Coverage Report

Created: 2026-02-14 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl35/crypto/ml_dsa/ml_dsa_sign.c
Line
Count
Source
1
/*
2
 * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <openssl/core_dispatch.h>
11
#include <openssl/core_names.h>
12
#include <openssl/params.h>
13
#include <openssl/rand.h>
14
#include "ml_dsa_local.h"
15
#include "ml_dsa_key.h"
16
#include "ml_dsa_matrix.h"
17
#include "ml_dsa_sign.h"
18
#include "ml_dsa_hash.h"
19
20
#define ML_DSA_MAX_LAMBDA 256 /* bit strength for ML-DSA-87 */
21
22
/*
23
 * @brief Initialize a Signature object by pointing all of its objects to
24
 * preallocated blocks. The values passed for hint, z and
25
 * c_tilde values are not owned/freed by the |sig| object.
26
 *
27
 * @param sig The ML_DSA_SIG to initialize.
28
 * @param hint A preallocated array of |k| polynomial blocks
29
 * @param k The number of |hint| polynomials
30
 * @param z A preallocated array of |l| polynomial blocks
31
 * @param l The number of |z| polynomials
32
 * @param c_tilde A preallocated buffer
33
 * @param c_tilde_len The size of |c_tilde|
34
 */
35
static void signature_init(ML_DSA_SIG *sig,
36
    POLY *hint, uint32_t k, POLY *z, uint32_t l,
37
    uint8_t *c_tilde, size_t c_tilde_len)
38
1.19k
{
39
1.19k
    vector_init(&sig->z, z, l);
40
1.19k
    vector_init(&sig->hint, hint, k);
41
1.19k
    sig->c_tilde = c_tilde;
42
1.19k
    sig->c_tilde_len = c_tilde_len;
43
1.19k
}
44
45
/*
46
 * FIPS 204, Algorithm 7, ML-DSA.Sign_internal()
47
 * @returns 1 on success and 0 on failure.
48
 */
49
static int ml_dsa_sign_internal(const ML_DSA_KEY *priv, int msg_is_mu,
50
    const uint8_t *encoded_msg,
51
    size_t encoded_msg_len,
52
    const uint8_t *rnd, size_t rnd_len,
53
    uint8_t *out_sig)
54
173
{
55
173
    int ret = 0;
56
173
    const ML_DSA_PARAMS *params = priv->params;
57
173
    EVP_MD_CTX *md_ctx = NULL;
58
173
    uint32_t k = params->k, l = params->l;
59
173
    uint32_t gamma1 = params->gamma1, gamma2 = params->gamma2;
60
173
    uint8_t *alloc = NULL, *w1_encoded;
61
173
    size_t alloc_len, w1_encoded_len;
62
173
    size_t num_polys_sig_k = 2 * k;
63
173
    size_t num_polys_k = 5 * k;
64
173
    size_t num_polys_l = 3 * l;
65
173
    size_t num_polys_k_by_l = k * l;
66
173
    POLY *polys = NULL, *p, *c_ntt;
67
173
    VECTOR s1_ntt, s2_ntt, t0_ntt, w, w1, cs1, cs2, y;
68
173
    MATRIX a_ntt;
69
173
    ML_DSA_SIG sig;
70
173
    uint8_t mu[ML_DSA_MU_BYTES], *mu_ptr = mu;
71
173
    const size_t mu_len = sizeof(mu);
72
173
    uint8_t rho_prime[ML_DSA_RHO_PRIME_BYTES];
73
173
    uint8_t c_tilde[ML_DSA_MAX_LAMBDA / 4];
74
173
    size_t c_tilde_len = params->bit_strength >> 2;
75
173
    size_t kappa;
76
77
    /*
78
     * Allocate a single blob for most of the variable size temporary variables.
79
     * Mostly used for VECTOR POLYNOMIALS (every POLY is 1K).
80
     */
81
173
    w1_encoded_len = k * (gamma2 == ML_DSA_GAMMA2_Q_MINUS1_DIV88 ? 192 : 128);
82
173
    alloc_len = w1_encoded_len
83
173
        + sizeof(*polys) * (1 + num_polys_k + num_polys_l + num_polys_k_by_l + num_polys_sig_k);
84
173
    alloc = OPENSSL_malloc(alloc_len);
85
173
    if (alloc == NULL)
86
0
        return 0;
87
173
    md_ctx = EVP_MD_CTX_new();
88
173
    if (md_ctx == NULL)
89
0
        goto err;
90
91
173
    w1_encoded = alloc;
92
    /* Init the temp vectors to point to the allocated polys blob */
93
173
    p = (POLY *)(w1_encoded + w1_encoded_len);
94
173
    c_ntt = p++;
95
173
    matrix_init(&a_ntt, p, k, l);
96
173
    p += num_polys_k_by_l;
97
173
    vector_init(&s2_ntt, p, k);
98
173
    vector_init(&t0_ntt, s2_ntt.poly + k, k);
99
173
    vector_init(&w, t0_ntt.poly + k, k);
100
173
    vector_init(&w1, w.poly + k, k);
101
173
    vector_init(&cs2, w1.poly + k, k);
102
173
    p += num_polys_k;
103
173
    vector_init(&s1_ntt, p, l);
104
173
    vector_init(&y, p + l, l);
105
173
    vector_init(&cs1, p + 2 * l, l);
106
173
    p += num_polys_l;
107
173
    signature_init(&sig, p, k, p + k, l, c_tilde, c_tilde_len);
108
    /* End of the allocated blob setup */
109
110
173
    if (!matrix_expand_A(md_ctx, priv->shake128_md, priv->rho, &a_ntt))
111
0
        goto err;
112
173
    if (msg_is_mu) {
113
0
        if (encoded_msg_len != mu_len)
114
0
            goto err;
115
0
        mu_ptr = (uint8_t *)encoded_msg;
116
173
    } else {
117
173
        if (!shake_xof_2(md_ctx, priv->shake256_md, priv->tr, sizeof(priv->tr),
118
173
                encoded_msg, encoded_msg_len, mu_ptr, mu_len))
119
0
            goto err;
120
173
    }
121
173
    if (!shake_xof_3(md_ctx, priv->shake256_md, priv->K, sizeof(priv->K),
122
173
            rnd, rnd_len, mu_ptr, mu_len,
123
173
            rho_prime, sizeof(rho_prime)))
124
0
        goto err;
125
126
173
    vector_copy(&s1_ntt, &priv->s1);
127
173
    vector_ntt(&s1_ntt);
128
173
    vector_copy(&s2_ntt, &priv->s2);
129
173
    vector_ntt(&s2_ntt);
130
173
    vector_copy(&t0_ntt, &priv->t0);
131
173
    vector_ntt(&t0_ntt);
132
133
    /*
134
     * kappa must not exceed 2^16. But the probability of it
135
     * exceeding even 1000 iterations is vanishingly small.
136
     */
137
816
    for (kappa = 0;; kappa += l) {
138
816
        VECTOR *y_ntt = &cs1;
139
816
        VECTOR *r0 = &w1;
140
816
        VECTOR *ct0 = &w1;
141
816
        uint32_t z_max, r0_max, ct0_max, h_ones;
142
143
816
        vector_expand_mask(&y, rho_prime, sizeof(rho_prime), kappa,
144
816
            gamma1, md_ctx, priv->shake256_md);
145
816
        vector_copy(y_ntt, &y);
146
816
        vector_ntt(y_ntt);
147
148
816
        matrix_mult_vector(&a_ntt, y_ntt, &w);
149
816
        vector_ntt_inverse(&w);
150
151
816
        vector_high_bits(&w, gamma2, &w1);
152
816
        ossl_ml_dsa_w1_encode(&w1, gamma2, w1_encoded, w1_encoded_len);
153
154
816
        if (!shake_xof_2(md_ctx, priv->shake256_md, mu_ptr, mu_len,
155
816
                w1_encoded, w1_encoded_len, c_tilde, c_tilde_len))
156
0
            break;
157
158
816
        if (!poly_sample_in_ball_ntt(c_ntt, c_tilde, c_tilde_len,
159
816
                md_ctx, priv->shake256_md, params->tau))
160
0
            break;
161
162
816
        vector_mult_scalar(&s1_ntt, c_ntt, &cs1);
163
816
        vector_ntt_inverse(&cs1);
164
816
        vector_mult_scalar(&s2_ntt, c_ntt, &cs2);
165
816
        vector_ntt_inverse(&cs2);
166
167
816
        vector_add(&y, &cs1, &sig.z);
168
169
        /* r0 = lowbits(w - cs2) */
170
816
        vector_sub(&w, &cs2, r0);
171
816
        vector_low_bits(r0, gamma2, r0);
172
173
        /*
174
         * Leaking that the signature is rejected is fine as the next attempt at a
175
         * signature will be (indistinguishable from) independent of this one.
176
         */
177
816
        z_max = vector_max(&sig.z);
178
816
        r0_max = vector_max_signed(r0);
179
816
        if (value_barrier_32(constant_time_ge(z_max, gamma1 - params->beta)
180
816
                | constant_time_ge(r0_max, gamma2 - params->beta)))
181
640
            continue;
182
183
176
        vector_mult_scalar(&t0_ntt, c_ntt, ct0);
184
176
        vector_ntt_inverse(ct0);
185
176
        vector_make_hint(ct0, &cs2, &w, gamma2, &sig.hint);
186
187
176
        ct0_max = vector_max(ct0);
188
176
        h_ones = vector_count_ones(&sig.hint);
189
        /* Same reasoning applies to the leak as above */
190
176
        if (value_barrier_32(constant_time_ge(ct0_max, gamma2)
191
176
                | constant_time_lt(params->omega, h_ones)))
192
3
            continue;
193
173
        ret = ossl_ml_dsa_sig_encode(&sig, params, out_sig);
194
173
        break;
195
176
    }
196
173
err:
197
173
    EVP_MD_CTX_free(md_ctx);
198
173
    OPENSSL_clear_free(alloc, alloc_len);
199
173
    OPENSSL_cleanse(rho_prime, sizeof(rho_prime));
200
173
    return ret;
201
173
}
202
203
/*
204
 * See FIPS 204, Algorithm 8, ML-DSA.Verify_internal().
205
 */
206
static int ml_dsa_verify_internal(const ML_DSA_KEY *pub, int msg_is_mu,
207
    const uint8_t *msg_enc, size_t msg_enc_len,
208
    const uint8_t *sig_enc, size_t sig_enc_len)
209
173
{
210
173
    int ret = 0;
211
173
    uint8_t *alloc = NULL, *w1_encoded;
212
173
    POLY *polys = NULL, *p, *c_ntt;
213
173
    MATRIX a_ntt;
214
173
    VECTOR az_ntt, ct1_ntt, *z_ntt, *w1, *w_approx;
215
173
    ML_DSA_SIG sig;
216
173
    const ML_DSA_PARAMS *params = pub->params;
217
173
    uint32_t k = pub->params->k;
218
173
    uint32_t l = pub->params->l;
219
173
    uint32_t gamma2 = params->gamma2;
220
173
    size_t w1_encoded_len;
221
173
    size_t num_polys_sig = k + l;
222
173
    size_t num_polys_k = 2 * k;
223
173
    size_t num_polys_l = 1 * l;
224
173
    size_t num_polys_k_by_l = k * l;
225
173
    uint8_t mu[ML_DSA_MU_BYTES], *mu_ptr = mu;
226
173
    const size_t mu_len = sizeof(mu);
227
173
    uint8_t c_tilde[ML_DSA_MAX_LAMBDA / 4];
228
173
    uint8_t c_tilde_sig[ML_DSA_MAX_LAMBDA / 4];
229
173
    EVP_MD_CTX *md_ctx = NULL;
230
173
    size_t c_tilde_len = params->bit_strength >> 2;
231
173
    uint32_t z_max;
232
233
    /* Allocate space for all the POLYNOMIALS used by temporary VECTORS */
234
173
    w1_encoded_len = k * (gamma2 == ML_DSA_GAMMA2_Q_MINUS1_DIV88 ? 192 : 128);
235
173
    alloc = OPENSSL_malloc(w1_encoded_len
236
173
        + sizeof(*polys) * (1 + num_polys_k + num_polys_l + num_polys_k_by_l + num_polys_sig));
237
173
    if (alloc == NULL)
238
0
        return 0;
239
173
    md_ctx = EVP_MD_CTX_new();
240
173
    if (md_ctx == NULL)
241
0
        goto err;
242
243
173
    w1_encoded = alloc;
244
    /* Init the temp vectors to point to the allocated polys blob */
245
173
    p = (POLY *)(w1_encoded + w1_encoded_len);
246
173
    c_ntt = p++;
247
173
    matrix_init(&a_ntt, p, k, l);
248
173
    p += num_polys_k_by_l;
249
173
    signature_init(&sig, p, k, p + k, l, c_tilde_sig, c_tilde_len);
250
173
    p += num_polys_sig;
251
173
    vector_init(&az_ntt, p, k);
252
173
    vector_init(&ct1_ntt, p + k, k);
253
254
173
    if (!ossl_ml_dsa_sig_decode(&sig, sig_enc, sig_enc_len, pub->params)
255
173
        || !matrix_expand_A(md_ctx, pub->shake128_md, pub->rho, &a_ntt))
256
0
        goto err;
257
173
    if (msg_is_mu) {
258
0
        if (msg_enc_len != mu_len)
259
0
            goto err;
260
0
        mu_ptr = (uint8_t *)msg_enc;
261
173
    } else {
262
173
        if (!shake_xof_2(md_ctx, pub->shake256_md, pub->tr, sizeof(pub->tr),
263
173
                msg_enc, msg_enc_len, mu_ptr, mu_len))
264
0
            goto err;
265
173
    }
266
    /* Compute verifiers challenge c_ntt = NTT(SampleInBall(c_tilde) */
267
173
    if (!poly_sample_in_ball_ntt(c_ntt, c_tilde_sig, c_tilde_len,
268
173
            md_ctx, pub->shake256_md, params->tau))
269
0
        goto err;
270
271
    /* ct1_ntt = NTT(c) * NTT(t1 * 2^d) */
272
173
    vector_scale_power2_round_ntt(&pub->t1, &ct1_ntt);
273
173
    vector_mult_scalar(&ct1_ntt, c_ntt, &ct1_ntt);
274
275
    /* compute z_max early in order to reuse sig.z */
276
173
    z_max = vector_max(&sig.z);
277
278
    /* w_approx = NTT_inverse(A * NTT(z) - ct1_ntt) */
279
173
    z_ntt = &sig.z;
280
173
    vector_ntt(z_ntt);
281
173
    matrix_mult_vector(&a_ntt, z_ntt, &az_ntt);
282
173
    w_approx = &az_ntt;
283
173
    vector_sub(&az_ntt, &ct1_ntt, w_approx);
284
173
    vector_ntt_inverse(w_approx);
285
286
    /* compute w1_encoded */
287
173
    w1 = w_approx;
288
173
    vector_use_hint(&sig.hint, w_approx, gamma2, w1);
289
173
    ossl_ml_dsa_w1_encode(w1, gamma2, w1_encoded, w1_encoded_len);
290
291
173
    if (!shake_xof_3(md_ctx, pub->shake256_md, mu_ptr, mu_len,
292
173
            w1_encoded, w1_encoded_len, NULL, 0, c_tilde, c_tilde_len))
293
0
        goto err;
294
295
173
    ret = (z_max < (uint32_t)(params->gamma1 - params->beta))
296
173
        && memcmp(c_tilde, sig.c_tilde, c_tilde_len) == 0;
297
173
err:
298
173
    OPENSSL_free(alloc);
299
173
    EVP_MD_CTX_free(md_ctx);
300
173
    return ret;
301
173
}
302
303
/**
304
 * @brief Encode a message
305
 * See FIPS 204 Algorithm 2 Step 10 (and algorithm 3 Step 5).
306
 *
307
 * ML_DSA pure signatures are encoded as M' = 00 || ctx_len || ctx || msg
308
 * Where ctx is the empty string by default and ctx_len <= 255.
309
 *
310
 * Note this code could be shared with SLH_DSA
311
 *
312
 * @param msg A message to encode
313
 * @param msg_len The size of |msg|
314
 * @param ctx An optional context to add to the message encoding.
315
 * @param ctx_len The size of |ctx|. It must be in the range 0..255
316
 * @param encode Use the Pure signature encoding if this is 1, and dont encode
317
 *               if this value is 0.
318
 * @param tmp A small buffer that may be used if the message is small.
319
 * @param tmp_len The size of |tmp|
320
 * @param out_len The size of the returned encoded buffer.
321
 * @returns A buffer containing the encoded message. If the passed in
322
 * |tmp| buffer is big enough to hold the encoded message then it returns |tmp|
323
 * otherwise it allocates memory which must be freed by the caller. If |encode|
324
 * is 0 then it returns |msg|. NULL is returned if there is a failure.
325
 */
326
static uint8_t *msg_encode(const uint8_t *msg, size_t msg_len,
327
    const uint8_t *ctx, size_t ctx_len, int encode,
328
    uint8_t *tmp, size_t tmp_len, size_t *out_len)
329
346
{
330
346
    uint8_t *encoded = NULL;
331
346
    size_t encoded_len;
332
333
346
    if (encode == 0) {
334
        /* Raw message */
335
0
        *out_len = msg_len;
336
0
        return (uint8_t *)msg;
337
0
    }
338
346
    if (ctx_len > ML_DSA_MAX_CONTEXT_STRING_LEN)
339
0
        return NULL;
340
341
    /* Pure encoding */
342
346
    encoded_len = 1 + 1 + ctx_len + msg_len;
343
346
    *out_len = encoded_len;
344
346
    if (encoded_len <= tmp_len) {
345
346
        encoded = tmp;
346
346
    } else {
347
0
        encoded = OPENSSL_malloc(encoded_len);
348
0
        if (encoded == NULL)
349
0
            return NULL;
350
0
    }
351
346
    encoded[0] = 0;
352
346
    encoded[1] = (uint8_t)ctx_len;
353
346
    memcpy(&encoded[2], ctx, ctx_len);
354
346
    memcpy(&encoded[2 + ctx_len], msg, msg_len);
355
346
    return encoded;
356
346
}
357
358
/**
359
 * See FIPS 204 Section 5.2 Algorithm 2 ML-DSA.Sign()
360
 *
361
 * @returns 1 on success, or 0 on error.
362
 */
363
int ossl_ml_dsa_sign(const ML_DSA_KEY *priv, int msg_is_mu,
364
    const uint8_t *msg, size_t msg_len,
365
    const uint8_t *context, size_t context_len,
366
    const uint8_t *rand, size_t rand_len, int encode,
367
    unsigned char *sig, size_t *sig_len, size_t sig_size)
368
346
{
369
346
    int ret = 1;
370
346
    uint8_t m_tmp[1024], *m = m_tmp, *alloced_m = NULL;
371
346
    size_t m_len = 0;
372
373
346
    if (ossl_ml_dsa_key_get_priv(priv) == NULL)
374
0
        return 0;
375
346
    if (sig != NULL) {
376
173
        if (sig_size < priv->params->sig_len)
377
0
            return 0;
378
173
        if (msg_is_mu) {
379
0
            m = (uint8_t *)msg;
380
0
            m_len = msg_len;
381
173
        } else {
382
173
            m = msg_encode(msg, msg_len, context, context_len, encode,
383
173
                m_tmp, sizeof(m_tmp), &m_len);
384
173
            if (m == NULL)
385
0
                return 0;
386
173
            if (m != msg && m != m_tmp)
387
0
                alloced_m = m;
388
173
        }
389
173
        ret = ml_dsa_sign_internal(priv, msg_is_mu, m, m_len, rand, rand_len, sig);
390
173
        OPENSSL_free(alloced_m);
391
173
    }
392
346
    if (sig_len != NULL)
393
346
        *sig_len = priv->params->sig_len;
394
346
    return ret;
395
346
}
396
397
/**
398
 * See FIPS 203 Section 5.3 Algorithm 3 ML-DSA.Verify()
399
 * @returns 1 on success, or 0 on error.
400
 */
401
int ossl_ml_dsa_verify(const ML_DSA_KEY *pub, int msg_is_mu,
402
    const uint8_t *msg, size_t msg_len,
403
    const uint8_t *context, size_t context_len, int encode,
404
    const uint8_t *sig, size_t sig_len)
405
173
{
406
173
    uint8_t *m, *alloced_m = NULL;
407
173
    size_t m_len;
408
173
    uint8_t m_tmp[1024];
409
173
    int ret = 0;
410
411
173
    if (ossl_ml_dsa_key_get_pub(pub) == NULL)
412
0
        return 0;
413
414
173
    if (msg_is_mu) {
415
0
        m = (uint8_t *)msg;
416
0
        m_len = msg_len;
417
173
    } else {
418
173
        m = msg_encode(msg, msg_len, context, context_len, encode,
419
173
            m_tmp, sizeof(m_tmp), &m_len);
420
173
        if (m == NULL)
421
0
            return 0;
422
173
        if (m != msg && m != m_tmp)
423
0
            alloced_m = m;
424
173
    }
425
426
173
    ret = ml_dsa_verify_internal(pub, msg_is_mu, m, m_len, sig, sig_len);
427
173
    OPENSSL_free(alloced_m);
428
173
    return ret;
429
173
}