Coverage Report

Created: 2026-02-14 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/providers/implementations/rands/seeding/rand_unix.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#ifndef _GNU_SOURCE
11
#define _GNU_SOURCE
12
#endif
13
#include "../e_os.h"
14
#include <stdio.h>
15
#include "internal/cryptlib.h"
16
#include <openssl/rand.h>
17
#include <openssl/crypto.h>
18
#include "crypto/rand_pool.h"
19
#include "crypto/rand.h"
20
#include <stdio.h>
21
#include "internal/dso.h"
22
#include "prov/seeding.h"
23
24
#ifdef __linux
25
#include <sys/syscall.h>
26
#ifdef DEVRANDOM_WAIT
27
#include <sys/shm.h>
28
#include <sys/utsname.h>
29
#endif
30
#endif
31
#if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
32
#include <sys/types.h>
33
#include <sys/sysctl.h>
34
#include <sys/param.h>
35
#endif
36
#if defined(__OpenBSD__)
37
#include <sys/param.h>
38
#endif
39
#if defined(__DragonFly__)
40
#include <sys/param.h>
41
#include <sys/random.h>
42
#endif
43
44
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
45
    || defined(__DJGPP__)
46
#include <sys/types.h>
47
#include <sys/stat.h>
48
#include <fcntl.h>
49
#include <unistd.h>
50
#include <sys/time.h>
51
52
static uint64_t get_time_stamp(void);
53
static uint64_t get_timer_bits(void);
54
55
/* Macro to convert two thirty two bit values into a sixty four bit one */
56
435
#define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
57
58
/*
59
 * Check for the existence and support of POSIX timers.  The standard
60
 * says that the _POSIX_TIMERS macro will have a positive value if they
61
 * are available.
62
 *
63
 * However, we want an additional constraint: that the timer support does
64
 * not require an extra library dependency.  Early versions of glibc
65
 * require -lrt to be specified on the link line to access the timers,
66
 * so this needs to be checked for.
67
 *
68
 * It is worse because some libraries define __GLIBC__ but don't
69
 * support the version testing macro (e.g. uClibc).  This means
70
 * an extra check is needed.
71
 *
72
 * The final condition is:
73
 *      "have posix timers and either not glibc or glibc without -lrt"
74
 *
75
 * The nested #if sequences are required to avoid using a parameterised
76
 * macro that might be undefined.
77
 */
78
#undef OSSL_POSIX_TIMER_OKAY
79
/* On some systems, _POSIX_TIMERS is defined but empty.
80
 * Subtracting by 0 when comparing avoids an error in this case. */
81
#if defined(_POSIX_TIMERS) && _POSIX_TIMERS - 0 > 0
82
#if defined(__GLIBC__)
83
#if defined(__GLIBC_PREREQ)
84
#if __GLIBC_PREREQ(2, 17)
85
#define OSSL_POSIX_TIMER_OKAY
86
#endif
87
#endif
88
#else
89
#define OSSL_POSIX_TIMER_OKAY
90
#endif
91
#endif
92
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
93
          || defined(__DJGPP__) */
94
95
#if defined(OPENSSL_RAND_SEED_NONE)
96
/* none means none. this simplifies the following logic */
97
#undef OPENSSL_RAND_SEED_OS
98
#undef OPENSSL_RAND_SEED_GETRANDOM
99
#undef OPENSSL_RAND_SEED_LIBRANDOM
100
#undef OPENSSL_RAND_SEED_DEVRANDOM
101
#undef OPENSSL_RAND_SEED_RDTSC
102
#undef OPENSSL_RAND_SEED_RDCPU
103
#undef OPENSSL_RAND_SEED_EGD
104
#endif
105
106
#if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
107
#error "UEFI only supports seeding NONE"
108
#endif
109
110
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
111
    || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS)  \
112
    || defined(OPENSSL_SYS_UEFI))
113
114
#if defined(OPENSSL_SYS_VOS)
115
116
#ifndef OPENSSL_RAND_SEED_OS
117
#error "Unsupported seeding method configured; must be os"
118
#endif
119
120
#if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
121
#error "Unsupported HP-PA and IA32 at the same time."
122
#endif
123
#if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
124
#error "Must have one of HP-PA or IA32"
125
#endif
126
127
/*
128
 * The following algorithm repeatedly samples the real-time clock (RTC) to
129
 * generate a sequence of unpredictable data.  The algorithm relies upon the
130
 * uneven execution speed of the code (due to factors such as cache misses,
131
 * interrupts, bus activity, and scheduling) and upon the rather large
132
 * relative difference between the speed of the clock and the rate at which
133
 * it can be read.  If it is ported to an environment where execution speed
134
 * is more constant or where the RTC ticks at a much slower rate, or the
135
 * clock can be read with fewer instructions, it is likely that the results
136
 * would be far more predictable.  This should only be used for legacy
137
 * platforms.
138
 *
139
 * As a precaution, we assume only 2 bits of entropy per byte.
140
 */
141
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
142
{
143
    short int code;
144
    int i, k;
145
    size_t bytes_needed;
146
    struct timespec ts;
147
    unsigned char v;
148
#ifdef OPENSSL_SYS_VOS_HPPA
149
    long duration;
150
    extern void s$sleep(long *_duration, short int *_code);
151
#else
152
    long long duration;
153
    extern void s$sleep2(long long *_duration, short int *_code);
154
#endif
155
156
    bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
157
158
    for (i = 0; i < bytes_needed; i++) {
159
        /*
160
         * burn some cpu; hope for interrupts, cache collisions, bus
161
         * interference, etc.
162
         */
163
        for (k = 0; k < 99; k++)
164
            ts.tv_nsec = random();
165
166
#ifdef OPENSSL_SYS_VOS_HPPA
167
        /* sleep for 1/1024 of a second (976 us).  */
168
        duration = 1;
169
        s$sleep(&duration, &code);
170
#else
171
        /* sleep for 1/65536 of a second (15 us).  */
172
        duration = 1;
173
        s$sleep2(&duration, &code);
174
#endif
175
176
        /* Get wall clock time, take 8 bits. */
177
        clock_gettime(CLOCK_REALTIME, &ts);
178
        v = (unsigned char)(ts.tv_nsec & 0xFF);
179
        ossl_rand_pool_add(pool, arg, &v, sizeof(v), 2);
180
    }
181
    return ossl_rand_pool_entropy_available(pool);
182
}
183
184
void ossl_rand_pool_cleanup(void)
185
{
186
}
187
188
void ossl_rand_pool_keep_random_devices_open(int keep)
189
{
190
}
191
192
#else
193
194
#if defined(OPENSSL_RAND_SEED_EGD) && (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
195
#error "Seeding uses EGD but EGD is turned off or no device given"
196
#endif
197
198
#if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
199
#error "Seeding uses urandom but DEVRANDOM is not configured"
200
#endif
201
202
#if defined(OPENSSL_RAND_SEED_OS)
203
#if !defined(DEVRANDOM)
204
#error "OS seeding requires DEVRANDOM to be configured"
205
#endif
206
#define OPENSSL_RAND_SEED_GETRANDOM
207
#define OPENSSL_RAND_SEED_DEVRANDOM
208
#endif
209
210
#if defined(OPENSSL_RAND_SEED_LIBRANDOM)
211
#error "librandom not (yet) supported"
212
#endif
213
214
#if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
215
/*
216
 * sysctl_random(): Use sysctl() to read a random number from the kernel
217
 * Returns the number of bytes returned in buf on success, -1 on failure.
218
 */
219
static ssize_t sysctl_random(char *buf, size_t buflen)
220
{
221
    int mib[2];
222
    size_t done = 0;
223
    size_t len;
224
225
    /*
226
     * Note: sign conversion between size_t and ssize_t is safe even
227
     * without a range check, see comment in syscall_random()
228
     */
229
230
    /*
231
     * On FreeBSD old implementations returned longs, newer versions support
232
     * variable sizes up to 256 byte. The code below would not work properly
233
     * when the sysctl returns long and we want to request something not a
234
     * multiple of longs, which should never be the case.
235
     */
236
#if defined(__FreeBSD__)
237
    if (!ossl_assert(buflen % sizeof(long) == 0)) {
238
        errno = EINVAL;
239
        return -1;
240
    }
241
#endif
242
243
    /*
244
     * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
245
     * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
246
     * it returns a variable number of bytes with the current version supporting
247
     * up to 256 bytes.
248
     * Just return an error on older NetBSD versions.
249
     */
250
#if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
251
    errno = ENOSYS;
252
    return -1;
253
#endif
254
255
    mib[0] = CTL_KERN;
256
    mib[1] = KERN_ARND;
257
258
    do {
259
        len = buflen > 256 ? 256 : buflen;
260
        if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
261
            return done > 0 ? done : -1;
262
        done += len;
263
        buf += len;
264
        buflen -= len;
265
    } while (buflen > 0);
266
267
    return done;
268
}
269
#endif
270
271
#if defined(OPENSSL_RAND_SEED_GETRANDOM)
272
273
#if defined(__linux) && !defined(__NR_getrandom)
274
#if defined(__arm__)
275
#define __NR_getrandom (__NR_SYSCALL_BASE + 384)
276
#elif defined(__i386__)
277
#define __NR_getrandom 355
278
#elif defined(__x86_64__)
279
#if defined(__ILP32__)
280
#define __NR_getrandom (__X32_SYSCALL_BIT + 318)
281
#else
282
#define __NR_getrandom 318
283
#endif
284
#elif defined(__xtensa__)
285
#define __NR_getrandom 338
286
#elif defined(__s390__) || defined(__s390x__)
287
#define __NR_getrandom 349
288
#elif defined(__bfin__)
289
#define __NR_getrandom 389
290
#elif defined(__powerpc__)
291
#define __NR_getrandom 359
292
#elif defined(__mips__) || defined(__mips64)
293
#if _MIPS_SIM == _MIPS_SIM_ABI32
294
#define __NR_getrandom (__NR_Linux + 353)
295
#elif _MIPS_SIM == _MIPS_SIM_ABI64
296
#define __NR_getrandom (__NR_Linux + 313)
297
#elif _MIPS_SIM == _MIPS_SIM_NABI32
298
#define __NR_getrandom (__NR_Linux + 317)
299
#endif
300
#elif defined(__hppa__)
301
#define __NR_getrandom (__NR_Linux + 339)
302
#elif defined(__sparc__)
303
#define __NR_getrandom 347
304
#elif defined(__ia64__)
305
#define __NR_getrandom 1339
306
#elif defined(__alpha__)
307
#define __NR_getrandom 511
308
#elif defined(__sh__)
309
#if defined(__SH5__)
310
#define __NR_getrandom 373
311
#else
312
#define __NR_getrandom 384
313
#endif
314
#elif defined(__avr32__)
315
#define __NR_getrandom 317
316
#elif defined(__microblaze__)
317
#define __NR_getrandom 385
318
#elif defined(__m68k__)
319
#define __NR_getrandom 352
320
#elif defined(__cris__)
321
#define __NR_getrandom 356
322
#elif defined(__aarch64__)
323
#define __NR_getrandom 278
324
#else /* generic */
325
#define __NR_getrandom 278
326
#endif
327
#endif
328
329
/*
330
 * syscall_random(): Try to get random data using a system call
331
 * returns the number of bytes returned in buf, or < 0 on error.
332
 */
333
static ssize_t syscall_random(void *buf, size_t buflen)
334
1.17k
{
335
    /*
336
     * Note: 'buflen' equals the size of the buffer which is used by the
337
     * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
338
     *
339
     *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
340
     *
341
     * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
342
     * between size_t and ssize_t is safe even without a range check.
343
     */
344
345
    /*
346
     * Do runtime detection to find getentropy().
347
     *
348
     * Known OSs that should support this:
349
     * - Darwin since 16 (OSX 10.12, IOS 10.0).
350
     * - Solaris since 11.3
351
     * - OpenBSD since 5.6
352
     * - Linux since 3.17 with glibc 2.25
353
     * - FreeBSD since 12.0 (1200061)
354
     *
355
     * Note: Sometimes getentropy() can be provided but not implemented
356
     * internally. So we need to check errno for ENOSYS
357
     */
358
1.17k
#if !defined(__DragonFly__) && !defined(__NetBSD__)
359
1.17k
#if defined(__GNUC__) && __GNUC__ >= 2 && defined(__ELF__) && !defined(__hpux)
360
1.17k
    extern int getentropy(void *buffer, size_t length) __attribute__((weak));
361
362
1.17k
    if (getentropy != NULL) {
363
1.17k
        if (getentropy(buf, buflen) == 0)
364
1.17k
            return (ssize_t)buflen;
365
0
        if (errno != ENOSYS)
366
0
            return -1;
367
0
    }
368
#elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
369
370
    if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
371
        return (ssize_t)buflen;
372
373
    return -1;
374
#else
375
    union {
376
        void *p;
377
        int (*f)(void *buffer, size_t length);
378
    } p_getentropy;
379
380
    /*
381
     * We could cache the result of the lookup, but we normally don't
382
     * call this function often.
383
     */
384
    ERR_set_mark();
385
    p_getentropy.p = DSO_global_lookup("getentropy");
386
    ERR_pop_to_mark();
387
    if (p_getentropy.p != NULL)
388
        return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
389
#endif
390
0
#endif /* !__DragonFly__ */
391
392
    /* Linux supports this since version 3.17 */
393
0
#if defined(__linux) && defined(__NR_getrandom)
394
0
    return syscall(__NR_getrandom, buf, buflen, 0);
395
#elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
396
    return sysctl_random(buf, buflen);
397
#elif (defined(__DragonFly__) && __DragonFly_version >= 500700) \
398
    || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000)
399
    return getrandom(buf, buflen, 0);
400
#else
401
    errno = ENOSYS;
402
    return -1;
403
#endif
404
1.17k
}
405
#endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
406
407
#if defined(OPENSSL_RAND_SEED_DEVRANDOM)
408
static const char *random_device_paths[] = { DEVRANDOM };
409
static struct random_device {
410
    int fd;
411
    dev_t dev;
412
    ino_t ino;
413
    mode_t mode;
414
    dev_t rdev;
415
} random_devices[OSSL_NELEM(random_device_paths)];
416
static int keep_random_devices_open = 1;
417
418
#if defined(__linux) && defined(DEVRANDOM_WAIT) \
419
    && defined(OPENSSL_RAND_SEED_GETRANDOM)
420
static void *shm_addr;
421
422
static void cleanup_shm(void)
423
0
{
424
0
    shmdt(shm_addr);
425
0
}
426
427
/*
428
 * Ensure that the system randomness source has been adequately seeded.
429
 * This is done by having the first start of libcrypto, wait until the device
430
 * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
431
 * of the library and later reseedings do not need to do this.
432
 */
433
static int wait_random_seeded(void)
434
0
{
435
0
    static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
436
0
    static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
437
0
    int kernel[2];
438
0
    int shm_id, fd, r;
439
0
    char c, *p;
440
0
    struct utsname un;
441
0
    fd_set fds;
442
443
0
    if (!seeded) {
444
        /* See if anything has created the global seeded indication */
445
0
        if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
446
            /*
447
             * Check the kernel's version and fail if it is too recent.
448
             *
449
             * Linux kernels from 4.8 onwards do not guarantee that
450
             * /dev/urandom is properly seeded when /dev/random becomes
451
             * readable.  However, such kernels support the getentropy(2)
452
             * system call and this should always succeed which renders
453
             * this alternative but essentially identical source moot.
454
             */
455
0
            if (uname(&un) == 0) {
456
0
                kernel[0] = atoi(un.release);
457
0
                p = strchr(un.release, '.');
458
0
                kernel[1] = p == NULL ? 0 : atoi(p + 1);
459
0
                if (kernel[0] > kernel_version[0]
460
0
                    || (kernel[0] == kernel_version[0]
461
0
                        && kernel[1] >= kernel_version[1])) {
462
0
                    return 0;
463
0
                }
464
0
            }
465
            /* Open /dev/random and wait for it to be readable */
466
0
            if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
467
0
                if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
468
0
                    FD_ZERO(&fds);
469
0
                    FD_SET(fd, &fds);
470
0
                    while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
471
0
                        && errno == EINTR)
472
0
                        ;
473
0
                } else {
474
0
                    while ((r = read(fd, &c, 1)) < 0 && errno == EINTR)
475
0
                        ;
476
0
                }
477
0
                close(fd);
478
0
                if (r == 1) {
479
0
                    seeded = 1;
480
                    /* Create the shared memory indicator */
481
0
                    shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
482
0
                        IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
483
0
                }
484
0
            }
485
0
        }
486
0
        if (shm_id != -1) {
487
0
            seeded = 1;
488
            /*
489
             * Map the shared memory to prevent its premature destruction.
490
             * If this call fails, it isn't a big problem.
491
             */
492
0
            shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
493
0
            if (shm_addr != (void *)-1)
494
0
                OPENSSL_atexit(&cleanup_shm);
495
0
        }
496
0
    }
497
0
    return seeded;
498
0
}
499
#else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
500
static int wait_random_seeded(void)
501
{
502
    return 1;
503
}
504
#endif
505
506
/*
507
 * Verify that the file descriptor associated with the random source is
508
 * still valid. The rationale for doing this is the fact that it is not
509
 * uncommon for daemons to close all open file handles when daemonizing.
510
 * So the handle might have been closed or even reused for opening
511
 * another file.
512
 */
513
static int check_random_device(struct random_device *rd)
514
244
{
515
244
    struct stat st;
516
517
244
    return rd->fd != -1
518
0
        && fstat(rd->fd, &st) != -1
519
0
        && rd->dev == st.st_dev
520
0
        && rd->ino == st.st_ino
521
0
        && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
522
0
        && rd->rdev == st.st_rdev;
523
244
}
524
525
/*
526
 * Open a random device if required and return its file descriptor or -1 on error
527
 */
528
static int get_random_device(size_t n)
529
0
{
530
0
    struct stat st;
531
0
    struct random_device *rd = &random_devices[n];
532
533
    /* reuse existing file descriptor if it is (still) valid */
534
0
    if (check_random_device(rd))
535
0
        return rd->fd;
536
537
    /* open the random device ... */
538
0
    if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
539
0
        return rd->fd;
540
541
    /* ... and cache its relevant stat(2) data */
542
0
    if (fstat(rd->fd, &st) != -1) {
543
0
        rd->dev = st.st_dev;
544
0
        rd->ino = st.st_ino;
545
0
        rd->mode = st.st_mode;
546
0
        rd->rdev = st.st_rdev;
547
0
    } else {
548
0
        close(rd->fd);
549
0
        rd->fd = -1;
550
0
    }
551
552
0
    return rd->fd;
553
0
}
554
555
/*
556
 * Close a random device making sure it is a random device
557
 */
558
static void close_random_device(size_t n)
559
244
{
560
244
    struct random_device *rd = &random_devices[n];
561
562
244
    if (check_random_device(rd))
563
0
        close(rd->fd);
564
244
    rd->fd = -1;
565
244
}
566
567
int ossl_rand_pool_init(void)
568
79
{
569
79
    size_t i;
570
571
395
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
572
316
        random_devices[i].fd = -1;
573
574
79
    return 1;
575
79
}
576
577
void ossl_rand_pool_cleanup(void)
578
61
{
579
61
    size_t i;
580
581
305
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
582
244
        close_random_device(i);
583
61
}
584
585
void ossl_rand_pool_keep_random_devices_open(int keep)
586
0
{
587
0
    if (!keep)
588
0
        ossl_rand_pool_cleanup();
589
590
0
    keep_random_devices_open = keep;
591
0
}
592
593
#else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
594
595
int ossl_rand_pool_init(void)
596
{
597
    return 1;
598
}
599
600
void ossl_rand_pool_cleanup(void)
601
{
602
}
603
604
void ossl_rand_pool_keep_random_devices_open(int keep)
605
{
606
}
607
608
#endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
609
610
/*
611
 * Try the various seeding methods in turn, exit when successful.
612
 *
613
 * If more than one entropy source is available, is it
614
 * preferable to stop as soon as enough entropy has been collected
615
 * (as favored by @rsalz) or should one rather be defensive and add
616
 * more entropy than requested and/or from different sources?
617
 *
618
 * Currently, the user can select multiple entropy sources in the
619
 * configure step, yet in practice only the first available source
620
 * will be used. A more flexible solution has been requested, but
621
 * currently it is not clear how this can be achieved without
622
 * overengineering the problem. There are many parameters which
623
 * could be taken into account when selecting the order and amount
624
 * of input from the different entropy sources (trust, quality,
625
 * possibility of blocking).
626
 */
627
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
628
1.17k
{
629
#if defined(OPENSSL_RAND_SEED_NONE)
630
    return ossl_rand_pool_entropy_available(pool);
631
#else
632
1.17k
    size_t entropy_available = 0;
633
634
1.17k
    (void)entropy_available; /* avoid compiler warning */
635
636
1.17k
#if defined(OPENSSL_RAND_SEED_GETRANDOM)
637
1.17k
    {
638
1.17k
        size_t bytes_needed;
639
1.17k
        unsigned char *buffer;
640
1.17k
        ssize_t bytes;
641
        /* Maximum allowed number of consecutive unsuccessful attempts */
642
1.17k
        int attempts = 3;
643
644
1.17k
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
645
2.35k
        while (bytes_needed != 0 && attempts-- > 0) {
646
1.17k
            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
647
1.17k
            bytes = syscall_random(buffer, bytes_needed);
648
1.17k
            if (bytes > 0) {
649
1.17k
                ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
650
1.17k
                bytes_needed -= bytes;
651
1.17k
                attempts = 3; /* reset counter after successful attempt */
652
1.17k
            } else if (bytes < 0 && errno != EINTR) {
653
0
                break;
654
0
            }
655
1.17k
        }
656
1.17k
    }
657
1.17k
    entropy_available = ossl_rand_pool_entropy_available(pool);
658
1.17k
    if (entropy_available > 0)
659
1.17k
        return entropy_available;
660
0
#endif
661
662
#if defined(OPENSSL_RAND_SEED_LIBRANDOM)
663
    {
664
        /* Not yet implemented. */
665
    }
666
#endif
667
668
0
#if defined(OPENSSL_RAND_SEED_DEVRANDOM)
669
0
    if (wait_random_seeded()) {
670
0
        size_t bytes_needed;
671
0
        unsigned char *buffer;
672
0
        size_t i;
673
674
0
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
675
0
        for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
676
0
            i++) {
677
0
            ssize_t bytes = 0;
678
            /* Maximum number of consecutive unsuccessful attempts */
679
0
            int attempts = 3;
680
0
            const int fd = get_random_device(i);
681
682
0
            if (fd == -1)
683
0
                continue;
684
685
0
            while (bytes_needed != 0 && attempts-- > 0) {
686
0
                buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
687
0
                bytes = read(fd, buffer, bytes_needed);
688
689
0
                if (bytes > 0) {
690
0
                    ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
691
0
                    bytes_needed -= bytes;
692
0
                    attempts = 3; /* reset counter on successful attempt */
693
0
                } else if (bytes < 0 && errno != EINTR) {
694
0
                    break;
695
0
                }
696
0
            }
697
0
            if (bytes < 0 || !keep_random_devices_open)
698
0
                close_random_device(i);
699
700
0
            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
701
0
        }
702
0
        entropy_available = ossl_rand_pool_entropy_available(pool);
703
0
        if (entropy_available > 0)
704
0
            return entropy_available;
705
0
    }
706
0
#endif
707
708
#if defined(OPENSSL_RAND_SEED_RDTSC)
709
    entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
710
    if (entropy_available > 0)
711
        return entropy_available;
712
#endif
713
714
#if defined(OPENSSL_RAND_SEED_RDCPU)
715
    entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
716
    if (entropy_available > 0)
717
        return entropy_available;
718
#endif
719
720
#if defined(OPENSSL_RAND_SEED_EGD)
721
    {
722
        static const char *paths[] = { DEVRANDOM_EGD, NULL };
723
        size_t bytes_needed;
724
        unsigned char *buffer;
725
        int i;
726
727
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
728
        for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
729
            size_t bytes = 0;
730
            int num;
731
732
            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
733
            num = RAND_query_egd_bytes(paths[i],
734
                buffer, (int)bytes_needed);
735
            if (num == (int)bytes_needed)
736
                bytes = bytes_needed;
737
738
            ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
739
            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
740
        }
741
        entropy_available = ossl_rand_pool_entropy_available(pool);
742
        if (entropy_available > 0)
743
            return entropy_available;
744
    }
745
#endif
746
747
0
    return ossl_rand_pool_entropy_available(pool);
748
0
#endif
749
0
}
750
#endif
751
#endif
752
753
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
754
    || defined(__DJGPP__)
755
int ossl_pool_add_nonce_data(RAND_POOL *pool)
756
435
{
757
435
    struct {
758
435
        pid_t pid;
759
435
        CRYPTO_THREAD_ID tid;
760
435
        uint64_t time;
761
435
    } data;
762
763
    /* Erase the entire structure including any padding */
764
435
    memset(&data, 0, sizeof(data));
765
766
    /*
767
     * Add process id, thread id, and a high resolution timestamp to
768
     * ensure that the nonce is unique with high probability for
769
     * different process instances.
770
     */
771
435
    data.pid = getpid();
772
435
    data.tid = CRYPTO_THREAD_get_current_id();
773
435
    data.time = get_time_stamp();
774
775
435
    return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
776
435
}
777
778
int ossl_rand_pool_add_additional_data(RAND_POOL *pool)
779
0
{
780
0
    struct {
781
0
        int fork_id;
782
0
        CRYPTO_THREAD_ID tid;
783
0
        uint64_t time;
784
0
    } data;
785
786
    /* Erase the entire structure including any padding */
787
0
    memset(&data, 0, sizeof(data));
788
789
    /*
790
     * Add some noise from the thread id and a high resolution timer.
791
     * The fork_id adds some extra fork-safety.
792
     * The thread id adds a little randomness if the drbg is accessed
793
     * concurrently (which is the case for the <master> drbg).
794
     */
795
0
    data.fork_id = openssl_get_fork_id();
796
0
    data.tid = CRYPTO_THREAD_get_current_id();
797
0
    data.time = get_timer_bits();
798
799
0
    return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
800
0
}
801
802
/*
803
 * Get the current time with the highest possible resolution
804
 *
805
 * The time stamp is added to the nonce, so it is optimized for not repeating.
806
 * The current time is ideal for this purpose, provided the computer's clock
807
 * is synchronized.
808
 */
809
static uint64_t get_time_stamp(void)
810
435
{
811
435
#if defined(OSSL_POSIX_TIMER_OKAY)
812
435
    {
813
435
        struct timespec ts;
814
815
435
        if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
816
435
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
817
435
    }
818
0
#endif
819
0
#if defined(__unix__) \
820
0
    || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
821
0
    {
822
0
        struct timeval tv;
823
824
0
        if (gettimeofday(&tv, NULL) == 0)
825
0
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
826
0
    }
827
0
#endif
828
0
    return time(NULL);
829
0
}
830
831
/*
832
 * Get an arbitrary timer value of the highest possible resolution
833
 *
834
 * The timer value is added as random noise to the additional data,
835
 * which is not considered a trusted entropy sourec, so any result
836
 * is acceptable.
837
 */
838
static uint64_t get_timer_bits(void)
839
0
{
840
0
    uint64_t res = OPENSSL_rdtsc();
841
842
0
    if (res != 0)
843
0
        return res;
844
845
#if defined(__sun) || defined(__hpux)
846
    return gethrtime();
847
#elif defined(_AIX)
848
    {
849
        timebasestruct_t t;
850
851
        read_wall_time(&t, TIMEBASE_SZ);
852
        return TWO32TO64(t.tb_high, t.tb_low);
853
    }
854
#elif defined(OSSL_POSIX_TIMER_OKAY)
855
0
    {
856
0
        struct timespec ts;
857
858
0
#ifdef CLOCK_BOOTTIME
859
0
#define CLOCK_TYPE CLOCK_BOOTTIME
860
#elif defined(_POSIX_MONOTONIC_CLOCK)
861
#define CLOCK_TYPE CLOCK_MONOTONIC
862
#else
863
#define CLOCK_TYPE CLOCK_REALTIME
864
#endif
865
866
0
        if (clock_gettime(CLOCK_TYPE, &ts) == 0)
867
0
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
868
0
    }
869
0
#endif
870
0
#if defined(__unix__) \
871
0
    || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
872
0
    {
873
0
        struct timeval tv;
874
875
0
        if (gettimeofday(&tv, NULL) == 0)
876
0
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
877
0
    }
878
0
#endif
879
0
    return time(NULL);
880
0
}
881
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
882
          || defined(__DJGPP__) */