Coverage Report

Created: 2026-02-14 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/include/crypto/md32_common.h
Line
Count
Source
1
/*
2
 * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*-
11
 * This is a generic 32 bit "collector" for message digest algorithms.
12
 * Whenever needed it collects input character stream into chunks of
13
 * 32 bit values and invokes a block function that performs actual hash
14
 * calculations.
15
 *
16
 * Porting guide.
17
 *
18
 * Obligatory macros:
19
 *
20
 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
21
 *      this macro defines byte order of input stream.
22
 * HASH_CBLOCK
23
 *      size of a unit chunk HASH_BLOCK operates on.
24
 * HASH_LONG
25
 *      has to be at least 32 bit wide.
26
 * HASH_CTX
27
 *      context structure that at least contains following
28
 *      members:
29
 *              typedef struct {
30
 *                      ...
31
 *                      HASH_LONG       Nl,Nh;
32
 *                      either {
33
 *                      HASH_LONG       data[HASH_LBLOCK];
34
 *                      unsigned char   data[HASH_CBLOCK];
35
 *                      };
36
 *                      unsigned int    num;
37
 *                      ...
38
 *                      } HASH_CTX;
39
 *      data[] vector is expected to be zeroed upon first call to
40
 *      HASH_UPDATE.
41
 * HASH_UPDATE
42
 *      name of "Update" function, implemented here.
43
 * HASH_TRANSFORM
44
 *      name of "Transform" function, implemented here.
45
 * HASH_FINAL
46
 *      name of "Final" function, implemented here.
47
 * HASH_BLOCK_DATA_ORDER
48
 *      name of "block" function capable of treating *unaligned* input
49
 *      message in original (data) byte order, implemented externally.
50
 * HASH_MAKE_STRING
51
 *      macro converting context variables to an ASCII hash string.
52
 *
53
 * MD5 example:
54
 *
55
 *      #define DATA_ORDER_IS_LITTLE_ENDIAN
56
 *
57
 *      #define HASH_LONG               MD5_LONG
58
 *      #define HASH_CTX                MD5_CTX
59
 *      #define HASH_CBLOCK             MD5_CBLOCK
60
 *      #define HASH_UPDATE             MD5_Update
61
 *      #define HASH_TRANSFORM          MD5_Transform
62
 *      #define HASH_FINAL              MD5_Final
63
 *      #define HASH_BLOCK_DATA_ORDER   md5_block_data_order
64
 */
65
66
#include <openssl/crypto.h>
67
68
#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
69
#error "DATA_ORDER must be defined!"
70
#endif
71
72
#ifndef HASH_CBLOCK
73
#error "HASH_CBLOCK must be defined!"
74
#endif
75
#ifndef HASH_LONG
76
#error "HASH_LONG must be defined!"
77
#endif
78
#ifndef HASH_CTX
79
#error "HASH_CTX must be defined!"
80
#endif
81
82
#ifndef HASH_UPDATE
83
#error "HASH_UPDATE must be defined!"
84
#endif
85
#ifndef HASH_TRANSFORM
86
#error "HASH_TRANSFORM must be defined!"
87
#endif
88
#ifndef HASH_FINAL
89
#error "HASH_FINAL must be defined!"
90
#endif
91
92
#ifndef HASH_BLOCK_DATA_ORDER
93
#error "HASH_BLOCK_DATA_ORDER must be defined!"
94
#endif
95
96
1.51G
#define ROTATE(a, n) (((a) << (n)) | (((a) & 0xffffffff) >> (32 - (n))))
97
98
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
99
100
8.72M
#define HOST_c2l(c, l) (l = (((unsigned long)(*((c)++))) << 24), \
101
8.72M
    l |= (((unsigned long)(*((c)++))) << 16),                    \
102
8.72M
    l |= (((unsigned long)(*((c)++))) << 8),                     \
103
8.72M
    l |= (((unsigned long)(*((c)++)))))
104
15.1M
#define HOST_l2c(l, c) (*((c)++) = (unsigned char)(((l) >> 24) & 0xff), \
105
15.1M
    *((c)++) = (unsigned char)(((l) >> 16) & 0xff),                     \
106
15.1M
    *((c)++) = (unsigned char)(((l) >> 8) & 0xff),                      \
107
15.1M
    *((c)++) = (unsigned char)(((l)) & 0xff),                           \
108
15.1M
    l)
109
110
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
111
112
60.8M
#define HOST_c2l(c, l) (l = (((unsigned long)(*((c)++)))), \
113
60.8M
    l |= (((unsigned long)(*((c)++))) << 8),               \
114
60.8M
    l |= (((unsigned long)(*((c)++))) << 16),              \
115
60.8M
    l |= (((unsigned long)(*((c)++))) << 24))
116
27.3M
#define HOST_l2c(l, c) (*((c)++) = (unsigned char)(((l)) & 0xff), \
117
27.3M
    *((c)++) = (unsigned char)(((l) >> 8) & 0xff),                \
118
27.3M
    *((c)++) = (unsigned char)(((l) >> 16) & 0xff),               \
119
27.3M
    *((c)++) = (unsigned char)(((l) >> 24) & 0xff),               \
120
27.3M
    l)
121
122
#endif
123
124
/*
125
 * Time for some action :-)
126
 */
127
128
int HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len)
129
323M
{
130
323M
    const unsigned char *data = data_;
131
323M
    unsigned char *p;
132
323M
    HASH_LONG l;
133
323M
    size_t n;
134
135
323M
    if (len == 0)
136
0
        return 1;
137
138
323M
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
323M
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
323M
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
323M
    c->Nl = l;
144
145
323M
    n = c->num;
146
323M
    if (n != 0) {
147
159M
        p = (unsigned char *)c->data;
148
149
159M
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
79.4M
            memcpy(p + n, data, HASH_CBLOCK - n);
151
79.4M
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
79.4M
            n = HASH_CBLOCK - n;
153
79.4M
            data += n;
154
79.4M
            len -= n;
155
79.4M
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
79.4M
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
79.5M
        } else {
164
79.5M
            memcpy(p + n, data, len);
165
79.5M
            c->num += (unsigned int)len;
166
79.5M
            return 1;
167
79.5M
        }
168
159M
    }
169
170
243M
    n = len / HASH_CBLOCK;
171
243M
    if (n > 0) {
172
1.48M
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
1.48M
        n *= HASH_CBLOCK;
174
1.48M
        data += n;
175
1.48M
        len -= n;
176
1.48M
    }
177
178
243M
    if (len != 0) {
179
163M
        p = (unsigned char *)c->data;
180
163M
        c->num = (unsigned int)len;
181
163M
        memcpy(p, data, len);
182
163M
    }
183
243M
    return 1;
184
323M
}
Unexecuted instantiation: MD4_Update
MD5_Update
Line
Count
Source
129
629k
{
130
629k
    const unsigned char *data = data_;
131
629k
    unsigned char *p;
132
629k
    HASH_LONG l;
133
629k
    size_t n;
134
135
629k
    if (len == 0)
136
0
        return 1;
137
138
629k
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
629k
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
629k
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
629k
    c->Nl = l;
144
145
629k
    n = c->num;
146
629k
    if (n != 0) {
147
169k
        p = (unsigned char *)c->data;
148
149
169k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
82.5k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
82.5k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
82.5k
            n = HASH_CBLOCK - n;
153
82.5k
            data += n;
154
82.5k
            len -= n;
155
82.5k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
82.5k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
86.8k
        } else {
164
86.8k
            memcpy(p + n, data, len);
165
86.8k
            c->num += (unsigned int)len;
166
86.8k
            return 1;
167
86.8k
        }
168
169k
    }
169
170
543k
    n = len / HASH_CBLOCK;
171
543k
    if (n > 0) {
172
74.6k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
74.6k
        n *= HASH_CBLOCK;
174
74.6k
        data += n;
175
74.6k
        len -= n;
176
74.6k
    }
177
178
543k
    if (len != 0) {
179
498k
        p = (unsigned char *)c->data;
180
498k
        c->num = (unsigned int)len;
181
498k
        memcpy(p, data, len);
182
498k
    }
183
543k
    return 1;
184
629k
}
RIPEMD160_Update
Line
Count
Source
129
1.91M
{
130
1.91M
    const unsigned char *data = data_;
131
1.91M
    unsigned char *p;
132
1.91M
    HASH_LONG l;
133
1.91M
    size_t n;
134
135
1.91M
    if (len == 0)
136
0
        return 1;
137
138
1.91M
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
1.91M
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
1.91M
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
1.91M
    c->Nl = l;
144
145
1.91M
    n = c->num;
146
1.91M
    if (n != 0) {
147
542
        p = (unsigned char *)c->data;
148
149
542
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
181
            memcpy(p + n, data, HASH_CBLOCK - n);
151
181
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
181
            n = HASH_CBLOCK - n;
153
181
            data += n;
154
181
            len -= n;
155
181
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
181
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
361
        } else {
164
361
            memcpy(p + n, data, len);
165
361
            c->num += (unsigned int)len;
166
361
            return 1;
167
361
        }
168
542
    }
169
170
1.91M
    n = len / HASH_CBLOCK;
171
1.91M
    if (n > 0) {
172
2.85k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
2.85k
        n *= HASH_CBLOCK;
174
2.85k
        data += n;
175
2.85k
        len -= n;
176
2.85k
    }
177
178
1.91M
    if (len != 0) {
179
1.91M
        p = (unsigned char *)c->data;
180
1.91M
        c->num = (unsigned int)len;
181
1.91M
        memcpy(p, data, len);
182
1.91M
    }
183
1.91M
    return 1;
184
1.91M
}
SHA1_Update
Line
Count
Source
129
1.21M
{
130
1.21M
    const unsigned char *data = data_;
131
1.21M
    unsigned char *p;
132
1.21M
    HASH_LONG l;
133
1.21M
    size_t n;
134
135
1.21M
    if (len == 0)
136
0
        return 1;
137
138
1.21M
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
1.21M
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
1.21M
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
1.21M
    c->Nl = l;
144
145
1.21M
    n = c->num;
146
1.21M
    if (n != 0) {
147
126k
        p = (unsigned char *)c->data;
148
149
126k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
68.2k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
68.2k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
68.2k
            n = HASH_CBLOCK - n;
153
68.2k
            data += n;
154
68.2k
            len -= n;
155
68.2k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
68.2k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
68.2k
        } else {
164
58.0k
            memcpy(p + n, data, len);
165
58.0k
            c->num += (unsigned int)len;
166
58.0k
            return 1;
167
58.0k
        }
168
126k
    }
169
170
1.15M
    n = len / HASH_CBLOCK;
171
1.15M
    if (n > 0) {
172
435k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
435k
        n *= HASH_CBLOCK;
174
435k
        data += n;
175
435k
        len -= n;
176
435k
    }
177
178
1.15M
    if (len != 0) {
179
999k
        p = (unsigned char *)c->data;
180
999k
        c->num = (unsigned int)len;
181
999k
        memcpy(p, data, len);
182
999k
    }
183
1.15M
    return 1;
184
1.21M
}
SHA256_Update
Line
Count
Source
129
319M
{
130
319M
    const unsigned char *data = data_;
131
319M
    unsigned char *p;
132
319M
    HASH_LONG l;
133
319M
    size_t n;
134
135
319M
    if (len == 0)
136
0
        return 1;
137
138
319M
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
319M
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
319M
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
319M
    c->Nl = l;
144
145
319M
    n = c->num;
146
319M
    if (n != 0) {
147
158M
        p = (unsigned char *)c->data;
148
149
158M
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
79.3M
            memcpy(p + n, data, HASH_CBLOCK - n);
151
79.3M
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
79.3M
            n = HASH_CBLOCK - n;
153
79.3M
            data += n;
154
79.3M
            len -= n;
155
79.3M
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
79.3M
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
79.4M
        } else {
164
79.4M
            memcpy(p + n, data, len);
165
79.4M
            c->num += (unsigned int)len;
166
79.4M
            return 1;
167
79.4M
        }
168
158M
    }
169
170
239M
    n = len / HASH_CBLOCK;
171
239M
    if (n > 0) {
172
967k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
967k
        n *= HASH_CBLOCK;
174
967k
        data += n;
175
967k
        len -= n;
176
967k
    }
177
178
239M
    if (len != 0) {
179
159M
        p = (unsigned char *)c->data;
180
159M
        c->num = (unsigned int)len;
181
159M
        memcpy(p, data, len);
182
159M
    }
183
239M
    return 1;
184
319M
}
ossl_sm3_update
Line
Count
Source
129
5.10k
{
130
5.10k
    const unsigned char *data = data_;
131
5.10k
    unsigned char *p;
132
5.10k
    HASH_LONG l;
133
5.10k
    size_t n;
134
135
5.10k
    if (len == 0)
136
0
        return 1;
137
138
5.10k
    l = (c->Nl + (((HASH_LONG)len) << 3)) & 0xffffffffUL;
139
5.10k
    if (l < c->Nl) /* overflow */
140
0
        c->Nh++;
141
5.10k
    c->Nh += (HASH_LONG)(len >> 29); /* might cause compiler warning on
142
                                      * 16-bit */
143
5.10k
    c->Nl = l;
144
145
5.10k
    n = c->num;
146
5.10k
    if (n != 0) {
147
476
        p = (unsigned char *)c->data;
148
149
476
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
176
            memcpy(p + n, data, HASH_CBLOCK - n);
151
176
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
176
            n = HASH_CBLOCK - n;
153
176
            data += n;
154
176
            len -= n;
155
176
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
176
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
300
        } else {
164
300
            memcpy(p + n, data, len);
165
300
            c->num += (unsigned int)len;
166
300
            return 1;
167
300
        }
168
476
    }
169
170
4.80k
    n = len / HASH_CBLOCK;
171
4.80k
    if (n > 0) {
172
2.12k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
2.12k
        n *= HASH_CBLOCK;
174
2.12k
        data += n;
175
2.12k
        len -= n;
176
2.12k
    }
177
178
4.80k
    if (len != 0) {
179
2.82k
        p = (unsigned char *)c->data;
180
2.82k
        c->num = (unsigned int)len;
181
2.82k
        memcpy(p, data, len);
182
2.82k
    }
183
4.80k
    return 1;
184
5.10k
}
185
186
void HASH_TRANSFORM(HASH_CTX *c, const unsigned char *data)
187
1.37M
{
188
1.37M
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
1.37M
}
Unexecuted instantiation: MD4_Transform
Unexecuted instantiation: MD5_Transform
Unexecuted instantiation: RIPEMD160_Transform
SHA1_Transform
Line
Count
Source
187
1.16M
{
188
1.16M
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
1.16M
}
SHA256_Transform
Line
Count
Source
187
210k
{
188
210k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
210k
}
Unexecuted instantiation: ossl_sm3_transform
190
191
int HASH_FINAL(unsigned char *md, HASH_CTX *c)
192
6.13M
{
193
6.13M
    unsigned char *p = (unsigned char *)c->data;
194
6.13M
    size_t n = c->num;
195
196
6.13M
    p[n] = 0x80; /* there is always room for one */
197
6.13M
    n++;
198
199
6.13M
    if (n > (HASH_CBLOCK - 8)) {
200
98.9k
        memset(p + n, 0, HASH_CBLOCK - n);
201
98.9k
        n = 0;
202
98.9k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
98.9k
    }
204
6.13M
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
6.13M
    p += HASH_CBLOCK - 8;
207
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
2.10M
    (void)HOST_l2c(c->Nh, p);
209
2.10M
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
4.02M
    (void)HOST_l2c(c->Nl, p);
212
4.02M
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
6.13M
    p -= HASH_CBLOCK;
215
6.13M
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
6.13M
    c->num = 0;
217
6.13M
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
6.13M
    HASH_MAKE_STRING(c, md);
223
153k
#endif
224
225
153k
    return 1;
226
6.13M
}
Unexecuted instantiation: MD4_Final
MD5_Final
Line
Count
Source
192
808k
{
193
808k
    unsigned char *p = (unsigned char *)c->data;
194
808k
    size_t n = c->num;
195
196
808k
    p[n] = 0x80; /* there is always room for one */
197
808k
    n++;
198
199
808k
    if (n > (HASH_CBLOCK - 8)) {
200
13.7k
        memset(p + n, 0, HASH_CBLOCK - n);
201
13.7k
        n = 0;
202
13.7k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
13.7k
    }
204
808k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
808k
    p += HASH_CBLOCK - 8;
207
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
808k
    (void)HOST_l2c(c->Nl, p);
212
808k
    (void)HOST_l2c(c->Nh, p);
213
808k
#endif
214
808k
    p -= HASH_CBLOCK;
215
808k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
808k
    c->num = 0;
217
808k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
808k
    HASH_MAKE_STRING(c, md);
223
808k
#endif
224
225
808k
    return 1;
226
808k
}
RIPEMD160_Final
Line
Count
Source
192
3.21M
{
193
3.21M
    unsigned char *p = (unsigned char *)c->data;
194
3.21M
    size_t n = c->num;
195
196
3.21M
    p[n] = 0x80; /* there is always room for one */
197
3.21M
    n++;
198
199
3.21M
    if (n > (HASH_CBLOCK - 8)) {
200
218
        memset(p + n, 0, HASH_CBLOCK - n);
201
218
        n = 0;
202
218
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
218
    }
204
3.21M
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
3.21M
    p += HASH_CBLOCK - 8;
207
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
3.21M
    (void)HOST_l2c(c->Nl, p);
212
3.21M
    (void)HOST_l2c(c->Nh, p);
213
3.21M
#endif
214
3.21M
    p -= HASH_CBLOCK;
215
3.21M
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
3.21M
    c->num = 0;
217
3.21M
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
3.21M
    HASH_MAKE_STRING(c, md);
223
3.21M
#endif
224
225
3.21M
    return 1;
226
3.21M
}
SHA1_Final
Line
Count
Source
192
1.94M
{
193
1.94M
    unsigned char *p = (unsigned char *)c->data;
194
1.94M
    size_t n = c->num;
195
196
1.94M
    p[n] = 0x80; /* there is always room for one */
197
1.94M
    n++;
198
199
1.94M
    if (n > (HASH_CBLOCK - 8)) {
200
84.3k
        memset(p + n, 0, HASH_CBLOCK - n);
201
84.3k
        n = 0;
202
84.3k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
84.3k
    }
204
1.94M
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
1.94M
    p += HASH_CBLOCK - 8;
207
1.94M
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
1.94M
    (void)HOST_l2c(c->Nh, p);
209
1.94M
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
1.94M
    p -= HASH_CBLOCK;
215
1.94M
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
1.94M
    c->num = 0;
217
1.94M
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
1.94M
    HASH_MAKE_STRING(c, md);
223
1.94M
#endif
224
225
1.94M
    return 1;
226
1.94M
}
SHA256_Final
Line
Count
Source
192
153k
{
193
153k
    unsigned char *p = (unsigned char *)c->data;
194
153k
    size_t n = c->num;
195
196
153k
    p[n] = 0x80; /* there is always room for one */
197
153k
    n++;
198
199
153k
    if (n > (HASH_CBLOCK - 8)) {
200
574
        memset(p + n, 0, HASH_CBLOCK - n);
201
574
        n = 0;
202
574
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
574
    }
204
153k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
153k
    p += HASH_CBLOCK - 8;
207
153k
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
153k
    (void)HOST_l2c(c->Nh, p);
209
153k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
153k
    p -= HASH_CBLOCK;
215
153k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
153k
    c->num = 0;
217
153k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
153k
    HASH_MAKE_STRING(c, md);
223
153k
#endif
224
225
153k
    return 1;
226
153k
}
ossl_sm3_final
Line
Count
Source
192
2.68k
{
193
2.68k
    unsigned char *p = (unsigned char *)c->data;
194
2.68k
    size_t n = c->num;
195
196
2.68k
    p[n] = 0x80; /* there is always room for one */
197
2.68k
    n++;
198
199
2.68k
    if (n > (HASH_CBLOCK - 8)) {
200
71
        memset(p + n, 0, HASH_CBLOCK - n);
201
71
        n = 0;
202
71
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
71
    }
204
2.68k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
2.68k
    p += HASH_CBLOCK - 8;
207
2.68k
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
208
2.68k
    (void)HOST_l2c(c->Nh, p);
209
2.68k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
2.68k
    p -= HASH_CBLOCK;
215
2.68k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
2.68k
    c->num = 0;
217
2.68k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
#error "HASH_MAKE_STRING must be defined!"
221
#else
222
2.68k
    HASH_MAKE_STRING(c, md);
223
2.68k
#endif
224
225
2.68k
    return 1;
226
2.68k
}
227
228
#ifndef MD32_REG_T
229
#if defined(__alpha) || defined(__sparcv9) || defined(__mips)
230
#define MD32_REG_T long
231
/*
232
 * This comment was originally written for MD5, which is why it
233
 * discusses A-D. But it basically applies to all 32-bit digests,
234
 * which is why it was moved to common header file.
235
 *
236
 * In case you wonder why A-D are declared as long and not
237
 * as MD5_LONG. Doing so results in slight performance
238
 * boost on LP64 architectures. The catch is we don't
239
 * really care if 32 MSBs of a 64-bit register get polluted
240
 * with eventual overflows as we *save* only 32 LSBs in
241
 * *either* case. Now declaring 'em long excuses the compiler
242
 * from keeping 32 MSBs zeroed resulting in 13% performance
243
 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
244
 * Well, to be honest it should say that this *prevents*
245
 * performance degradation.
246
 */
247
#else
248
/*
249
 * Above is not absolute and there are LP64 compilers that
250
 * generate better code if MD32_REG_T is defined int. The above
251
 * pre-processor condition reflects the circumstances under which
252
 * the conclusion was made and is subject to further extension.
253
 */
254
#define MD32_REG_T int
255
#endif
256
#endif