/src/openssl33/providers/implementations/kdfs/tls1_prf.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2016-2026 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * Refer to "The TLS Protocol Version 1.0" Section 5 |
12 | | * (https://tools.ietf.org/html/rfc2246#section-5) and |
13 | | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
14 | | * (https://tools.ietf.org/html/rfc5246#section-5). |
15 | | * |
16 | | * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by: |
17 | | * |
18 | | * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR |
19 | | * P_SHA-1(S2, label + seed) |
20 | | * |
21 | | * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are |
22 | | * two halves of the secret (with the possibility of one shared byte, in the |
23 | | * case where the length of the original secret is odd). S1 is taken from the |
24 | | * first half of the secret, S2 from the second half. |
25 | | * |
26 | | * For TLS v1.2 the TLS PRF algorithm is given by: |
27 | | * |
28 | | * PRF(secret, label, seed) = P_<hash>(secret, label + seed) |
29 | | * |
30 | | * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as |
31 | | * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect, |
32 | | * unless defined otherwise by the cipher suite. |
33 | | * |
34 | | * P_<hash> is an expansion function that uses a single hash function to expand |
35 | | * a secret and seed into an arbitrary quantity of output: |
36 | | * |
37 | | * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) + |
38 | | * HMAC_<hash>(secret, A(2) + seed) + |
39 | | * HMAC_<hash>(secret, A(3) + seed) + ... |
40 | | * |
41 | | * where + indicates concatenation. P_<hash> can be iterated as many times as |
42 | | * is necessary to produce the required quantity of data. |
43 | | * |
44 | | * A(i) is defined as: |
45 | | * A(0) = seed |
46 | | * A(i) = HMAC_<hash>(secret, A(i-1)) |
47 | | */ |
48 | | |
49 | | /* |
50 | | * Low level APIs (such as DH) are deprecated for public use, but still ok for |
51 | | * internal use. |
52 | | */ |
53 | | #include "internal/deprecated.h" |
54 | | |
55 | | #include <stdio.h> |
56 | | #include <stdarg.h> |
57 | | #include <string.h> |
58 | | #include <openssl/evp.h> |
59 | | #include <openssl/kdf.h> |
60 | | #include <openssl/core_names.h> |
61 | | #include <openssl/params.h> |
62 | | #include <openssl/proverr.h> |
63 | | #include "internal/cryptlib.h" |
64 | | #include "internal/numbers.h" |
65 | | #include "crypto/evp.h" |
66 | | #include "prov/provider_ctx.h" |
67 | | #include "prov/providercommon.h" |
68 | | #include "prov/implementations.h" |
69 | | #include "prov/provider_util.h" |
70 | | #include "prov/securitycheck.h" |
71 | | #include "internal/e_os.h" |
72 | | #include "internal/safe_math.h" |
73 | | |
74 | | OSSL_SAFE_MATH_UNSIGNED(size_t, size_t) |
75 | | |
76 | | static OSSL_FUNC_kdf_newctx_fn kdf_tls1_prf_new; |
77 | | static OSSL_FUNC_kdf_dupctx_fn kdf_tls1_prf_dup; |
78 | | static OSSL_FUNC_kdf_freectx_fn kdf_tls1_prf_free; |
79 | | static OSSL_FUNC_kdf_reset_fn kdf_tls1_prf_reset; |
80 | | static OSSL_FUNC_kdf_derive_fn kdf_tls1_prf_derive; |
81 | | static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params; |
82 | | static OSSL_FUNC_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params; |
83 | | static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_tls1_prf_gettable_ctx_params; |
84 | | static OSSL_FUNC_kdf_get_ctx_params_fn kdf_tls1_prf_get_ctx_params; |
85 | | |
86 | | static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, |
87 | | const unsigned char *sec, size_t slen, |
88 | | const unsigned char *seed, size_t seed_len, |
89 | | unsigned char *out, size_t olen); |
90 | | |
91 | 0 | #define TLS_MD_MASTER_SECRET_CONST "\x6d\x61\x73\x74\x65\x72\x20\x73\x65\x63\x72\x65\x74" |
92 | 0 | #define TLS_MD_MASTER_SECRET_CONST_SIZE 13 |
93 | | |
94 | | /* TLS KDF kdf context structure */ |
95 | | typedef struct { |
96 | | void *provctx; |
97 | | |
98 | | /* MAC context for the main digest */ |
99 | | EVP_MAC_CTX *P_hash; |
100 | | /* MAC context for SHA1 for the MD5/SHA-1 combined PRF */ |
101 | | EVP_MAC_CTX *P_sha1; |
102 | | |
103 | | /* Secret value to use for PRF */ |
104 | | unsigned char *sec; |
105 | | size_t seclen; |
106 | | /* Concatenated seed data */ |
107 | | unsigned char *seed; |
108 | | size_t seedlen; |
109 | | } TLS1_PRF; |
110 | | |
111 | | static void *kdf_tls1_prf_new(void *provctx) |
112 | 66.5k | { |
113 | 66.5k | TLS1_PRF *ctx; |
114 | | |
115 | 66.5k | if (!ossl_prov_is_running()) |
116 | 0 | return NULL; |
117 | | |
118 | 66.5k | if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) != NULL) |
119 | 66.5k | ctx->provctx = provctx; |
120 | 66.5k | return ctx; |
121 | 66.5k | } |
122 | | |
123 | | static void kdf_tls1_prf_free(void *vctx) |
124 | 71.6k | { |
125 | 71.6k | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
126 | | |
127 | 71.6k | if (ctx != NULL) { |
128 | 71.6k | kdf_tls1_prf_reset(ctx); |
129 | 71.6k | OPENSSL_free(ctx); |
130 | 71.6k | } |
131 | 71.6k | } |
132 | | |
133 | | static void kdf_tls1_prf_reset(void *vctx) |
134 | 71.6k | { |
135 | 71.6k | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
136 | 71.6k | void *provctx = ctx->provctx; |
137 | | |
138 | 71.6k | EVP_MAC_CTX_free(ctx->P_hash); |
139 | 71.6k | EVP_MAC_CTX_free(ctx->P_sha1); |
140 | 71.6k | OPENSSL_clear_free(ctx->sec, ctx->seclen); |
141 | 71.6k | OPENSSL_clear_free(ctx->seed, ctx->seedlen); |
142 | 71.6k | memset(ctx, 0, sizeof(*ctx)); |
143 | 71.6k | ctx->provctx = provctx; |
144 | 71.6k | } |
145 | | |
146 | | static void *kdf_tls1_prf_dup(void *vctx) |
147 | 0 | { |
148 | 0 | const TLS1_PRF *src = (const TLS1_PRF *)vctx; |
149 | 0 | TLS1_PRF *dest; |
150 | |
|
151 | 0 | dest = kdf_tls1_prf_new(src->provctx); |
152 | 0 | if (dest != NULL) { |
153 | 0 | if (src->P_hash != NULL |
154 | 0 | && (dest->P_hash = EVP_MAC_CTX_dup(src->P_hash)) == NULL) |
155 | 0 | goto err; |
156 | 0 | if (src->P_sha1 != NULL |
157 | 0 | && (dest->P_sha1 = EVP_MAC_CTX_dup(src->P_sha1)) == NULL) |
158 | 0 | goto err; |
159 | 0 | if (!ossl_prov_memdup(src->sec, src->seclen, &dest->sec, &dest->seclen)) |
160 | 0 | goto err; |
161 | 0 | if (!ossl_prov_memdup(src->seed, src->seedlen, &dest->seed, |
162 | 0 | &dest->seedlen)) |
163 | 0 | goto err; |
164 | 0 | } |
165 | 0 | return dest; |
166 | | |
167 | 0 | err: |
168 | 0 | kdf_tls1_prf_free(dest); |
169 | 0 | return NULL; |
170 | 0 | } |
171 | | |
172 | | static int kdf_tls1_prf_derive(void *vctx, unsigned char *key, size_t keylen, |
173 | | const OSSL_PARAM params[]) |
174 | 16.1k | { |
175 | 16.1k | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
176 | 16.1k | OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); |
177 | | |
178 | 16.1k | if (!ossl_prov_is_running() || !kdf_tls1_prf_set_ctx_params(ctx, params)) |
179 | 0 | return 0; |
180 | | |
181 | 16.1k | if (ctx->P_hash == NULL) { |
182 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); |
183 | 0 | return 0; |
184 | 0 | } |
185 | 16.1k | if (ctx->sec == NULL) { |
186 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET); |
187 | 0 | return 0; |
188 | 0 | } |
189 | 16.1k | if (ctx->seedlen == 0) { |
190 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED); |
191 | 0 | return 0; |
192 | 0 | } |
193 | 16.1k | if (keylen == 0) { |
194 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH); |
195 | 0 | return 0; |
196 | 0 | } |
197 | | |
198 | | /* |
199 | | * The seed buffer is prepended with a label. |
200 | | * If EMS mode is enforced then the label "master secret" is not allowed, |
201 | | * We do the check this way since the PRF is used for other purposes, as well |
202 | | * as "extended master secret". |
203 | | */ |
204 | 16.1k | if (ossl_tls1_prf_ems_check_enabled(libctx)) { |
205 | 0 | if (ctx->seedlen >= TLS_MD_MASTER_SECRET_CONST_SIZE |
206 | 0 | && memcmp(ctx->seed, TLS_MD_MASTER_SECRET_CONST, |
207 | 0 | TLS_MD_MASTER_SECRET_CONST_SIZE) |
208 | 0 | == 0) { |
209 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_EMS_NOT_ENABLED); |
210 | 0 | return 0; |
211 | 0 | } |
212 | 0 | } |
213 | | |
214 | 16.1k | return tls1_prf_alg(ctx->P_hash, ctx->P_sha1, |
215 | 16.1k | ctx->sec, ctx->seclen, |
216 | 16.1k | ctx->seed, ctx->seedlen, |
217 | 16.1k | key, keylen); |
218 | 16.1k | } |
219 | | |
220 | | static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
221 | 16.1k | { |
222 | 16.1k | const OSSL_PARAM *p; |
223 | 16.1k | TLS1_PRF *ctx = vctx; |
224 | 16.1k | OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); |
225 | | |
226 | 16.1k | if (params == NULL) |
227 | 0 | return 1; |
228 | | |
229 | 16.1k | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_DIGEST)) != NULL) { |
230 | 16.1k | if (OPENSSL_strcasecmp(p->data, SN_md5_sha1) == 0) { |
231 | 6.51k | if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, |
232 | 6.51k | OSSL_MAC_NAME_HMAC, |
233 | 6.51k | NULL, SN_md5, libctx) |
234 | 6.51k | || !ossl_prov_macctx_load_from_params(&ctx->P_sha1, params, |
235 | 6.51k | OSSL_MAC_NAME_HMAC, |
236 | 6.51k | NULL, SN_sha1, libctx)) |
237 | 0 | return 0; |
238 | 9.64k | } else { |
239 | 9.64k | EVP_MAC_CTX_free(ctx->P_sha1); |
240 | 9.64k | ctx->P_sha1 = NULL; |
241 | 9.64k | if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, |
242 | 9.64k | OSSL_MAC_NAME_HMAC, |
243 | 9.64k | NULL, NULL, libctx)) |
244 | 0 | return 0; |
245 | 9.64k | } |
246 | 16.1k | } |
247 | | |
248 | 16.1k | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL) { |
249 | 16.1k | OPENSSL_clear_free(ctx->sec, ctx->seclen); |
250 | 16.1k | ctx->sec = NULL; |
251 | 16.1k | if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->sec, 0, &ctx->seclen)) |
252 | 0 | return 0; |
253 | 16.1k | } |
254 | | /* The seed fields concatenate, so process them all */ |
255 | 16.1k | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SEED)) != NULL) { |
256 | 96.9k | for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1, |
257 | 80.8k | OSSL_KDF_PARAM_SEED)) { |
258 | 80.8k | if (p->data_size != 0 && p->data != NULL) { |
259 | 43.7k | const void *val = NULL; |
260 | 43.7k | size_t sz = 0; |
261 | 43.7k | unsigned char *seed; |
262 | 43.7k | size_t seedlen; |
263 | 43.7k | int err = 0; |
264 | | |
265 | 43.7k | if (!OSSL_PARAM_get_octet_string_ptr(p, &val, &sz)) |
266 | 0 | return 0; |
267 | | |
268 | 43.7k | seedlen = safe_add_size_t(ctx->seedlen, sz, &err); |
269 | 43.7k | if (err) |
270 | 0 | return 0; |
271 | | |
272 | 43.7k | seed = OPENSSL_clear_realloc(ctx->seed, ctx->seedlen, seedlen); |
273 | 43.7k | if (!seed) |
274 | 0 | return 0; |
275 | | |
276 | 43.7k | ctx->seed = seed; |
277 | 43.7k | if (ossl_assert(sz != 0)) |
278 | 43.7k | memcpy(ctx->seed + ctx->seedlen, val, sz); |
279 | 43.7k | ctx->seedlen = seedlen; |
280 | 43.7k | } |
281 | 80.8k | } |
282 | 16.1k | } |
283 | 16.1k | return 1; |
284 | 16.1k | } |
285 | | |
286 | | static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params( |
287 | | ossl_unused void *ctx, ossl_unused void *provctx) |
288 | 2.42k | { |
289 | 2.42k | static const OSSL_PARAM known_settable_ctx_params[] = { |
290 | 2.42k | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), |
291 | 2.42k | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), |
292 | 2.42k | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0), |
293 | 2.42k | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0), |
294 | 2.42k | OSSL_PARAM_END |
295 | 2.42k | }; |
296 | 2.42k | return known_settable_ctx_params; |
297 | 2.42k | } |
298 | | |
299 | | static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
300 | 0 | { |
301 | 0 | OSSL_PARAM *p; |
302 | |
|
303 | 0 | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
304 | 0 | return OSSL_PARAM_set_size_t(p, SIZE_MAX); |
305 | 0 | return -2; |
306 | 0 | } |
307 | | |
308 | | static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params( |
309 | | ossl_unused void *ctx, ossl_unused void *provctx) |
310 | 0 | { |
311 | 0 | static const OSSL_PARAM known_gettable_ctx_params[] = { |
312 | 0 | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
313 | 0 | OSSL_PARAM_END |
314 | 0 | }; |
315 | 0 | return known_gettable_ctx_params; |
316 | 0 | } |
317 | | |
318 | | const OSSL_DISPATCH ossl_kdf_tls1_prf_functions[] = { |
319 | | { OSSL_FUNC_KDF_NEWCTX, (void (*)(void))kdf_tls1_prf_new }, |
320 | | { OSSL_FUNC_KDF_DUPCTX, (void (*)(void))kdf_tls1_prf_dup }, |
321 | | { OSSL_FUNC_KDF_FREECTX, (void (*)(void))kdf_tls1_prf_free }, |
322 | | { OSSL_FUNC_KDF_RESET, (void (*)(void))kdf_tls1_prf_reset }, |
323 | | { OSSL_FUNC_KDF_DERIVE, (void (*)(void))kdf_tls1_prf_derive }, |
324 | | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
325 | | (void (*)(void))kdf_tls1_prf_settable_ctx_params }, |
326 | | { OSSL_FUNC_KDF_SET_CTX_PARAMS, |
327 | | (void (*)(void))kdf_tls1_prf_set_ctx_params }, |
328 | | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
329 | | (void (*)(void))kdf_tls1_prf_gettable_ctx_params }, |
330 | | { OSSL_FUNC_KDF_GET_CTX_PARAMS, |
331 | | (void (*)(void))kdf_tls1_prf_get_ctx_params }, |
332 | | OSSL_DISPATCH_END |
333 | | }; |
334 | | |
335 | | /* |
336 | | * Refer to "The TLS Protocol Version 1.0" Section 5 |
337 | | * (https://tools.ietf.org/html/rfc2246#section-5) and |
338 | | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
339 | | * (https://tools.ietf.org/html/rfc5246#section-5). |
340 | | * |
341 | | * P_<hash> is an expansion function that uses a single hash function to expand |
342 | | * a secret and seed into an arbitrary quantity of output: |
343 | | * |
344 | | * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) + |
345 | | * HMAC_<hash>(secret, A(2) + seed) + |
346 | | * HMAC_<hash>(secret, A(3) + seed) + ... |
347 | | * |
348 | | * where + indicates concatenation. P_<hash> can be iterated as many times as |
349 | | * is necessary to produce the required quantity of data. |
350 | | * |
351 | | * A(i) is defined as: |
352 | | * A(0) = seed |
353 | | * A(i) = HMAC_<hash>(secret, A(i-1)) |
354 | | */ |
355 | | static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init, |
356 | | const unsigned char *sec, size_t sec_len, |
357 | | const unsigned char *seed, size_t seed_len, |
358 | | unsigned char *out, size_t olen) |
359 | 93.8k | { |
360 | 93.8k | size_t chunk; |
361 | 93.8k | EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL; |
362 | 93.8k | unsigned char Ai[EVP_MAX_MD_SIZE]; |
363 | 93.8k | size_t Ai_len; |
364 | 93.8k | int ret = 0; |
365 | | |
366 | 93.8k | if (!EVP_MAC_init(ctx_init, sec, sec_len, NULL)) |
367 | 0 | goto err; |
368 | 93.8k | chunk = EVP_MAC_CTX_get_mac_size(ctx_init); |
369 | 93.8k | if (chunk == 0) |
370 | 8 | goto err; |
371 | | /* A(0) = seed */ |
372 | 93.8k | ctx_Ai = EVP_MAC_CTX_dup(ctx_init); |
373 | 93.8k | if (ctx_Ai == NULL) |
374 | 0 | goto err; |
375 | 93.8k | if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len)) |
376 | 0 | goto err; |
377 | | |
378 | 245k | for (;;) { |
379 | | /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */ |
380 | 245k | if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai))) |
381 | 0 | goto err; |
382 | 245k | EVP_MAC_CTX_free(ctx_Ai); |
383 | 245k | ctx_Ai = NULL; |
384 | | |
385 | | /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */ |
386 | 245k | ctx = EVP_MAC_CTX_dup(ctx_init); |
387 | 245k | if (ctx == NULL) |
388 | 0 | goto err; |
389 | 245k | if (!EVP_MAC_update(ctx, Ai, Ai_len)) |
390 | 0 | goto err; |
391 | | /* save state for calculating next A(i) value */ |
392 | 245k | if (olen > chunk) { |
393 | 152k | ctx_Ai = EVP_MAC_CTX_dup(ctx); |
394 | 152k | if (ctx_Ai == NULL) |
395 | 0 | goto err; |
396 | 152k | } |
397 | 245k | if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len)) |
398 | 0 | goto err; |
399 | 245k | if (olen <= chunk) { |
400 | | /* last chunk - use Ai as temp bounce buffer */ |
401 | 93.8k | if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai))) |
402 | 0 | goto err; |
403 | 93.8k | memcpy(out, Ai, olen); |
404 | 93.8k | break; |
405 | 93.8k | } |
406 | 152k | if (!EVP_MAC_final(ctx, out, NULL, olen)) |
407 | 0 | goto err; |
408 | 152k | EVP_MAC_CTX_free(ctx); |
409 | 152k | ctx = NULL; |
410 | 152k | out += chunk; |
411 | 152k | olen -= chunk; |
412 | 152k | } |
413 | 93.8k | ret = 1; |
414 | 93.8k | err: |
415 | 93.8k | EVP_MAC_CTX_free(ctx); |
416 | 93.8k | EVP_MAC_CTX_free(ctx_Ai); |
417 | 93.8k | OPENSSL_cleanse(Ai, sizeof(Ai)); |
418 | 93.8k | return ret; |
419 | 93.8k | } |
420 | | |
421 | | /* |
422 | | * Refer to "The TLS Protocol Version 1.0" Section 5 |
423 | | * (https://tools.ietf.org/html/rfc2246#section-5) and |
424 | | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
425 | | * (https://tools.ietf.org/html/rfc5246#section-5). |
426 | | * |
427 | | * For TLS v1.0 and TLS v1.1: |
428 | | * |
429 | | * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR |
430 | | * P_SHA-1(S2, label + seed) |
431 | | * |
432 | | * S1 is taken from the first half of the secret, S2 from the second half. |
433 | | * |
434 | | * L_S = length in bytes of secret; |
435 | | * L_S1 = L_S2 = ceil(L_S / 2); |
436 | | * |
437 | | * For TLS v1.2: |
438 | | * |
439 | | * PRF(secret, label, seed) = P_<hash>(secret, label + seed) |
440 | | */ |
441 | | static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, |
442 | | const unsigned char *sec, size_t slen, |
443 | | const unsigned char *seed, size_t seed_len, |
444 | | unsigned char *out, size_t olen) |
445 | 69.7k | { |
446 | 69.7k | if (sha1ctx != NULL) { |
447 | | /* TLS v1.0 and TLS v1.1 */ |
448 | 24.0k | size_t i; |
449 | 24.0k | unsigned char *tmp; |
450 | | /* calc: L_S1 = L_S2 = ceil(L_S / 2) */ |
451 | 24.0k | size_t L_S1 = (slen + 1) / 2; |
452 | 24.0k | size_t L_S2 = L_S1; |
453 | | |
454 | 24.0k | if (!tls1_prf_P_hash(mdctx, sec, L_S1, |
455 | 24.0k | seed, seed_len, out, olen)) |
456 | 0 | return 0; |
457 | | |
458 | 24.0k | if ((tmp = OPENSSL_malloc(olen)) == NULL) |
459 | 0 | return 0; |
460 | | |
461 | 24.0k | if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2, |
462 | 24.0k | seed, seed_len, tmp, olen)) { |
463 | 0 | OPENSSL_clear_free(tmp, olen); |
464 | 0 | return 0; |
465 | 0 | } |
466 | 1.24M | for (i = 0; i < olen; i++) |
467 | 1.22M | out[i] ^= tmp[i]; |
468 | 24.0k | OPENSSL_clear_free(tmp, olen); |
469 | 24.0k | return 1; |
470 | 24.0k | } |
471 | | |
472 | | /* TLS v1.2 */ |
473 | 45.7k | if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen)) |
474 | 8 | return 0; |
475 | | |
476 | 45.7k | return 1; |
477 | 45.7k | } |