Coverage Report

Created: 2026-02-14 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl34/crypto/ec/ecp_nistp224.c
Line
Count
Source
1
/*
2
 * Copyright 2010-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
#error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
93
    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE },
96
    { 0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
        0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
        0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4 },
99
    { 0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
        0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
        0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21 },
102
    { 0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
        0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
        0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34 }
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
    { { { 0, 0, 0, 0 },
140
          { 0, 0, 0, 0 },
141
          { 0, 0, 0, 0 } },
142
        { { 0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf },
143
            { 0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723 },
144
            { 1, 0, 0, 0 } },
145
        { { 0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5 },
146
            { 0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321 },
147
            { 1, 0, 0, 0 } },
148
        { { 0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748 },
149
            { 0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17 },
150
            { 1, 0, 0, 0 } },
151
        { { 0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe },
152
            { 0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b },
153
            { 1, 0, 0, 0 } },
154
        { { 0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3 },
155
            { 0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a },
156
            { 1, 0, 0, 0 } },
157
        { { 0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c },
158
            { 0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244 },
159
            { 1, 0, 0, 0 } },
160
        { { 0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849 },
161
            { 0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112 },
162
            { 1, 0, 0, 0 } },
163
        { { 0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47 },
164
            { 0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394 },
165
            { 1, 0, 0, 0 } },
166
        { { 0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d },
167
            { 0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7 },
168
            { 1, 0, 0, 0 } },
169
        { { 0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24 },
170
            { 0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881 },
171
            { 1, 0, 0, 0 } },
172
        { { 0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984 },
173
            { 0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369 },
174
            { 1, 0, 0, 0 } },
175
        { { 0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3 },
176
            { 0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60 },
177
            { 1, 0, 0, 0 } },
178
        { { 0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057 },
179
            { 0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9 },
180
            { 1, 0, 0, 0 } },
181
        { { 0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9 },
182
            { 0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc },
183
            { 1, 0, 0, 0 } },
184
        { { 0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58 },
185
            { 0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558 },
186
            { 1, 0, 0, 0 } } },
187
    { { { 0, 0, 0, 0 },
188
          { 0, 0, 0, 0 },
189
          { 0, 0, 0, 0 } },
190
        { { 0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31 },
191
            { 0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d },
192
            { 1, 0, 0, 0 } },
193
        { { 0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3 },
194
            { 0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a },
195
            { 1, 0, 0, 0 } },
196
        { { 0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33 },
197
            { 0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100 },
198
            { 1, 0, 0, 0 } },
199
        { { 0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5 },
200
            { 0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea },
201
            { 1, 0, 0, 0 } },
202
        { { 0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be },
203
            { 0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51 },
204
            { 1, 0, 0, 0 } },
205
        { { 0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1 },
206
            { 0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb },
207
            { 1, 0, 0, 0 } },
208
        { { 0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233 },
209
            { 0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def },
210
            { 1, 0, 0, 0 } },
211
        { { 0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae },
212
            { 0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45 },
213
            { 1, 0, 0, 0 } },
214
        { { 0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e },
215
            { 0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb },
216
            { 1, 0, 0, 0 } },
217
        { { 0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de },
218
            { 0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3 },
219
            { 1, 0, 0, 0 } },
220
        { { 0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05 },
221
            { 0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58 },
222
            { 1, 0, 0, 0 } },
223
        { { 0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb },
224
            { 0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0 },
225
            { 1, 0, 0, 0 } },
226
        { { 0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9 },
227
            { 0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea },
228
            { 1, 0, 0, 0 } },
229
        { { 0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba },
230
            { 0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405 },
231
            { 1, 0, 0, 0 } },
232
        { { 0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e },
233
            { 0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e },
234
            { 1, 0, 0, 0 } } }
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
};
242
243
const EC_METHOD *EC_GFp_nistp224_method(void)
244
54.8k
{
245
54.8k
    static const EC_METHOD ret = {
246
54.8k
        EC_FLAGS_DEFAULT_OCT,
247
54.8k
        NID_X9_62_prime_field,
248
54.8k
        ossl_ec_GFp_nistp224_group_init,
249
54.8k
        ossl_ec_GFp_simple_group_finish,
250
54.8k
        ossl_ec_GFp_simple_group_clear_finish,
251
54.8k
        ossl_ec_GFp_nist_group_copy,
252
54.8k
        ossl_ec_GFp_nistp224_group_set_curve,
253
54.8k
        ossl_ec_GFp_simple_group_get_curve,
254
54.8k
        ossl_ec_GFp_simple_group_get_degree,
255
54.8k
        ossl_ec_group_simple_order_bits,
256
54.8k
        ossl_ec_GFp_simple_group_check_discriminant,
257
54.8k
        ossl_ec_GFp_simple_point_init,
258
54.8k
        ossl_ec_GFp_simple_point_finish,
259
54.8k
        ossl_ec_GFp_simple_point_clear_finish,
260
54.8k
        ossl_ec_GFp_simple_point_copy,
261
54.8k
        ossl_ec_GFp_simple_point_set_to_infinity,
262
54.8k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
263
54.8k
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
264
54.8k
        0 /* point_set_compressed_coordinates */,
265
54.8k
        0 /* point2oct */,
266
54.8k
        0 /* oct2point */,
267
54.8k
        ossl_ec_GFp_simple_add,
268
54.8k
        ossl_ec_GFp_simple_dbl,
269
54.8k
        ossl_ec_GFp_simple_invert,
270
54.8k
        ossl_ec_GFp_simple_is_at_infinity,
271
54.8k
        ossl_ec_GFp_simple_is_on_curve,
272
54.8k
        ossl_ec_GFp_simple_cmp,
273
54.8k
        ossl_ec_GFp_simple_make_affine,
274
54.8k
        ossl_ec_GFp_simple_points_make_affine,
275
54.8k
        ossl_ec_GFp_nistp224_points_mul,
276
54.8k
        ossl_ec_GFp_nistp224_precompute_mult,
277
54.8k
        ossl_ec_GFp_nistp224_have_precompute_mult,
278
54.8k
        ossl_ec_GFp_nist_field_mul,
279
54.8k
        ossl_ec_GFp_nist_field_sqr,
280
54.8k
        0 /* field_div */,
281
54.8k
        ossl_ec_GFp_simple_field_inv,
282
54.8k
        0 /* field_encode */,
283
54.8k
        0 /* field_decode */,
284
54.8k
        0, /* field_set_to_one */
285
54.8k
        ossl_ec_key_simple_priv2oct,
286
54.8k
        ossl_ec_key_simple_oct2priv,
287
54.8k
        0, /* set private */
288
54.8k
        ossl_ec_key_simple_generate_key,
289
54.8k
        ossl_ec_key_simple_check_key,
290
54.8k
        ossl_ec_key_simple_generate_public_key,
291
54.8k
        0, /* keycopy */
292
54.8k
        0, /* keyfinish */
293
54.8k
        ossl_ecdh_simple_compute_key,
294
54.8k
        ossl_ecdsa_simple_sign_setup,
295
54.8k
        ossl_ecdsa_simple_sign_sig,
296
54.8k
        ossl_ecdsa_simple_verify_sig,
297
54.8k
        0, /* field_inverse_mod_ord */
298
54.8k
        0, /* blind_coordinates */
299
54.8k
        0, /* ladder_pre */
300
54.8k
        0, /* ladder_step */
301
54.8k
        0 /* ladder_post */
302
54.8k
    };
303
304
54.8k
    return &ret;
305
54.8k
}
306
307
/*
308
 * Helper functions to convert field elements to/from internal representation
309
 */
310
static void bin28_to_felem(felem out, const u8 in[28])
311
20.3k
{
312
20.3k
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
313
20.3k
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
314
20.3k
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
315
20.3k
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
316
20.3k
}
317
318
static void felem_to_bin28(u8 out[28], const felem in)
319
29.5k
{
320
29.5k
    unsigned i;
321
236k
    for (i = 0; i < 7; ++i) {
322
207k
        out[i] = in[0] >> (8 * i);
323
207k
        out[i + 7] = in[1] >> (8 * i);
324
207k
        out[i + 14] = in[2] >> (8 * i);
325
207k
        out[i + 21] = in[3] >> (8 * i);
326
207k
    }
327
29.5k
}
328
329
/* From OpenSSL BIGNUM to internal representation */
330
static int BN_to_felem(felem out, const BIGNUM *bn)
331
20.3k
{
332
20.3k
    felem_bytearray b_out;
333
20.3k
    int num_bytes;
334
335
20.3k
    if (BN_is_negative(bn)) {
336
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
337
0
        return 0;
338
0
    }
339
20.3k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
340
20.3k
    if (num_bytes < 0) {
341
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
342
0
        return 0;
343
0
    }
344
20.3k
    bin28_to_felem(out, b_out);
345
20.3k
    return 1;
346
20.3k
}
347
348
/* From internal representation to OpenSSL BIGNUM */
349
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
350
29.5k
{
351
29.5k
    felem_bytearray b_out;
352
29.5k
    felem_to_bin28(b_out, in);
353
29.5k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
354
29.5k
}
355
356
/******************************************************************************/
357
/*-
358
 *                              FIELD OPERATIONS
359
 *
360
 * Field operations, using the internal representation of field elements.
361
 * NB! These operations are specific to our point multiplication and cannot be
362
 * expected to be correct in general - e.g., multiplication with a large scalar
363
 * will cause an overflow.
364
 *
365
 */
366
367
static void felem_one(felem out)
368
0
{
369
0
    out[0] = 1;
370
0
    out[1] = 0;
371
0
    out[2] = 0;
372
0
    out[3] = 0;
373
0
}
374
375
static void felem_assign(felem out, const felem in)
376
1.80M
{
377
1.80M
    out[0] = in[0];
378
1.80M
    out[1] = in[1];
379
1.80M
    out[2] = in[2];
380
1.80M
    out[3] = in[3];
381
1.80M
}
382
383
/* Sum two field elements: out += in */
384
static void felem_sum(felem out, const felem in)
385
424k
{
386
424k
    out[0] += in[0];
387
424k
    out[1] += in[1];
388
424k
    out[2] += in[2];
389
424k
    out[3] += in[3];
390
424k
}
391
392
/* Subtract field elements: out -= in */
393
/* Assumes in[i] < 2^57 */
394
static void felem_diff(felem out, const felem in)
395
442k
{
396
442k
    static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
397
442k
    static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
398
442k
    static const limb two58m42m2 = (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
399
400
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
401
442k
    out[0] += two58p2;
402
442k
    out[1] += two58m42m2;
403
442k
    out[2] += two58m2;
404
442k
    out[3] += two58m2;
405
406
442k
    out[0] -= in[0];
407
442k
    out[1] -= in[1];
408
442k
    out[2] -= in[2];
409
442k
    out[3] -= in[3];
410
442k
}
411
412
/* Subtract in unreduced 128-bit mode: out -= in */
413
/* Assumes in[i] < 2^119 */
414
static void widefelem_diff(widefelem out, const widefelem in)
415
301k
{
416
301k
    static const widelimb two120 = ((widelimb)1) << 120;
417
301k
    static const widelimb two120m64 = (((widelimb)1) << 120) - (((widelimb)1) << 64);
418
301k
    static const widelimb two120m104m64 = (((widelimb)1) << 120) - (((widelimb)1) << 104) - (((widelimb)1) << 64);
419
420
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
421
301k
    out[0] += two120;
422
301k
    out[1] += two120m64;
423
301k
    out[2] += two120m64;
424
301k
    out[3] += two120;
425
301k
    out[4] += two120m104m64;
426
301k
    out[5] += two120m64;
427
301k
    out[6] += two120m64;
428
429
301k
    out[0] -= in[0];
430
301k
    out[1] -= in[1];
431
301k
    out[2] -= in[2];
432
301k
    out[3] -= in[3];
433
301k
    out[4] -= in[4];
434
301k
    out[5] -= in[5];
435
301k
    out[6] -= in[6];
436
301k
}
437
438
/* Subtract in mixed mode: out128 -= in64 */
439
/* in[i] < 2^63 */
440
static void felem_diff_128_64(widefelem out, const felem in)
441
935k
{
442
935k
    static const widelimb two64p8 = (((widelimb)1) << 64) + (((widelimb)1) << 8);
443
935k
    static const widelimb two64m8 = (((widelimb)1) << 64) - (((widelimb)1) << 8);
444
935k
    static const widelimb two64m48m8 = (((widelimb)1) << 64) - (((widelimb)1) << 48) - (((widelimb)1) << 8);
445
446
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
447
935k
    out[0] += two64p8;
448
935k
    out[1] += two64m48m8;
449
935k
    out[2] += two64m8;
450
935k
    out[3] += two64m8;
451
452
935k
    out[0] -= in[0];
453
935k
    out[1] -= in[1];
454
935k
    out[2] -= in[2];
455
935k
    out[3] -= in[3];
456
935k
}
457
458
/*
459
 * Multiply a field element by a scalar: out = out * scalar The scalars we
460
 * actually use are small, so results fit without overflow
461
 */
462
static void felem_scalar(felem out, const limb scalar)
463
583k
{
464
583k
    out[0] *= scalar;
465
583k
    out[1] *= scalar;
466
583k
    out[2] *= scalar;
467
583k
    out[3] *= scalar;
468
583k
}
469
470
/*
471
 * Multiply an unreduced field element by a scalar: out = out * scalar The
472
 * scalars we actually use are small, so results fit without overflow
473
 */
474
static void widefelem_scalar(widefelem out, const widelimb scalar)
475
141k
{
476
141k
    out[0] *= scalar;
477
141k
    out[1] *= scalar;
478
141k
    out[2] *= scalar;
479
141k
    out[3] *= scalar;
480
141k
    out[4] *= scalar;
481
141k
    out[5] *= scalar;
482
141k
    out[6] *= scalar;
483
141k
}
484
485
/* Square a field element: out = in^2 */
486
static void felem_square(widefelem out, const felem in)
487
2.65M
{
488
2.65M
    limb tmp0, tmp1, tmp2;
489
2.65M
    tmp0 = 2 * in[0];
490
2.65M
    tmp1 = 2 * in[1];
491
2.65M
    tmp2 = 2 * in[2];
492
2.65M
    out[0] = ((widelimb)in[0]) * in[0];
493
2.65M
    out[1] = ((widelimb)in[0]) * tmp1;
494
2.65M
    out[2] = ((widelimb)in[0]) * tmp2 + ((widelimb)in[1]) * in[1];
495
2.65M
    out[3] = ((widelimb)in[3]) * tmp0 + ((widelimb)in[1]) * tmp2;
496
2.65M
    out[4] = ((widelimb)in[3]) * tmp1 + ((widelimb)in[2]) * in[2];
497
2.65M
    out[5] = ((widelimb)in[3]) * tmp2;
498
2.65M
    out[6] = ((widelimb)in[3]) * in[3];
499
2.65M
}
500
501
/* Multiply two field elements: out = in1 * in2 */
502
static void felem_mul(widefelem out, const felem in1, const felem in2)
503
1.85M
{
504
1.85M
    out[0] = ((widelimb)in1[0]) * in2[0];
505
1.85M
    out[1] = ((widelimb)in1[0]) * in2[1] + ((widelimb)in1[1]) * in2[0];
506
1.85M
    out[2] = ((widelimb)in1[0]) * in2[2] + ((widelimb)in1[1]) * in2[1] + ((widelimb)in1[2]) * in2[0];
507
1.85M
    out[3] = ((widelimb)in1[0]) * in2[3] + ((widelimb)in1[1]) * in2[2] + ((widelimb)in1[2]) * in2[1] + ((widelimb)in1[3]) * in2[0];
508
1.85M
    out[4] = ((widelimb)in1[1]) * in2[3] + ((widelimb)in1[2]) * in2[2] + ((widelimb)in1[3]) * in2[1];
509
1.85M
    out[5] = ((widelimb)in1[2]) * in2[3] + ((widelimb)in1[3]) * in2[2];
510
1.85M
    out[6] = ((widelimb)in1[3]) * in2[3];
511
1.85M
}
512
513
/*-
514
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
515
 * Requires in[i] < 2^126,
516
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
517
static void felem_reduce(felem out, const widefelem in)
518
4.22M
{
519
4.22M
    static const widelimb two127p15 = (((widelimb)1) << 127) + (((widelimb)1) << 15);
520
4.22M
    static const widelimb two127m71 = (((widelimb)1) << 127) - (((widelimb)1) << 71);
521
4.22M
    static const widelimb two127m71m55 = (((widelimb)1) << 127) - (((widelimb)1) << 71) - (((widelimb)1) << 55);
522
4.22M
    widelimb output[5];
523
524
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
525
4.22M
    output[0] = in[0] + two127p15;
526
4.22M
    output[1] = in[1] + two127m71m55;
527
4.22M
    output[2] = in[2] + two127m71;
528
4.22M
    output[3] = in[3];
529
4.22M
    output[4] = in[4];
530
531
    /* Eliminate in[4], in[5], in[6] */
532
4.22M
    output[4] += in[6] >> 16;
533
4.22M
    output[3] += (in[6] & 0xffff) << 40;
534
4.22M
    output[2] -= in[6];
535
536
4.22M
    output[3] += in[5] >> 16;
537
4.22M
    output[2] += (in[5] & 0xffff) << 40;
538
4.22M
    output[1] -= in[5];
539
540
4.22M
    output[2] += output[4] >> 16;
541
4.22M
    output[1] += (output[4] & 0xffff) << 40;
542
4.22M
    output[0] -= output[4];
543
544
    /* Carry 2 -> 3 -> 4 */
545
4.22M
    output[3] += output[2] >> 56;
546
4.22M
    output[2] &= 0x00ffffffffffffff;
547
548
4.22M
    output[4] = output[3] >> 56;
549
4.22M
    output[3] &= 0x00ffffffffffffff;
550
551
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
552
553
    /* Eliminate output[4] */
554
4.22M
    output[2] += output[4] >> 16;
555
    /* output[2] < 2^56 + 2^56 = 2^57 */
556
4.22M
    output[1] += (output[4] & 0xffff) << 40;
557
4.22M
    output[0] -= output[4];
558
559
    /* Carry 0 -> 1 -> 2 -> 3 */
560
4.22M
    output[1] += output[0] >> 56;
561
4.22M
    out[0] = output[0] & 0x00ffffffffffffff;
562
563
4.22M
    output[2] += output[1] >> 56;
564
    /* output[2] < 2^57 + 2^72 */
565
4.22M
    out[1] = output[1] & 0x00ffffffffffffff;
566
4.22M
    output[3] += output[2] >> 56;
567
    /* output[3] <= 2^56 + 2^16 */
568
4.22M
    out[2] = output[2] & 0x00ffffffffffffff;
569
570
    /*-
571
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
572
     * out[3] <= 2^56 + 2^16 (due to final carry),
573
     * so out < 2*p
574
     */
575
4.22M
    out[3] = output[3];
576
4.22M
}
577
578
static void felem_square_reduce(felem out, const felem in)
579
0
{
580
0
    widefelem tmp;
581
0
    felem_square(tmp, in);
582
0
    felem_reduce(out, tmp);
583
0
}
584
585
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
586
0
{
587
0
    widefelem tmp;
588
0
    felem_mul(tmp, in1, in2);
589
0
    felem_reduce(out, tmp);
590
0
}
591
592
/*
593
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
594
 * call felem_reduce first)
595
 */
596
static void felem_contract(felem out, const felem in)
597
21.7k
{
598
21.7k
    static const int64_t two56 = ((limb)1) << 56;
599
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
600
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
601
21.7k
    int64_t tmp[4], a;
602
21.7k
    tmp[0] = in[0];
603
21.7k
    tmp[1] = in[1];
604
21.7k
    tmp[2] = in[2];
605
21.7k
    tmp[3] = in[3];
606
    /* Case 1: a = 1 iff in >= 2^224 */
607
21.7k
    a = (in[3] >> 56);
608
21.7k
    tmp[0] -= a;
609
21.7k
    tmp[1] += a << 40;
610
21.7k
    tmp[3] &= 0x00ffffffffffffff;
611
    /*
612
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
613
     * and the lower part is non-zero
614
     */
615
21.7k
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
616
21.7k
    a &= 0x00ffffffffffffff;
617
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
618
21.7k
    a = (a - 1) >> 63;
619
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
620
21.7k
    tmp[3] &= a ^ 0xffffffffffffffff;
621
21.7k
    tmp[2] &= a ^ 0xffffffffffffffff;
622
21.7k
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
623
21.7k
    tmp[0] -= 1 & a;
624
625
    /*
626
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
627
     * non-zero, so we only need one step
628
     */
629
21.7k
    a = tmp[0] >> 63;
630
21.7k
    tmp[0] += two56 & a;
631
21.7k
    tmp[1] -= 1 & a;
632
633
    /* carry 1 -> 2 -> 3 */
634
21.7k
    tmp[2] += tmp[1] >> 56;
635
21.7k
    tmp[1] &= 0x00ffffffffffffff;
636
637
21.7k
    tmp[3] += tmp[2] >> 56;
638
21.7k
    tmp[2] &= 0x00ffffffffffffff;
639
640
    /* Now 0 <= out < p */
641
21.7k
    out[0] = tmp[0];
642
21.7k
    out[1] = tmp[1];
643
21.7k
    out[2] = tmp[2];
644
21.7k
    out[3] = tmp[3];
645
21.7k
}
646
647
/*
648
 * Get negative value: out = -in
649
 * Requires in[i] < 2^63,
650
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
651
 */
652
static void felem_neg(felem out, const felem in)
653
13.9k
{
654
13.9k
    widefelem tmp;
655
656
13.9k
    memset(tmp, 0, sizeof(tmp));
657
13.9k
    felem_diff_128_64(tmp, in);
658
13.9k
    felem_reduce(out, tmp);
659
13.9k
}
660
661
/*
662
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
663
 * elements are reduced to in < 2^225, so we only need to check three cases:
664
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
665
 */
666
static limb felem_is_zero(const felem in)
667
639k
{
668
639k
    limb zero, two224m96p1, two225m97p2;
669
670
639k
    zero = in[0] | in[1] | in[2] | in[3];
671
639k
    zero = (((int64_t)(zero)-1) >> 63) & 1;
672
639k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
673
639k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
674
639k
    two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
675
639k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
676
639k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
677
639k
    two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
678
639k
    return (zero | two224m96p1 | two225m97p2);
679
639k
}
680
681
static int felem_is_zero_int(const void *in)
682
0
{
683
0
    return (int)(felem_is_zero(in) & ((limb)1));
684
0
}
685
686
/* Invert a field element */
687
/* Computation chain copied from djb's code */
688
static void felem_inv(felem out, const felem in)
689
6.47k
{
690
6.47k
    felem ftmp, ftmp2, ftmp3, ftmp4;
691
6.47k
    widefelem tmp;
692
6.47k
    unsigned i;
693
694
6.47k
    felem_square(tmp, in);
695
6.47k
    felem_reduce(ftmp, tmp); /* 2 */
696
6.47k
    felem_mul(tmp, in, ftmp);
697
6.47k
    felem_reduce(ftmp, tmp); /* 2^2 - 1 */
698
6.47k
    felem_square(tmp, ftmp);
699
6.47k
    felem_reduce(ftmp, tmp); /* 2^3 - 2 */
700
6.47k
    felem_mul(tmp, in, ftmp);
701
6.47k
    felem_reduce(ftmp, tmp); /* 2^3 - 1 */
702
6.47k
    felem_square(tmp, ftmp);
703
6.47k
    felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
704
6.47k
    felem_square(tmp, ftmp2);
705
6.47k
    felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
706
6.47k
    felem_square(tmp, ftmp2);
707
6.47k
    felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
708
6.47k
    felem_mul(tmp, ftmp2, ftmp);
709
6.47k
    felem_reduce(ftmp, tmp); /* 2^6 - 1 */
710
6.47k
    felem_square(tmp, ftmp);
711
6.47k
    felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
712
38.8k
    for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
713
32.3k
        felem_square(tmp, ftmp2);
714
32.3k
        felem_reduce(ftmp2, tmp);
715
32.3k
    }
716
6.47k
    felem_mul(tmp, ftmp2, ftmp);
717
6.47k
    felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
718
6.47k
    felem_square(tmp, ftmp2);
719
6.47k
    felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
720
77.7k
    for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */
721
71.2k
        felem_square(tmp, ftmp3);
722
71.2k
        felem_reduce(ftmp3, tmp);
723
71.2k
    }
724
6.47k
    felem_mul(tmp, ftmp3, ftmp2);
725
6.47k
    felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
726
6.47k
    felem_square(tmp, ftmp2);
727
6.47k
    felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
728
155k
    for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */
729
149k
        felem_square(tmp, ftmp3);
730
149k
        felem_reduce(ftmp3, tmp);
731
149k
    }
732
6.47k
    felem_mul(tmp, ftmp3, ftmp2);
733
6.47k
    felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
734
6.47k
    felem_square(tmp, ftmp3);
735
6.47k
    felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
736
310k
    for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */
737
304k
        felem_square(tmp, ftmp4);
738
304k
        felem_reduce(ftmp4, tmp);
739
304k
    }
740
6.47k
    felem_mul(tmp, ftmp3, ftmp4);
741
6.47k
    felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
742
6.47k
    felem_square(tmp, ftmp3);
743
6.47k
    felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
744
155k
    for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */
745
149k
        felem_square(tmp, ftmp4);
746
149k
        felem_reduce(ftmp4, tmp);
747
149k
    }
748
6.47k
    felem_mul(tmp, ftmp2, ftmp4);
749
6.47k
    felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
750
45.3k
    for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
751
38.8k
        felem_square(tmp, ftmp2);
752
38.8k
        felem_reduce(ftmp2, tmp);
753
38.8k
    }
754
6.47k
    felem_mul(tmp, ftmp2, ftmp);
755
6.47k
    felem_reduce(ftmp, tmp); /* 2^126 - 1 */
756
6.47k
    felem_square(tmp, ftmp);
757
6.47k
    felem_reduce(ftmp, tmp); /* 2^127 - 2 */
758
6.47k
    felem_mul(tmp, ftmp, in);
759
6.47k
    felem_reduce(ftmp, tmp); /* 2^127 - 1 */
760
634k
    for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */
761
628k
        felem_square(tmp, ftmp);
762
628k
        felem_reduce(ftmp, tmp);
763
628k
    }
764
6.47k
    felem_mul(tmp, ftmp, ftmp3);
765
6.47k
    felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
766
6.47k
}
767
768
/*
769
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
770
 * out to itself.
771
 */
772
static void copy_conditional(felem out, const felem in, limb icopy)
773
972k
{
774
972k
    unsigned i;
775
    /*
776
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
777
     */
778
972k
    const limb copy = -icopy;
779
4.86M
    for (i = 0; i < 4; ++i) {
780
3.89M
        const limb tmp = copy & (in[i] ^ out[i]);
781
3.89M
        out[i] ^= tmp;
782
3.89M
    }
783
972k
}
784
785
/******************************************************************************/
786
/*-
787
 *                       ELLIPTIC CURVE POINT OPERATIONS
788
 *
789
 * Points are represented in Jacobian projective coordinates:
790
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
791
 * or to the point at infinity if Z == 0.
792
 *
793
 */
794
795
/*-
796
 * Double an elliptic curve point:
797
 * (X', Y', Z') = 2 * (X, Y, Z), where
798
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
799
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
800
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
801
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
802
 * while x_out == y_in is not (maybe this works, but it's not tested).
803
 */
804
static void
805
point_double(felem x_out, felem y_out, felem z_out,
806
    const felem x_in, const felem y_in, const felem z_in)
807
141k
{
808
141k
    widefelem tmp, tmp2;
809
141k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
810
811
141k
    felem_assign(ftmp, x_in);
812
141k
    felem_assign(ftmp2, x_in);
813
814
    /* delta = z^2 */
815
141k
    felem_square(tmp, z_in);
816
141k
    felem_reduce(delta, tmp);
817
818
    /* gamma = y^2 */
819
141k
    felem_square(tmp, y_in);
820
141k
    felem_reduce(gamma, tmp);
821
822
    /* beta = x*gamma */
823
141k
    felem_mul(tmp, x_in, gamma);
824
141k
    felem_reduce(beta, tmp);
825
826
    /* alpha = 3*(x-delta)*(x+delta) */
827
141k
    felem_diff(ftmp, delta);
828
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
829
141k
    felem_sum(ftmp2, delta);
830
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
831
141k
    felem_scalar(ftmp2, 3);
832
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
833
141k
    felem_mul(tmp, ftmp, ftmp2);
834
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
835
141k
    felem_reduce(alpha, tmp);
836
837
    /* x' = alpha^2 - 8*beta */
838
141k
    felem_square(tmp, alpha);
839
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
840
141k
    felem_assign(ftmp, beta);
841
141k
    felem_scalar(ftmp, 8);
842
    /* ftmp[i] < 8 * 2^57 = 2^60 */
843
141k
    felem_diff_128_64(tmp, ftmp);
844
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
845
141k
    felem_reduce(x_out, tmp);
846
847
    /* z' = (y + z)^2 - gamma - delta */
848
141k
    felem_sum(delta, gamma);
849
    /* delta[i] < 2^57 + 2^57 = 2^58 */
850
141k
    felem_assign(ftmp, y_in);
851
141k
    felem_sum(ftmp, z_in);
852
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
853
141k
    felem_square(tmp, ftmp);
854
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
855
141k
    felem_diff_128_64(tmp, delta);
856
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
857
141k
    felem_reduce(z_out, tmp);
858
859
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
860
141k
    felem_scalar(beta, 4);
861
    /* beta[i] < 4 * 2^57 = 2^59 */
862
141k
    felem_diff(beta, x_out);
863
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
864
141k
    felem_mul(tmp, alpha, beta);
865
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
866
141k
    felem_square(tmp2, gamma);
867
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
868
141k
    widefelem_scalar(tmp2, 8);
869
    /* tmp2[i] < 8 * 2^116 = 2^119 */
870
141k
    widefelem_diff(tmp, tmp2);
871
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
872
141k
    felem_reduce(y_out, tmp);
873
141k
}
874
875
/*-
876
 * Add two elliptic curve points:
877
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
878
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
879
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
880
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
881
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
882
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
883
 *
884
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
885
 */
886
887
/*
888
 * This function is not entirely constant-time: it includes a branch for
889
 * checking whether the two input points are equal, (while not equal to the
890
 * point at infinity). This case never happens during single point
891
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
892
 */
893
static void point_add(felem x3, felem y3, felem z3,
894
    const felem x1, const felem y1, const felem z1,
895
    const int mixed, const felem x2, const felem y2,
896
    const felem z2)
897
159k
{
898
159k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
899
159k
    widefelem tmp, tmp2;
900
159k
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
901
159k
    limb points_equal;
902
903
159k
    if (!mixed) {
904
        /* ftmp2 = z2^2 */
905
15.8k
        felem_square(tmp, z2);
906
15.8k
        felem_reduce(ftmp2, tmp);
907
908
        /* ftmp4 = z2^3 */
909
15.8k
        felem_mul(tmp, ftmp2, z2);
910
15.8k
        felem_reduce(ftmp4, tmp);
911
912
        /* ftmp4 = z2^3*y1 */
913
15.8k
        felem_mul(tmp2, ftmp4, y1);
914
15.8k
        felem_reduce(ftmp4, tmp2);
915
916
        /* ftmp2 = z2^2*x1 */
917
15.8k
        felem_mul(tmp2, ftmp2, x1);
918
15.8k
        felem_reduce(ftmp2, tmp2);
919
143k
    } else {
920
        /*
921
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
922
         */
923
924
        /* ftmp4 = z2^3*y1 */
925
143k
        felem_assign(ftmp4, y1);
926
927
        /* ftmp2 = z2^2*x1 */
928
143k
        felem_assign(ftmp2, x1);
929
143k
    }
930
931
    /* ftmp = z1^2 */
932
159k
    felem_square(tmp, z1);
933
159k
    felem_reduce(ftmp, tmp);
934
935
    /* ftmp3 = z1^3 */
936
159k
    felem_mul(tmp, ftmp, z1);
937
159k
    felem_reduce(ftmp3, tmp);
938
939
    /* tmp = z1^3*y2 */
940
159k
    felem_mul(tmp, ftmp3, y2);
941
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
942
943
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
944
159k
    felem_diff_128_64(tmp, ftmp4);
945
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
946
159k
    felem_reduce(ftmp3, tmp);
947
948
    /* tmp = z1^2*x2 */
949
159k
    felem_mul(tmp, ftmp, x2);
950
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
951
952
    /* ftmp = z1^2*x2 - z2^2*x1 */
953
159k
    felem_diff_128_64(tmp, ftmp2);
954
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
955
159k
    felem_reduce(ftmp, tmp);
956
957
    /*
958
     * The formulae are incorrect if the points are equal, in affine coordinates
959
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
960
     * happens.
961
     *
962
     * We use bitwise operations to avoid potential side-channels introduced by
963
     * the short-circuiting behaviour of boolean operators.
964
     */
965
159k
    x_equal = felem_is_zero(ftmp);
966
159k
    y_equal = felem_is_zero(ftmp3);
967
    /*
968
     * The special case of either point being the point at infinity (z1 and/or
969
     * z2 are zero), is handled separately later on in this function, so we
970
     * avoid jumping to point_double here in those special cases.
971
     */
972
159k
    z1_is_zero = felem_is_zero(z1);
973
159k
    z2_is_zero = felem_is_zero(z2);
974
975
    /*
976
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
977
     * specific implementation `felem_is_zero()` returns truth as `0x1`
978
     * (rather than `0xff..ff`).
979
     *
980
     * This implies that `~true` in this implementation becomes
981
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
982
     * the if expression, we mask out only the last bit in the next
983
     * line.
984
     */
985
159k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
986
987
159k
    if (points_equal) {
988
        /*
989
         * This is obviously not constant-time but, as mentioned before, this
990
         * case never happens during single point multiplication, so there is no
991
         * timing leak for ECDH or ECDSA signing.
992
         */
993
0
        point_double(x3, y3, z3, x1, y1, z1);
994
0
        return;
995
0
    }
996
997
    /* ftmp5 = z1*z2 */
998
159k
    if (!mixed) {
999
15.8k
        felem_mul(tmp, z1, z2);
1000
15.8k
        felem_reduce(ftmp5, tmp);
1001
143k
    } else {
1002
        /* special case z2 = 0 is handled later */
1003
143k
        felem_assign(ftmp5, z1);
1004
143k
    }
1005
1006
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1007
159k
    felem_mul(tmp, ftmp, ftmp5);
1008
159k
    felem_reduce(z_out, tmp);
1009
1010
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1011
159k
    felem_assign(ftmp5, ftmp);
1012
159k
    felem_square(tmp, ftmp);
1013
159k
    felem_reduce(ftmp, tmp);
1014
1015
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1016
159k
    felem_mul(tmp, ftmp, ftmp5);
1017
159k
    felem_reduce(ftmp5, tmp);
1018
1019
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1020
159k
    felem_mul(tmp, ftmp2, ftmp);
1021
159k
    felem_reduce(ftmp2, tmp);
1022
1023
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1024
159k
    felem_mul(tmp, ftmp4, ftmp5);
1025
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1026
1027
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1028
159k
    felem_square(tmp2, ftmp3);
1029
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1030
1031
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1032
159k
    felem_diff_128_64(tmp2, ftmp5);
1033
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1034
1035
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1036
159k
    felem_assign(ftmp5, ftmp2);
1037
159k
    felem_scalar(ftmp5, 2);
1038
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1039
1040
    /*-
1041
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1042
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1043
     */
1044
159k
    felem_diff_128_64(tmp2, ftmp5);
1045
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1046
159k
    felem_reduce(x_out, tmp2);
1047
1048
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1049
159k
    felem_diff(ftmp2, x_out);
1050
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1051
1052
    /*
1053
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1054
     */
1055
159k
    felem_mul(tmp2, ftmp3, ftmp2);
1056
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1057
1058
    /*-
1059
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1060
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1061
     */
1062
159k
    widefelem_diff(tmp2, tmp);
1063
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1064
159k
    felem_reduce(y_out, tmp2);
1065
1066
    /*
1067
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1068
     * the point at infinity, so we need to check for this separately
1069
     */
1070
1071
    /*
1072
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1073
     */
1074
159k
    copy_conditional(x_out, x2, z1_is_zero);
1075
159k
    copy_conditional(x_out, x1, z2_is_zero);
1076
159k
    copy_conditional(y_out, y2, z1_is_zero);
1077
159k
    copy_conditional(y_out, y1, z2_is_zero);
1078
159k
    copy_conditional(z_out, z2, z1_is_zero);
1079
159k
    copy_conditional(z_out, z1, z2_is_zero);
1080
159k
    felem_assign(x3, x_out);
1081
159k
    felem_assign(y3, y_out);
1082
159k
    felem_assign(z3, z_out);
1083
159k
}
1084
1085
/*
1086
 * select_point selects the |idx|th point from a precomputation table and
1087
 * copies it to out.
1088
 * The pre_comp array argument should be size of |size| argument
1089
 */
1090
static void select_point(const u64 idx, unsigned int size,
1091
    const felem pre_comp[][3], felem out[3])
1092
160k
{
1093
160k
    unsigned i, j;
1094
160k
    limb *outlimbs = &out[0][0];
1095
1096
160k
    memset(out, 0, sizeof(*out) * 3);
1097
2.74M
    for (i = 0; i < size; i++) {
1098
2.58M
        const limb *inlimbs = &pre_comp[i][0][0];
1099
2.58M
        u64 mask = i ^ idx;
1100
2.58M
        mask |= mask >> 4;
1101
2.58M
        mask |= mask >> 2;
1102
2.58M
        mask |= mask >> 1;
1103
2.58M
        mask &= 1;
1104
2.58M
        mask--;
1105
33.5M
        for (j = 0; j < 4 * 3; j++)
1106
30.9M
            outlimbs[j] |= inlimbs[j] & mask;
1107
2.58M
    }
1108
160k
}
1109
1110
/* get_bit returns the |i|th bit in |in| */
1111
static char get_bit(const felem_bytearray in, unsigned i)
1112
670k
{
1113
670k
    if (i >= 224)
1114
620
        return 0;
1115
669k
    return (in[i >> 3] >> (i & 7)) & 1;
1116
670k
}
1117
1118
/*
1119
 * Interleaved point multiplication using precomputed point multiples: The
1120
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1121
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1122
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1123
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1124
 */
1125
static void batch_mul(felem x_out, felem y_out, felem z_out,
1126
    const felem_bytearray scalars[],
1127
    const unsigned num_points, const u8 *g_scalar,
1128
    const int mixed, const felem pre_comp[][17][3],
1129
    const felem g_pre_comp[2][16][3])
1130
2.92k
{
1131
2.92k
    int i, skip;
1132
2.92k
    unsigned num;
1133
2.92k
    unsigned gen_mul = (g_scalar != NULL);
1134
2.92k
    felem nq[3], tmp[4];
1135
2.92k
    u64 bits;
1136
2.92k
    u8 sign, digit;
1137
1138
    /* set nq to the point at infinity */
1139
2.92k
    memset(nq, 0, sizeof(nq));
1140
1141
    /*
1142
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1143
     * of the generator (two in each of the last 28 rounds) and additions of
1144
     * other points multiples (every 5th round).
1145
     */
1146
2.92k
    skip = 1; /* save two point operations in the first
1147
               * round */
1148
144k
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1149
        /* double */
1150
141k
        if (!skip)
1151
138k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1152
1153
        /* add multiples of the generator */
1154
141k
        if (gen_mul && (i <= 27)) {
1155
            /* first, look 28 bits upwards */
1156
73.3k
            bits = get_bit(g_scalar, i + 196) << 3;
1157
73.3k
            bits |= get_bit(g_scalar, i + 140) << 2;
1158
73.3k
            bits |= get_bit(g_scalar, i + 84) << 1;
1159
73.3k
            bits |= get_bit(g_scalar, i + 28);
1160
            /* select the point to add, in constant time */
1161
73.3k
            select_point(bits, 16, g_pre_comp[1], tmp);
1162
1163
73.3k
            if (!skip) {
1164
                /* value 1 below is argument for "mixed" */
1165
70.6k
                point_add(nq[0], nq[1], nq[2],
1166
70.6k
                    nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1167
70.6k
            } else {
1168
2.61k
                memcpy(nq, tmp, 3 * sizeof(felem));
1169
2.61k
                skip = 0;
1170
2.61k
            }
1171
1172
            /* second, look at the current position */
1173
73.3k
            bits = get_bit(g_scalar, i + 168) << 3;
1174
73.3k
            bits |= get_bit(g_scalar, i + 112) << 2;
1175
73.3k
            bits |= get_bit(g_scalar, i + 56) << 1;
1176
73.3k
            bits |= get_bit(g_scalar, i);
1177
            /* select the point to add, in constant time */
1178
73.3k
            select_point(bits, 16, g_pre_comp[0], tmp);
1179
73.3k
            point_add(nq[0], nq[1], nq[2],
1180
73.3k
                nq[0], nq[1], nq[2],
1181
73.3k
                1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1182
73.3k
        }
1183
1184
        /* do other additions every 5 doublings */
1185
141k
        if (num_points && (i % 5 == 0)) {
1186
            /* loop over all scalars */
1187
27.9k
            for (num = 0; num < num_points; ++num) {
1188
13.9k
                bits = get_bit(scalars[num], i + 4) << 5;
1189
13.9k
                bits |= get_bit(scalars[num], i + 3) << 4;
1190
13.9k
                bits |= get_bit(scalars[num], i + 2) << 3;
1191
13.9k
                bits |= get_bit(scalars[num], i + 1) << 2;
1192
13.9k
                bits |= get_bit(scalars[num], i) << 1;
1193
13.9k
                bits |= get_bit(scalars[num], i - 1);
1194
13.9k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1195
1196
                /* select the point to add or subtract */
1197
13.9k
                select_point(digit, 17, pre_comp[num], tmp);
1198
13.9k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1199
                                            * point */
1200
13.9k
                copy_conditional(tmp[1], tmp[3], sign);
1201
1202
13.9k
                if (!skip) {
1203
13.6k
                    point_add(nq[0], nq[1], nq[2],
1204
13.6k
                        nq[0], nq[1], nq[2],
1205
13.6k
                        mixed, tmp[0], tmp[1], tmp[2]);
1206
13.6k
                } else {
1207
310
                    memcpy(nq, tmp, 3 * sizeof(felem));
1208
310
                    skip = 0;
1209
310
                }
1210
13.9k
            }
1211
13.9k
        }
1212
141k
    }
1213
2.92k
    felem_assign(x_out, nq[0]);
1214
2.92k
    felem_assign(y_out, nq[1]);
1215
2.92k
    felem_assign(z_out, nq[2]);
1216
2.92k
}
1217
1218
/******************************************************************************/
1219
/*
1220
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1221
 */
1222
1223
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1224
0
{
1225
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1226
1227
0
    if (ret == NULL)
1228
0
        return ret;
1229
1230
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1231
0
        OPENSSL_free(ret);
1232
0
        return NULL;
1233
0
    }
1234
0
    return ret;
1235
0
}
1236
1237
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1238
0
{
1239
0
    int i;
1240
0
    if (p != NULL)
1241
0
        CRYPTO_UP_REF(&p->references, &i);
1242
0
    return p;
1243
0
}
1244
1245
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1246
0
{
1247
0
    int i;
1248
1249
0
    if (p == NULL)
1250
0
        return;
1251
1252
0
    CRYPTO_DOWN_REF(&p->references, &i);
1253
0
    REF_PRINT_COUNT("EC_nistp224", i, p);
1254
0
    if (i > 0)
1255
0
        return;
1256
0
    REF_ASSERT_ISNT(i < 0);
1257
1258
0
    CRYPTO_FREE_REF(&p->references);
1259
0
    OPENSSL_free(p);
1260
0
}
1261
1262
/******************************************************************************/
1263
/*
1264
 * OPENSSL EC_METHOD FUNCTIONS
1265
 */
1266
1267
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1268
105k
{
1269
105k
    int ret;
1270
105k
    ret = ossl_ec_GFp_simple_group_init(group);
1271
105k
    group->a_is_minus3 = 1;
1272
105k
    return ret;
1273
105k
}
1274
1275
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1276
    const BIGNUM *a, const BIGNUM *b,
1277
    BN_CTX *ctx)
1278
54.8k
{
1279
54.8k
    int ret = 0;
1280
54.8k
    BIGNUM *curve_p, *curve_a, *curve_b;
1281
54.8k
#ifndef FIPS_MODULE
1282
54.8k
    BN_CTX *new_ctx = NULL;
1283
1284
54.8k
    if (ctx == NULL)
1285
0
        ctx = new_ctx = BN_CTX_new();
1286
54.8k
#endif
1287
54.8k
    if (ctx == NULL)
1288
0
        return 0;
1289
1290
54.8k
    BN_CTX_start(ctx);
1291
54.8k
    curve_p = BN_CTX_get(ctx);
1292
54.8k
    curve_a = BN_CTX_get(ctx);
1293
54.8k
    curve_b = BN_CTX_get(ctx);
1294
54.8k
    if (curve_b == NULL)
1295
0
        goto err;
1296
54.8k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1297
54.8k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1298
54.8k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1299
54.8k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1300
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1301
0
        goto err;
1302
0
    }
1303
54.8k
    group->field_mod_func = BN_nist_mod_224;
1304
54.8k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1305
54.8k
err:
1306
54.8k
    BN_CTX_end(ctx);
1307
54.8k
#ifndef FIPS_MODULE
1308
54.8k
    BN_CTX_free(new_ctx);
1309
54.8k
#endif
1310
54.8k
    return ret;
1311
54.8k
}
1312
1313
/*
1314
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1315
 * (X/Z^2, Y/Z^3)
1316
 */
1317
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1318
    const EC_POINT *point,
1319
    BIGNUM *x, BIGNUM *y,
1320
    BN_CTX *ctx)
1321
6.47k
{
1322
6.47k
    felem z1, z2, x_in, y_in, x_out, y_out;
1323
6.47k
    widefelem tmp;
1324
1325
6.47k
    if (EC_POINT_is_at_infinity(group, point)) {
1326
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1327
0
        return 0;
1328
0
    }
1329
6.47k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z)))
1330
0
        return 0;
1331
6.47k
    felem_inv(z2, z1);
1332
6.47k
    felem_square(tmp, z2);
1333
6.47k
    felem_reduce(z1, tmp);
1334
6.47k
    felem_mul(tmp, x_in, z1);
1335
6.47k
    felem_reduce(x_in, tmp);
1336
6.47k
    felem_contract(x_out, x_in);
1337
6.47k
    if (x != NULL) {
1338
6.47k
        if (!felem_to_BN(x, x_out)) {
1339
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1340
0
            return 0;
1341
0
        }
1342
6.47k
    }
1343
6.47k
    felem_mul(tmp, z1, z2);
1344
6.47k
    felem_reduce(z1, tmp);
1345
6.47k
    felem_mul(tmp, y_in, z1);
1346
6.47k
    felem_reduce(y_in, tmp);
1347
6.47k
    felem_contract(y_out, y_in);
1348
6.47k
    if (y != NULL) {
1349
6.47k
        if (!felem_to_BN(y, y_out)) {
1350
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1351
0
            return 0;
1352
0
        }
1353
6.47k
    }
1354
6.47k
    return 1;
1355
6.47k
}
1356
1357
static void make_points_affine(size_t num, felem points[/* num */][3],
1358
    felem tmp_felems[/* num+1 */])
1359
0
{
1360
    /*
1361
     * Runs in constant time, unless an input is the point at infinity (which
1362
     * normally shouldn't happen).
1363
     */
1364
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1365
0
        points,
1366
0
        sizeof(felem),
1367
0
        tmp_felems,
1368
0
        (void (*)(void *))felem_one,
1369
0
        felem_is_zero_int,
1370
0
        (void (*)(void *, const void *))
1371
0
            felem_assign,
1372
0
        (void (*)(void *, const void *))
1373
0
            felem_square_reduce,
1374
0
        (void (*)(void *,
1375
0
            const void
1376
0
                *,
1377
0
            const void
1378
0
                *))
1379
0
            felem_mul_reduce,
1380
0
        (void (*)(void *, const void *))
1381
0
            felem_inv,
1382
0
        (void (*)(void *, const void *))
1383
0
            felem_contract);
1384
0
}
1385
1386
/*
1387
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1388
 * values Result is stored in r (r can equal one of the inputs).
1389
 */
1390
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1391
    const BIGNUM *scalar, size_t num,
1392
    const EC_POINT *points[],
1393
    const BIGNUM *scalars[], BN_CTX *ctx)
1394
2.92k
{
1395
2.92k
    int ret = 0;
1396
2.92k
    int j;
1397
2.92k
    unsigned i;
1398
2.92k
    int mixed = 0;
1399
2.92k
    BIGNUM *x, *y, *z, *tmp_scalar;
1400
2.92k
    felem_bytearray g_secret;
1401
2.92k
    felem_bytearray *secrets = NULL;
1402
2.92k
    felem(*pre_comp)[17][3] = NULL;
1403
2.92k
    felem *tmp_felems = NULL;
1404
2.92k
    int num_bytes;
1405
2.92k
    int have_pre_comp = 0;
1406
2.92k
    size_t num_points = num;
1407
2.92k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1408
2.92k
    NISTP224_PRE_COMP *pre = NULL;
1409
2.92k
    const felem(*g_pre_comp)[16][3] = NULL;
1410
2.92k
    EC_POINT *generator = NULL;
1411
2.92k
    const EC_POINT *p = NULL;
1412
2.92k
    const BIGNUM *p_scalar = NULL;
1413
1414
2.92k
    BN_CTX_start(ctx);
1415
2.92k
    x = BN_CTX_get(ctx);
1416
2.92k
    y = BN_CTX_get(ctx);
1417
2.92k
    z = BN_CTX_get(ctx);
1418
2.92k
    tmp_scalar = BN_CTX_get(ctx);
1419
2.92k
    if (tmp_scalar == NULL)
1420
0
        goto err;
1421
1422
2.92k
    if (scalar != NULL) {
1423
2.61k
        pre = group->pre_comp.nistp224;
1424
2.61k
        if (pre)
1425
            /* we have precomputation, try to use it */
1426
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1427
2.61k
        else
1428
            /* try to use the standard precomputation */
1429
2.61k
            g_pre_comp = &gmul[0];
1430
2.61k
        generator = EC_POINT_new(group);
1431
2.61k
        if (generator == NULL)
1432
0
            goto err;
1433
        /* get the generator from precomputation */
1434
2.61k
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) || !felem_to_BN(y, g_pre_comp[0][1][1]) || !felem_to_BN(z, g_pre_comp[0][1][2])) {
1435
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1436
0
            goto err;
1437
0
        }
1438
2.61k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1439
2.61k
                generator,
1440
2.61k
                x, y, z, ctx))
1441
0
            goto err;
1442
2.61k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1443
            /* precomputation matches generator */
1444
2.61k
            have_pre_comp = 1;
1445
0
        else
1446
            /*
1447
             * we don't have valid precomputation: treat the generator as a
1448
             * random point
1449
             */
1450
0
            num_points = num_points + 1;
1451
2.61k
    }
1452
1453
2.92k
    if (num_points > 0) {
1454
310
        if (num_points >= 3) {
1455
            /*
1456
             * unless we precompute multiples for just one or two points,
1457
             * converting those into affine form is time well spent
1458
             */
1459
0
            mixed = 1;
1460
0
        }
1461
310
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1462
310
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1463
310
        if (mixed)
1464
0
            tmp_felems = OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1465
310
        if ((secrets == NULL) || (pre_comp == NULL)
1466
310
            || (mixed && (tmp_felems == NULL)))
1467
0
            goto err;
1468
1469
        /*
1470
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1471
         * i.e., they contribute nothing to the linear combination
1472
         */
1473
620
        for (i = 0; i < num_points; ++i) {
1474
310
            if (i == num) {
1475
                /* the generator */
1476
0
                p = EC_GROUP_get0_generator(group);
1477
0
                p_scalar = scalar;
1478
310
            } else {
1479
                /* the i^th point */
1480
310
                p = points[i];
1481
310
                p_scalar = scalars[i];
1482
310
            }
1483
310
            if ((p_scalar != NULL) && (p != NULL)) {
1484
                /* reduce scalar to 0 <= scalar < 2^224 */
1485
310
                if ((BN_num_bits(p_scalar) > 224)
1486
310
                    || (BN_is_negative(p_scalar))) {
1487
                    /*
1488
                     * this is an unusual input, and we don't guarantee
1489
                     * constant-timeness
1490
                     */
1491
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1492
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1493
0
                        goto err;
1494
0
                    }
1495
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1496
0
                        secrets[i], sizeof(secrets[i]));
1497
310
                } else {
1498
310
                    num_bytes = BN_bn2lebinpad(p_scalar,
1499
310
                        secrets[i], sizeof(secrets[i]));
1500
310
                }
1501
310
                if (num_bytes < 0) {
1502
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1503
0
                    goto err;
1504
0
                }
1505
                /* precompute multiples */
1506
310
                if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z)))
1507
0
                    goto err;
1508
310
                felem_assign(pre_comp[i][1][0], x_out);
1509
310
                felem_assign(pre_comp[i][1][1], y_out);
1510
310
                felem_assign(pre_comp[i][1][2], z_out);
1511
4.96k
                for (j = 2; j <= 16; ++j) {
1512
4.65k
                    if (j & 1) {
1513
2.17k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1514
2.17k
                            pre_comp[i][j][2], pre_comp[i][1][0],
1515
2.17k
                            pre_comp[i][1][1], pre_comp[i][1][2], 0,
1516
2.17k
                            pre_comp[i][j - 1][0],
1517
2.17k
                            pre_comp[i][j - 1][1],
1518
2.17k
                            pre_comp[i][j - 1][2]);
1519
2.48k
                    } else {
1520
2.48k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1521
2.48k
                            pre_comp[i][j][2], pre_comp[i][j / 2][0],
1522
2.48k
                            pre_comp[i][j / 2][1],
1523
2.48k
                            pre_comp[i][j / 2][2]);
1524
2.48k
                    }
1525
4.65k
                }
1526
310
            }
1527
310
        }
1528
310
        if (mixed)
1529
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1530
310
    }
1531
1532
    /* the scalar for the generator */
1533
2.92k
    if ((scalar != NULL) && (have_pre_comp)) {
1534
2.61k
        memset(g_secret, 0, sizeof(g_secret));
1535
        /* reduce scalar to 0 <= scalar < 2^224 */
1536
2.61k
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1537
            /*
1538
             * this is an unusual input, and we don't guarantee
1539
             * constant-timeness
1540
             */
1541
553
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1542
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1543
0
                goto err;
1544
0
            }
1545
553
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1546
2.06k
        } else {
1547
2.06k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1548
2.06k
        }
1549
        /* do the multiplication with generator precomputation */
1550
2.61k
        batch_mul(x_out, y_out, z_out,
1551
2.61k
            (const felem_bytearray(*))secrets, num_points,
1552
2.61k
            g_secret,
1553
2.61k
            mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1554
2.61k
    } else {
1555
        /* do the multiplication without generator precomputation */
1556
310
        batch_mul(x_out, y_out, z_out,
1557
310
            (const felem_bytearray(*))secrets, num_points,
1558
310
            NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1559
310
    }
1560
    /* reduce the output to its unique minimal representation */
1561
2.92k
    felem_contract(x_in, x_out);
1562
2.92k
    felem_contract(y_in, y_out);
1563
2.92k
    felem_contract(z_in, z_out);
1564
2.92k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) {
1565
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1566
0
        goto err;
1567
0
    }
1568
2.92k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1569
2.92k
        ctx);
1570
1571
2.92k
err:
1572
2.92k
    BN_CTX_end(ctx);
1573
2.92k
    EC_POINT_free(generator);
1574
2.92k
    OPENSSL_free(secrets);
1575
2.92k
    OPENSSL_free(pre_comp);
1576
2.92k
    OPENSSL_free(tmp_felems);
1577
2.92k
    return ret;
1578
2.92k
}
1579
1580
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1581
0
{
1582
0
    int ret = 0;
1583
0
    NISTP224_PRE_COMP *pre = NULL;
1584
0
    int i, j;
1585
0
    BIGNUM *x, *y;
1586
0
    EC_POINT *generator = NULL;
1587
0
    felem tmp_felems[32];
1588
0
#ifndef FIPS_MODULE
1589
0
    BN_CTX *new_ctx = NULL;
1590
0
#endif
1591
1592
    /* throw away old precomputation */
1593
0
    EC_pre_comp_free(group);
1594
1595
0
#ifndef FIPS_MODULE
1596
0
    if (ctx == NULL)
1597
0
        ctx = new_ctx = BN_CTX_new();
1598
0
#endif
1599
0
    if (ctx == NULL)
1600
0
        return 0;
1601
1602
0
    BN_CTX_start(ctx);
1603
0
    x = BN_CTX_get(ctx);
1604
0
    y = BN_CTX_get(ctx);
1605
0
    if (y == NULL)
1606
0
        goto err;
1607
    /* get the generator */
1608
0
    if (group->generator == NULL)
1609
0
        goto err;
1610
0
    generator = EC_POINT_new(group);
1611
0
    if (generator == NULL)
1612
0
        goto err;
1613
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1614
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1615
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1616
0
        goto err;
1617
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1618
0
        goto err;
1619
    /*
1620
     * if the generator is the standard one, use built-in precomputation
1621
     */
1622
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1623
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1624
0
        goto done;
1625
0
    }
1626
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1627
0
        goto err;
1628
    /*
1629
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1630
     * 2^140*G, 2^196*G for the second one
1631
     */
1632
0
    for (i = 1; i <= 8; i <<= 1) {
1633
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1634
0
            pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1635
0
            pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1636
0
        for (j = 0; j < 27; ++j) {
1637
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1638
0
                pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1639
0
                pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1640
0
        }
1641
0
        if (i == 8)
1642
0
            break;
1643
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1644
0
            pre->g_pre_comp[0][2 * i][1],
1645
0
            pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1646
0
            pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1647
0
        for (j = 0; j < 27; ++j) {
1648
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1649
0
                pre->g_pre_comp[0][2 * i][1],
1650
0
                pre->g_pre_comp[0][2 * i][2],
1651
0
                pre->g_pre_comp[0][2 * i][0],
1652
0
                pre->g_pre_comp[0][2 * i][1],
1653
0
                pre->g_pre_comp[0][2 * i][2]);
1654
0
        }
1655
0
    }
1656
0
    for (i = 0; i < 2; i++) {
1657
        /* g_pre_comp[i][0] is the point at infinity */
1658
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1659
        /* the remaining multiples */
1660
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1661
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1662
0
            pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1663
0
            pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1664
0
            0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1665
0
            pre->g_pre_comp[i][2][2]);
1666
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1667
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1668
0
            pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1669
0
            pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1670
0
            0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1671
0
            pre->g_pre_comp[i][2][2]);
1672
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1673
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1674
0
            pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1675
0
            pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1676
0
            0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1677
0
            pre->g_pre_comp[i][4][2]);
1678
        /*
1679
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1680
         */
1681
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1682
0
            pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1683
0
            pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1684
0
            0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1685
0
            pre->g_pre_comp[i][2][2]);
1686
0
        for (j = 1; j < 8; ++j) {
1687
            /* odd multiples: add G resp. 2^28*G */
1688
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1689
0
                pre->g_pre_comp[i][2 * j + 1][1],
1690
0
                pre->g_pre_comp[i][2 * j + 1][2],
1691
0
                pre->g_pre_comp[i][2 * j][0],
1692
0
                pre->g_pre_comp[i][2 * j][1],
1693
0
                pre->g_pre_comp[i][2 * j][2], 0,
1694
0
                pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1695
0
                pre->g_pre_comp[i][1][2]);
1696
0
        }
1697
0
    }
1698
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1699
1700
0
done:
1701
0
    SETPRECOMP(group, nistp224, pre);
1702
0
    pre = NULL;
1703
0
    ret = 1;
1704
0
err:
1705
0
    BN_CTX_end(ctx);
1706
0
    EC_POINT_free(generator);
1707
0
#ifndef FIPS_MODULE
1708
0
    BN_CTX_free(new_ctx);
1709
0
#endif
1710
0
    EC_nistp224_pre_comp_free(pre);
1711
0
    return ret;
1712
0
}
1713
1714
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1715
0
{
1716
    return HAVEPRECOMP(group, nistp224);
1717
0
}