= scalar;
469
583k
}
470
471
/*
472
 * Multiply an unreduced field element by a scalar: out = out * scalar The
473
 * scalars we actually use are small, so results fit without overflow
474
 */
475
static void widefelem_scalar(widefelem out, const widelimb scalar)
476
141k
{
477
141k
    out[0] *= scalar;
478
141k
    out[1] *= scalar;
479
141k
    out[2] *= scalar;
480
141k
    out[3] *= scalar;
481
141k
    out[4] *= scalar;
482
141k
    out[5] *= scalar;
483
141k
    out[6] *= scalar;
484
141k
}
485
486
/* Square a field element: out = in^2 */
487
static void felem_square(widefelem out, const felem in)
488
2.65M
{
489
2.65M
    limb tmp0, tmp1, tmp2;
490
2.65M
    tmp0 = 2 * in[0];
491
2.65M
    tmp1 = 2 * in[1];
492
2.65M
    tmp2 = 2 * in[2];
493
2.65M
    out[0] = ((widelimb)in[0]) * in[0];
494
2.65M
    out[1] = ((widelimb)in[0]) * tmp1;
495
2.65M
    out[2] = ((widelimb)in[0]) * tmp2 + ((widelimb)in[1]) * in[1];
496
2.65M
    out[3] = ((widelimb)in[3]) * tmp0 + ((widelimb)in[1]) * tmp2;
497
2.65M
    out[4] = ((widelimb)in[3]) * tmp1 + ((widelimb)in[2]) * in[2];
498
2.65M
    out[5] = ((widelimb)in[3]) * tmp2;
499
2.65M
    out[6] = ((widelimb)in[3]) * in[3];
500
2.65M
}
501
502
/* Multiply two field elements: out = in1 * in2 */
503
static void felem_mul(widefelem out, const felem in1, const felem in2)
504
1.85M
{
505
1.85M
    out[0] = ((widelimb)in1[0]) * in2[0];
506
1.85M
    out[1] = ((widelimb)in1[0]) * in2[1] + ((widelimb)in1[1]) * in2[0];
507
1.85M
    out[2] = ((widelimb)in1[0]) * in2[2] + ((widelimb)in1[1]) * in2[1] + ((widelimb)in1[2]) * in2[0];
508
1.85M
    out[3] = ((widelimb)in1[0]) * in2[3] + ((widelimb)in1[1]) * in2[2] + ((widelimb)in1[2]) * in2[1] + ((widelimb)in1[3]) * in2[0];
509
1.85M
    out[4] = ((widelimb)in1[1]) * in2[3] + ((widelimb)in1[2]) * in2[2] + ((widelimb)in1[3]) * in2[1];
510
1.85M
    out[5] = ((widelimb)in1[2]) * in2[3] + ((widelimb)in1[3]) * in2[2];
511
1.85M
    out[6] = ((widelimb)in1[3]) * in2[3];
512
1.85M
}
513
514
/*-
515
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
516
 * Requires in[i] < 2^126,
517
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
518
static void felem_reduce(felem out, const widefelem in)
519
4.22M
{
520
4.22M
    static const widelimb two127p15 = (((widelimb)1) << 127) + (((widelimb)1) << 15);
521
4.22M
    static const widelimb two127m71 = (((widelimb)1) << 127) - (((widelimb)1) << 71);
522
4.22M
    static const widelimb two127m71m55 = (((widelimb)1) << 127) - (((widelimb)1) << 71) - (((widelimb)1) << 55);
523
4.22M
    widelimb output[5];
524
525
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
526
4.22M
    output[0] = in[0] + two127p15;
527
4.22M
    output[1] = in[1] + two127m71m55;
528
4.22M
    output[2] = in[2] + two127m71;
529
4.22M
    output[3] = in[3];
530
4.22M
    output[4] = in[4];
531
532
    /* Eliminate in[4], in[5], in[6] */
533
4.22M
    output[4] += in[6] >> 16;
534
4.22M
    output[3] += (in[6] & 0xffff) << 40;
535
4.22M
    output[2] -= in[6];
536
537
4.22M
    output[3] += in[5] >> 16;
538
4.22M
    output[2] += (in[5] & 0xffff) << 40;
539
4.22M
    output[1] -= in[5];
540
541
4.22M
    output[2] += output[4] >> 16;
542
4.22M
    output[1] += (output[4] & 0xffff) << 40;
543
4.22M
    output[0] -= output[4];
544
545
    /* Carry 2 -> 3 -> 4 */
546
4.22M
    output[3] += output[2] >> 56;
547
4.22M
    output[2] &= 0x00ffffffffffffff;
548
549
4.22M
    output[4] = output[3] >> 56;
550
4.22M
    output[3] &= 0x00ffffffffffffff;
551
552
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
553
554
    /* Eliminate output[4] */
555
4.22M
    output[2] += output[4] >> 16;
556
    /* output[2] < 2^56 + 2^56 = 2^57 */
557
4.22M
    output[1] += (output[4] & 0xffff) << 40;
558
4.22M
    output[0] -= output[4];
559
560
    /* Carry 0 -> 1 -> 2 -> 3 */
561
4.22M
    output[1] += output[0] >> 56;
562
4.22M
    out[0] = output[0] & 0x00ffffffffffffff;
563
564
4.22M
    output[2] += output[1] >> 56;
565
    /* output[2] < 2^57 + 2^72 */
566
4.22M
    out[1] = output[1] & 0x00ffffffffffffff;
567
4.22M
    output[3] += output[2] >> 56;
568
    /* output[3] <= 2^56 + 2^16 */
569
4.22M
    out[2] = output[2] & 0x00ffffffffffffff;
570
571
    /*-
572
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
573
     * out[3] <= 2^56 + 2^16 (due to final carry),
574
     * so out < 2*p
575
     */
576
4.22M
    out[3] = output[3];
577
4.22M
}
578
579
static void felem_square_reduce(felem out, const felem in)
580
0
{
581
0
    widefelem tmp;
582
0
    felem_square(tmp, in);
583
0
    felem_reduce(out, tmp);
584
0
}
585
586
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
587
0
{
588
0
    widefelem tmp;
589
0
    felem_mul(tmp, in1, in2);
590
0
    felem_reduce(out, tmp);
591
0
}
592
593
/*
594
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
595
 * call felem_reduce first)
596
 */
597
static void felem_contract(felem out, const felem in)
598
21.7k
{
599
21.7k
    static const int64_t two56 = ((limb)1) << 56;
600
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
601
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
602
21.7k
    int64_t tmp[4], a;
603
21.7k
    tmp[0] = in[0];
604
21.7k
    tmp[1] = in[1];
605
21.7k
    tmp[2] = in[2];
606
21.7k
    tmp[3] = in[3];
607
    /* Case 1: a = 1 iff in >= 2^224 */
608
21.7k
    a = (in[3] >> 56);
609
21.7k
    tmp[0] -= a;
610
21.7k
    tmp[1] += a << 40;
611
21.7k
    tmp[3] &= 0x00ffffffffffffff;
612
    /*
613
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
614
     * and the lower part is non-zero
615
     */
616
21.7k
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
617
21.7k
    a &= 0x00ffffffffffffff;
618
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
619
21.7k
    a = (a - 1) >> 63;
620
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
621
21.7k
    tmp[3] &= a ^ 0xffffffffffffffff;
622
21.7k
    tmp[2] &= a ^ 0xffffffffffffffff;
623
21.7k
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
624
21.7k
    tmp[0] -= 1 & a;
625
626
    /*
627
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
628
     * non-zero, so we only need one step
629
     */
630
21.7k
    a = tmp[0] >> 63;
631
21.7k
    tmp[0] += two56 & a;
632
21.7k
    tmp[1] -= 1 & a;
633
634
    /* carry 1 -> 2 -> 3 */
635
21.7k
    tmp[2] += tmp[1] >> 56;
636
21.7k
    tmp[1] &= 0x00ffffffffffffff;
637
638
21.7k
    tmp[3] += tmp[2] >> 56;
639
21.7k
    tmp[2] &= 0x00ffffffffffffff;
640
641
    /* Now 0 <= out < p */
642
21.7k
    out[0] = tmp[0];
643
21.7k
    out[1] = tmp[1];
644
21.7k
    out[2] = tmp[2];
645
21.7k
    out[3] = tmp[3];
646
21.7k
}
647
648
/*
649
 * Get negative value: out = -in
650
 * Requires in[i] < 2^63,
651
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
652
 */
653
static void felem_neg(felem out, const felem in)
654
13.9k
{
655
13.9k
    widefelem tmp;
656
657
13.9k
    memset(tmp, 0, sizeof(tmp));
658
13.9k
    felem_diff_128_64(tmp, in);
659
13.9k
    felem_reduce(out, tmp);
660
13.9k
}
661
662
/*
663
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
664
 * elements are reduced to in < 2^225, so we only need to check three cases:
665
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
666
 */
667
static limb felem_is_zero(const felem in)
668
639k
{
669
639k
    limb zero, two224m96p1, two225m97p2;
670
671
639k
    zero = in[0] | in[1] | in[2] | in[3];
672
639k
    zero = (((int64_t)(zero)-1) >> 63) & 1;
673
639k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
674
639k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
675
639k
    two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
676
639k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
677
639k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
678
639k
    two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
679
639k
    return (zero | two224m96p1 | two225m97p2);
680
639k
}
681
682
static int felem_is_zero_int(const void *in)
683
0
{
684
0
    return (int)(felem_is_zero(in) & ((limb)1));
685
0
}
686
687
/* Invert a field element */
688
/* Computation chain copied from djb's code */
689
static void felem_inv(felem out, const felem in)
690
6.47k
{
691
6.47k
    felem ftmp, ftmp2, ftmp3, ftmp4;
692
6.47k
    widefelem tmp;
693
6.47k
    unsigned i;
694
695
6.47k
    felem_square(tmp, in);
696
6.47k
    felem_reduce(ftmp, tmp); /* 2 */
697
6.47k
    felem_mul(tmp, in, ftmp);
698
6.47k
    felem_reduce(ftmp, tmp); /* 2^2 - 1 */
699
6.47k
    felem_square(tmp, ftmp);
700
6.47k
    felem_reduce(ftmp, tmp); /* 2^3 - 2 */
701
6.47k
    felem_mul(tmp, in, ftmp);
702
6.47k
    felem_reduce(ftmp, tmp); /* 2^3 - 1 */
703
6.47k
    felem_square(tmp, ftmp);
704
6.47k
    felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
705
6.47k
    felem_square(tmp, ftmp2);
706
6.47k
    felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
707
6.47k
    felem_square(tmp, ftmp2);
708
6.47k
    felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
709
6.47k
    felem_mul(tmp, ftmp2, ftmp);
710
6.47k
    felem_reduce(ftmp, tmp); /* 2^6 - 1 */
711
6.47k
    felem_square(tmp, ftmp);
712
6.47k
    felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
713
38.8k
    for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
714
32.3k
        felem_square(tmp, ftmp2);
715
32.3k
        felem_reduce(ftmp2, tmp);
716
32.3k
    }
717
6.47k
    felem_mul(tmp, ftmp2, ftmp);
718
6.47k
    felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
719
6.47k
    felem_square(tmp, ftmp2);
720
6.47k
    felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
721
77.7k
    for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */
722
71.2k
        felem_square(tmp, ftmp3);
723
71.2k
        felem_reduce(ftmp3, tmp);
724
71.2k
    }
725
6.47k
    felem_mul(tmp, ftmp3, ftmp2);
726
6.47k
    felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
727
6.47k
    felem_square(tmp, ftmp2);
728
6.47k
    felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
729
155k
    for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */
730
149k
        felem_square(tmp, ftmp3);
731
149k
        felem_reduce(ftmp3, tmp);
732
149k
    }
733
6.47k
    felem_mul(tmp, ftmp3, ftmp2);
734
6.47k
    felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
735
6.47k
    felem_square(tmp, ftmp3);
736
6.47k
    felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
737
310k
    for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */
738
304k
        felem_square(tmp, ftmp4);
739
304k
        felem_reduce(ftmp4, tmp);
740
304k
    }
741
6.47k
    felem_mul(tmp, ftmp3, ftmp4);
742
6.47k
    felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
743
6.47k
    felem_square(tmp, ftmp3);
744
6.47k
    felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
745
155k
    for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */
746
149k
        felem_square(tmp, ftmp4);
747
149k
        felem_reduce(ftmp4, tmp);
748
149k
    }
749
6.47k
    felem_mul(tmp, ftmp2, ftmp4);
750
6.47k
    felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
751
45.3k
    for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
752
38.8k
        felem_square(tmp, ftmp2);
753
38.8k
        felem_reduce(ftmp2, tmp);
754
38.8k
    }
755
6.47k
    felem_mul(tmp, ftmp2, ftmp);
756
6.47k
    felem_reduce(ftmp, tmp); /* 2^126 - 1 */
757
6.47k
    felem_square(tmp, ftmp);
758
6.47k
    felem_reduce(ftmp, tmp); /* 2^127 - 2 */
759
6.47k
    felem_mul(tmp, ftmp, in);
760
6.47k
    felem_reduce(ftmp, tmp); /* 2^127 - 1 */
761
634k
    for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */
762
628k
        felem_square(tmp, ftmp);
763
628k
        felem_reduce(ftmp, tmp);
764
628k
    }
765
6.47k
    felem_mul(tmp, ftmp, ftmp3);
766
6.47k
    felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
767
6.47k
}
768
769
/*
770
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
771
 * out to itself.
772
 */
773
static void copy_conditional(felem out, const felem in, limb icopy)
774
972k
{
775
972k
    unsigned i;
776
    /*
777
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
778
     */
779
972k
    const limb copy = -icopy;
780
4.86M
    for (i = 0; i < 4; ++i) {
781
3.89M
        const limb tmp = copy & (in[i] ^ out[i]);
782
3.89M
        out[i] ^= tmp;
783
3.89M
    }
784
972k
}
785
786
/******************************************************************************/
787
/*-
788
 *                       ELLIPTIC CURVE POINT OPERATIONS
789
 *
790
 * Points are represented in Jacobian projective coordinates:
791
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
792
 * or to the point at infinity if Z == 0.
793
 *
794
 */
795
796
/*-
797
 * Double an elliptic curve point:
798
 * (X', Y', Z') = 2 * (X, Y, Z), where
799
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
800
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
801
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
802
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
803
 * while x_out == y_in is not (maybe this works, but it's not tested).
804
 */
805
static void
806
point_double(felem x_out, felem y_out, felem z_out,
807
    const felem x_in, const felem y_in, const felem z_in)
808
141k
{
809
141k
    widefelem tmp, tmp2;
810
141k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
811
812
141k
    felem_assign(ftmp, x_in);
813
141k
    felem_assign(ftmp2, x_in);
814
815
    /* delta = z^2 */
816
141k
    felem_square(tmp, z_in);
817
141k
    felem_reduce(delta, tmp);
818
819
    /* gamma = y^2 */
820
141k
    felem_square(tmp, y_in);
821
141k
    felem_reduce(gamma, tmp);
822
823
    /* beta = x*gamma */
824
141k
    felem_mul(tmp, x_in, gamma);
825
141k
    felem_reduce(beta, tmp);
826
827
    /* alpha = 3*(x-delta)*(x+delta) */
828
141k
    felem_diff(ftmp, delta);
829
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
830
141k
    felem_sum(ftmp2, delta);
831
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
832
141k
    felem_scalar(ftmp2, 3);
833
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
834
141k
    felem_mul(tmp, ftmp, ftmp2);
835
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
836
141k
    felem_reduce(alpha, tmp);
837
838
    /* x' = alpha^2 - 8*beta */
839
141k
    felem_square(tmp, alpha);
840
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
841
141k
    felem_assign(ftmp, beta);
842
141k
    felem_scalar(ftmp, 8);
843
    /* ftmp[i] < 8 * 2^57 = 2^60 */
844
141k
    felem_diff_128_64(tmp, ftmp);
845
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
846
141k
    felem_reduce(x_out, tmp);
847
848
    /* z' = (y + z)^2 - gamma - delta */
849
141k
    felem_sum(delta, gamma);
850
    /* delta[i] < 2^57 + 2^57 = 2^58 */
851
141k
    felem_assign(ftmp, y_in);
852
141k
    felem_sum(ftmp, z_in);
853
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
854
141k
    felem_square(tmp, ftmp);
855
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
856
141k
    felem_diff_128_64(tmp, delta);
857
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
858
141k
    felem_reduce(z_out, tmp);
859
860
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
861
141k
    felem_scalar(beta, 4);
862
    /* beta[i] < 4 * 2^57 = 2^59 */
863
141k
    felem_diff(beta, x_out);
864
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
865
141k
    felem_mul(tmp, alpha, beta);
866
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
867
141k
    felem_square(tmp2, gamma);
868
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
869
141k
    widefelem_scalar(tmp2, 8);
870
    /* tmp2[i] < 8 * 2^116 = 2^119 */
871
141k
    widefelem_diff(tmp, tmp2);
872
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
873
141k
    felem_reduce(y_out, tmp);
874
141k
}
875
876
/*-
877
 * Add two elliptic curve points:
878
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
879
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
880
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
881
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
882
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
883
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
884
 *
885
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
886
 */
887
888
/*
889
 * This function is not entirely constant-time: it includes a branch for
890
 * checking whether the two input points are equal, (while not equal to the
891
 * point at infinity). This case never happens during single point
892
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
893
 */
894
static void point_add(felem x3, felem y3, felem z3,
895
    const felem x1, const felem y1, const felem z1,
896
    const int mixed, const felem x2, const felem y2,
897
    const felem z2)
898
159k
{
899
159k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
900
159k
    widefelem tmp, tmp2;
901
159k
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
902
159k
    limb points_equal;
903
904
159k
    if (!mixed) {
905
        /* ftmp2 = z2^2 */
906
15.8k
        felem_square(tmp, z2);
907
15.8k
        felem_reduce(ftmp2, tmp);
908
909
        /* ftmp4 = z2^3 */
910
15.8k
        felem_mul(tmp, ftmp2, z2);
911
15.8k
        felem_reduce(ftmp4, tmp);
912
913
        /* ftmp4 = z2^3*y1 */
914
15.8k
        felem_mul(tmp2, ftmp4, y1);
915
15.8k
        felem_reduce(ftmp4, tmp2);
916
917
        /* ftmp2 = z2^2*x1 */
918
15.8k
        felem_mul(tmp2, ftmp2, x1);
919
15.8k
        felem_reduce(ftmp2, tmp2);
920
143k
    } else {
921
        /*
922
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
923
         */
924
925
        /* ftmp4 = z2^3*y1 */
926
143k
        felem_assign(ftmp4, y1);
927
928
        /* ftmp2 = z2^2*x1 */
929
143k
        felem_assign(ftmp2, x1);
930
143k
    }
931
932
    /* ftmp = z1^2 */
933
159k
    felem_square(tmp, z1);
934
159k
    felem_reduce(ftmp, tmp);
935
936
    /* ftmp3 = z1^3 */
937
159k
    felem_mul(tmp, ftmp, z1);
938
159k
    felem_reduce(ftmp3, tmp);
939
940
    /* tmp = z1^3*y2 */
941
159k
    felem_mul(tmp, ftmp3, y2);
942
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
943
944
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
945
159k
    felem_diff_128_64(tmp, ftmp4);
946
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
947
159k
    felem_reduce(ftmp3, tmp);
948
949
    /* tmp = z1^2*x2 */
950
159k
    felem_mul(tmp, ftmp, x2);
951
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
952
953
    /* ftmp = z1^2*x2 - z2^2*x1 */
954
159k
    felem_diff_128_64(tmp, ftmp2);
955
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
956
159k
    felem_reduce(ftmp, tmp);
957
958
    /*
959
     * The formulae are incorrect if the points are equal, in affine coordinates
960
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
961
     * happens.
962
     *
963
     * We use bitwise operations to avoid potential side-channels introduced by
964
     * the short-circuiting behaviour of boolean operators.
965
     */
966
159k
    x_equal = felem_is_zero(ftmp);
967
159k
    y_equal = felem_is_zero(ftmp3);
968
    /*
969
     * The special case of either point being the point at infinity (z1 and/or
970
     * z2 are zero), is handled separately later on in this function, so we
971
     * avoid jumping to point_double here in those special cases.
972
     */
973
159k
    z1_is_zero = felem_is_zero(z1);
974
159k
    z2_is_zero = felem_is_zero(z2);
975
976
    /*
977
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
978
     * specific implementation `felem_is_zero()` returns truth as `0x1`
979
     * (rather than `0xff..ff`).
980
     *
981
     * This implies that `~true` in this implementation becomes
982
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
983
     * the if expression, we mask out only the last bit in the next
984
     * line.
985
     */
986
159k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
987
988
159k
    if (points_equal) {
989
        /*
990
         * This is obviously not constant-time but, as mentioned before, this
991
         * case never happens during single point multiplication, so there is no
992
         * timing leak for ECDH or ECDSA signing.
993
         */
994
0
        point_double(x3, y3, z3, x1, y1, z1);
995
0
        return;
996
0
    }
997
998
    /* ftmp5 = z1*z2 */
999
159k
    if (!mixed) {
1000
15.8k
        felem_mul(tmp, z1, z2);
1001
15.8k
        felem_reduce(ftmp5, tmp);
1002
143k
    } else {
1003
        /* special case z2 = 0 is handled later */
1004
143k
        felem_assign(ftmp5, z1);
1005
143k
    }
1006
1007
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1008
159k
    felem_mul(tmp, ftmp, ftmp5);
1009
159k
    felem_reduce(z_out, tmp);
1010
1011
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1012
159k
    felem_assign(ftmp5, ftmp);
1013
159k
    felem_square(tmp, ftmp);
1014
159k
    felem_reduce(ftmp, tmp);
1015
1016
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1017
159k
    felem_mul(tmp, ftmp, ftmp5);
1018
159k
    felem_reduce(ftmp5, tmp);
1019
1020
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1021
159k
    felem_mul(tmp, ftmp2, ftmp);
1022
159k
    felem_reduce(ftmp2, tmp);
1023
1024
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1025
159k
    felem_mul(tmp, ftmp4, ftmp5);
1026
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1027
1028
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1029
159k
    felem_square(tmp2, ftmp3);
1030
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1031
1032
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1033
159k
    felem_diff_128_64(tmp2, ftmp5);
1034
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1035
1036
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1037
159k
    felem_assign(ftmp5, ftmp2);
1038
159k
    felem_scalar(ftmp5, 2);
1039
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1040
1041
    /*-
1042
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1043
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1044
     */
1045
159k
    felem_diff_128_64(tmp2, ftmp5);
1046
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1047
159k
    felem_reduce(x_out, tmp2);
1048
1049
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1050
159k
    felem_diff(ftmp2, x_out);
1051
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1052
1053
    /*
1054
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1055
     */
1056
159k
    felem_mul(tmp2, ftmp3, ftmp2);
1057
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1058
1059
    /*-
1060
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1061
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1062
     */
1063
159k
    widefelem_diff(tmp2, tmp);
1064
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1065
159k
    felem_reduce(y_out, tmp2);
1066
1067
    /*
1068
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1069
     * the point at infinity, so we need to check for this separately
1070
     */
1071
1072
    /*
1073
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1074
     */
1075
159k
    copy_conditional(x_out, x2, z1_is_zero);
1076
159k
    copy_conditional(x_out, x1, z2_is_zero);
1077
159k
    copy_conditional(y_out, y2, z1_is_zero);
1078
159k
    copy_conditional(y_out, y1, z2_is_zero);
1079
159k
    copy_conditional(z_out, z2, z1_is_zero);
1080
159k
    copy_conditional(z_out, z1, z2_is_zero);
1081
159k
    felem_assign(x3, x_out);
1082
159k
    felem_assign(y3, y_out);
1083
159k
    felem_assign(z3, z_out);
1084
159k
}
1085
1086
/*
1087
 * select_point selects the |idx|th point from a precomputation table and
1088
 * copies it to out.
1089
 * The pre_comp array argument should be size of |size| argument
1090
 */
1091
static void select_point(const u64 idx, unsigned int size,
1092
    const felem pre_comp[][3], felem out[3])
1093
160k
{
1094
160k
    unsigned i, j;
1095
160k
    limb *outlimbs = &out[0][0];
1096
1097
160k
    memset(out, 0, sizeof(*out) * 3);
1098
2.74M
    for (i = 0; i < size; i++) {
1099
2.58M
        const limb *inlimbs = &pre_comp[i][0][0];
1100
2.58M
        u64 mask = i ^ idx;
1101
2.58M
        mask |= mask >> 4;
1102
2.58M
        mask |= mask >> 2;
1103
2.58M
        mask |= mask >> 1;
1104
2.58M
        mask &= 1;
1105
2.58M
        mask--;
1106
33.5M
        for (j = 0; j < 4 * 3; j++)
1107
30.9M
            outlimbs[j] |= inlimbs[j] & mask;
1108
2.58M
    }
1109
160k
}
1110
1111
/* get_bit returns the |i|th bit in |in| */
1112
static char get_bit(const felem_bytearray in, unsigned i)
1113
670k
{
1114
670k
    if (i >= 224)
1115
620
        return 0;
1116
669k
    return (in[i >> 3] >> (i & 7)) & 1;
1117
670k
}
1118
1119
/*
1120
 * Interleaved point multiplication using precomputed point multiples: The
1121
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1122
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1123
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1124
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1125
 */
1126
static void batch_mul(felem x_out, felem y_out, felem z_out,
1127
    const felem_bytearray scalars[],
1128
    const unsigned num_points, const u8 *g_scalar,
1129
    const int mixed, const felem pre_comp[][17][3],
1130
    const felem g_pre_comp[2][16][3])
1131
2.92k
{
1132
2.92k
    int i, skip;
1133
2.92k
    unsigned num;
1134
2.92k
    unsigned gen_mul = (g_scalar != NULL);
1135
2.92k
    felem nq[3], tmp[4];
1136
2.92k
    u64 bits;
1137
2.92k
    u8 sign, digit;
1138
1139
    /* set nq to the point at infinity */
1140
2.92k
    memset(nq, 0, sizeof(nq));
1141
1142
    /*
1143
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1144
     * of the generator (two in each of the last 28 rounds) and additions of
1145
     * other points multiples (every 5th round).
1146
     */
1147
2.92k
    skip = 1; /* save two point operations in the first
1148
               * round */
1149
144k
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1150
        /* double */
1151
141k
        if (!skip)
1152
138k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1153
1154
        /* add multiples of the generator */
1155
141k
        if (gen_mul && (i <= 27)) {
1156
            /* first, look 28 bits upwards */
1157
73.3k
            bits = get_bit(g_scalar, i + 196) << 3;
1158
73.3k
            bits |= get_bit(g_scalar, i + 140) << 2;
1159
73.3k
            bits |= get_bit(g_scalar, i + 84) << 1;
1160
73.3k
            bits |= get_bit(g_scalar, i + 28);
1161
            /* select the point to add, in constant time */
1162
73.3k
            select_point(bits, 16, g_pre_comp[1], tmp);
1163
1164
73.3k
            if (!skip) {
1165
                /* value 1 below is argument for "mixed" */
1166
70.6k
                point_add(nq[0], nq[1], nq[2],
1167
70.6k
                    nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1168
70.6k
            } else {
1169
2.61k
                memcpy(nq, tmp, 3 * sizeof(felem));
1170
2.61k
                skip = 0;
1171
2.61k
            }
1172
1173
            /* second, look at the current position */
1174
73.3k
            bits = get_bit(g_scalar, i + 168) << 3;
1175
73.3k
            bits |= get_bit(g_scalar, i + 112) << 2;
1176
73.3k
            bits |= get_bit(g_scalar, i + 56) << 1;
1177
73.3k
            bits |= get_bit(g_scalar, i);
1178
            /* select the point to add, in constant time */
1179
73.3k
            select_point(bits, 16, g_pre_comp[0], tmp);
1180
73.3k
            point_add(nq[0], nq[1], nq[2],
1181
73.3k
                nq[0], nq[1], nq[2],
1182
73.3k
                1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1183
73.3k
        }
1184
1185
        /* do other additions every 5 doublings */
1186
141k
        if (num_points && (i % 5 == 0)) {
1187
            /* loop over all scalars */
1188
27.9k
            for (num = 0; num < num_points; ++num) {
1189
13.9k
                bits = get_bit(scalars[num], i + 4) << 5;
1190
13.9k
                bits |= get_bit(scalars[num], i + 3) << 4;
1191
13.9k
                bits |= get_bit(scalars[num], i + 2) << 3;
1192
13.9k
                bits |= get_bit(scalars[num], i + 1) << 2;
1193
13.9k
                bits |= get_bit(scalars[num], i) << 1;
1194
13.9k
                bits |= get_bit(scalars[num], i - 1);
1195
13.9k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1196
1197
                /* select the point to add or subtract */
1198
13.9k
                select_point(digit, 17, pre_comp[num], tmp);
1199
13.9k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1200
                                            * point */
1201
13.9k
                copy_conditional(tmp[1], tmp[3], sign);
1202
1203
13.9k
                if (!skip) {
1204
13.6k
                    point_add(nq[0], nq[1], nq[2],
1205
13.6k
                        nq[0], nq[1], nq[2],
1206
13.6k
                        mixed, tmp[0], tmp[1], tmp[2]);
1207
13.6k
                } else {
1208
310
                    memcpy(nq, tmp, 3 * sizeof(felem));
1209
310
                    skip = 0;
1210
310
                }
1211
13.9k
            }
1212
13.9k
        }
1213
141k
    }
1214
2.92k
    felem_assign(x_out, nq[0]);
1215
2.92k
    felem_assign(y_out, nq[1]);
1216
2.92k
    felem_assign(z_out, nq[2]);
1217
2.92k
}
1218
1219
/******************************************************************************/
1220
/*
1221
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1222
 */
1223
1224
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1225
0
{
1226
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1227
1228
0
    if (!ret) {
1229
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1230
0
        return ret;
1231
0
    }
1232
1233
0
    ret->references = 1;
1234
1235
0
    ret->lock = CRYPTO_THREAD_lock_new();
1236
0
    if (ret->lock == NULL) {
1237
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1238
0
        OPENSSL_free(ret);
1239
0
        return NULL;
1240
0
    }
1241
0
    return ret;
1242
0
}
1243
1244
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1245
0
{
1246
0
    int i;
1247
0
    if (p != NULL)
1248
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1249
0
    return p;
1250
0
}
1251
1252
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1253
0
{
1254
0
    int i;
1255
1256
0
    if (p == NULL)
1257
0
        return;
1258
1259
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1260
0
    REF_PRINT_COUNT("EC_nistp224", p);
1261
0
    if (i > 0)
1262
0
        return;
1263
0
    REF_ASSERT_ISNT(i < 0);
1264
1265
0
    CRYPTO_THREAD_lock_free(p->lock);
1266
0
    OPENSSL_free(p);
1267
0
}
1268
1269
/******************************************************************************/
1270
/*
1271
 * OPENSSL EC_METHOD FUNCTIONS
1272
 */
1273
1274
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1275
105k
{
1276
105k
    int ret;
1277
105k
    ret = ossl_ec_GFp_simple_group_init(group);
1278
105k
    group->a_is_minus3 = 1;
1279
105k
    return ret;
1280
105k
}
1281
1282
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1283
    const BIGNUM *a, const BIGNUM *b,
1284
    BN_CTX *ctx)
1285
54.8k
{
1286
54.8k
    int ret = 0;
1287
54.8k
    BIGNUM *curve_p, *curve_a, *curve_b;
1288
54.8k
#ifndef FIPS_MODULE
1289
54.8k
    BN_CTX *new_ctx = NULL;
1290
1291
54.8k
    if (ctx == NULL)
1292
0
        ctx = new_ctx = BN_CTX_new();
1293
54.8k
#endif
1294
54.8k
    if (ctx == NULL)
1295
0
        return 0;
1296
1297
54.8k
    BN_CTX_start(ctx);
1298
54.8k
    curve_p = BN_CTX_get(ctx);
1299
54.8k
    curve_a = BN_CTX_get(ctx);
1300
54.8k
    curve_b = BN_CTX_get(ctx);
1301
54.8k
    if (curve_b == NULL)
1302
0
        goto err;
1303
54.8k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1304
54.8k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1305
54.8k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1306
54.8k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1307
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1308
0
        goto err;
1309
0
    }
1310
54.8k
    group->field_mod_func = BN_nist_mod_224;
1311
54.8k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1312
54.8k
err:
1313
54.8k
    BN_CTX_end(ctx);
1314
54.8k
#ifndef FIPS_MODULE
1315
54.8k
    BN_CTX_free(new_ctx);
1316
54.8k
#endif
1317
54.8k
    return ret;
1318
54.8k
}
1319
1320
/*
1321
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1322
 * (X/Z^2, Y/Z^3)
1323
 */
1324
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1325
    const EC_POINT *point,
1326
    BIGNUM *x, BIGNUM *y,
1327
    BN_CTX *ctx)
1328
6.47k
{
1329
6.47k
    felem z1, z2, x_in, y_in, x_out, y_out;
1330
6.47k
    widefelem tmp;
1331
1332
6.47k
    if (EC_POINT_is_at_infinity(group, point)) {
1333
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1334
0
        return 0;
1335
0
    }
1336
6.47k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z)))
1337
0
        return 0;
1338
6.47k
    felem_inv(z2, z1);
1339
6.47k
    felem_square(tmp, z2);
1340
6.47k
    felem_reduce(z1, tmp);
1341
6.47k
    felem_mul(tmp, x_in, z1);
1342
6.47k
    felem_reduce(x_in, tmp);
1343
6.47k
    felem_contract(x_out, x_in);
1344
6.47k
    if (x != NULL) {
1345
6.47k
        if (!felem_to_BN(x, x_out)) {
1346
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1347
0
            return 0;
1348
0
        }
1349
6.47k
    }
1350
6.47k
    felem_mul(tmp, z1, z2);
1351
6.47k
    felem_reduce(z1, tmp);
1352
6.47k
    felem_mul(tmp, y_in, z1);
1353
6.47k
    felem_reduce(y_in, tmp);
1354
6.47k
    felem_contract(y_out, y_in);
1355
6.47k
    if (y != NULL) {
1356
6.47k
        if (!felem_to_BN(y, y_out)) {
1357
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1358
0
            return 0;
1359
0
        }
1360
6.47k
    }
1361
6.47k
    return 1;
1362
6.47k
}
1363
1364
static void make_points_affine(size_t num, felem points[/* num */][3],
1365
    felem tmp_felems[/* num+1 */])
1366
0
{
1367
    /*
1368
     * Runs in constant time, unless an input is the point at infinity (which
1369
     * normally shouldn't happen).
1370
     */
1371
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1372
0
        points,
1373
0
        sizeof(felem),
1374
0
        tmp_felems,
1375
0
        (void (*)(void *))felem_one,
1376
0
        felem_is_zero_int,
1377
0
        (void (*)(void *, const void *))
1378
0
            felem_assign,
1379
0
        (void (*)(void *, const void *))
1380
0
            felem_square_reduce,
1381
0
        (void (*)(void *,
1382
0
            const void
1383
0
                *,
1384
0
            const void
1385
0
                *))
1386
0
            felem_mul_reduce,
1387
0
        (void (*)(void *, const void *))
1388
0
            felem_inv,
1389
0
        (void (*)(void *, const void *))
1390
0
            felem_contract);
1391
0
}
1392
1393
/*
1394
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1395
 * values Result is stored in r (r can equal one of the inputs).
1396
 */
1397
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1398
    const BIGNUM *scalar, size_t num,
1399
    const EC_POINT *points[],
1400
    const BIGNUM *scalars[], BN_CTX *ctx)
1401
2.92k
{
1402
2.92k
    int ret = 0;
1403
2.92k
    int j;
1404
2.92k
    unsigned i;
1405
2.92k
    int mixed = 0;
1406
2.92k
    BIGNUM *x, *y, *z, *tmp_scalar;
1407
2.92k
    felem_bytearray g_secret;
1408
2.92k
    felem_bytearray *secrets = NULL;
1409
2.92k
    felem(*pre_comp)[17][3] = NULL;
1410
2.92k
    felem *tmp_felems = NULL;
1411
2.92k
    int num_bytes;
1412
2.92k
    int have_pre_comp = 0;
1413
2.92k
    size_t num_points = num;
1414
2.92k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1415
2.92k
    NISTP224_PRE_COMP *pre = NULL;
1416
2.92k
    const felem(*g_pre_comp)[16][3] = NULL;
1417
2.92k
    EC_POINT *generator = NULL;
1418
2.92k
    const EC_POINT *p = NULL;
1419
2.92k
    const BIGNUM *p_scalar = NULL;
1420
1421
2.92k
    BN_CTX_start(ctx);
1422
2.92k
    x = BN_CTX_get(ctx);
1423
2.92k
    y = BN_CTX_get(ctx);
1424
2.92k
    z = BN_CTX_get(ctx);
1425
2.92k
    tmp_scalar = BN_CTX_get(ctx);
1426
2.92k
    if (tmp_scalar == NULL)
1427
0
        goto err;
1428
1429
2.92k
    if (scalar != NULL) {
1430
2.61k
        pre = group->pre_comp.nistp224;
1431
2.61k
        if (pre)
1432
            /* we have precomputation, try to use it */
1433
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1434
2.61k
        else
1435
            /* try to use the standard precomputation */
1436
2.61k
            g_pre_comp = &gmul[0];
1437
2.61k
        generator = EC_POINT_new(group);
1438
2.61k
        if (generator == NULL)
1439
0
            goto err;
1440
        /* get the generator from precomputation */
1441
2.61k
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) || !felem_to_BN(y, g_pre_comp[0][1][1]) || !felem_to_BN(z, g_pre_comp[0][1][2])) {
1442
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1443
0
            goto err;
1444
0
        }
1445
2.61k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1446
2.61k
                generator,
1447
2.61k
                x, y, z, ctx))
1448
0
            goto err;
1449
2.61k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1450
            /* precomputation matches generator */
1451
2.61k
            have_pre_comp = 1;
1452
0
        else
1453
            /*
1454
             * we don't have valid precomputation: treat the generator as a
1455
             * random point
1456
             */
1457
0
            num_points = num_points + 1;
1458
2.61k
    }
1459
1460
2.92k
    if (num_points > 0) {
1461
310
        if (num_points >= 3) {
1462
            /*
1463
             * unless we precompute multiples for just one or two points,
1464
             * converting those into affine form is time well spent
1465
             */
1466
0
            mixed = 1;
1467
0
        }
1468
310
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1469
310
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1470
310
        if (mixed)
1471
0
            tmp_felems = OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1472
310
        if ((secrets == NULL) || (pre_comp == NULL)
1473
310
            || (mixed && (tmp_felems == NULL))) {
1474
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1475
0
            goto err;
1476
0
        }
1477
1478
        /*
1479
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1480
         * i.e., they contribute nothing to the linear combination
1481
         */
1482
620
        for (i = 0; i < num_points; ++i) {
1483
310
            if (i == num) {
1484
                /* the generator */
1485
0
                p = EC_GROUP_get0_generator(group);
1486
0
                p_scalar = scalar;
1487
310
            } else {
1488
                /* the i^th point */
1489
310
                p = points[i];
1490
310
                p_scalar = scalars[i];
1491
310
            }
1492
310
            if ((p_scalar != NULL) && (p != NULL)) {
1493
                /* reduce scalar to 0 <= scalar < 2^224 */
1494
310
                if ((BN_num_bits(p_scalar) > 224)
1495
310
                    || (BN_is_negative(p_scalar))) {
1496
                    /*
1497
                     * this is an unusual input, and we don't guarantee
1498
                     * constant-timeness
1499
                     */
1500
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1501
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1502
0
                        goto err;
1503
0
                    }
1504
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1505
0
                        secrets[i], sizeof(secrets[i]));
1506
310
                } else {
1507
310
                    num_bytes = BN_bn2lebinpad(p_scalar,
1508
310
                        secrets[i], sizeof(secrets[i]));
1509
310
                }
1510
310
                if (num_bytes < 0) {
1511
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1512
0
                    goto err;
1513
0
                }
1514
                /* precompute multiples */
1515
310
                if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z)))
1516
0
                    goto err;
1517
310
                felem_assign(pre_comp[i][1][0], x_out);
1518
310
                felem_assign(pre_comp[i][1][1], y_out);
1519
310
                felem_assign(pre_comp[i][1][2], z_out);
1520
4.96k
                for (j = 2; j <= 16; ++j) {
1521
4.65k
                    if (j & 1) {
1522
2.17k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1523
2.17k
                            pre_comp[i][j][2], pre_comp[i][1][0],
1524
2.17k
                            pre_comp[i][1][1], pre_comp[i][1][2], 0,
1525
2.17k
                            pre_comp[i][j - 1][0],
1526
2.17k
                            pre_comp[i][j - 1][1],
1527
2.17k
                            pre_comp[i][j - 1][2]);
1528
2.48k
                    } else {
1529
2.48k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1530
2.48k
                            pre_comp[i][j][2], pre_comp[i][j / 2][0],
1531
2.48k
                            pre_comp[i][j / 2][1],
1532
2.48k
                            pre_comp[i][j / 2][2]);
1533
2.48k
                    }
1534
4.65k
                }
1535
310
            }
1536
310
        }
1537
310
        if (mixed)
1538
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1539
310
    }
1540
1541
    /* the scalar for the generator */
1542
2.92k
    if ((scalar != NULL) && (have_pre_comp)) {
1543
2.61k
        memset(g_secret, 0, sizeof(g_secret));
1544
        /* reduce scalar to 0 <= scalar < 2^224 */
1545
2.61k
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1546
            /*
1547
             * this is an unusual input, and we don't guarantee
1548
             * constant-timeness
1549
             */
1550
553
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1551
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1552
0
                goto err;
1553
0
            }
1554
553
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1555
2.06k
        } else {
1556
2.06k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1557
2.06k
        }
1558
        /* do the multiplication with generator precomputation */
1559
2.61k
        batch_mul(x_out, y_out, z_out,
1560
2.61k
            (const felem_bytearray(*))secrets, num_points,
1561
2.61k
            g_secret,
1562
2.61k
            mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1563
2.61k
    } else {
1564
        /* do the multiplication without generator precomputation */
1565
310
        batch_mul(x_out, y_out, z_out,
1566
310
            (const felem_bytearray(*))secrets, num_points,
1567
310
            NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1568
310
    }
1569
    /* reduce the output to its unique minimal representation */
1570
2.92k
    felem_contract(x_in, x_out);
1571
2.92k
    felem_contract(y_in, y_out);
1572
2.92k
    felem_contract(z_in, z_out);
1573
2.92k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) {
1574
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1575
0
        goto err;
1576
0
    }
1577
2.92k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1578
2.92k
        ctx);
1579
1580
2.92k
err:
1581
2.92k
    BN_CTX_end(ctx);
1582
2.92k
    EC_POINT_free(generator);
1583
2.92k
    OPENSSL_free(secrets);
1584
2.92k
    OPENSSL_free(pre_comp);
1585
2.92k
    OPENSSL_free(tmp_felems);
1586
2.92k
    return ret;
1587
2.92k
}
1588
1589
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1590
0
{
1591
0
    int ret = 0;
1592
0
    NISTP224_PRE_COMP *pre = NULL;
1593
0
    int i, j;
1594
0
    BIGNUM *x, *y;
1595
0
    EC_POINT *generator = NULL;
1596
0
    felem tmp_felems[32];
1597
0
#ifndef FIPS_MODULE
1598
0
    BN_CTX *new_ctx = NULL;
1599
0
#endif
1600
1601
    /* throw away old precomputation */
1602
0
    EC_pre_comp_free(group);
1603
1604
0
#ifndef FIPS_MODULE
1605
0
    if (ctx == NULL)
1606
0
        ctx = new_ctx = BN_CTX_new();
1607
0
#endif
1608
0
    if (ctx == NULL)
1609
0
        return 0;
1610
1611
0
    BN_CTX_start(ctx);
1612
0
    x = BN_CTX_get(ctx);
1613
0
    y = BN_CTX_get(ctx);
1614
0
    if (y == NULL)
1615
0
        goto err;
1616
    /* get the generator */
1617
0
    if (group->generator == NULL)
1618
0
        goto err;
1619
0
    generator = EC_POINT_new(group);
1620
0
    if (generator == NULL)
1621
0
        goto err;
1622
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1623
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1624
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1625
0
        goto err;
1626
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1627
0
        goto err;
1628
    /*
1629
     * if the generator is the standard one, use built-in precomputation
1630
     */
1631
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1632
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1633
0
        goto done;
1634
0
    }
1635
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1636
0
        goto err;
1637
    /*
1638
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1639
     * 2^140*G, 2^196*G for the second one
1640
     */
1641
0
    for (i = 1; i <= 8; i <<= 1) {
1642
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1643
0
            pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1644
0
            pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1645
0
        for (j = 0; j < 27; ++j) {
1646
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1647
0
                pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1648
0
                pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1649
0
        }
1650
0
        if (i == 8)
1651
0
            break;
1652
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1653
0
            pre->g_pre_comp[0][2 * i][1],
1654
0
            pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1655
0
            pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1656
0
        for (j = 0; j < 27; ++j) {
1657
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1658
0
                pre->g_pre_comp[0][2 * i][1],
1659
0
                pre->g_pre_comp[0][2 * i][2],
1660
0
                pre->g_pre_comp[0][2 * i][0],
1661
0
                pre->g_pre_comp[0][2 * i][1],
1662
0
                pre->g_pre_comp[0][2 * i][2]);
1663
0
        }
1664
0
    }
1665
0
    for (i = 0; i < 2; i++) {
1666
        /* g_pre_comp[i][0] is the point at infinity */
1667
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1668
        /* the remaining multiples */
1669
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1670
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1671
0
            pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1672
0
            pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1673
0
            0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1674
0
            pre->g_pre_comp[i][2][2]);
1675
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1676
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1677
0
            pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1678
0
            pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1679
0
            0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1680
0
            pre->g_pre_comp[i][2][2]);
1681
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1682
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1683
0
            pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1684
0
            pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1685
0
            0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1686
0
            pre->g_pre_comp[i][4][2]);
1687
        /*
1688
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1689
         */
1690
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1691
0
            pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1692
0
            pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1693
0
            0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1694
0
            pre->g_pre_comp[i][2][2]);
1695
0
        for (j = 1; j < 8; ++j) {
1696
            /* odd multiples: add G resp. 2^28*G */
1697
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1698
0
                pre->g_pre_comp[i][2 * j + 1][1],
1699
0
                pre->g_pre_comp[i][2 * j + 1][2],
1700
0
                pre->g_pre_comp[i][2 * j][0],
1701
0
                pre->g_pre_comp[i][2 * j][1],
1702
0
                pre->g_pre_comp[i][2 * j][2], 0,
1703
0
                pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1704
0
                pre->g_pre_comp[i][1][2]);
1705
0
        }
1706
0
    }
1707
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1708
1709
0
done:
1710
0
    SETPRECOMP(group, nistp224, pre);
1711
0
    pre = NULL;
1712
0
    ret = 1;
1713
0
err:
1714
0
    BN_CTX_end(ctx);
1715
0
    EC_POINT_free(generator);
1716
0
#ifndef FIPS_MODULE
1717
0
    BN_CTX_free(new_ctx);
1718
0
#endif
1719
0
    EC_nistp224_pre_comp_free(pre);
1720
0
    return ret;
1721
0
}
1722
1723
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1724
0
{
1725
    return HAVEPRECOMP(group, nistp224);
1726
0
}