Coverage Report

Created: 2026-02-14 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl34/crypto/ec/ecp_nistp521.c
Line
Count
Source
1
/*
2
 * Copyright 2011-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
#error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    { 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
        0xff, 0xff },
77
    { 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
        0xff, 0xfc },
86
    { 0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
        0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
        0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
        0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
        0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
        0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
        0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
        0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
        0x3f, 0x00 },
95
    { 0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
        0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
        0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
        0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
        0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
        0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
        0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
        0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
        0xbd, 0x66 },
104
    { 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
        0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
        0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
        0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
        0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
        0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
        0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
        0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
        0x66, 0x50 }
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
104M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
5.80k
{
145
5.80k
    out[0] = (*((limb *)&in[0])) & bottom58bits;
146
5.80k
    out[1] = (*((limb_aX *)&in[7]) >> 2) & bottom58bits;
147
5.80k
    out[2] = (*((limb_aX *)&in[14]) >> 4) & bottom58bits;
148
5.80k
    out[3] = (*((limb_aX *)&in[21]) >> 6) & bottom58bits;
149
5.80k
    out[4] = (*((limb_aX *)&in[29])) & bottom58bits;
150
5.80k
    out[5] = (*((limb_aX *)&in[36]) >> 2) & bottom58bits;
151
5.80k
    out[6] = (*((limb_aX *)&in[43]) >> 4) & bottom58bits;
152
5.80k
    out[7] = (*((limb_aX *)&in[50]) >> 6) & bottom58bits;
153
5.80k
    out[8] = (*((limb_aX *)&in[58])) & bottom57bits;
154
5.80k
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
12.5k
{
162
12.5k
    memset(out, 0, 66);
163
12.5k
    (*((limb *)&out[0])) = in[0];
164
12.5k
    (*((limb_aX *)&out[7])) |= in[1] << 2;
165
12.5k
    (*((limb_aX *)&out[14])) |= in[2] << 4;
166
12.5k
    (*((limb_aX *)&out[21])) |= in[3] << 6;
167
12.5k
    (*((limb_aX *)&out[29])) = in[4];
168
12.5k
    (*((limb_aX *)&out[36])) |= in[5] << 2;
169
12.5k
    (*((limb_aX *)&out[43])) |= in[6] << 4;
170
12.5k
    (*((limb_aX *)&out[50])) |= in[7] << 6;
171
12.5k
    (*((limb_aX *)&out[58])) = in[8];
172
12.5k
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
5.80k
{
177
5.80k
    felem_bytearray b_out;
178
5.80k
    int num_bytes;
179
180
5.80k
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
5.80k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
5.80k
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
5.80k
    bin66_to_felem(out, b_out);
190
5.80k
    return 1;
191
5.80k
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
12.5k
{
196
12.5k
    felem_bytearray b_out;
197
12.5k
    felem_to_bin66(b_out, in);
198
12.5k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
12.5k
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
3.30M
{
221
3.30M
    out[0] = in[0];
222
3.30M
    out[1] = in[1];
223
3.30M
    out[2] = in[2];
224
3.30M
    out[3] = in[3];
225
3.30M
    out[4] = in[4];
226
3.30M
    out[5] = in[5];
227
3.30M
    out[6] = in[6];
228
3.30M
    out[7] = in[7];
229
3.30M
    out[8] = in[8];
230
3.30M
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
806k
{
235
806k
    out[0] += in[0];
236
806k
    out[1] += in[1];
237
806k
    out[2] += in[2];
238
806k
    out[3] += in[3];
239
806k
    out[4] += in[4];
240
806k
    out[5] += in[5];
241
806k
    out[6] += in[6];
242
806k
    out[7] += in[7];
243
806k
    out[8] += in[8];
244
806k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
8.48M
{
249
8.48M
    out[0] = in[0] * scalar;
250
8.48M
    out[1] = in[1] * scalar;
251
8.48M
    out[2] = in[2] * scalar;
252
8.48M
    out[3] = in[3] * scalar;
253
8.48M
    out[4] = in[4] * scalar;
254
8.48M
    out[5] = in[5] * scalar;
255
8.48M
    out[6] = in[6] * scalar;
256
8.48M
    out[7] = in[7] * scalar;
257
8.48M
    out[8] = in[8] * scalar;
258
8.48M
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
1.40M
{
263
1.40M
    out[0] *= scalar;
264
1.40M
    out[1] *= scalar;
265
1.40M
    out[2] *= scalar;
266
1.40M
    out[3] *= scalar;
267
1.40M
    out[4] *= scalar;
268
1.40M
    out[5] *= scalar;
269
1.40M
    out[6] *= scalar;
270
1.40M
    out[7] *= scalar;
271
1.40M
    out[8] *= scalar;
272
1.40M
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
467k
{
277
467k
    out[0] *= scalar;
278
467k
    out[1] *= scalar;
279
467k
    out[2] *= scalar;
280
467k
    out[3] *= scalar;
281
467k
    out[4] *= scalar;
282
467k
    out[5] *= scalar;
283
467k
    out[6] *= scalar;
284
467k
    out[7] *= scalar;
285
467k
    out[8] *= scalar;
286
467k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
15.6k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
15.6k
    static const limb two62m3 = (((limb)1) << 62) - (((limb)1) << 5);
299
15.6k
    static const limb two62m2 = (((limb)1) << 62) - (((limb)1) << 4);
300
301
15.6k
    out[0] = two62m3 - in[0];
302
15.6k
    out[1] = two62m2 - in[1];
303
15.6k
    out[2] = two62m2 - in[2];
304
15.6k
    out[3] = two62m2 - in[3];
305
15.6k
    out[4] = two62m2 - in[4];
306
15.6k
    out[5] = two62m2 - in[5];
307
15.6k
    out[6] = two62m2 - in[6];
308
15.6k
    out[7] = two62m2 - in[7];
309
15.6k
    out[8] = two62m2 - in[8];
310
15.6k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
730k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
730k
    static const limb two62m3 = (((limb)1) << 62) - (((limb)1) << 5);
325
730k
    static const limb two62m2 = (((limb)1) << 62) - (((limb)1) << 4);
326
327
730k
    out[0] += two62m3 - in[0];
328
730k
    out[1] += two62m2 - in[1];
329
730k
    out[2] += two62m2 - in[2];
330
730k
    out[3] += two62m2 - in[3];
331
730k
    out[4] += two62m2 - in[4];
332
730k
    out[5] += two62m2 - in[5];
333
730k
    out[6] += two62m2 - in[6];
334
730k
    out[7] += two62m2 - in[7];
335
730k
    out[8] += two62m2 - in[8];
336
730k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
1.37M
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
1.37M
    static const limb two63m6 = (((limb)1) << 63) - (((limb)1) << 6);
356
1.37M
    static const limb two63m5 = (((limb)1) << 63) - (((limb)1) << 5);
357
358
1.37M
    out[0] += two63m6 - in[0];
359
1.37M
    out[1] += two63m5 - in[1];
360
1.37M
    out[2] += two63m5 - in[2];
361
1.37M
    out[3] += two63m5 - in[3];
362
1.37M
    out[4] += two63m5 - in[4];
363
1.37M
    out[5] += two63m5 - in[5];
364
1.37M
    out[6] += two63m5 - in[6];
365
1.37M
    out[7] += two63m5 - in[7];
366
1.37M
    out[8] += two63m5 - in[8];
367
1.37M
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
467k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
467k
    static const uint128_t two127m70 = (((uint128_t)1) << 127) - (((uint128_t)1) << 70);
382
467k
    static const uint128_t two127m69 = (((uint128_t)1) << 127) - (((uint128_t)1) << 69);
383
384
467k
    out[0] += (two127m70 - in[0]);
385
467k
    out[1] += (two127m69 - in[1]);
386
467k
    out[2] += (two127m69 - in[2]);
387
467k
    out[3] += (two127m69 - in[3]);
388
467k
    out[4] += (two127m69 - in[4]);
389
467k
    out[5] += (two127m69 - in[5]);
390
467k
    out[6] += (two127m69 - in[6]);
391
467k
    out[7] += (two127m69 - in[7]);
392
467k
    out[8] += (two127m69 - in[8]);
393
467k
}
394
395
/*-
396
 * felem_square sets |out| = |in|^2
397
 * On entry:
398
 *   in[i] < 2^62
399
 * On exit:
400
 *   out[i] < 17 * max(in[i]) * max(in[i])
401
 */
402
static void felem_square_ref(largefelem out, const felem in)
403
2.89M
{
404
2.89M
    felem inx2, inx4;
405
2.89M
    felem_scalar(inx2, in, 2);
406
2.89M
    felem_scalar(inx4, in, 4);
407
408
    /*-
409
     * We have many cases were we want to do
410
     *   in[x] * in[y] +
411
     *   in[y] * in[x]
412
     * This is obviously just
413
     *   2 * in[x] * in[y]
414
     * However, rather than do the doubling on the 128 bit result, we
415
     * double one of the inputs to the multiplication by reading from
416
     * |inx2|
417
     */
418
419
2.89M
    out[0] = ((uint128_t)in[0]) * in[0];
420
2.89M
    out[1] = ((uint128_t)in[0]) * inx2[1];
421
2.89M
    out[2] = ((uint128_t)in[0]) * inx2[2] + ((uint128_t)in[1]) * in[1];
422
2.89M
    out[3] = ((uint128_t)in[0]) * inx2[3] + ((uint128_t)in[1]) * inx2[2];
423
2.89M
    out[4] = ((uint128_t)in[0]) * inx2[4] + ((uint128_t)in[1]) * inx2[3] + ((uint128_t)in[2]) * in[2];
424
2.89M
    out[5] = ((uint128_t)in[0]) * inx2[5] + ((uint128_t)in[1]) * inx2[4] + ((uint128_t)in[2]) * inx2[3];
425
2.89M
    out[6] = ((uint128_t)in[0]) * inx2[6] + ((uint128_t)in[1]) * inx2[5] + ((uint128_t)in[2]) * inx2[4] + ((uint128_t)in[3]) * in[3];
426
2.89M
    out[7] = ((uint128_t)in[0]) * inx2[7] + ((uint128_t)in[1]) * inx2[6] + ((uint128_t)in[2]) * inx2[5] + ((uint128_t)in[3]) * inx2[4];
427
2.89M
    out[8] = ((uint128_t)in[0]) * inx2[8] + ((uint128_t)in[1]) * inx2[7] + ((uint128_t)in[2]) * inx2[6] + ((uint128_t)in[3]) * inx2[5] + ((uint128_t)in[4]) * in[4];
428
429
    /*
430
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
431
     * They correspond to locations one bit up from the limbs produced above
432
     * so we would have to multiply by two to align them. Again, rather than
433
     * operate on the 128-bit result, we double one of the inputs to the
434
     * multiplication. If we want to double for both this reason, and the
435
     * reason above, then we end up multiplying by four.
436
     */
437
438
    /* 9 */
439
2.89M
    out[0] += ((uint128_t)in[1]) * inx4[8] + ((uint128_t)in[2]) * inx4[7] + ((uint128_t)in[3]) * inx4[6] + ((uint128_t)in[4]) * inx4[5];
440
441
    /* 10 */
442
2.89M
    out[1] += ((uint128_t)in[2]) * inx4[8] + ((uint128_t)in[3]) * inx4[7] + ((uint128_t)in[4]) * inx4[6] + ((uint128_t)in[5]) * inx2[5];
443
444
    /* 11 */
445
2.89M
    out[2] += ((uint128_t)in[3]) * inx4[8] + ((uint128_t)in[4]) * inx4[7] + ((uint128_t)in[5]) * inx4[6];
446
447
    /* 12 */
448
2.89M
    out[3] += ((uint128_t)in[4]) * inx4[8] + ((uint128_t)in[5]) * inx4[7] + ((uint128_t)in[6]) * inx2[6];
449
450
    /* 13 */
451
2.89M
    out[4] += ((uint128_t)in[5]) * inx4[8] + ((uint128_t)in[6]) * inx4[7];
452
453
    /* 14 */
454
2.89M
    out[5] += ((uint128_t)in[6]) * inx4[8] + ((uint128_t)in[7]) * inx2[7];
455
456
    /* 15 */
457
2.89M
    out[6] += ((uint128_t)in[7]) * inx4[8];
458
459
    /* 16 */
460
2.89M
    out[7] += ((uint128_t)in[8]) * inx2[8];
461
2.89M
}
462
463
/*-
464
 * felem_mul sets |out| = |in1| * |in2|
465
 * On entry:
466
 *   in1[i] < 2^64
467
 *   in2[i] < 2^63
468
 * On exit:
469
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
470
 */
471
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
472
2.50M
{
473
2.50M
    felem in2x2;
474
2.50M
    felem_scalar(in2x2, in2, 2);
475
476
2.50M
    out[0] = ((uint128_t)in1[0]) * in2[0];
477
478
2.50M
    out[1] = ((uint128_t)in1[0]) * in2[1] + ((uint128_t)in1[1]) * in2[0];
479
480
2.50M
    out[2] = ((uint128_t)in1[0]) * in2[2] + ((uint128_t)in1[1]) * in2[1] + ((uint128_t)in1[2]) * in2[0];
481
482
2.50M
    out[3] = ((uint128_t)in1[0]) * in2[3] + ((uint128_t)in1[1]) * in2[2] + ((uint128_t)in1[2]) * in2[1] + ((uint128_t)in1[3]) * in2[0];
483
484
2.50M
    out[4] = ((uint128_t)in1[0]) * in2[4] + ((uint128_t)in1[1]) * in2[3] + ((uint128_t)in1[2]) * in2[2] + ((uint128_t)in1[3]) * in2[1] + ((uint128_t)in1[4]) * in2[0];
485
486
2.50M
    out[5] = ((uint128_t)in1[0]) * in2[5] + ((uint128_t)in1[1]) * in2[4] + ((uint128_t)in1[2]) * in2[3] + ((uint128_t)in1[3]) * in2[2] + ((uint128_t)in1[4]) * in2[1] + ((uint128_t)in1[5]) * in2[0];
487
488
2.50M
    out[6] = ((uint128_t)in1[0]) * in2[6] + ((uint128_t)in1[1]) * in2[5] + ((uint128_t)in1[2]) * in2[4] + ((uint128_t)in1[3]) * in2[3] + ((uint128_t)in1[4]) * in2[2] + ((uint128_t)in1[5]) * in2[1] + ((uint128_t)in1[6]) * in2[0];
489
490
2.50M
    out[7] = ((uint128_t)in1[0]) * in2[7] + ((uint128_t)in1[1]) * in2[6] + ((uint128_t)in1[2]) * in2[5] + ((uint128_t)in1[3]) * in2[4] + ((uint128_t)in1[4]) * in2[3] + ((uint128_t)in1[5]) * in2[2] + ((uint128_t)in1[6]) * in2[1] + ((uint128_t)in1[7]) * in2[0];
491
492
2.50M
    out[8] = ((uint128_t)in1[0]) * in2[8] + ((uint128_t)in1[1]) * in2[7] + ((uint128_t)in1[2]) * in2[6] + ((uint128_t)in1[3]) * in2[5] + ((uint128_t)in1[4]) * in2[4] + ((uint128_t)in1[5]) * in2[3] + ((uint128_t)in1[6]) * in2[2] + ((uint128_t)in1[7]) * in2[1] + ((uint128_t)in1[8]) * in2[0];
493
494
    /* See comment in felem_square about the use of in2x2 here */
495
496
2.50M
    out[0] += ((uint128_t)in1[1]) * in2x2[8] + ((uint128_t)in1[2]) * in2x2[7] + ((uint128_t)in1[3]) * in2x2[6] + ((uint128_t)in1[4]) * in2x2[5] + ((uint128_t)in1[5]) * in2x2[4] + ((uint128_t)in1[6]) * in2x2[3] + ((uint128_t)in1[7]) * in2x2[2] + ((uint128_t)in1[8]) * in2x2[1];
497
498
2.50M
    out[1] += ((uint128_t)in1[2]) * in2x2[8] + ((uint128_t)in1[3]) * in2x2[7] + ((uint128_t)in1[4]) * in2x2[6] + ((uint128_t)in1[5]) * in2x2[5] + ((uint128_t)in1[6]) * in2x2[4] + ((uint128_t)in1[7]) * in2x2[3] + ((uint128_t)in1[8]) * in2x2[2];
499
500
2.50M
    out[2] += ((uint128_t)in1[3]) * in2x2[8] + ((uint128_t)in1[4]) * in2x2[7] + ((uint128_t)in1[5]) * in2x2[6] + ((uint128_t)in1[6]) * in2x2[5] + ((uint128_t)in1[7]) * in2x2[4] + ((uint128_t)in1[8]) * in2x2[3];
501
502
2.50M
    out[3] += ((uint128_t)in1[4]) * in2x2[8] + ((uint128_t)in1[5]) * in2x2[7] + ((uint128_t)in1[6]) * in2x2[6] + ((uint128_t)in1[7]) * in2x2[5] + ((uint128_t)in1[8]) * in2x2[4];
503
504
2.50M
    out[4] += ((uint128_t)in1[5]) * in2x2[8] + ((uint128_t)in1[6]) * in2x2[7] + ((uint128_t)in1[7]) * in2x2[6] + ((uint128_t)in1[8]) * in2x2[5];
505
506
2.50M
    out[5] += ((uint128_t)in1[6]) * in2x2[8] + ((uint128_t)in1[7]) * in2x2[7] + ((uint128_t)in1[8]) * in2x2[6];
507
508
2.50M
    out[6] += ((uint128_t)in1[7]) * in2x2[8] + ((uint128_t)in1[8]) * in2x2[7];
509
510
2.50M
    out[7] += ((uint128_t)in1[8]) * in2x2[8];
511
2.50M
}
512
513
static const limb bottom52bits = 0xfffffffffffff;
514
515
/*-
516
 * felem_reduce converts a largefelem to an felem.
517
 * On entry:
518
 *   in[i] < 2^128
519
 * On exit:
520
 *   out[i] < 2^59 + 2^14
521
 */
522
static void felem_reduce(felem out, const largefelem in)
523
4.93M
{
524
4.93M
    u64 overflow1, overflow2;
525
526
4.93M
    out[0] = ((limb)in[0]) & bottom58bits;
527
4.93M
    out[1] = ((limb)in[1]) & bottom58bits;
528
4.93M
    out[2] = ((limb)in[2]) & bottom58bits;
529
4.93M
    out[3] = ((limb)in[3]) & bottom58bits;
530
4.93M
    out[4] = ((limb)in[4]) & bottom58bits;
531
4.93M
    out[5] = ((limb)in[5]) & bottom58bits;
532
4.93M
    out[6] = ((limb)in[6]) & bottom58bits;
533
4.93M
    out[7] = ((limb)in[7]) & bottom58bits;
534
4.93M
    out[8] = ((limb)in[8]) & bottom58bits;
535
536
    /* out[i] < 2^58 */
537
538
4.93M
    out[1] += ((limb)in[0]) >> 58;
539
4.93M
    out[1] += (((limb)(in[0] >> 64)) & bottom52bits) << 6;
540
    /*-
541
     * out[1] < 2^58 + 2^6 + 2^58
542
     *        = 2^59 + 2^6
543
     */
544
4.93M
    out[2] += ((limb)(in[0] >> 64)) >> 52;
545
546
4.93M
    out[2] += ((limb)in[1]) >> 58;
547
4.93M
    out[2] += (((limb)(in[1] >> 64)) & bottom52bits) << 6;
548
4.93M
    out[3] += ((limb)(in[1] >> 64)) >> 52;
549
550
4.93M
    out[3] += ((limb)in[2]) >> 58;
551
4.93M
    out[3] += (((limb)(in[2] >> 64)) & bottom52bits) << 6;
552
4.93M
    out[4] += ((limb)(in[2] >> 64)) >> 52;
553
554
4.93M
    out[4] += ((limb)in[3]) >> 58;
555
4.93M
    out[4] += (((limb)(in[3] >> 64)) & bottom52bits) << 6;
556
4.93M
    out[5] += ((limb)(in[3] >> 64)) >> 52;
557
558
4.93M
    out[5] += ((limb)in[4]) >> 58;
559
4.93M
    out[5] += (((limb)(in[4] >> 64)) & bottom52bits) << 6;
560
4.93M
    out[6] += ((limb)(in[4] >> 64)) >> 52;
561
562
4.93M
    out[6] += ((limb)in[5]) >> 58;
563
4.93M
    out[6] += (((limb)(in[5] >> 64)) & bottom52bits) << 6;
564
4.93M
    out[7] += ((limb)(in[5] >> 64)) >> 52;
565
566
4.93M
    out[7] += ((limb)in[6]) >> 58;
567
4.93M
    out[7] += (((limb)(in[6] >> 64)) & bottom52bits) << 6;
568
4.93M
    out[8] += ((limb)(in[6] >> 64)) >> 52;
569
570
4.93M
    out[8] += ((limb)in[7]) >> 58;
571
4.93M
    out[8] += (((limb)(in[7] >> 64)) & bottom52bits) << 6;
572
    /*-
573
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
574
     *            < 2^59 + 2^13
575
     */
576
4.93M
    overflow1 = ((limb)(in[7] >> 64)) >> 52;
577
578
4.93M
    overflow1 += ((limb)in[8]) >> 58;
579
4.93M
    overflow1 += (((limb)(in[8] >> 64)) & bottom52bits) << 6;
580
4.93M
    overflow2 = ((limb)(in[8] >> 64)) >> 52;
581
582
4.93M
    overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */
583
4.93M
    overflow2 <<= 1; /* overflow2 < 2^13 */
584
585
4.93M
    out[0] += overflow1; /* out[0] < 2^60 */
586
4.93M
    out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */
587
588
4.93M
    out[1] += out[0] >> 58;
589
4.93M
    out[0] &= bottom58bits;
590
    /*-
591
     * out[0] < 2^58
592
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
593
     *        < 2^59 + 2^14
594
     */
595
4.93M
}
596
597
#if defined(ECP_NISTP521_ASM)
598
static void felem_square_wrapper(largefelem out, const felem in);
599
static void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
600
601
static void (*felem_square_p)(largefelem out, const felem in) = felem_square_wrapper;
602
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) = felem_mul_wrapper;
603
604
void p521_felem_square(largefelem out, const felem in);
605
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
606
607
#if defined(_ARCH_PPC64)
608
#include "crypto/ppc_arch.h"
609
#endif
610
611
static void felem_select(void)
612
{
613
#if defined(_ARCH_PPC64)
614
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
615
        felem_square_p = p521_felem_square;
616
        felem_mul_p = p521_felem_mul;
617
618
        return;
619
    }
620
#endif
621
622
    /* Default */
623
    felem_square_p = felem_square_ref;
624
    felem_mul_p = felem_mul_ref;
625
}
626
627
static void felem_square_wrapper(largefelem out, const felem in)
628
{
629
    felem_select();
630
    felem_square_p(out, in);
631
}
632
633
static void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
634
{
635
    felem_select();
636
    felem_mul_p(out, in1, in2);
637
}
638
639
#define felem_square felem_square_p
640
#define felem_mul felem_mul_p
641
#else
642
2.89M
#define felem_square felem_square_ref
643
2.50M
#define felem_mul felem_mul_ref
644
#endif
645
646
static void felem_square_reduce(felem out, const felem in)
647
0
{
648
0
    largefelem tmp;
649
0
    felem_square(tmp, in);
650
0
    felem_reduce(out, tmp);
651
0
}
652
653
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
654
0
{
655
0
    largefelem tmp;
656
0
    felem_mul(tmp, in1, in2);
657
0
    felem_reduce(out, tmp);
658
0
}
659
660
/*-
661
 * felem_inv calculates |out| = |in|^{-1}
662
 *
663
 * Based on Fermat's Little Theorem:
664
 *   a^p = a (mod p)
665
 *   a^{p-1} = 1 (mod p)
666
 *   a^{p-2} = a^{-1} (mod p)
667
 */
668
static void felem_inv(felem out, const felem in)
669
1.78k
{
670
1.78k
    felem ftmp, ftmp2, ftmp3, ftmp4;
671
1.78k
    largefelem tmp;
672
1.78k
    unsigned i;
673
674
1.78k
    felem_square(tmp, in);
675
1.78k
    felem_reduce(ftmp, tmp); /* 2^1 */
676
1.78k
    felem_mul(tmp, in, ftmp);
677
1.78k
    felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
678
1.78k
    felem_assign(ftmp2, ftmp);
679
1.78k
    felem_square(tmp, ftmp);
680
1.78k
    felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
681
1.78k
    felem_mul(tmp, in, ftmp);
682
1.78k
    felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */
683
1.78k
    felem_square(tmp, ftmp);
684
1.78k
    felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */
685
686
1.78k
    felem_square(tmp, ftmp2);
687
1.78k
    felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */
688
1.78k
    felem_square(tmp, ftmp3);
689
1.78k
    felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */
690
1.78k
    felem_mul(tmp, ftmp3, ftmp2);
691
1.78k
    felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */
692
693
1.78k
    felem_assign(ftmp2, ftmp3);
694
1.78k
    felem_square(tmp, ftmp3);
695
1.78k
    felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */
696
1.78k
    felem_square(tmp, ftmp3);
697
1.78k
    felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */
698
1.78k
    felem_square(tmp, ftmp3);
699
1.78k
    felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */
700
1.78k
    felem_square(tmp, ftmp3);
701
1.78k
    felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */
702
1.78k
    felem_mul(tmp, ftmp3, ftmp);
703
1.78k
    felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */
704
1.78k
    felem_square(tmp, ftmp4);
705
1.78k
    felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */
706
1.78k
    felem_mul(tmp, ftmp3, ftmp2);
707
1.78k
    felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */
708
1.78k
    felem_assign(ftmp2, ftmp3);
709
710
16.0k
    for (i = 0; i < 8; i++) {
711
14.2k
        felem_square(tmp, ftmp3);
712
14.2k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
713
14.2k
    }
714
1.78k
    felem_mul(tmp, ftmp3, ftmp2);
715
1.78k
    felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */
716
1.78k
    felem_assign(ftmp2, ftmp3);
717
718
30.3k
    for (i = 0; i < 16; i++) {
719
28.5k
        felem_square(tmp, ftmp3);
720
28.5k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
721
28.5k
    }
722
1.78k
    felem_mul(tmp, ftmp3, ftmp2);
723
1.78k
    felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */
724
1.78k
    felem_assign(ftmp2, ftmp3);
725
726
58.9k
    for (i = 0; i < 32; i++) {
727
57.1k
        felem_square(tmp, ftmp3);
728
57.1k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
729
57.1k
    }
730
1.78k
    felem_mul(tmp, ftmp3, ftmp2);
731
1.78k
    felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */
732
1.78k
    felem_assign(ftmp2, ftmp3);
733
734
116k
    for (i = 0; i < 64; i++) {
735
114k
        felem_square(tmp, ftmp3);
736
114k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
737
114k
    }
738
1.78k
    felem_mul(tmp, ftmp3, ftmp2);
739
1.78k
    felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */
740
1.78k
    felem_assign(ftmp2, ftmp3);
741
742
230k
    for (i = 0; i < 128; i++) {
743
228k
        felem_square(tmp, ftmp3);
744
228k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
745
228k
    }
746
1.78k
    felem_mul(tmp, ftmp3, ftmp2);
747
1.78k
    felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */
748
1.78k
    felem_assign(ftmp2, ftmp3);
749
750
459k
    for (i = 0; i < 256; i++) {
751
457k
        felem_square(tmp, ftmp3);
752
457k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
753
457k
    }
754
1.78k
    felem_mul(tmp, ftmp3, ftmp2);
755
1.78k
    felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */
756
757
17.8k
    for (i = 0; i < 9; i++) {
758
16.0k
        felem_square(tmp, ftmp3);
759
16.0k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
760
16.0k
    }
761
1.78k
    felem_mul(tmp, ftmp3, ftmp4);
762
1.78k
    felem_reduce(ftmp3, tmp); /* 2^521 - 2^2 */
763
1.78k
    felem_mul(tmp, ftmp3, in);
764
1.78k
    felem_reduce(out, tmp); /* 2^521 - 3 */
765
1.78k
}
766
767
/* This is 2^521-1, expressed as an felem */
768
static const felem kPrime = {
769
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
770
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
771
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
772
};
773
774
/*-
775
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
776
 * otherwise.
777
 * On entry:
778
 *   in[i] < 2^59 + 2^14
779
 */
780
static limb felem_is_zero(const felem in)
781
816k
{
782
816k
    felem ftmp;
783
816k
    limb is_zero, is_p;
784
816k
    felem_assign(ftmp, in);
785
786
816k
    ftmp[0] += ftmp[8] >> 57;
787
816k
    ftmp[8] &= bottom57bits;
788
    /* ftmp[8] < 2^57 */
789
816k
    ftmp[1] += ftmp[0] >> 58;
790
816k
    ftmp[0] &= bottom58bits;
791
816k
    ftmp[2] += ftmp[1] >> 58;
792
816k
    ftmp[1] &= bottom58bits;
793
816k
    ftmp[3] += ftmp[2] >> 58;
794
816k
    ftmp[2] &= bottom58bits;
795
816k
    ftmp[4] += ftmp[3] >> 58;
796
816k
    ftmp[3] &= bottom58bits;
797
816k
    ftmp[5] += ftmp[4] >> 58;
798
816k
    ftmp[4] &= bottom58bits;
799
816k
    ftmp[6] += ftmp[5] >> 58;
800
816k
    ftmp[5] &= bottom58bits;
801
816k
    ftmp[7] += ftmp[6] >> 58;
802
816k
    ftmp[6] &= bottom58bits;
803
816k
    ftmp[8] += ftmp[7] >> 58;
804
816k
    ftmp[7] &= bottom58bits;
805
    /* ftmp[8] < 2^57 + 4 */
806
807
    /*
808
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
809
     * than our bound for ftmp[8]. Therefore we only have to check if the
810
     * zero is zero or 2^521-1.
811
     */
812
813
816k
    is_zero = 0;
814
816k
    is_zero |= ftmp[0];
815
816k
    is_zero |= ftmp[1];
816
816k
    is_zero |= ftmp[2];
817
816k
    is_zero |= ftmp[3];
818
816k
    is_zero |= ftmp[4];
819
816k
    is_zero |= ftmp[5];
820
816k
    is_zero |= ftmp[6];
821
816k
    is_zero |= ftmp[7];
822
816k
    is_zero |= ftmp[8];
823
824
816k
    is_zero--;
825
    /*
826
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
827
     * can be set is if is_zero was 0 before the decrement.
828
     */
829
816k
    is_zero = 0 - (is_zero >> 63);
830
831
816k
    is_p = ftmp[0] ^ kPrime[0];
832
816k
    is_p |= ftmp[1] ^ kPrime[1];
833
816k
    is_p |= ftmp[2] ^ kPrime[2];
834
816k
    is_p |= ftmp[3] ^ kPrime[3];
835
816k
    is_p |= ftmp[4] ^ kPrime[4];
836
816k
    is_p |= ftmp[5] ^ kPrime[5];
837
816k
    is_p |= ftmp[6] ^ kPrime[6];
838
816k
    is_p |= ftmp[7] ^ kPrime[7];
839
816k
    is_p |= ftmp[8] ^ kPrime[8];
840
841
816k
    is_p--;
842
816k
    is_p = 0 - (is_p >> 63);
843
844
816k
    is_zero |= is_p;
845
816k
    return is_zero;
846
816k
}
847
848
static int felem_is_zero_int(const void *in)
849
0
{
850
0
    return (int)(felem_is_zero(in) & ((limb)1));
851
0
}
852
853
/*-
854
 * felem_contract converts |in| to its unique, minimal representation.
855
 * On entry:
856
 *   in[i] < 2^59 + 2^14
857
 */
858
static void felem_contract(felem out, const felem in)
859
8.28k
{
860
8.28k
    limb is_p, is_greater, sign;
861
8.28k
    static const limb two58 = ((limb)1) << 58;
862
863
8.28k
    felem_assign(out, in);
864
865
8.28k
    out[0] += out[8] >> 57;
866
8.28k
    out[8] &= bottom57bits;
867
    /* out[8] < 2^57 */
868
8.28k
    out[1] += out[0] >> 58;
869
8.28k
    out[0] &= bottom58bits;
870
8.28k
    out[2] += out[1] >> 58;
871
8.28k
    out[1] &= bottom58bits;
872
8.28k
    out[3] += out[2] >> 58;
873
8.28k
    out[2] &= bottom58bits;
874
8.28k
    out[4] += out[3] >> 58;
875
8.28k
    out[3] &= bottom58bits;
876
8.28k
    out[5] += out[4] >> 58;
877
8.28k
    out[4] &= bottom58bits;
878
8.28k
    out[6] += out[5] >> 58;
879
8.28k
    out[5] &= bottom58bits;
880
8.28k
    out[7] += out[6] >> 58;
881
8.28k
    out[6] &= bottom58bits;
882
8.28k
    out[8] += out[7] >> 58;
883
8.28k
    out[7] &= bottom58bits;
884
    /* out[8] < 2^57 + 4 */
885
886
    /*
887
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
888
     * out. See the comments in felem_is_zero regarding why we don't test for
889
     * other multiples of the prime.
890
     */
891
892
    /*
893
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
894
     */
895
896
8.28k
    is_p = out[0] ^ kPrime[0];
897
8.28k
    is_p |= out[1] ^ kPrime[1];
898
8.28k
    is_p |= out[2] ^ kPrime[2];
899
8.28k
    is_p |= out[3] ^ kPrime[3];
900
8.28k
    is_p |= out[4] ^ kPrime[4];
901
8.28k
    is_p |= out[5] ^ kPrime[5];
902
8.28k
    is_p |= out[6] ^ kPrime[6];
903
8.28k
    is_p |= out[7] ^ kPrime[7];
904
8.28k
    is_p |= out[8] ^ kPrime[8];
905
906
8.28k
    is_p--;
907
8.28k
    is_p &= is_p << 32;
908
8.28k
    is_p &= is_p << 16;
909
8.28k
    is_p &= is_p << 8;
910
8.28k
    is_p &= is_p << 4;
911
8.28k
    is_p &= is_p << 2;
912
8.28k
    is_p &= is_p << 1;
913
8.28k
    is_p = 0 - (is_p >> 63);
914
8.28k
    is_p = ~is_p;
915
916
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
917
918
8.28k
    out[0] &= is_p;
919
8.28k
    out[1] &= is_p;
920
8.28k
    out[2] &= is_p;
921
8.28k
    out[3] &= is_p;
922
8.28k
    out[4] &= is_p;
923
8.28k
    out[5] &= is_p;
924
8.28k
    out[6] &= is_p;
925
8.28k
    out[7] &= is_p;
926
8.28k
    out[8] &= is_p;
927
928
    /*
929
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
930
     * 57 is greater than zero as (2^521-1) + x >= 2^522
931
     */
932
8.28k
    is_greater = out[8] >> 57;
933
8.28k
    is_greater |= is_greater << 32;
934
8.28k
    is_greater |= is_greater << 16;
935
8.28k
    is_greater |= is_greater << 8;
936
8.28k
    is_greater |= is_greater << 4;
937
8.28k
    is_greater |= is_greater << 2;
938
8.28k
    is_greater |= is_greater << 1;
939
8.28k
    is_greater = 0 - (is_greater >> 63);
940
941
8.28k
    out[0] -= kPrime[0] & is_greater;
942
8.28k
    out[1] -= kPrime[1] & is_greater;
943
8.28k
    out[2] -= kPrime[2] & is_greater;
944
8.28k
    out[3] -= kPrime[3] & is_greater;
945
8.28k
    out[4] -= kPrime[4] & is_greater;
946
8.28k
    out[5] -= kPrime[5] & is_greater;
947
8.28k
    out[6] -= kPrime[6] & is_greater;
948
8.28k
    out[7] -= kPrime[7] & is_greater;
949
8.28k
    out[8] -= kPrime[8] & is_greater;
950
951
    /* Eliminate negative coefficients */
952
8.28k
    sign = -(out[0] >> 63);
953
8.28k
    out[0] += (two58 & sign);
954
8.28k
    out[1] -= (1 & sign);
955
8.28k
    sign = -(out[1] >> 63);
956
8.28k
    out[1] += (two58 & sign);
957
8.28k
    out[2] -= (1 & sign);
958
8.28k
    sign = -(out[2] >> 63);
959
8.28k
    out[2] += (two58 & sign);
960
8.28k
    out[3] -= (1 & sign);
961
8.28k
    sign = -(out[3] >> 63);
962
8.28k
    out[3] += (two58 & sign);
963
8.28k
    out[4] -= (1 & sign);
964
8.28k
    sign = -(out[4] >> 63);
965
8.28k
    out[4] += (two58 & sign);
966
8.28k
    out[5] -= (1 & sign);
967
8.28k
    sign = -(out[0] >> 63);
968
8.28k
    out[5] += (two58 & sign);
969
8.28k
    out[6] -= (1 & sign);
970
8.28k
    sign = -(out[6] >> 63);
971
8.28k
    out[6] += (two58 & sign);
972
8.28k
    out[7] -= (1 & sign);
973
8.28k
    sign = -(out[7] >> 63);
974
8.28k
    out[7] += (two58 & sign);
975
8.28k
    out[8] -= (1 & sign);
976
8.28k
    sign = -(out[5] >> 63);
977
8.28k
    out[5] += (two58 & sign);
978
8.28k
    out[6] -= (1 & sign);
979
8.28k
    sign = -(out[6] >> 63);
980
8.28k
    out[6] += (two58 & sign);
981
8.28k
    out[7] -= (1 & sign);
982
8.28k
    sign = -(out[7] >> 63);
983
8.28k
    out[7] += (two58 & sign);
984
8.28k
    out[8] -= (1 & sign);
985
8.28k
}
986
987
/*-
988
 * Group operations
989
 * ----------------
990
 *
991
 * Building on top of the field operations we have the operations on the
992
 * elliptic curve group itself. Points on the curve are represented in Jacobian
993
 * coordinates */
994
995
/*-
996
 * point_double calculates 2*(x_in, y_in, z_in)
997
 *
998
 * The method is taken from:
999
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1000
 *
1001
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1002
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1003
static void
1004
point_double(felem x_out, felem y_out, felem z_out,
1005
    const felem x_in, const felem y_in, const felem z_in)
1006
263k
{
1007
263k
    largefelem tmp, tmp2;
1008
263k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1009
1010
263k
    felem_assign(ftmp, x_in);
1011
263k
    felem_assign(ftmp2, x_in);
1012
1013
    /* delta = z^2 */
1014
263k
    felem_square(tmp, z_in);
1015
263k
    felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */
1016
1017
    /* gamma = y^2 */
1018
263k
    felem_square(tmp, y_in);
1019
263k
    felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */
1020
1021
    /* beta = x*gamma */
1022
263k
    felem_mul(tmp, x_in, gamma);
1023
263k
    felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */
1024
1025
    /* alpha = 3*(x-delta)*(x+delta) */
1026
263k
    felem_diff64(ftmp, delta);
1027
    /* ftmp[i] < 2^61 */
1028
263k
    felem_sum64(ftmp2, delta);
1029
    /* ftmp2[i] < 2^60 + 2^15 */
1030
263k
    felem_scalar64(ftmp2, 3);
1031
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1032
263k
    felem_mul(tmp, ftmp, ftmp2);
1033
    /*-
1034
     * tmp[i] < 17(3*2^121 + 3*2^76)
1035
     *        = 61*2^121 + 61*2^76
1036
     *        < 64*2^121 + 64*2^76
1037
     *        = 2^127 + 2^82
1038
     *        < 2^128
1039
     */
1040
263k
    felem_reduce(alpha, tmp);
1041
1042
    /* x' = alpha^2 - 8*beta */
1043
263k
    felem_square(tmp, alpha);
1044
    /*
1045
     * tmp[i] < 17*2^120 < 2^125
1046
     */
1047
263k
    felem_assign(ftmp, beta);
1048
263k
    felem_scalar64(ftmp, 8);
1049
    /* ftmp[i] < 2^62 + 2^17 */
1050
263k
    felem_diff_128_64(tmp, ftmp);
1051
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1052
263k
    felem_reduce(x_out, tmp);
1053
1054
    /* z' = (y + z)^2 - gamma - delta */
1055
263k
    felem_sum64(delta, gamma);
1056
    /* delta[i] < 2^60 + 2^15 */
1057
263k
    felem_assign(ftmp, y_in);
1058
263k
    felem_sum64(ftmp, z_in);
1059
    /* ftmp[i] < 2^60 + 2^15 */
1060
263k
    felem_square(tmp, ftmp);
1061
    /*
1062
     * tmp[i] < 17(2^122) < 2^127
1063
     */
1064
263k
    felem_diff_128_64(tmp, delta);
1065
    /* tmp[i] < 2^127 + 2^63 */
1066
263k
    felem_reduce(z_out, tmp);
1067
1068
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1069
263k
    felem_scalar64(beta, 4);
1070
    /* beta[i] < 2^61 + 2^16 */
1071
263k
    felem_diff64(beta, x_out);
1072
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1073
263k
    felem_mul(tmp, alpha, beta);
1074
    /*-
1075
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1076
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1077
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1078
     *        < 2^128
1079
     */
1080
263k
    felem_square(tmp2, gamma);
1081
    /*-
1082
     * tmp2[i] < 17*(2^59 + 2^14)^2
1083
     *         = 17*(2^118 + 2^74 + 2^28)
1084
     */
1085
263k
    felem_scalar128(tmp2, 8);
1086
    /*-
1087
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1088
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1089
     *         < 2^126
1090
     */
1091
263k
    felem_diff128(tmp, tmp2);
1092
    /*-
1093
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1094
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1095
     *          2^74 + 2^69 + 2^34 + 2^30
1096
     *        < 2^128
1097
     */
1098
263k
    felem_reduce(y_out, tmp);
1099
263k
}
1100
1101
/* copy_conditional copies in to out iff mask is all ones. */
1102
static void copy_conditional(felem out, const felem in, limb mask)
1103
1.23M
{
1104
1.23M
    unsigned i;
1105
12.3M
    for (i = 0; i < NLIMBS; ++i) {
1106
11.1M
        const limb tmp = mask & (in[i] ^ out[i]);
1107
11.1M
        out[i] ^= tmp;
1108
11.1M
    }
1109
1.23M
}
1110
1111
/*-
1112
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1113
 *
1114
 * The method is taken from
1115
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1116
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1117
 *
1118
 * This function includes a branch for checking whether the two input points
1119
 * are equal (while not equal to the point at infinity). See comment below
1120
 * on constant-time.
1121
 */
1122
static void point_add(felem x3, felem y3, felem z3,
1123
    const felem x1, const felem y1, const felem z1,
1124
    const int mixed, const felem x2, const felem y2,
1125
    const felem z2)
1126
204k
{
1127
204k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1128
204k
    largefelem tmp, tmp2;
1129
204k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1130
204k
    limb points_equal;
1131
1132
204k
    z1_is_zero = felem_is_zero(z1);
1133
204k
    z2_is_zero = felem_is_zero(z2);
1134
1135
    /* ftmp = z1z1 = z1**2 */
1136
204k
    felem_square(tmp, z1);
1137
204k
    felem_reduce(ftmp, tmp);
1138
1139
204k
    if (!mixed) {
1140
        /* ftmp2 = z2z2 = z2**2 */
1141
16.5k
        felem_square(tmp, z2);
1142
16.5k
        felem_reduce(ftmp2, tmp);
1143
1144
        /* u1 = ftmp3 = x1*z2z2 */
1145
16.5k
        felem_mul(tmp, x1, ftmp2);
1146
16.5k
        felem_reduce(ftmp3, tmp);
1147
1148
        /* ftmp5 = z1 + z2 */
1149
16.5k
        felem_assign(ftmp5, z1);
1150
16.5k
        felem_sum64(ftmp5, z2);
1151
        /* ftmp5[i] < 2^61 */
1152
1153
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1154
16.5k
        felem_square(tmp, ftmp5);
1155
        /* tmp[i] < 17*2^122 */
1156
16.5k
        felem_diff_128_64(tmp, ftmp);
1157
        /* tmp[i] < 17*2^122 + 2^63 */
1158
16.5k
        felem_diff_128_64(tmp, ftmp2);
1159
        /* tmp[i] < 17*2^122 + 2^64 */
1160
16.5k
        felem_reduce(ftmp5, tmp);
1161
1162
        /* ftmp2 = z2 * z2z2 */
1163
16.5k
        felem_mul(tmp, ftmp2, z2);
1164
16.5k
        felem_reduce(ftmp2, tmp);
1165
1166
        /* s1 = ftmp6 = y1 * z2**3 */
1167
16.5k
        felem_mul(tmp, y1, ftmp2);
1168
16.5k
        felem_reduce(ftmp6, tmp);
1169
187k
    } else {
1170
        /*
1171
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1172
         */
1173
1174
        /* u1 = ftmp3 = x1*z2z2 */
1175
187k
        felem_assign(ftmp3, x1);
1176
1177
        /* ftmp5 = 2*z1z2 */
1178
187k
        felem_scalar(ftmp5, z1, 2);
1179
1180
        /* s1 = ftmp6 = y1 * z2**3 */
1181
187k
        felem_assign(ftmp6, y1);
1182
187k
    }
1183
1184
    /* u2 = x2*z1z1 */
1185
204k
    felem_mul(tmp, x2, ftmp);
1186
    /* tmp[i] < 17*2^120 */
1187
1188
    /* h = ftmp4 = u2 - u1 */
1189
204k
    felem_diff_128_64(tmp, ftmp3);
1190
    /* tmp[i] < 17*2^120 + 2^63 */
1191
204k
    felem_reduce(ftmp4, tmp);
1192
1193
204k
    x_equal = felem_is_zero(ftmp4);
1194
1195
    /* z_out = ftmp5 * h */
1196
204k
    felem_mul(tmp, ftmp5, ftmp4);
1197
204k
    felem_reduce(z_out, tmp);
1198
1199
    /* ftmp = z1 * z1z1 */
1200
204k
    felem_mul(tmp, ftmp, z1);
1201
204k
    felem_reduce(ftmp, tmp);
1202
1203
    /* s2 = tmp = y2 * z1**3 */
1204
204k
    felem_mul(tmp, y2, ftmp);
1205
    /* tmp[i] < 17*2^120 */
1206
1207
    /* r = ftmp5 = (s2 - s1)*2 */
1208
204k
    felem_diff_128_64(tmp, ftmp6);
1209
    /* tmp[i] < 17*2^120 + 2^63 */
1210
204k
    felem_reduce(ftmp5, tmp);
1211
204k
    y_equal = felem_is_zero(ftmp5);
1212
204k
    felem_scalar64(ftmp5, 2);
1213
    /* ftmp5[i] < 2^61 */
1214
1215
    /*
1216
     * The formulae are incorrect if the points are equal, in affine coordinates
1217
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1218
     * happens.
1219
     *
1220
     * We use bitwise operations to avoid potential side-channels introduced by
1221
     * the short-circuiting behaviour of boolean operators.
1222
     *
1223
     * The special case of either point being the point at infinity (z1 and/or
1224
     * z2 are zero), is handled separately later on in this function, so we
1225
     * avoid jumping to point_double here in those special cases.
1226
     *
1227
     * Notice the comment below on the implications of this branching for timing
1228
     * leaks and why it is considered practically irrelevant.
1229
     */
1230
204k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1231
1232
204k
    if (points_equal) {
1233
        /*
1234
         * This is obviously not constant-time but it will almost-never happen
1235
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1236
         * where the intermediate value gets very close to the group order.
1237
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1238
         * for the scalar, it's possible for the intermediate value to be a small
1239
         * negative multiple of the base point, and for the final signed digit
1240
         * to be the same value. We believe that this only occurs for the scalar
1241
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1242
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1243
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1244
         * the final digit is also -9G. Since this only happens for a single
1245
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1246
         * check whether a secret scalar was that exact value, can already do
1247
         * so.)
1248
         */
1249
0
        point_double(x3, y3, z3, x1, y1, z1);
1250
0
        return;
1251
0
    }
1252
1253
    /* I = ftmp = (2h)**2 */
1254
204k
    felem_assign(ftmp, ftmp4);
1255
204k
    felem_scalar64(ftmp, 2);
1256
    /* ftmp[i] < 2^61 */
1257
204k
    felem_square(tmp, ftmp);
1258
    /* tmp[i] < 17*2^122 */
1259
204k
    felem_reduce(ftmp, tmp);
1260
1261
    /* J = ftmp2 = h * I */
1262
204k
    felem_mul(tmp, ftmp4, ftmp);
1263
204k
    felem_reduce(ftmp2, tmp);
1264
1265
    /* V = ftmp4 = U1 * I */
1266
204k
    felem_mul(tmp, ftmp3, ftmp);
1267
204k
    felem_reduce(ftmp4, tmp);
1268
1269
    /* x_out = r**2 - J - 2V */
1270
204k
    felem_square(tmp, ftmp5);
1271
    /* tmp[i] < 17*2^122 */
1272
204k
    felem_diff_128_64(tmp, ftmp2);
1273
    /* tmp[i] < 17*2^122 + 2^63 */
1274
204k
    felem_assign(ftmp3, ftmp4);
1275
204k
    felem_scalar64(ftmp4, 2);
1276
    /* ftmp4[i] < 2^61 */
1277
204k
    felem_diff_128_64(tmp, ftmp4);
1278
    /* tmp[i] < 17*2^122 + 2^64 */
1279
204k
    felem_reduce(x_out, tmp);
1280
1281
    /* y_out = r(V-x_out) - 2 * s1 * J */
1282
204k
    felem_diff64(ftmp3, x_out);
1283
    /*
1284
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1285
     */
1286
204k
    felem_mul(tmp, ftmp5, ftmp3);
1287
    /* tmp[i] < 17*2^122 */
1288
204k
    felem_mul(tmp2, ftmp6, ftmp2);
1289
    /* tmp2[i] < 17*2^120 */
1290
204k
    felem_scalar128(tmp2, 2);
1291
    /* tmp2[i] < 17*2^121 */
1292
204k
    felem_diff128(tmp, tmp2);
1293
    /*-
1294
     * tmp[i] < 2^127 - 2^69 + 17*2^122
1295
     *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1296
     *        < 2^127
1297
     */
1298
204k
    felem_reduce(y_out, tmp);
1299
1300
204k
    copy_conditional(x_out, x2, z1_is_zero);
1301
204k
    copy_conditional(x_out, x1, z2_is_zero);
1302
204k
    copy_conditional(y_out, y2, z1_is_zero);
1303
204k
    copy_conditional(y_out, y1, z2_is_zero);
1304
204k
    copy_conditional(z_out, z2, z1_is_zero);
1305
204k
    copy_conditional(z_out, z1, z2_is_zero);
1306
204k
    felem_assign(x3, x_out);
1307
204k
    felem_assign(y3, y_out);
1308
204k
    felem_assign(z3, z_out);
1309
204k
}
1310
1311
/*-
1312
 * Base point pre computation
1313
 * --------------------------
1314
 *
1315
 * Two different sorts of precomputed tables are used in the following code.
1316
 * Each contain various points on the curve, where each point is three field
1317
 * elements (x, y, z).
1318
 *
1319
 * For the base point table, z is usually 1 (0 for the point at infinity).
1320
 * This table has 16 elements:
1321
 * index | bits    | point
1322
 * ------+---------+------------------------------
1323
 *     0 | 0 0 0 0 | 0G
1324
 *     1 | 0 0 0 1 | 1G
1325
 *     2 | 0 0 1 0 | 2^130G
1326
 *     3 | 0 0 1 1 | (2^130 + 1)G
1327
 *     4 | 0 1 0 0 | 2^260G
1328
 *     5 | 0 1 0 1 | (2^260 + 1)G
1329
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1330
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1331
 *     8 | 1 0 0 0 | 2^390G
1332
 *     9 | 1 0 0 1 | (2^390 + 1)G
1333
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1334
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1335
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1336
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1337
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1338
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1339
 *
1340
 * The reason for this is so that we can clock bits into four different
1341
 * locations when doing simple scalar multiplies against the base point.
1342
 *
1343
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1344
1345
/* gmul is the table of precomputed base points */
1346
static const felem gmul[16][3] = {
1347
    { { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1348
        { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1349
        { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
1350
    { { 0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1351
          0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1352
          0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404 },
1353
        { 0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1354
            0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1355
            0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b },
1356
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1357
    { { 0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1358
          0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1359
          0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5 },
1360
        { 0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1361
            0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1362
            0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7 },
1363
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1364
    { { 0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1365
          0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1366
          0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9 },
1367
        { 0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1368
            0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1369
            0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe },
1370
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1371
    { { 0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1372
          0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1373
          0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065 },
1374
        { 0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1375
            0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1376
            0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524 },
1377
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1378
    { { 0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1379
          0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1380
          0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe },
1381
        { 0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1382
            0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1383
            0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7 },
1384
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1385
    { { 0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1386
          0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1387
          0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256 },
1388
        { 0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1389
            0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1390
            0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd },
1391
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1392
    { { 0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1393
          0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1394
          0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23 },
1395
        { 0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1396
            0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1397
            0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e },
1398
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1399
    { { 0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1400
          0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1401
          0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5 },
1402
        { 0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1403
            0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1404
            0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242 },
1405
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1406
    { { 0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1407
          0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1408
          0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203 },
1409
        { 0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1410
            0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1411
            0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f },
1412
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1413
    { { 0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1414
          0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1415
          0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a },
1416
        { 0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1417
            0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1418
            0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a },
1419
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1420
    { { 0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1421
          0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1422
          0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b },
1423
        { 0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1424
            0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1425
            0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f },
1426
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1427
    { { 0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1428
          0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1429
          0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf },
1430
        { 0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1431
            0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1432
            0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d },
1433
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1434
    { { 0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1435
          0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1436
          0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684 },
1437
        { 0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1438
            0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1439
            0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81 },
1440
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1441
    { { 0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1442
          0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1443
          0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d },
1444
        { 0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1445
            0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1446
            0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42 },
1447
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1448
    { { 0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1449
          0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1450
          0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f },
1451
        { 0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1452
            0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1453
            0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055 },
1454
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } }
1455
};
1456
1457
/*
1458
 * select_point selects the |idx|th point from a precomputation table and
1459
 * copies it to out.
1460
 */
1461
/* pre_comp below is of the size provided in |size| */
1462
static void select_point(const limb idx, unsigned int size,
1463
    const felem pre_comp[][3], felem out[3])
1464
204k
{
1465
204k
    unsigned i, j;
1466
204k
    limb *outlimbs = &out[0][0];
1467
1468
204k
    memset(out, 0, sizeof(*out) * 3);
1469
1470
3.49M
    for (i = 0; i < size; i++) {
1471
3.28M
        const limb *inlimbs = &pre_comp[i][0][0];
1472
3.28M
        limb mask = i ^ idx;
1473
3.28M
        mask |= mask >> 4;
1474
3.28M
        mask |= mask >> 2;
1475
3.28M
        mask |= mask >> 1;
1476
3.28M
        mask &= 1;
1477
3.28M
        mask--;
1478
92.0M
        for (j = 0; j < NLIMBS * 3; j++)
1479
88.7M
            outlimbs[j] |= inlimbs[j] & mask;
1480
3.28M
    }
1481
204k
}
1482
1483
/* get_bit returns the |i|th bit in |in| */
1484
static char get_bit(const felem_bytearray in, int i)
1485
845k
{
1486
845k
    if (i < 0)
1487
149
        return 0;
1488
845k
    return (in[i >> 3] >> (i & 7)) & 1;
1489
845k
}
1490
1491
/*
1492
 * Interleaved point multiplication using precomputed point multiples: The
1493
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1494
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1495
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1496
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1497
 */
1498
static void batch_mul(felem x_out, felem y_out, felem z_out,
1499
    const felem_bytearray scalars[],
1500
    const unsigned num_points, const u8 *g_scalar,
1501
    const int mixed, const felem pre_comp[][17][3],
1502
    const felem g_pre_comp[16][3])
1503
1.57k
{
1504
1.57k
    int i, skip;
1505
1.57k
    unsigned num, gen_mul = (g_scalar != NULL);
1506
1.57k
    felem nq[3], tmp[4];
1507
1.57k
    limb bits;
1508
1.57k
    u8 sign, digit;
1509
1510
    /* set nq to the point at infinity */
1511
1.57k
    memset(nq, 0, sizeof(nq));
1512
1513
    /*
1514
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1515
     * of the generator (last quarter of rounds) and additions of other
1516
     * points multiples (every 5th round).
1517
     */
1518
1.57k
    skip = 1; /* save two point operations in the first
1519
               * round */
1520
265k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1521
        /* double */
1522
263k
        if (!skip)
1523
262k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1524
1525
        /* add multiples of the generator */
1526
263k
        if (gen_mul && (i <= 130)) {
1527
188k
            bits = get_bit(g_scalar, i + 390) << 3;
1528
188k
            if (i < 130) {
1529
187k
                bits |= get_bit(g_scalar, i + 260) << 2;
1530
187k
                bits |= get_bit(g_scalar, i + 130) << 1;
1531
187k
                bits |= get_bit(g_scalar, i);
1532
187k
            }
1533
            /* select the point to add, in constant time */
1534
188k
            select_point(bits, 16, g_pre_comp, tmp);
1535
188k
            if (!skip) {
1536
                /* The 1 argument below is for "mixed" */
1537
187k
                point_add(nq[0], nq[1], nq[2],
1538
187k
                    nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1539
187k
            } else {
1540
1.42k
                memcpy(nq, tmp, 3 * sizeof(felem));
1541
1.42k
                skip = 0;
1542
1.42k
            }
1543
188k
        }
1544
1545
        /* do other additions every 5 doublings */
1546
263k
        if (num_points && (i % 5 == 0)) {
1547
            /* loop over all scalars */
1548
31.2k
            for (num = 0; num < num_points; ++num) {
1549
15.6k
                bits = get_bit(scalars[num], i + 4) << 5;
1550
15.6k
                bits |= get_bit(scalars[num], i + 3) << 4;
1551
15.6k
                bits |= get_bit(scalars[num], i + 2) << 3;
1552
15.6k
                bits |= get_bit(scalars[num], i + 1) << 2;
1553
15.6k
                bits |= get_bit(scalars[num], i) << 1;
1554
15.6k
                bits |= get_bit(scalars[num], i - 1);
1555
15.6k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1556
1557
                /*
1558
                 * select the point to add or subtract, in constant time
1559
                 */
1560
15.6k
                select_point(digit, 17, pre_comp[num], tmp);
1561
15.6k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1562
                                            * point */
1563
15.6k
                copy_conditional(tmp[1], tmp[3], (-(limb)sign));
1564
1565
15.6k
                if (!skip) {
1566
15.4k
                    point_add(nq[0], nq[1], nq[2],
1567
15.4k
                        nq[0], nq[1], nq[2],
1568
15.4k
                        mixed, tmp[0], tmp[1], tmp[2]);
1569
15.4k
                } else {
1570
149
                    memcpy(nq, tmp, 3 * sizeof(felem));
1571
149
                    skip = 0;
1572
149
                }
1573
15.6k
            }
1574
15.6k
        }
1575
263k
    }
1576
1.57k
    felem_assign(x_out, nq[0]);
1577
1.57k
    felem_assign(y_out, nq[1]);
1578
1.57k
    felem_assign(z_out, nq[2]);
1579
1.57k
}
1580
1581
/* Precomputation for the group generator. */
1582
struct nistp521_pre_comp_st {
1583
    felem g_pre_comp[16][3];
1584
    CRYPTO_REF_COUNT references;
1585
};
1586
1587
const EC_METHOD *EC_GFp_nistp521_method(void)
1588
32.6k
{
1589
32.6k
    static const EC_METHOD ret = {
1590
32.6k
        EC_FLAGS_DEFAULT_OCT,
1591
32.6k
        NID_X9_62_prime_field,
1592
32.6k
        ossl_ec_GFp_nistp521_group_init,
1593
32.6k
        ossl_ec_GFp_simple_group_finish,
1594
32.6k
        ossl_ec_GFp_simple_group_clear_finish,
1595
32.6k
        ossl_ec_GFp_nist_group_copy,
1596
32.6k
        ossl_ec_GFp_nistp521_group_set_curve,
1597
32.6k
        ossl_ec_GFp_simple_group_get_curve,
1598
32.6k
        ossl_ec_GFp_simple_group_get_degree,
1599
32.6k
        ossl_ec_group_simple_order_bits,
1600
32.6k
        ossl_ec_GFp_simple_group_check_discriminant,
1601
32.6k
        ossl_ec_GFp_simple_point_init,
1602
32.6k
        ossl_ec_GFp_simple_point_finish,
1603
32.6k
        ossl_ec_GFp_simple_point_clear_finish,
1604
32.6k
        ossl_ec_GFp_simple_point_copy,
1605
32.6k
        ossl_ec_GFp_simple_point_set_to_infinity,
1606
32.6k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1607
32.6k
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1608
32.6k
        0 /* point_set_compressed_coordinates */,
1609
32.6k
        0 /* point2oct */,
1610
32.6k
        0 /* oct2point */,
1611
32.6k
        ossl_ec_GFp_simple_add,
1612
32.6k
        ossl_ec_GFp_simple_dbl,
1613
32.6k
        ossl_ec_GFp_simple_invert,
1614
32.6k
        ossl_ec_GFp_simple_is_at_infinity,
1615
32.6k
        ossl_ec_GFp_simple_is_on_curve,
1616
32.6k
        ossl_ec_GFp_simple_cmp,
1617
32.6k
        ossl_ec_GFp_simple_make_affine,
1618
32.6k
        ossl_ec_GFp_simple_points_make_affine,
1619
32.6k
        ossl_ec_GFp_nistp521_points_mul,
1620
32.6k
        ossl_ec_GFp_nistp521_precompute_mult,
1621
32.6k
        ossl_ec_GFp_nistp521_have_precompute_mult,
1622
32.6k
        ossl_ec_GFp_nist_field_mul,
1623
32.6k
        ossl_ec_GFp_nist_field_sqr,
1624
32.6k
        0 /* field_div */,
1625
32.6k
        ossl_ec_GFp_simple_field_inv,
1626
32.6k
        0 /* field_encode */,
1627
32.6k
        0 /* field_decode */,
1628
32.6k
        0, /* field_set_to_one */
1629
32.6k
        ossl_ec_key_simple_priv2oct,
1630
32.6k
        ossl_ec_key_simple_oct2priv,
1631
32.6k
        0, /* set private */
1632
32.6k
        ossl_ec_key_simple_generate_key,
1633
32.6k
        ossl_ec_key_simple_check_key,
1634
32.6k
        ossl_ec_key_simple_generate_public_key,
1635
32.6k
        0, /* keycopy */
1636
32.6k
        0, /* keyfinish */
1637
32.6k
        ossl_ecdh_simple_compute_key,
1638
32.6k
        ossl_ecdsa_simple_sign_setup,
1639
32.6k
        ossl_ecdsa_simple_sign_sig,
1640
32.6k
        ossl_ecdsa_simple_verify_sig,
1641
32.6k
        0, /* field_inverse_mod_ord */
1642
32.6k
        0, /* blind_coordinates */
1643
32.6k
        0, /* ladder_pre */
1644
32.6k
        0, /* ladder_step */
1645
32.6k
        0 /* ladder_post */
1646
32.6k
    };
1647
1648
32.6k
    return &ret;
1649
32.6k
}
1650
1651
/******************************************************************************/
1652
/*
1653
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1654
 */
1655
1656
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1657
0
{
1658
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1659
1660
0
    if (ret == NULL)
1661
0
        return ret;
1662
1663
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1664
0
        OPENSSL_free(ret);
1665
0
        return NULL;
1666
0
    }
1667
0
    return ret;
1668
0
}
1669
1670
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1671
0
{
1672
0
    int i;
1673
0
    if (p != NULL)
1674
0
        CRYPTO_UP_REF(&p->references, &i);
1675
0
    return p;
1676
0
}
1677
1678
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1679
0
{
1680
0
    int i;
1681
1682
0
    if (p == NULL)
1683
0
        return;
1684
1685
0
    CRYPTO_DOWN_REF(&p->references, &i);
1686
0
    REF_PRINT_COUNT("EC_nistp521", i, p);
1687
0
    if (i > 0)
1688
0
        return;
1689
0
    REF_ASSERT_ISNT(i < 0);
1690
1691
0
    CRYPTO_FREE_REF(&p->references);
1692
0
    OPENSSL_free(p);
1693
0
}
1694
1695
/******************************************************************************/
1696
/*
1697
 * OPENSSL EC_METHOD FUNCTIONS
1698
 */
1699
1700
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1701
65.0k
{
1702
65.0k
    int ret;
1703
65.0k
    ret = ossl_ec_GFp_simple_group_init(group);
1704
65.0k
    group->a_is_minus3 = 1;
1705
65.0k
    return ret;
1706
65.0k
}
1707
1708
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1709
    const BIGNUM *a, const BIGNUM *b,
1710
    BN_CTX *ctx)
1711
32.6k
{
1712
32.6k
    int ret = 0;
1713
32.6k
    BIGNUM *curve_p, *curve_a, *curve_b;
1714
32.6k
#ifndef FIPS_MODULE
1715
32.6k
    BN_CTX *new_ctx = NULL;
1716
1717
32.6k
    if (ctx == NULL)
1718
0
        ctx = new_ctx = BN_CTX_new();
1719
32.6k
#endif
1720
32.6k
    if (ctx == NULL)
1721
0
        return 0;
1722
1723
32.6k
    BN_CTX_start(ctx);
1724
32.6k
    curve_p = BN_CTX_get(ctx);
1725
32.6k
    curve_a = BN_CTX_get(ctx);
1726
32.6k
    curve_b = BN_CTX_get(ctx);
1727
32.6k
    if (curve_b == NULL)
1728
0
        goto err;
1729
32.6k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1730
32.6k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1731
32.6k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1732
32.6k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1733
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1734
0
        goto err;
1735
0
    }
1736
32.6k
    group->field_mod_func = BN_nist_mod_521;
1737
32.6k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1738
32.6k
err:
1739
32.6k
    BN_CTX_end(ctx);
1740
32.6k
#ifndef FIPS_MODULE
1741
32.6k
    BN_CTX_free(new_ctx);
1742
32.6k
#endif
1743
32.6k
    return ret;
1744
32.6k
}
1745
1746
/*
1747
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1748
 * (X/Z^2, Y/Z^3)
1749
 */
1750
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1751
    const EC_POINT *point,
1752
    BIGNUM *x, BIGNUM *y,
1753
    BN_CTX *ctx)
1754
1.78k
{
1755
1.78k
    felem z1, z2, x_in, y_in, x_out, y_out;
1756
1.78k
    largefelem tmp;
1757
1758
1.78k
    if (EC_POINT_is_at_infinity(group, point)) {
1759
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1760
0
        return 0;
1761
0
    }
1762
1.78k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z)))
1763
0
        return 0;
1764
1.78k
    felem_inv(z2, z1);
1765
1.78k
    felem_square(tmp, z2);
1766
1.78k
    felem_reduce(z1, tmp);
1767
1.78k
    felem_mul(tmp, x_in, z1);
1768
1.78k
    felem_reduce(x_in, tmp);
1769
1.78k
    felem_contract(x_out, x_in);
1770
1.78k
    if (x != NULL) {
1771
1.78k
        if (!felem_to_BN(x, x_out)) {
1772
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1773
0
            return 0;
1774
0
        }
1775
1.78k
    }
1776
1.78k
    felem_mul(tmp, z1, z2);
1777
1.78k
    felem_reduce(z1, tmp);
1778
1.78k
    felem_mul(tmp, y_in, z1);
1779
1.78k
    felem_reduce(y_in, tmp);
1780
1.78k
    felem_contract(y_out, y_in);
1781
1.78k
    if (y != NULL) {
1782
1.71k
        if (!felem_to_BN(y, y_out)) {
1783
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1784
0
            return 0;
1785
0
        }
1786
1.71k
    }
1787
1.78k
    return 1;
1788
1.78k
}
1789
1790
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1791
static void make_points_affine(size_t num, felem points[][3],
1792
    felem tmp_felems[])
1793
0
{
1794
    /*
1795
     * Runs in constant time, unless an input is the point at infinity (which
1796
     * normally shouldn't happen).
1797
     */
1798
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1799
0
        points,
1800
0
        sizeof(felem),
1801
0
        tmp_felems,
1802
0
        (void (*)(void *))felem_one,
1803
0
        felem_is_zero_int,
1804
0
        (void (*)(void *, const void *))
1805
0
            felem_assign,
1806
0
        (void (*)(void *, const void *))
1807
0
            felem_square_reduce,
1808
0
        (void (*)(void *,
1809
0
            const void
1810
0
                *,
1811
0
            const void
1812
0
                *))
1813
0
            felem_mul_reduce,
1814
0
        (void (*)(void *, const void *))
1815
0
            felem_inv,
1816
0
        (void (*)(void *, const void *))
1817
0
            felem_contract);
1818
0
}
1819
1820
/*
1821
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1822
 * values Result is stored in r (r can equal one of the inputs).
1823
 */
1824
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1825
    const BIGNUM *scalar, size_t num,
1826
    const EC_POINT *points[],
1827
    const BIGNUM *scalars[], BN_CTX *ctx)
1828
1.57k
{
1829
1.57k
    int ret = 0;
1830
1.57k
    int j;
1831
1.57k
    int mixed = 0;
1832
1.57k
    BIGNUM *x, *y, *z, *tmp_scalar;
1833
1.57k
    felem_bytearray g_secret;
1834
1.57k
    felem_bytearray *secrets = NULL;
1835
1.57k
    felem(*pre_comp)[17][3] = NULL;
1836
1.57k
    felem *tmp_felems = NULL;
1837
1.57k
    unsigned i;
1838
1.57k
    int num_bytes;
1839
1.57k
    int have_pre_comp = 0;
1840
1.57k
    size_t num_points = num;
1841
1.57k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1842
1.57k
    NISTP521_PRE_COMP *pre = NULL;
1843
1.57k
    felem(*g_pre_comp)[3] = NULL;
1844
1.57k
    EC_POINT *generator = NULL;
1845
1.57k
    const EC_POINT *p = NULL;
1846
1.57k
    const BIGNUM *p_scalar = NULL;
1847
1848
1.57k
    BN_CTX_start(ctx);
1849
1.57k
    x = BN_CTX_get(ctx);
1850
1.57k
    y = BN_CTX_get(ctx);
1851
1.57k
    z = BN_CTX_get(ctx);
1852
1.57k
    tmp_scalar = BN_CTX_get(ctx);
1853
1.57k
    if (tmp_scalar == NULL)
1854
0
        goto err;
1855
1856
1.57k
    if (scalar != NULL) {
1857
1.44k
        pre = group->pre_comp.nistp521;
1858
1.44k
        if (pre)
1859
            /* we have precomputation, try to use it */
1860
0
            g_pre_comp = &pre->g_pre_comp[0];
1861
1.44k
        else
1862
            /* try to use the standard precomputation */
1863
1.44k
            g_pre_comp = (felem(*)[3])gmul;
1864
1.44k
        generator = EC_POINT_new(group);
1865
1.44k
        if (generator == NULL)
1866
0
            goto err;
1867
        /* get the generator from precomputation */
1868
1.44k
        if (!felem_to_BN(x, g_pre_comp[1][0]) || !felem_to_BN(y, g_pre_comp[1][1]) || !felem_to_BN(z, g_pre_comp[1][2])) {
1869
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1870
0
            goto err;
1871
0
        }
1872
1.44k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1873
1.44k
                generator,
1874
1.44k
                x, y, z, ctx))
1875
0
            goto err;
1876
1.44k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1877
            /* precomputation matches generator */
1878
1.44k
            have_pre_comp = 1;
1879
0
        else
1880
            /*
1881
             * we don't have valid precomputation: treat the generator as a
1882
             * random point
1883
             */
1884
0
            num_points++;
1885
1.44k
    }
1886
1887
1.57k
    if (num_points > 0) {
1888
149
        if (num_points >= 2) {
1889
            /*
1890
             * unless we precompute multiples for just one point, converting
1891
             * those into affine form is time well spent
1892
             */
1893
0
            mixed = 1;
1894
0
        }
1895
149
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1896
149
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1897
149
        if (mixed)
1898
0
            tmp_felems = OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1899
149
        if ((secrets == NULL) || (pre_comp == NULL)
1900
149
            || (mixed && (tmp_felems == NULL)))
1901
0
            goto err;
1902
1903
        /*
1904
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1905
         * i.e., they contribute nothing to the linear combination
1906
         */
1907
298
        for (i = 0; i < num_points; ++i) {
1908
149
            if (i == num) {
1909
                /*
1910
                 * we didn't have a valid precomputation, so we pick the
1911
                 * generator
1912
                 */
1913
0
                p = EC_GROUP_get0_generator(group);
1914
0
                p_scalar = scalar;
1915
149
            } else {
1916
                /* the i^th point */
1917
149
                p = points[i];
1918
149
                p_scalar = scalars[i];
1919
149
            }
1920
149
            if ((p_scalar != NULL) && (p != NULL)) {
1921
                /* reduce scalar to 0 <= scalar < 2^521 */
1922
149
                if ((BN_num_bits(p_scalar) > 521)
1923
149
                    || (BN_is_negative(p_scalar))) {
1924
                    /*
1925
                     * this is an unusual input, and we don't guarantee
1926
                     * constant-timeness
1927
                     */
1928
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1929
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1930
0
                        goto err;
1931
0
                    }
1932
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1933
0
                        secrets[i], sizeof(secrets[i]));
1934
149
                } else {
1935
149
                    num_bytes = BN_bn2lebinpad(p_scalar,
1936
149
                        secrets[i], sizeof(secrets[i]));
1937
149
                }
1938
149
                if (num_bytes < 0) {
1939
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1940
0
                    goto err;
1941
0
                }
1942
                /* precompute multiples */
1943
149
                if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z)))
1944
0
                    goto err;
1945
149
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1946
149
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1947
149
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1948
2.38k
                for (j = 2; j <= 16; ++j) {
1949
2.23k
                    if (j & 1) {
1950
1.04k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1951
1.04k
                            pre_comp[i][j][2], pre_comp[i][1][0],
1952
1.04k
                            pre_comp[i][1][1], pre_comp[i][1][2], 0,
1953
1.04k
                            pre_comp[i][j - 1][0],
1954
1.04k
                            pre_comp[i][j - 1][1],
1955
1.04k
                            pre_comp[i][j - 1][2]);
1956
1.19k
                    } else {
1957
1.19k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1958
1.19k
                            pre_comp[i][j][2], pre_comp[i][j / 2][0],
1959
1.19k
                            pre_comp[i][j / 2][1],
1960
1.19k
                            pre_comp[i][j / 2][2]);
1961
1.19k
                    }
1962
2.23k
                }
1963
149
            }
1964
149
        }
1965
149
        if (mixed)
1966
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1967
149
    }
1968
1969
    /* the scalar for the generator */
1970
1.57k
    if ((scalar != NULL) && (have_pre_comp)) {
1971
1.44k
        memset(g_secret, 0, sizeof(g_secret));
1972
        /* reduce scalar to 0 <= scalar < 2^521 */
1973
1.44k
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
1974
            /*
1975
             * this is an unusual input, and we don't guarantee
1976
             * constant-timeness
1977
             */
1978
47
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1979
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1980
0
                goto err;
1981
0
            }
1982
47
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1983
1.39k
        } else {
1984
1.39k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1985
1.39k
        }
1986
        /* do the multiplication with generator precomputation */
1987
1.44k
        batch_mul(x_out, y_out, z_out,
1988
1.44k
            (const felem_bytearray(*))secrets, num_points,
1989
1.44k
            g_secret,
1990
1.44k
            mixed, (const felem(*)[17][3])pre_comp,
1991
1.44k
            (const felem(*)[3])g_pre_comp);
1992
1.44k
    } else {
1993
        /* do the multiplication without generator precomputation */
1994
128
        batch_mul(x_out, y_out, z_out,
1995
128
            (const felem_bytearray(*))secrets, num_points,
1996
128
            NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1997
128
    }
1998
    /* reduce the output to its unique minimal representation */
1999
1.57k
    felem_contract(x_in, x_out);
2000
1.57k
    felem_contract(y_in, y_out);
2001
1.57k
    felem_contract(z_in, z_out);
2002
1.57k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) {
2003
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2004
0
        goto err;
2005
0
    }
2006
1.57k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2007
1.57k
        ctx);
2008
2009
1.57k
err:
2010
1.57k
    BN_CTX_end(ctx);
2011
1.57k
    EC_POINT_free(generator);
2012
1.57k
    OPENSSL_free(secrets);
2013
1.57k
    OPENSSL_free(pre_comp);
2014
1.57k
    OPENSSL_free(tmp_felems);
2015
1.57k
    return ret;
2016
1.57k
}
2017
2018
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2019
0
{
2020
0
    int ret = 0;
2021
0
    NISTP521_PRE_COMP *pre = NULL;
2022
0
    int i, j;
2023
0
    BIGNUM *x, *y;
2024
0
    EC_POINT *generator = NULL;
2025
0
    felem tmp_felems[16];
2026
0
#ifndef FIPS_MODULE
2027
0
    BN_CTX *new_ctx = NULL;
2028
0
#endif
2029
2030
    /* throw away old precomputation */
2031
0
    EC_pre_comp_free(group);
2032
2033
0
#ifndef FIPS_MODULE
2034
0
    if (ctx == NULL)
2035
0
        ctx = new_ctx = BN_CTX_new();
2036
0
#endif
2037
0
    if (ctx == NULL)
2038
0
        return 0;
2039
2040
0
    BN_CTX_start(ctx);
2041
0
    x = BN_CTX_get(ctx);
2042
0
    y = BN_CTX_get(ctx);
2043
0
    if (y == NULL)
2044
0
        goto err;
2045
    /* get the generator */
2046
0
    if (group->generator == NULL)
2047
0
        goto err;
2048
0
    generator = EC_POINT_new(group);
2049
0
    if (generator == NULL)
2050
0
        goto err;
2051
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2052
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2053
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2054
0
        goto err;
2055
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2056
0
        goto err;
2057
    /*
2058
     * if the generator is the standard one, use built-in precomputation
2059
     */
2060
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2061
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2062
0
        goto done;
2063
0
    }
2064
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2065
0
        goto err;
2066
    /* compute 2^130*G, 2^260*G, 2^390*G */
2067
0
    for (i = 1; i <= 4; i <<= 1) {
2068
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2069
0
            pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2070
0
            pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2071
0
        for (j = 0; j < 129; ++j) {
2072
0
            point_double(pre->g_pre_comp[2 * i][0],
2073
0
                pre->g_pre_comp[2 * i][1],
2074
0
                pre->g_pre_comp[2 * i][2],
2075
0
                pre->g_pre_comp[2 * i][0],
2076
0
                pre->g_pre_comp[2 * i][1],
2077
0
                pre->g_pre_comp[2 * i][2]);
2078
0
        }
2079
0
    }
2080
    /* g_pre_comp[0] is the point at infinity */
2081
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2082
    /* the remaining multiples */
2083
    /* 2^130*G + 2^260*G */
2084
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2085
0
        pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2086
0
        pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2087
0
        0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2088
0
        pre->g_pre_comp[2][2]);
2089
    /* 2^130*G + 2^390*G */
2090
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2091
0
        pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2092
0
        pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2093
0
        0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2094
0
        pre->g_pre_comp[2][2]);
2095
    /* 2^260*G + 2^390*G */
2096
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2097
0
        pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2098
0
        pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2099
0
        0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2100
0
        pre->g_pre_comp[4][2]);
2101
    /* 2^130*G + 2^260*G + 2^390*G */
2102
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2103
0
        pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2104
0
        pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2105
0
        0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2106
0
        pre->g_pre_comp[2][2]);
2107
0
    for (i = 1; i < 8; ++i) {
2108
        /* odd multiples: add G */
2109
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2110
0
            pre->g_pre_comp[2 * i + 1][1],
2111
0
            pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2112
0
            pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2113
0
            pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2114
0
            pre->g_pre_comp[1][2]);
2115
0
    }
2116
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2117
2118
0
done:
2119
0
    SETPRECOMP(group, nistp521, pre);
2120
0
    ret = 1;
2121
0
    pre = NULL;
2122
0
err:
2123
0
    BN_CTX_end(ctx);
2124
0
    EC_POINT_free(generator);
2125
0
#ifndef FIPS_MODULE
2126
0
    BN_CTX_free(new_ctx);
2127
0
#endif
2128
0
    EC_nistp521_pre_comp_free(pre);
2129
0
    return ret;
2130
0
}
2131
2132
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2133
0
{
2134
    return HAVEPRECOMP(group, nistp521);
2135
0
}