Coverage Report

Created: 2026-02-14 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl36/crypto/ec/ecp_nistp384.c
Line
Count
Source
1
/*
2
 * Copyright 2023-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2023 IBM Corp.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * Designed for 56-bit limbs by Rohan McLure <rohan.mclure@linux.ibm.com>.
28
 * The layout is based on that of ecp_nistp{224,521}.c, allowing even for asm
29
 * acceleration of felem_{square,mul} as supported in these files.
30
 */
31
32
#include <openssl/e_os2.h>
33
34
#include <string.h>
35
#include <openssl/err.h>
36
#include "ec_local.h"
37
38
#include "internal/numbers.h"
39
40
#ifndef INT128_MAX
41
#error "Your compiler doesn't appear to support 128-bit integer types"
42
#endif
43
44
typedef uint8_t u8;
45
typedef uint64_t u64;
46
47
/*
48
 * The underlying field. P384 operates over GF(2^384-2^128-2^96+2^32-1). We
49
 * can serialize an element of this field into 48 bytes. We call this an
50
 * felem_bytearray.
51
 */
52
53
typedef u8 felem_bytearray[48];
54
55
/*
56
 * These are the parameters of P384, taken from FIPS 186-3, section D.1.2.4.
57
 * These values are big-endian.
58
 */
59
static const felem_bytearray nistp384_curve_params[5] = {
60
    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
61
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
62
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
63
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF },
64
    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a = -3 */
65
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
66
        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
67
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC },
68
    { 0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B, /* b */
69
        0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12,
70
        0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D,
71
        0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF },
72
    { 0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, /* x */
73
        0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98,
74
        0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D,
75
        0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7 },
76
    { 0x36, 0x17, 0xDE, 0x4A, 0x96, 0x26, 0x2C, 0x6F, 0x5D, 0x9E, 0x98, 0xBF, /* y */
77
        0x92, 0x92, 0xDC, 0x29, 0xF8, 0xF4, 0x1D, 0xBD, 0x28, 0x9A, 0x14, 0x7C,
78
        0xE9, 0xDA, 0x31, 0x13, 0xB5, 0xF0, 0xB8, 0xC0, 0x0A, 0x60, 0xB1, 0xCE,
79
        0x1D, 0x7E, 0x81, 0x9D, 0x7A, 0x43, 0x1D, 0x7C, 0x90, 0xEA, 0x0E, 0x5F },
80
};
81
82
/*-
83
 * The representation of field elements.
84
 * ------------------------------------
85
 *
86
 * We represent field elements with seven values. These values are either 64 or
87
 * 128 bits and the field element represented is:
88
 *   v[0]*2^0 + v[1]*2^56 + v[2]*2^112 + ... + v[6]*2^336  (mod p)
89
 * Each of the seven values is called a 'limb'. Since the limbs are spaced only
90
 * 56 bits apart, but are greater than 56 bits in length, the most significant
91
 * bits of each limb overlap with the least significant bits of the next
92
 *
93
 * This representation is considered to be 'redundant' in the sense that
94
 * intermediate values can each contain more than a 56-bit value in each limb.
95
 * Reduction causes all but the final limb to be reduced to contain a value less
96
 * than 2^56, with the final value represented allowed to be larger than 2^384,
97
 * inasmuch as we can be sure that arithmetic overflow remains impossible. The
98
 * reduced value must of course be congruent to the unreduced value.
99
 *
100
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
101
 * 'widefelem', featuring enough bits to store the result of a multiplication
102
 * and even some further arithmetic without need for immediate reduction.
103
 */
104
105
670M
#define NLIMBS 7
106
107
typedef uint64_t limb;
108
typedef uint128_t widelimb;
109
typedef limb limb_aX __attribute((__aligned__(1)));
110
typedef limb felem[NLIMBS];
111
typedef widelimb widefelem[2 * NLIMBS - 1];
112
113
static const limb bottom56bits = 0xffffffffffffff;
114
115
/* Helper functions (de)serialising reduced field elements in little endian */
116
static void bin48_to_felem(felem out, const u8 in[48])
117
31.4k
{
118
31.4k
    memset(out, 0, 56);
119
31.4k
    out[0] = (*((limb *)&in[0])) & bottom56bits;
120
31.4k
    out[1] = (*((limb_aX *)&in[7])) & bottom56bits;
121
31.4k
    out[2] = (*((limb_aX *)&in[14])) & bottom56bits;
122
31.4k
    out[3] = (*((limb_aX *)&in[21])) & bottom56bits;
123
31.4k
    out[4] = (*((limb_aX *)&in[28])) & bottom56bits;
124
31.4k
    out[5] = (*((limb_aX *)&in[35])) & bottom56bits;
125
31.4k
    memmove(&out[6], &in[42], 6);
126
31.4k
}
127
128
static void felem_to_bin48(u8 out[48], const felem in)
129
47.3k
{
130
47.3k
    memset(out, 0, 48);
131
47.3k
    (*((limb *)&out[0])) |= (in[0] & bottom56bits);
132
47.3k
    (*((limb_aX *)&out[7])) |= (in[1] & bottom56bits);
133
47.3k
    (*((limb_aX *)&out[14])) |= (in[2] & bottom56bits);
134
47.3k
    (*((limb_aX *)&out[21])) |= (in[3] & bottom56bits);
135
47.3k
    (*((limb_aX *)&out[28])) |= (in[4] & bottom56bits);
136
47.3k
    (*((limb_aX *)&out[35])) |= (in[5] & bottom56bits);
137
47.3k
    memmove(&out[42], &in[6], 6);
138
47.3k
}
139
140
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
141
static int BN_to_felem(felem out, const BIGNUM *bn)
142
31.4k
{
143
31.4k
    felem_bytearray b_out;
144
31.4k
    int num_bytes;
145
146
31.4k
    if (BN_is_negative(bn)) {
147
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
148
0
        return 0;
149
0
    }
150
31.4k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
151
31.4k
    if (num_bytes < 0) {
152
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
153
0
        return 0;
154
0
    }
155
31.4k
    bin48_to_felem(out, b_out);
156
31.4k
    return 1;
157
31.4k
}
158
159
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
160
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
161
47.3k
{
162
47.3k
    felem_bytearray b_out;
163
164
47.3k
    felem_to_bin48(b_out, in);
165
47.3k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
166
47.3k
}
167
168
/*-
169
 * Field operations
170
 * ----------------
171
 */
172
173
static void felem_one(felem out)
174
0
{
175
0
    out[0] = 1;
176
0
    memset(&out[1], 0, sizeof(limb) * (NLIMBS - 1));
177
0
}
178
179
static void felem_assign(felem out, const felem in)
180
9.27M
{
181
9.27M
    memcpy(out, in, sizeof(felem));
182
9.27M
}
183
184
/* felem_sum64 sets out = out + in. */
185
static void felem_sum64(felem out, const felem in)
186
4.02M
{
187
4.02M
    unsigned int i;
188
189
32.1M
    for (i = 0; i < NLIMBS; i++)
190
28.1M
        out[i] += in[i];
191
4.02M
}
192
193
/* felem_scalar sets out = in * scalar */
194
static void felem_scalar(felem out, const felem in, limb scalar)
195
12.1M
{
196
12.1M
    unsigned int i;
197
198
97.5M
    for (i = 0; i < NLIMBS; i++)
199
85.3M
        out[i] = in[i] * scalar;
200
12.1M
}
201
202
/* felem_scalar64 sets out = out * scalar */
203
static void felem_scalar64(felem out, limb scalar)
204
5.66M
{
205
5.66M
    unsigned int i;
206
207
45.3M
    for (i = 0; i < NLIMBS; i++)
208
39.6M
        out[i] *= scalar;
209
5.66M
}
210
211
/* felem_scalar128 sets out = out * scalar */
212
static void felem_scalar128(widefelem out, limb scalar)
213
1.88M
{
214
1.88M
    unsigned int i;
215
216
26.4M
    for (i = 0; i < 2 * NLIMBS - 1; i++)
217
24.5M
        out[i] *= scalar;
218
1.88M
}
219
220
/*-
221
 * felem_neg sets |out| to |-in|
222
 * On entry:
223
 *   in[i] < 2^60 - 2^29
224
 * On exit:
225
 *   out[i] < 2^60
226
 */
227
static void felem_neg(felem out, const felem in)
228
169k
{
229
    /*
230
     * In order to prevent underflow, we add a multiple of p before subtracting.
231
     * Use telescopic sums to represent 2^12 * p redundantly with each limb
232
     * of the form 2^60 + ...
233
     */
234
169k
    static const limb two60m52m4 = (((limb)1) << 60)
235
169k
        - (((limb)1) << 52)
236
169k
        - (((limb)1) << 4);
237
169k
    static const limb two60p44m12 = (((limb)1) << 60)
238
169k
        + (((limb)1) << 44)
239
169k
        - (((limb)1) << 12);
240
169k
    static const limb two60m28m4 = (((limb)1) << 60)
241
169k
        - (((limb)1) << 28)
242
169k
        - (((limb)1) << 4);
243
169k
    static const limb two60m4 = (((limb)1) << 60)
244
169k
        - (((limb)1) << 4);
245
246
169k
    out[0] = two60p44m12 - in[0];
247
169k
    out[1] = two60m52m4 - in[1];
248
169k
    out[2] = two60m28m4 - in[2];
249
169k
    out[3] = two60m4 - in[3];
250
169k
    out[4] = two60m4 - in[4];
251
169k
    out[5] = two60m4 - in[5];
252
169k
    out[6] = two60m4 - in[6];
253
169k
}
254
255
#if defined(ECP_NISTP384_ASM)
256
void p384_felem_diff64(felem out, const felem in);
257
void p384_felem_diff128(widefelem out, const widefelem in);
258
void p384_felem_diff_128_64(widefelem out, const felem in);
259
260
#define felem_diff64 p384_felem_diff64
261
#define felem_diff128 p384_felem_diff128
262
#define felem_diff_128_64 p384_felem_diff_128_64
263
264
#else
265
/*-
266
 * felem_diff64 subtracts |in| from |out|
267
 * On entry:
268
 *   in[i] < 2^60 - 2^52 - 2^4
269
 * On exit:
270
 *   out[i] < out_orig[i] + 2^60 + 2^44
271
 */
272
static void felem_diff64(felem out, const felem in)
273
3.16M
{
274
    /*
275
     * In order to prevent underflow, we add a multiple of p before subtracting.
276
     * Use telescopic sums to represent 2^12 * p redundantly with each limb
277
     * of the form 2^60 + ...
278
     */
279
280
3.16M
    static const limb two60m52m4 = (((limb)1) << 60)
281
3.16M
        - (((limb)1) << 52)
282
3.16M
        - (((limb)1) << 4);
283
3.16M
    static const limb two60p44m12 = (((limb)1) << 60)
284
3.16M
        + (((limb)1) << 44)
285
3.16M
        - (((limb)1) << 12);
286
3.16M
    static const limb two60m28m4 = (((limb)1) << 60)
287
3.16M
        - (((limb)1) << 28)
288
3.16M
        - (((limb)1) << 4);
289
3.16M
    static const limb two60m4 = (((limb)1) << 60)
290
3.16M
        - (((limb)1) << 4);
291
292
3.16M
    out[0] += two60p44m12 - in[0];
293
3.16M
    out[1] += two60m52m4 - in[1];
294
3.16M
    out[2] += two60m28m4 - in[2];
295
3.16M
    out[3] += two60m4 - in[3];
296
3.16M
    out[4] += two60m4 - in[4];
297
3.16M
    out[5] += two60m4 - in[5];
298
3.16M
    out[6] += two60m4 - in[6];
299
3.16M
}
300
301
/*
302
 * in[i] < 2^63
303
 * out[i] < out_orig[i] + 2^64 + 2^48
304
 */
305
static void felem_diff_128_64(widefelem out, const felem in)
306
5.36M
{
307
    /*
308
     * In order to prevent underflow, we add a multiple of p before subtracting.
309
     * Use telescopic sums to represent 2^16 * p redundantly with each limb
310
     * of the form 2^64 + ...
311
     */
312
313
5.36M
    static const widelimb two64m56m8 = (((widelimb)1) << 64)
314
5.36M
        - (((widelimb)1) << 56)
315
5.36M
        - (((widelimb)1) << 8);
316
5.36M
    static const widelimb two64m32m8 = (((widelimb)1) << 64)
317
5.36M
        - (((widelimb)1) << 32)
318
5.36M
        - (((widelimb)1) << 8);
319
5.36M
    static const widelimb two64m8 = (((widelimb)1) << 64)
320
5.36M
        - (((widelimb)1) << 8);
321
5.36M
    static const widelimb two64p48m16 = (((widelimb)1) << 64)
322
5.36M
        + (((widelimb)1) << 48)
323
5.36M
        - (((widelimb)1) << 16);
324
5.36M
    unsigned int i;
325
326
5.36M
    out[0] += two64p48m16;
327
5.36M
    out[1] += two64m56m8;
328
5.36M
    out[2] += two64m32m8;
329
5.36M
    out[3] += two64m8;
330
5.36M
    out[4] += two64m8;
331
5.36M
    out[5] += two64m8;
332
5.36M
    out[6] += two64m8;
333
334
42.8M
    for (i = 0; i < NLIMBS; i++)
335
37.5M
        out[i] -= in[i];
336
5.36M
}
337
338
/*
339
 * in[i] < 2^127 - 2^119 - 2^71
340
 * out[i] < out_orig[i] + 2^127 + 2^111
341
 */
342
static void felem_diff128(widefelem out, const widefelem in)
343
1.88M
{
344
    /*
345
     * In order to prevent underflow, we add a multiple of p before subtracting.
346
     * Use telescopic sums to represent 2^415 * p redundantly with each limb
347
     * of the form 2^127 + ...
348
     */
349
350
1.88M
    static const widelimb two127 = ((widelimb)1) << 127;
351
1.88M
    static const widelimb two127m71 = (((widelimb)1) << 127)
352
1.88M
        - (((widelimb)1) << 71);
353
1.88M
    static const widelimb two127p111m79m71 = (((widelimb)1) << 127)
354
1.88M
        + (((widelimb)1) << 111)
355
1.88M
        - (((widelimb)1) << 79)
356
1.88M
        - (((widelimb)1) << 71);
357
1.88M
    static const widelimb two127m119m71 = (((widelimb)1) << 127)
358
1.88M
        - (((widelimb)1) << 119)
359
1.88M
        - (((widelimb)1) << 71);
360
1.88M
    static const widelimb two127m95m71 = (((widelimb)1) << 127)
361
1.88M
        - (((widelimb)1) << 95)
362
1.88M
        - (((widelimb)1) << 71);
363
1.88M
    unsigned int i;
364
365
1.88M
    out[0] += two127;
366
1.88M
    out[1] += two127m71;
367
1.88M
    out[2] += two127m71;
368
1.88M
    out[3] += two127m71;
369
1.88M
    out[4] += two127m71;
370
1.88M
    out[5] += two127m71;
371
1.88M
    out[6] += two127p111m79m71;
372
1.88M
    out[7] += two127m119m71;
373
1.88M
    out[8] += two127m95m71;
374
1.88M
    out[9] += two127m71;
375
1.88M
    out[10] += two127m71;
376
1.88M
    out[11] += two127m71;
377
1.88M
    out[12] += two127m71;
378
379
26.4M
    for (i = 0; i < 2 * NLIMBS - 1; i++)
380
24.5M
        out[i] -= in[i];
381
1.88M
}
382
#endif /* ECP_NISTP384_ASM */
383
384
static void felem_square_ref(widefelem out, const felem in)
385
11.7M
{
386
11.7M
    felem inx2;
387
11.7M
    felem_scalar(inx2, in, 2);
388
389
11.7M
    out[0] = ((uint128_t)in[0]) * in[0];
390
391
11.7M
    out[1] = ((uint128_t)in[0]) * inx2[1];
392
393
11.7M
    out[2] = ((uint128_t)in[0]) * inx2[2]
394
11.7M
        + ((uint128_t)in[1]) * in[1];
395
396
11.7M
    out[3] = ((uint128_t)in[0]) * inx2[3]
397
11.7M
        + ((uint128_t)in[1]) * inx2[2];
398
399
11.7M
    out[4] = ((uint128_t)in[0]) * inx2[4]
400
11.7M
        + ((uint128_t)in[1]) * inx2[3]
401
11.7M
        + ((uint128_t)in[2]) * in[2];
402
403
11.7M
    out[5] = ((uint128_t)in[0]) * inx2[5]
404
11.7M
        + ((uint128_t)in[1]) * inx2[4]
405
11.7M
        + ((uint128_t)in[2]) * inx2[3];
406
407
11.7M
    out[6] = ((uint128_t)in[0]) * inx2[6]
408
11.7M
        + ((uint128_t)in[1]) * inx2[5]
409
11.7M
        + ((uint128_t)in[2]) * inx2[4]
410
11.7M
        + ((uint128_t)in[3]) * in[3];
411
412
11.7M
    out[7] = ((uint128_t)in[1]) * inx2[6]
413
11.7M
        + ((uint128_t)in[2]) * inx2[5]
414
11.7M
        + ((uint128_t)in[3]) * inx2[4];
415
416
11.7M
    out[8] = ((uint128_t)in[2]) * inx2[6]
417
11.7M
        + ((uint128_t)in[3]) * inx2[5]
418
11.7M
        + ((uint128_t)in[4]) * in[4];
419
420
11.7M
    out[9] = ((uint128_t)in[3]) * inx2[6]
421
11.7M
        + ((uint128_t)in[4]) * inx2[5];
422
423
11.7M
    out[10] = ((uint128_t)in[4]) * inx2[6]
424
11.7M
        + ((uint128_t)in[5]) * in[5];
425
426
11.7M
    out[11] = ((uint128_t)in[5]) * inx2[6];
427
428
11.7M
    out[12] = ((uint128_t)in[6]) * in[6];
429
11.7M
}
430
431
static void felem_mul_ref(widefelem out, const felem in1, const felem in2)
432
9.39M
{
433
9.39M
    out[0] = ((uint128_t)in1[0]) * in2[0];
434
435
9.39M
    out[1] = ((uint128_t)in1[0]) * in2[1]
436
9.39M
        + ((uint128_t)in1[1]) * in2[0];
437
438
9.39M
    out[2] = ((uint128_t)in1[0]) * in2[2]
439
9.39M
        + ((uint128_t)in1[1]) * in2[1]
440
9.39M
        + ((uint128_t)in1[2]) * in2[0];
441
442
9.39M
    out[3] = ((uint128_t)in1[0]) * in2[3]
443
9.39M
        + ((uint128_t)in1[1]) * in2[2]
444
9.39M
        + ((uint128_t)in1[2]) * in2[1]
445
9.39M
        + ((uint128_t)in1[3]) * in2[0];
446
447
9.39M
    out[4] = ((uint128_t)in1[0]) * in2[4]
448
9.39M
        + ((uint128_t)in1[1]) * in2[3]
449
9.39M
        + ((uint128_t)in1[2]) * in2[2]
450
9.39M
        + ((uint128_t)in1[3]) * in2[1]
451
9.39M
        + ((uint128_t)in1[4]) * in2[0];
452
453
9.39M
    out[5] = ((uint128_t)in1[0]) * in2[5]
454
9.39M
        + ((uint128_t)in1[1]) * in2[4]
455
9.39M
        + ((uint128_t)in1[2]) * in2[3]
456
9.39M
        + ((uint128_t)in1[3]) * in2[2]
457
9.39M
        + ((uint128_t)in1[4]) * in2[1]
458
9.39M
        + ((uint128_t)in1[5]) * in2[0];
459
460
9.39M
    out[6] = ((uint128_t)in1[0]) * in2[6]
461
9.39M
        + ((uint128_t)in1[1]) * in2[5]
462
9.39M
        + ((uint128_t)in1[2]) * in2[4]
463
9.39M
        + ((uint128_t)in1[3]) * in2[3]
464
9.39M
        + ((uint128_t)in1[4]) * in2[2]
465
9.39M
        + ((uint128_t)in1[5]) * in2[1]
466
9.39M
        + ((uint128_t)in1[6]) * in2[0];
467
468
9.39M
    out[7] = ((uint128_t)in1[1]) * in2[6]
469
9.39M
        + ((uint128_t)in1[2]) * in2[5]
470
9.39M
        + ((uint128_t)in1[3]) * in2[4]
471
9.39M
        + ((uint128_t)in1[4]) * in2[3]
472
9.39M
        + ((uint128_t)in1[5]) * in2[2]
473
9.39M
        + ((uint128_t)in1[6]) * in2[1];
474
475
9.39M
    out[8] = ((uint128_t)in1[2]) * in2[6]
476
9.39M
        + ((uint128_t)in1[3]) * in2[5]
477
9.39M
        + ((uint128_t)in1[4]) * in2[4]
478
9.39M
        + ((uint128_t)in1[5]) * in2[3]
479
9.39M
        + ((uint128_t)in1[6]) * in2[2];
480
481
9.39M
    out[9] = ((uint128_t)in1[3]) * in2[6]
482
9.39M
        + ((uint128_t)in1[4]) * in2[5]
483
9.39M
        + ((uint128_t)in1[5]) * in2[4]
484
9.39M
        + ((uint128_t)in1[6]) * in2[3];
485
486
9.39M
    out[10] = ((uint128_t)in1[4]) * in2[6]
487
9.39M
        + ((uint128_t)in1[5]) * in2[5]
488
9.39M
        + ((uint128_t)in1[6]) * in2[4];
489
490
9.39M
    out[11] = ((uint128_t)in1[5]) * in2[6]
491
9.39M
        + ((uint128_t)in1[6]) * in2[5];
492
493
9.39M
    out[12] = ((uint128_t)in1[6]) * in2[6];
494
9.39M
}
495
496
/*-
497
 * Reduce thirteen 128-bit coefficients to seven 64-bit coefficients.
498
 * in[i] < 2^128 - 2^125
499
 * out[i] < 2^56 for i < 6,
500
 * out[6] <= 2^48
501
 *
502
 * The technique in use here stems from the format of the prime modulus:
503
 * P384 = 2^384 - delta
504
 *
505
 * Thus we can reduce numbers of the form (X + 2^384 * Y) by substituting
506
 * them with (X + delta Y), with delta = 2^128 + 2^96 + (-2^32 + 1). These
507
 * coefficients are still quite large, and so we repeatedly apply this
508
 * technique on high-order bits in order to guarantee the desired bounds on
509
 * the size of our output.
510
 *
511
 * The three phases of elimination are as follows:
512
 * [1]: Y = 2^120 (in[12] | in[11] | in[10] | in[9])
513
 * [2]: Y = 2^8 (acc[8] | acc[7])
514
 * [3]: Y = 2^48 (acc[6] >> 48)
515
 * (Where a | b | c | d = (2^56)^3 a + (2^56)^2 b + (2^56) c + d)
516
 */
517
static void felem_reduce_ref(felem out, const widefelem in)
518
19.2M
{
519
    /*
520
     * In order to prevent underflow, we add a multiple of p before subtracting.
521
     * Use telescopic sums to represent 2^76 * p redundantly with each limb
522
     * of the form 2^124 + ...
523
     */
524
19.2M
    static const widelimb two124m68 = (((widelimb)1) << 124)
525
19.2M
        - (((widelimb)1) << 68);
526
19.2M
    static const widelimb two124m116m68 = (((widelimb)1) << 124)
527
19.2M
        - (((widelimb)1) << 116)
528
19.2M
        - (((widelimb)1) << 68);
529
19.2M
    static const widelimb two124p108m76 = (((widelimb)1) << 124)
530
19.2M
        + (((widelimb)1) << 108)
531
19.2M
        - (((widelimb)1) << 76);
532
19.2M
    static const widelimb two124m92m68 = (((widelimb)1) << 124)
533
19.2M
        - (((widelimb)1) << 92)
534
19.2M
        - (((widelimb)1) << 68);
535
19.2M
    widelimb temp, acc[9];
536
19.2M
    unsigned int i;
537
538
19.2M
    memcpy(acc, in, sizeof(widelimb) * 9);
539
540
19.2M
    acc[0] += two124p108m76;
541
19.2M
    acc[1] += two124m116m68;
542
19.2M
    acc[2] += two124m92m68;
543
19.2M
    acc[3] += two124m68;
544
19.2M
    acc[4] += two124m68;
545
19.2M
    acc[5] += two124m68;
546
19.2M
    acc[6] += two124m68;
547
548
    /* [1]: Eliminate in[9], ..., in[12] */
549
19.2M
    acc[8] += in[12] >> 32;
550
19.2M
    acc[7] += (in[12] & 0xffffffff) << 24;
551
19.2M
    acc[7] += in[12] >> 8;
552
19.2M
    acc[6] += (in[12] & 0xff) << 48;
553
19.2M
    acc[6] -= in[12] >> 16;
554
19.2M
    acc[5] -= (in[12] & 0xffff) << 40;
555
19.2M
    acc[6] += in[12] >> 48;
556
19.2M
    acc[5] += (in[12] & 0xffffffffffff) << 8;
557
558
19.2M
    acc[7] += in[11] >> 32;
559
19.2M
    acc[6] += (in[11] & 0xffffffff) << 24;
560
19.2M
    acc[6] += in[11] >> 8;
561
19.2M
    acc[5] += (in[11] & 0xff) << 48;
562
19.2M
    acc[5] -= in[11] >> 16;
563
19.2M
    acc[4] -= (in[11] & 0xffff) << 40;
564
19.2M
    acc[5] += in[11] >> 48;
565
19.2M
    acc[4] += (in[11] & 0xffffffffffff) << 8;
566
567
19.2M
    acc[6] += in[10] >> 32;
568
19.2M
    acc[5] += (in[10] & 0xffffffff) << 24;
569
19.2M
    acc[5] += in[10] >> 8;
570
19.2M
    acc[4] += (in[10] & 0xff) << 48;
571
19.2M
    acc[4] -= in[10] >> 16;
572
19.2M
    acc[3] -= (in[10] & 0xffff) << 40;
573
19.2M
    acc[4] += in[10] >> 48;
574
19.2M
    acc[3] += (in[10] & 0xffffffffffff) << 8;
575
576
19.2M
    acc[5] += in[9] >> 32;
577
19.2M
    acc[4] += (in[9] & 0xffffffff) << 24;
578
19.2M
    acc[4] += in[9] >> 8;
579
19.2M
    acc[3] += (in[9] & 0xff) << 48;
580
19.2M
    acc[3] -= in[9] >> 16;
581
19.2M
    acc[2] -= (in[9] & 0xffff) << 40;
582
19.2M
    acc[3] += in[9] >> 48;
583
19.2M
    acc[2] += (in[9] & 0xffffffffffff) << 8;
584
585
    /*
586
     * [2]: Eliminate acc[7], acc[8], that is the 7 and eighth limbs, as
587
     * well as the contributions made from eliminating higher limbs.
588
     * acc[7] < in[7] + 2^120 + 2^56 < in[7] + 2^121
589
     * acc[8] < in[8] + 2^96
590
     */
591
19.2M
    acc[4] += acc[8] >> 32;
592
19.2M
    acc[3] += (acc[8] & 0xffffffff) << 24;
593
19.2M
    acc[3] += acc[8] >> 8;
594
19.2M
    acc[2] += (acc[8] & 0xff) << 48;
595
19.2M
    acc[2] -= acc[8] >> 16;
596
19.2M
    acc[1] -= (acc[8] & 0xffff) << 40;
597
19.2M
    acc[2] += acc[8] >> 48;
598
19.2M
    acc[1] += (acc[8] & 0xffffffffffff) << 8;
599
600
19.2M
    acc[3] += acc[7] >> 32;
601
19.2M
    acc[2] += (acc[7] & 0xffffffff) << 24;
602
19.2M
    acc[2] += acc[7] >> 8;
603
19.2M
    acc[1] += (acc[7] & 0xff) << 48;
604
19.2M
    acc[1] -= acc[7] >> 16;
605
19.2M
    acc[0] -= (acc[7] & 0xffff) << 40;
606
19.2M
    acc[1] += acc[7] >> 48;
607
19.2M
    acc[0] += (acc[7] & 0xffffffffffff) << 8;
608
609
    /*-
610
     * acc[k] < in[k] + 2^124 + 2^121
611
     *        < in[k] + 2^125
612
     *        < 2^128, for k <= 6
613
     */
614
615
    /*
616
     * Carry 4 -> 5 -> 6
617
     * This has the effect of ensuring that these more significant limbs
618
     * will be small in value after eliminating high bits from acc[6].
619
     */
620
19.2M
    acc[5] += acc[4] >> 56;
621
19.2M
    acc[4] &= 0x00ffffffffffffff;
622
623
19.2M
    acc[6] += acc[5] >> 56;
624
19.2M
    acc[5] &= 0x00ffffffffffffff;
625
626
    /*-
627
     * acc[6] < in[6] + 2^124 + 2^121 + 2^72 + 2^16
628
     *        < in[6] + 2^125
629
     *        < 2^128
630
     */
631
632
    /* [3]: Eliminate high bits of acc[6] */
633
19.2M
    temp = acc[6] >> 48;
634
19.2M
    acc[6] &= 0x0000ffffffffffff;
635
636
    /* temp < 2^80 */
637
638
19.2M
    acc[3] += temp >> 40;
639
19.2M
    acc[2] += (temp & 0xffffffffff) << 16;
640
19.2M
    acc[2] += temp >> 16;
641
19.2M
    acc[1] += (temp & 0xffff) << 40;
642
19.2M
    acc[1] -= temp >> 24;
643
19.2M
    acc[0] -= (temp & 0xffffff) << 32;
644
19.2M
    acc[0] += temp;
645
646
    /*-
647
     * acc[k] < acc_old[k] + 2^64 + 2^56
648
     *        < in[k] + 2^124 + 2^121 + 2^72 + 2^64 + 2^56 + 2^16 , k < 4
649
     */
650
651
    /* Carry 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
652
19.2M
    acc[1] += acc[0] >> 56; /* acc[1] < acc_old[1] + 2^72 */
653
19.2M
    acc[0] &= 0x00ffffffffffffff;
654
655
19.2M
    acc[2] += acc[1] >> 56; /* acc[2] < acc_old[2] + 2^72 + 2^16 */
656
19.2M
    acc[1] &= 0x00ffffffffffffff;
657
658
19.2M
    acc[3] += acc[2] >> 56; /* acc[3] < acc_old[3] + 2^72 + 2^16 */
659
19.2M
    acc[2] &= 0x00ffffffffffffff;
660
661
    /*-
662
     * acc[k] < acc_old[k] + 2^72 + 2^16
663
     *        < in[k] + 2^124 + 2^121 + 2^73 + 2^64 + 2^56 + 2^17
664
     *        < in[k] + 2^125
665
     *        < 2^128 , k < 4
666
     */
667
668
19.2M
    acc[4] += acc[3] >> 56; /*-
669
                             * acc[4] < acc_old[4] + 2^72 + 2^16
670
                             *        < 2^72 + 2^56 + 2^16
671
                             */
672
19.2M
    acc[3] &= 0x00ffffffffffffff;
673
674
19.2M
    acc[5] += acc[4] >> 56; /*-
675
                             * acc[5] < acc_old[5] + 2^16 + 1
676
                             *        < 2^56 + 2^16 + 1
677
                             */
678
19.2M
    acc[4] &= 0x00ffffffffffffff;
679
680
19.2M
    acc[6] += acc[5] >> 56; /* acc[6] < 2^48 + 1 <= 2^48 */
681
19.2M
    acc[5] &= 0x00ffffffffffffff;
682
683
154M
    for (i = 0; i < NLIMBS; i++)
684
134M
        out[i] = acc[i];
685
19.2M
}
686
687
static ossl_inline void felem_square_reduce_ref(felem out, const felem in)
688
7.12M
{
689
7.12M
    widefelem tmp;
690
691
7.12M
    felem_square_ref(tmp, in);
692
7.12M
    felem_reduce_ref(out, tmp);
693
7.12M
}
694
695
static ossl_inline void felem_mul_reduce_ref(felem out, const felem in1, const felem in2)
696
5.65M
{
697
5.65M
    widefelem tmp;
698
699
5.65M
    felem_mul_ref(tmp, in1, in2);
700
5.65M
    felem_reduce_ref(out, tmp);
701
5.65M
}
702
703
#if defined(ECP_NISTP384_ASM)
704
static void felem_square_wrapper(widefelem out, const felem in);
705
static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2);
706
707
static void (*felem_square_p)(widefelem out, const felem in) = felem_square_wrapper;
708
static void (*felem_mul_p)(widefelem out, const felem in1, const felem in2) = felem_mul_wrapper;
709
710
static void (*felem_reduce_p)(felem out, const widefelem in) = felem_reduce_ref;
711
712
static void (*felem_square_reduce_p)(felem out, const felem in) = felem_square_reduce_ref;
713
static void (*felem_mul_reduce_p)(felem out, const felem in1, const felem in2) = felem_mul_reduce_ref;
714
715
void p384_felem_square(widefelem out, const felem in);
716
void p384_felem_mul(widefelem out, const felem in1, const felem in2);
717
void p384_felem_reduce(felem out, const widefelem in);
718
719
void p384_felem_square_reduce(felem out, const felem in);
720
void p384_felem_mul_reduce(felem out, const felem in1, const felem in2);
721
722
#if defined(_ARCH_PPC64)
723
#include "crypto/ppc_arch.h"
724
#endif
725
726
static void felem_select(void)
727
{
728
#if defined(_ARCH_PPC64)
729
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
730
        felem_square_p = p384_felem_square;
731
        felem_mul_p = p384_felem_mul;
732
        felem_reduce_p = p384_felem_reduce;
733
        felem_square_reduce_p = p384_felem_square_reduce;
734
        felem_mul_reduce_p = p384_felem_mul_reduce;
735
736
        return;
737
    }
738
#endif
739
740
    /* Default */
741
    felem_square_p = felem_square_ref;
742
    felem_mul_p = felem_mul_ref;
743
    felem_reduce_p = felem_reduce_ref;
744
    felem_square_reduce_p = felem_square_reduce_ref;
745
    felem_mul_reduce_p = felem_mul_reduce_ref;
746
}
747
748
static void felem_square_wrapper(widefelem out, const felem in)
749
{
750
    felem_select();
751
    felem_square_p(out, in);
752
}
753
754
static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2)
755
{
756
    felem_select();
757
    felem_mul_p(out, in1, in2);
758
}
759
760
#define felem_square felem_square_p
761
#define felem_mul felem_mul_p
762
#define felem_reduce felem_reduce_p
763
764
#define felem_square_reduce felem_square_reduce_p
765
#define felem_mul_reduce felem_mul_reduce_p
766
#else
767
4.63M
#define felem_square felem_square_ref
768
3.73M
#define felem_mul felem_mul_ref
769
6.48M
#define felem_reduce felem_reduce_ref
770
771
7.12M
#define felem_square_reduce felem_square_reduce_ref
772
5.65M
#define felem_mul_reduce felem_mul_reduce_ref
773
#endif
774
775
/*-
776
 * felem_inv calculates |out| = |in|^{-1}
777
 *
778
 * Based on Fermat's Little Theorem:
779
 *   a^p = a (mod p)
780
 *   a^{p-1} = 1 (mod p)
781
 *   a^{p-2} = a^{-1} (mod p)
782
 */
783
static void felem_inv(felem out, const felem in)
784
8.27k
{
785
8.27k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6;
786
8.27k
    unsigned int i = 0;
787
788
8.27k
    felem_square_reduce(ftmp, in); /* 2^1 */
789
8.27k
    felem_mul_reduce(ftmp, ftmp, in); /* 2^1 + 2^0 */
790
8.27k
    felem_assign(ftmp2, ftmp);
791
792
8.27k
    felem_square_reduce(ftmp, ftmp); /* 2^2 + 2^1 */
793
8.27k
    felem_mul_reduce(ftmp, ftmp, in); /* 2^2 + 2^1 * 2^0 */
794
8.27k
    felem_assign(ftmp3, ftmp);
795
796
33.0k
    for (i = 0; i < 3; i++)
797
24.8k
        felem_square_reduce(ftmp, ftmp); /* 2^5 + 2^4 + 2^3 */
798
8.27k
    felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 */
799
8.27k
    felem_assign(ftmp4, ftmp);
800
801
57.9k
    for (i = 0; i < 6; i++)
802
49.6k
        felem_square_reduce(ftmp, ftmp); /* 2^11 + ... + 2^6 */
803
8.27k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^11 + ... + 2^0 */
804
805
33.0k
    for (i = 0; i < 3; i++)
806
24.8k
        felem_square_reduce(ftmp, ftmp); /* 2^14 + ... + 2^3 */
807
8.27k
    felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^14 + ... + 2^0 */
808
8.27k
    felem_assign(ftmp5, ftmp);
809
810
132k
    for (i = 0; i < 15; i++)
811
124k
        felem_square_reduce(ftmp, ftmp); /* 2^29 + ... + 2^15 */
812
8.27k
    felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^29 + ... + 2^0 */
813
8.27k
    felem_assign(ftmp6, ftmp);
814
815
256k
    for (i = 0; i < 30; i++)
816
248k
        felem_square_reduce(ftmp, ftmp); /* 2^59 + ... + 2^30 */
817
8.27k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^59 + ... + 2^0 */
818
8.27k
    felem_assign(ftmp4, ftmp);
819
820
504k
    for (i = 0; i < 60; i++)
821
496k
        felem_square_reduce(ftmp, ftmp); /* 2^119 + ... + 2^60 */
822
8.27k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^119 + ... + 2^0 */
823
8.27k
    felem_assign(ftmp4, ftmp);
824
825
1.00M
    for (i = 0; i < 120; i++)
826
992k
        felem_square_reduce(ftmp, ftmp); /* 2^239 + ... + 2^120 */
827
8.27k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^239 + ... + 2^0 */
828
829
132k
    for (i = 0; i < 15; i++)
830
124k
        felem_square_reduce(ftmp, ftmp); /* 2^254 + ... + 2^15 */
831
8.27k
    felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^254 + ... + 2^0 */
832
833
264k
    for (i = 0; i < 31; i++)
834
256k
        felem_square_reduce(ftmp, ftmp); /* 2^285 + ... + 2^31 */
835
8.27k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^285 + ... + 2^31 + 2^29 + ... + 2^0 */
836
837
24.8k
    for (i = 0; i < 2; i++)
838
16.5k
        felem_square_reduce(ftmp, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^2 */
839
8.27k
    felem_mul_reduce(ftmp, ftmp2, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^0 */
840
841
785k
    for (i = 0; i < 94; i++)
842
777k
        felem_square_reduce(ftmp, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 */
843
8.27k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 + 2^29 + ... + 2^0 */
844
845
24.8k
    for (i = 0; i < 2; i++)
846
16.5k
        felem_square_reduce(ftmp, ftmp); /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 */
847
8.27k
    felem_mul_reduce(ftmp, in, ftmp); /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 + 2^0 */
848
849
8.27k
    memcpy(out, ftmp, sizeof(felem));
850
8.27k
}
851
852
/*
853
 * Zero-check: returns a limb with all bits set if |in| == 0 (mod p)
854
 * and 0 otherwise. We know that field elements are reduced to
855
 * 0 < in < 2p, so we only need to check two cases:
856
 * 0 and 2^384 - 2^128 - 2^96 + 2^32 - 1
857
 *   in[k] < 2^56, k < 6
858
 *   in[6] <= 2^48
859
 */
860
static limb felem_is_zero(const felem in)
861
2.43M
{
862
2.43M
    limb zero, p384;
863
864
2.43M
    zero = in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6];
865
2.43M
    zero = ((int64_t)(zero)-1) >> 63;
866
2.43M
    p384 = (in[0] ^ 0x000000ffffffff) | (in[1] ^ 0xffff0000000000)
867
2.43M
        | (in[2] ^ 0xfffffffffeffff) | (in[3] ^ 0xffffffffffffff)
868
2.43M
        | (in[4] ^ 0xffffffffffffff) | (in[5] ^ 0xffffffffffffff)
869
2.43M
        | (in[6] ^ 0xffffffffffff);
870
2.43M
    p384 = ((int64_t)(p384)-1) >> 63;
871
872
2.43M
    return (zero | p384);
873
2.43M
}
874
875
static int felem_is_zero_int(const void *in)
876
0
{
877
0
    return (int)(felem_is_zero(in) & ((limb)1));
878
0
}
879
880
/*-
881
 * felem_contract converts |in| to its unique, minimal representation.
882
 * Assume we've removed all redundant bits.
883
 * On entry:
884
 *   in[k] < 2^56, k < 6
885
 *   in[6] <= 2^48
886
 */
887
static void felem_contract(felem out, const felem in)
888
36.1k
{
889
36.1k
    static const int64_t two56 = ((limb)1) << 56;
890
891
    /*
892
     * We know for a fact that 0 <= |in| < 2*p, for p = 2^384 - 2^128 - 2^96 + 2^32 - 1
893
     * Perform two successive, idempotent subtractions to reduce if |in| >= p.
894
     */
895
896
36.1k
    int64_t tmp[NLIMBS], cond[5], a;
897
36.1k
    unsigned int i;
898
899
36.1k
    memcpy(tmp, in, sizeof(felem));
900
901
    /* Case 1: a = 1 iff |in| >= 2^384 */
902
36.1k
    a = (in[6] >> 48);
903
36.1k
    tmp[0] += a;
904
36.1k
    tmp[0] -= a << 32;
905
36.1k
    tmp[1] += a << 40;
906
36.1k
    tmp[2] += a << 16;
907
36.1k
    tmp[6] &= 0x0000ffffffffffff;
908
909
    /*
910
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
911
     * non-zero, so we only need one step
912
     */
913
914
36.1k
    a = tmp[0] >> 63;
915
36.1k
    tmp[0] += a & two56;
916
36.1k
    tmp[1] -= a & 1;
917
918
    /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
919
36.1k
    tmp[2] += tmp[1] >> 56;
920
36.1k
    tmp[1] &= 0x00ffffffffffffff;
921
922
36.1k
    tmp[3] += tmp[2] >> 56;
923
36.1k
    tmp[2] &= 0x00ffffffffffffff;
924
925
36.1k
    tmp[4] += tmp[3] >> 56;
926
36.1k
    tmp[3] &= 0x00ffffffffffffff;
927
928
36.1k
    tmp[5] += tmp[4] >> 56;
929
36.1k
    tmp[4] &= 0x00ffffffffffffff;
930
931
36.1k
    tmp[6] += tmp[5] >> 56; /* tmp[6] < 2^48 */
932
36.1k
    tmp[5] &= 0x00ffffffffffffff;
933
934
    /*
935
     * Case 2: a = all ones if p <= |in| < 2^384, 0 otherwise
936
     */
937
938
    /* 0 iff (2^129..2^383) are all one */
939
36.1k
    cond[0] = ((tmp[6] | 0xff000000000000) & tmp[5] & tmp[4] & tmp[3] & (tmp[2] | 0x0000000001ffff)) + 1;
940
    /* 0 iff 2^128 bit is one */
941
36.1k
    cond[1] = (tmp[2] | ~0x00000000010000) + 1;
942
    /* 0 iff (2^96..2^127) bits are all one */
943
36.1k
    cond[2] = ((tmp[2] | 0xffffffffff0000) & (tmp[1] | 0x0000ffffffffff)) + 1;
944
    /* 0 iff (2^32..2^95) bits are all zero */
945
36.1k
    cond[3] = (tmp[1] & ~0xffff0000000000) | (tmp[0] & ~((int64_t)0x000000ffffffff));
946
    /* 0 iff (2^0..2^31) bits are all one */
947
36.1k
    cond[4] = (tmp[0] | 0xffffff00000000) + 1;
948
949
    /*
950
     * In effect, invert our conditions, so that 0 values become all 1's,
951
     * any non-zero value in the low-order 56 bits becomes all 0's
952
     */
953
216k
    for (i = 0; i < 5; i++)
954
180k
        cond[i] = ((cond[i] & 0x00ffffffffffffff) - 1) >> 63;
955
956
    /*
957
     * The condition for determining whether in is greater than our
958
     * prime is given by the following condition.
959
     */
960
961
    /* First subtract 2^384 - 2^129 cheaply */
962
36.1k
    a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
963
36.1k
    tmp[6] &= ~a;
964
36.1k
    tmp[5] &= ~a;
965
36.1k
    tmp[4] &= ~a;
966
36.1k
    tmp[3] &= ~a;
967
36.1k
    tmp[2] &= ~a | 0x0000000001ffff;
968
969
    /*
970
     * Subtract 2^128 - 2^96 by
971
     * means of disjoint cases.
972
     */
973
974
    /* subtract 2^128 if that bit is present, and add 2^96 */
975
36.1k
    a = cond[0] & cond[1];
976
36.1k
    tmp[2] &= ~a | 0xfffffffffeffff;
977
36.1k
    tmp[1] += a & ((int64_t)1 << 40);
978
979
    /* otherwise, clear bits 2^127 .. 2^96  */
980
36.1k
    a = cond[0] & ~cond[1] & (cond[2] & (~cond[3] | cond[4]));
981
36.1k
    tmp[2] &= ~a | 0xffffffffff0000;
982
36.1k
    tmp[1] &= ~a | 0x0000ffffffffff;
983
984
    /* finally, subtract the last 2^32 - 1 */
985
36.1k
    a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
986
36.1k
    tmp[0] += a & (-((int64_t)1 << 32) + 1);
987
988
    /*
989
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
990
     * non-zero, so we only need one step
991
     */
992
36.1k
    a = tmp[0] >> 63;
993
36.1k
    tmp[0] += a & two56;
994
36.1k
    tmp[1] -= a & 1;
995
996
    /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
997
36.1k
    tmp[2] += tmp[1] >> 56;
998
36.1k
    tmp[1] &= 0x00ffffffffffffff;
999
1000
36.1k
    tmp[3] += tmp[2] >> 56;
1001
36.1k
    tmp[2] &= 0x00ffffffffffffff;
1002
1003
36.1k
    tmp[4] += tmp[3] >> 56;
1004
36.1k
    tmp[3] &= 0x00ffffffffffffff;
1005
1006
36.1k
    tmp[5] += tmp[4] >> 56;
1007
36.1k
    tmp[4] &= 0x00ffffffffffffff;
1008
1009
36.1k
    tmp[6] += tmp[5] >> 56;
1010
36.1k
    tmp[5] &= 0x00ffffffffffffff;
1011
1012
36.1k
    memcpy(out, tmp, sizeof(felem));
1013
36.1k
}
1014
1015
/*-
1016
 * Group operations
1017
 * ----------------
1018
 *
1019
 * Building on top of the field operations we have the operations on the
1020
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1021
 * coordinates
1022
 */
1023
1024
/*-
1025
 * point_double calculates 2*(x_in, y_in, z_in)
1026
 *
1027
 * The method is taken from:
1028
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1029
 *
1030
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1031
 * while x_out == y_in is not (maybe this works, but it's not tested).
1032
 */
1033
static void
1034
point_double(felem x_out, felem y_out, felem z_out,
1035
    const felem x_in, const felem y_in, const felem z_in)
1036
1.27M
{
1037
1.27M
    widefelem tmp, tmp2;
1038
1.27M
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1039
1040
1.27M
    felem_assign(ftmp, x_in);
1041
1.27M
    felem_assign(ftmp2, x_in);
1042
1043
    /* delta = z^2 */
1044
1.27M
    felem_square_reduce(delta, z_in); /* delta[i] < 2^56 */
1045
1046
    /* gamma = y^2 */
1047
1.27M
    felem_square_reduce(gamma, y_in); /* gamma[i] < 2^56 */
1048
1049
    /* beta = x*gamma */
1050
1.27M
    felem_mul_reduce(beta, x_in, gamma); /* beta[i] < 2^56 */
1051
1052
    /* alpha = 3*(x-delta)*(x+delta) */
1053
1.27M
    felem_diff64(ftmp, delta); /* ftmp[i] < 2^60 + 2^58 + 2^44 */
1054
1.27M
    felem_sum64(ftmp2, delta); /* ftmp2[i] < 2^59 */
1055
1.27M
    felem_scalar64(ftmp2, 3); /* ftmp2[i] < 2^61 */
1056
1.27M
    felem_mul_reduce(alpha, ftmp, ftmp2); /* alpha[i] < 2^56 */
1057
1058
    /* x' = alpha^2 - 8*beta */
1059
1.27M
    felem_square(tmp, alpha); /* tmp[i] < 2^115 */
1060
1.27M
    felem_assign(ftmp, beta); /* ftmp[i] < 2^56 */
1061
1.27M
    felem_scalar64(ftmp, 8); /* ftmp[i] < 2^59 */
1062
1.27M
    felem_diff_128_64(tmp, ftmp); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1063
1.27M
    felem_reduce(x_out, tmp); /* x_out[i] < 2^56 */
1064
1065
    /* z' = (y + z)^2 - gamma - delta */
1066
1.27M
    felem_sum64(delta, gamma); /* delta[i] < 2^57 */
1067
1.27M
    felem_assign(ftmp, y_in); /* ftmp[i] < 2^56 */
1068
1.27M
    felem_sum64(ftmp, z_in); /* ftmp[i] < 2^56 */
1069
1.27M
    felem_square(tmp, ftmp); /* tmp[i] < 2^115 */
1070
1.27M
    felem_diff_128_64(tmp, delta); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1071
1.27M
    felem_reduce(z_out, tmp); /* z_out[i] < 2^56 */
1072
1073
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1074
1.27M
    felem_scalar64(beta, 4); /* beta[i] < 2^58 */
1075
1.27M
    felem_diff64(beta, x_out); /* beta[i] < 2^60 + 2^58 + 2^44 */
1076
1.27M
    felem_mul(tmp, alpha, beta); /* tmp[i] < 2^119 */
1077
1.27M
    felem_square(tmp2, gamma); /* tmp2[i] < 2^115 */
1078
1.27M
    felem_scalar128(tmp2, 8); /* tmp2[i] < 2^118 */
1079
1.27M
    felem_diff128(tmp, tmp2); /* tmp[i] < 2^127 + 2^119 + 2^111 */
1080
1.27M
    felem_reduce(y_out, tmp); /* tmp[i] < 2^56 */
1081
1.27M
}
1082
1083
/* copy_conditional copies in to out iff mask is all ones. */
1084
static void copy_conditional(felem out, const felem in, limb mask)
1085
3.82M
{
1086
3.82M
    unsigned int i;
1087
1088
30.5M
    for (i = 0; i < NLIMBS; i++)
1089
26.7M
        out[i] ^= mask & (in[i] ^ out[i]);
1090
3.82M
}
1091
1092
/*-
1093
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1094
 *
1095
 * The method is taken from
1096
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1097
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1098
 *
1099
 * This function includes a branch for checking whether the two input points
1100
 * are equal (while not equal to the point at infinity). See comment below
1101
 * on constant-time.
1102
 */
1103
static void point_add(felem x3, felem y3, felem z3,
1104
    const felem x1, const felem y1, const felem z1,
1105
    const int mixed, const felem x2, const felem y2,
1106
    const felem z2)
1107
609k
{
1108
609k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1109
609k
    widefelem tmp, tmp2;
1110
609k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1111
609k
    limb points_equal;
1112
1113
609k
    z1_is_zero = felem_is_zero(z1);
1114
609k
    z2_is_zero = felem_is_zero(z2);
1115
1116
    /* ftmp = z1z1 = z1**2 */
1117
609k
    felem_square_reduce(ftmp, z1); /* ftmp[i] < 2^56 */
1118
1119
609k
    if (!mixed) {
1120
        /* ftmp2 = z2z2 = z2**2 */
1121
183k
        felem_square_reduce(ftmp2, z2); /* ftmp2[i] < 2^56 */
1122
1123
        /* u1 = ftmp3 = x1*z2z2 */
1124
183k
        felem_mul_reduce(ftmp3, x1, ftmp2); /* ftmp3[i] < 2^56 */
1125
1126
        /* ftmp5 = z1 + z2 */
1127
183k
        felem_assign(ftmp5, z1); /* ftmp5[i] < 2^56 */
1128
183k
        felem_sum64(ftmp5, z2); /* ftmp5[i] < 2^57 */
1129
1130
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1131
183k
        felem_square(tmp, ftmp5); /* tmp[i] < 2^117 */
1132
183k
        felem_diff_128_64(tmp, ftmp); /* tmp[i] < 2^117 + 2^64 + 2^48 */
1133
183k
        felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^65 + 2^49 */
1134
183k
        felem_reduce(ftmp5, tmp); /* ftmp5[i] < 2^56 */
1135
1136
        /* ftmp2 = z2 * z2z2 */
1137
183k
        felem_mul_reduce(ftmp2, ftmp2, z2); /* ftmp2[i] < 2^56 */
1138
1139
        /* s1 = ftmp6 = y1 * z2**3 */
1140
183k
        felem_mul_reduce(ftmp6, y1, ftmp2); /* ftmp6[i] < 2^56 */
1141
425k
    } else {
1142
        /*
1143
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1144
         */
1145
1146
        /* u1 = ftmp3 = x1*z2z2 */
1147
425k
        felem_assign(ftmp3, x1); /* ftmp3[i] < 2^56 */
1148
1149
        /* ftmp5 = 2*z1z2 */
1150
425k
        felem_scalar(ftmp5, z1, 2); /* ftmp5[i] < 2^57 */
1151
1152
        /* s1 = ftmp6 = y1 * z2**3 */
1153
425k
        felem_assign(ftmp6, y1); /* ftmp6[i] < 2^56 */
1154
425k
    }
1155
    /* ftmp3[i] < 2^56, ftmp5[i] < 2^57, ftmp6[i] < 2^56 */
1156
1157
    /* u2 = x2*z1z1 */
1158
609k
    felem_mul(tmp, x2, ftmp); /* tmp[i] < 2^115 */
1159
1160
    /* h = ftmp4 = u2 - u1 */
1161
609k
    felem_diff_128_64(tmp, ftmp3); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1162
609k
    felem_reduce(ftmp4, tmp); /* ftmp[4] < 2^56 */
1163
1164
609k
    x_equal = felem_is_zero(ftmp4);
1165
1166
    /* z_out = ftmp5 * h */
1167
609k
    felem_mul_reduce(z_out, ftmp5, ftmp4); /* z_out[i] < 2^56 */
1168
1169
    /* ftmp = z1 * z1z1 */
1170
609k
    felem_mul_reduce(ftmp, ftmp, z1); /* ftmp[i] < 2^56 */
1171
1172
    /* s2 = tmp = y2 * z1**3 */
1173
609k
    felem_mul(tmp, y2, ftmp); /* tmp[i] < 2^115 */
1174
1175
    /* r = ftmp5 = (s2 - s1)*2 */
1176
609k
    felem_diff_128_64(tmp, ftmp6); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1177
609k
    felem_reduce(ftmp5, tmp); /* ftmp5[i] < 2^56 */
1178
609k
    y_equal = felem_is_zero(ftmp5);
1179
609k
    felem_scalar64(ftmp5, 2); /* ftmp5[i] < 2^57 */
1180
1181
    /*
1182
     * The formulae are incorrect if the points are equal, in affine coordinates
1183
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1184
     * happens.
1185
     *
1186
     * We use bitwise operations to avoid potential side-channels introduced by
1187
     * the short-circuiting behaviour of boolean operators.
1188
     *
1189
     * The special case of either point being the point at infinity (z1 and/or
1190
     * z2 are zero), is handled separately later on in this function, so we
1191
     * avoid jumping to point_double here in those special cases.
1192
     *
1193
     * Notice the comment below on the implications of this branching for timing
1194
     * leaks and why it is considered practically irrelevant.
1195
     */
1196
609k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1197
1198
609k
    if (points_equal) {
1199
        /*
1200
         * This is obviously not constant-time but it will almost-never happen
1201
         * for ECDH / ECDSA.
1202
         */
1203
0
        point_double(x3, y3, z3, x1, y1, z1);
1204
0
        return;
1205
0
    }
1206
1207
    /* I = ftmp = (2h)**2 */
1208
609k
    felem_assign(ftmp, ftmp4); /* ftmp[i] < 2^56 */
1209
609k
    felem_scalar64(ftmp, 2); /* ftmp[i] < 2^57 */
1210
609k
    felem_square_reduce(ftmp, ftmp); /* ftmp[i] < 2^56 */
1211
1212
    /* J = ftmp2 = h * I */
1213
609k
    felem_mul_reduce(ftmp2, ftmp4, ftmp); /* ftmp2[i] < 2^56 */
1214
1215
    /* V = ftmp4 = U1 * I */
1216
609k
    felem_mul_reduce(ftmp4, ftmp3, ftmp); /* ftmp4[i] < 2^56 */
1217
1218
    /* x_out = r**2 - J - 2V */
1219
609k
    felem_square(tmp, ftmp5); /* tmp[i] < 2^117 */
1220
609k
    felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^64 + 2^48 */
1221
609k
    felem_assign(ftmp3, ftmp4); /* ftmp3[i] < 2^56 */
1222
609k
    felem_scalar64(ftmp4, 2); /* ftmp4[i] < 2^57 */
1223
609k
    felem_diff_128_64(tmp, ftmp4); /* tmp[i] < 2^117 + 2^65 + 2^49 */
1224
609k
    felem_reduce(x_out, tmp); /* x_out[i] < 2^56 */
1225
1226
    /* y_out = r(V-x_out) - 2 * s1 * J */
1227
609k
    felem_diff64(ftmp3, x_out); /* ftmp3[i] < 2^60 + 2^56 + 2^44 */
1228
609k
    felem_mul(tmp, ftmp5, ftmp3); /* tmp[i] < 2^116 */
1229
609k
    felem_mul(tmp2, ftmp6, ftmp2); /* tmp2[i] < 2^115 */
1230
609k
    felem_scalar128(tmp2, 2); /* tmp2[i] < 2^116 */
1231
609k
    felem_diff128(tmp, tmp2); /* tmp[i] < 2^127 + 2^116 + 2^111 */
1232
609k
    felem_reduce(y_out, tmp); /* y_out[i] < 2^56 */
1233
1234
609k
    copy_conditional(x_out, x2, z1_is_zero);
1235
609k
    copy_conditional(x_out, x1, z2_is_zero);
1236
609k
    copy_conditional(y_out, y2, z1_is_zero);
1237
609k
    copy_conditional(y_out, y1, z2_is_zero);
1238
609k
    copy_conditional(z_out, z2, z1_is_zero);
1239
609k
    copy_conditional(z_out, z1, z2_is_zero);
1240
609k
    felem_assign(x3, x_out);
1241
609k
    felem_assign(y3, y_out);
1242
609k
    felem_assign(z3, z_out);
1243
609k
}
1244
1245
/*-
1246
 * Base point pre computation
1247
 * --------------------------
1248
 *
1249
 * Two different sorts of precomputed tables are used in the following code.
1250
 * Each contain various points on the curve, where each point is three field
1251
 * elements (x, y, z).
1252
 *
1253
 * For the base point table, z is usually 1 (0 for the point at infinity).
1254
 * This table has 16 elements:
1255
 * index | bits    | point
1256
 * ------+---------+------------------------------
1257
 *     0 | 0 0 0 0 | 0G
1258
 *     1 | 0 0 0 1 | 1G
1259
 *     2 | 0 0 1 0 | 2^95G
1260
 *     3 | 0 0 1 1 | (2^95 + 1)G
1261
 *     4 | 0 1 0 0 | 2^190G
1262
 *     5 | 0 1 0 1 | (2^190 + 1)G
1263
 *     6 | 0 1 1 0 | (2^190 + 2^95)G
1264
 *     7 | 0 1 1 1 | (2^190 + 2^95 + 1)G
1265
 *     8 | 1 0 0 0 | 2^285G
1266
 *     9 | 1 0 0 1 | (2^285 + 1)G
1267
 *    10 | 1 0 1 0 | (2^285 + 2^95)G
1268
 *    11 | 1 0 1 1 | (2^285 + 2^95 + 1)G
1269
 *    12 | 1 1 0 0 | (2^285 + 2^190)G
1270
 *    13 | 1 1 0 1 | (2^285 + 2^190 + 1)G
1271
 *    14 | 1 1 1 0 | (2^285 + 2^190 + 2^95)G
1272
 *    15 | 1 1 1 1 | (2^285 + 2^190 + 2^95 + 1)G
1273
 *
1274
 * The reason for this is so that we can clock bits into four different
1275
 * locations when doing simple scalar multiplies against the base point.
1276
 *
1277
 * Tables for other points have table[i] = iG for i in 0 .. 16.
1278
 */
1279
1280
/* gmul is the table of precomputed base points */
1281
static const felem gmul[16][3] = {
1282
    { { 0, 0, 0, 0, 0, 0, 0 },
1283
        { 0, 0, 0, 0, 0, 0, 0 },
1284
        { 0, 0, 0, 0, 0, 0, 0 } },
1285
    { { 0x00545e3872760ab7, 0x00f25dbf55296c3a, 0x00e082542a385502, 0x008ba79b9859f741,
1286
          0x0020ad746e1d3b62, 0x0005378eb1c71ef3, 0x0000aa87ca22be8b },
1287
        { 0x00431d7c90ea0e5f, 0x00b1ce1d7e819d7a, 0x0013b5f0b8c00a60, 0x00289a147ce9da31,
1288
            0x0092dc29f8f41dbd, 0x002c6f5d9e98bf92, 0x00003617de4a9626 },
1289
        { 1, 0, 0, 0, 0, 0, 0 } },
1290
    { { 0x00024711cc902a90, 0x00acb2e579ab4fe1, 0x00af818a4b4d57b1, 0x00a17c7bec49c3de,
1291
          0x004280482d726a8b, 0x00128dd0f0a90f3b, 0x00004387c1c3fa3c },
1292
        { 0x002ce76543cf5c3a, 0x00de6cee5ef58f0a, 0x00403e42fa561ca6, 0x00bc54d6f9cb9731,
1293
            0x007155f925fb4ff1, 0x004a9ce731b7b9bc, 0x00002609076bd7b2 },
1294
        { 1, 0, 0, 0, 0, 0, 0 } },
1295
    { { 0x00e74c9182f0251d, 0x0039bf54bb111974, 0x00b9d2f2eec511d2, 0x0036b1594eb3a6a4,
1296
          0x00ac3bb82d9d564b, 0x00f9313f4615a100, 0x00006716a9a91b10 },
1297
        { 0x0046698116e2f15c, 0x00f34347067d3d33, 0x008de4ccfdebd002, 0x00e838c6b8e8c97b,
1298
            0x006faf0798def346, 0x007349794a57563c, 0x00002629e7e6ad84 },
1299
        { 1, 0, 0, 0, 0, 0, 0 } },
1300
    { { 0x0075300e34fd163b, 0x0092e9db4e8d0ad3, 0x00254be9f625f760, 0x00512c518c72ae68,
1301
          0x009bfcf162bede5a, 0x00bf9341566ce311, 0x0000cd6175bd41cf },
1302
        { 0x007dfe52af4ac70f, 0x0002159d2d5c4880, 0x00b504d16f0af8d0, 0x0014585e11f5e64c,
1303
            0x0089c6388e030967, 0x00ffb270cbfa5f71, 0x00009a15d92c3947 },
1304
        { 1, 0, 0, 0, 0, 0, 0 } },
1305
    { { 0x0033fc1278dc4fe5, 0x00d53088c2caa043, 0x0085558827e2db66, 0x00c192bef387b736,
1306
          0x00df6405a2225f2c, 0x0075205aa90fd91a, 0x0000137e3f12349d },
1307
        { 0x00ce5b115efcb07e, 0x00abc3308410deeb, 0x005dc6fc1de39904, 0x00907c1c496f36b4,
1308
            0x0008e6ad3926cbe1, 0x00110747b787928c, 0x0000021b9162eb7e },
1309
        { 1, 0, 0, 0, 0, 0, 0 } },
1310
    { { 0x008180042cfa26e1, 0x007b826a96254967, 0x0082473694d6b194, 0x007bd6880a45b589,
1311
          0x00c0a5097072d1a3, 0x0019186555e18b4e, 0x000020278190e5ca },
1312
        { 0x00b4bef17de61ac0, 0x009535e3c38ed348, 0x002d4aa8e468ceab, 0x00ef40b431036ad3,
1313
            0x00defd52f4542857, 0x0086edbf98234266, 0x00002025b3a7814d },
1314
        { 1, 0, 0, 0, 0, 0, 0 } },
1315
    { { 0x00b238aa97b886be, 0x00ef3192d6dd3a32, 0x0079f9e01fd62df8, 0x00742e890daba6c5,
1316
          0x008e5289144408ce, 0x0073bbcc8e0171a5, 0x0000c4fd329d3b52 },
1317
        { 0x00c6f64a15ee23e7, 0x00dcfb7b171cad8b, 0x00039f6cbd805867, 0x00de024e428d4562,
1318
            0x00be6a594d7c64c5, 0x0078467b70dbcd64, 0x0000251f2ed7079b },
1319
        { 1, 0, 0, 0, 0, 0, 0 } },
1320
    { { 0x000e5cc25fc4b872, 0x005ebf10d31ef4e1, 0x0061e0ebd11e8256, 0x0076e026096f5a27,
1321
          0x0013e6fc44662e9a, 0x0042b00289d3597e, 0x000024f089170d88 },
1322
        { 0x001604d7e0effbe6, 0x0048d77cba64ec2c, 0x008166b16da19e36, 0x006b0d1a0f28c088,
1323
            0x000259fcd47754fd, 0x00cc643e4d725f9a, 0x00007b10f3c79c14 },
1324
        { 1, 0, 0, 0, 0, 0, 0 } },
1325
    { { 0x00430155e3b908af, 0x00b801e4fec25226, 0x00b0d4bcfe806d26, 0x009fc4014eb13d37,
1326
          0x0066c94e44ec07e8, 0x00d16adc03874ba2, 0x000030c917a0d2a7 },
1327
        { 0x00edac9e21eb891c, 0x00ef0fb768102eff, 0x00c088cef272a5f3, 0x00cbf782134e2964,
1328
            0x0001044a7ba9a0e3, 0x00e363f5b194cf3c, 0x00009ce85249e372 },
1329
        { 1, 0, 0, 0, 0, 0, 0 } },
1330
    { { 0x001dd492dda5a7eb, 0x008fd577be539fd1, 0x002ff4b25a5fc3f1, 0x0074a8a1b64df72f,
1331
          0x002ba3d8c204a76c, 0x009d5cff95c8235a, 0x0000e014b9406e0f },
1332
        { 0x008c2e4dbfc98aba, 0x00f30bb89f1a1436, 0x00b46f7aea3e259c, 0x009224454ac02f54,
1333
            0x00906401f5645fa2, 0x003a1d1940eabc77, 0x00007c9351d680e6 },
1334
        { 1, 0, 0, 0, 0, 0, 0 } },
1335
    { { 0x005a35d872ef967c, 0x0049f1b7884e1987, 0x0059d46d7e31f552, 0x00ceb4869d2d0fb6,
1336
          0x00e8e89eee56802a, 0x0049d806a774aaf2, 0x0000147e2af0ae24 },
1337
        { 0x005fd1bd852c6e5e, 0x00b674b7b3de6885, 0x003b9ea5eb9b6c08, 0x005c9f03babf3ef7,
1338
            0x00605337fecab3c7, 0x009a3f85b11bbcc8, 0x0000455470f330ec },
1339
        { 1, 0, 0, 0, 0, 0, 0 } },
1340
    { { 0x002197ff4d55498d, 0x00383e8916c2d8af, 0x00eb203f34d1c6d2, 0x0080367cbd11b542,
1341
          0x00769b3be864e4f5, 0x0081a8458521c7bb, 0x0000c531b34d3539 },
1342
        { 0x00e2a3d775fa2e13, 0x00534fc379573844, 0x00ff237d2a8db54a, 0x00d301b2335a8882,
1343
            0x000f75ea96103a80, 0x0018fecb3cdd96fa, 0x0000304bf61e94eb },
1344
        { 1, 0, 0, 0, 0, 0, 0 } },
1345
    { { 0x00b2afc332a73dbd, 0x0029a0d5bb007bc5, 0x002d628eb210f577, 0x009f59a36dd05f50,
1346
          0x006d339de4eca613, 0x00c75a71addc86bc, 0x000060384c5ea93c },
1347
        { 0x00aa9641c32a30b4, 0x00cc73ae8cce565d, 0x00ec911a4df07f61, 0x00aa4b762ea4b264,
1348
            0x0096d395bb393629, 0x004efacfb7632fe0, 0x00006f252f46fa3f },
1349
        { 1, 0, 0, 0, 0, 0, 0 } },
1350
    { { 0x00567eec597c7af6, 0x0059ba6795204413, 0x00816d4e6f01196f, 0x004ae6b3eb57951d,
1351
          0x00420f5abdda2108, 0x003401d1f57ca9d9, 0x0000cf5837b0b67a },
1352
        { 0x00eaa64b8aeeabf9, 0x00246ddf16bcb4de, 0x000e7e3c3aecd751, 0x0008449f04fed72e,
1353
            0x00307b67ccf09183, 0x0017108c3556b7b1, 0x0000229b2483b3bf },
1354
        { 1, 0, 0, 0, 0, 0, 0 } },
1355
    { { 0x00e7c491a7bb78a1, 0x00eafddd1d3049ab, 0x00352c05e2bc7c98, 0x003d6880c165fa5c,
1356
          0x00b6ac61cc11c97d, 0x00beeb54fcf90ce5, 0x0000dc1f0b455edc },
1357
        { 0x002db2e7aee34d60, 0x0073b5f415a2d8c0, 0x00dd84e4193e9a0c, 0x00d02d873467c572,
1358
            0x0018baaeda60aee5, 0x0013fb11d697c61e, 0x000083aafcc3a973 },
1359
        { 1, 0, 0, 0, 0, 0, 0 } }
1360
};
1361
1362
/*
1363
 * select_point selects the |idx|th point from a precomputation table and
1364
 * copies it to out.
1365
 *
1366
 * pre_comp below is of the size provided in |size|.
1367
 */
1368
static void select_point(const limb idx, unsigned int size,
1369
    const felem pre_comp[][3], felem out[3])
1370
600k
{
1371
600k
    unsigned int i, j;
1372
600k
    limb *outlimbs = &out[0][0];
1373
1374
600k
    memset(out, 0, sizeof(*out) * 3);
1375
1376
10.3M
    for (i = 0; i < size; i++) {
1377
9.77M
        const limb *inlimbs = &pre_comp[i][0][0];
1378
9.77M
        limb mask = i ^ idx;
1379
1380
9.77M
        mask |= mask >> 4;
1381
9.77M
        mask |= mask >> 2;
1382
9.77M
        mask |= mask >> 1;
1383
9.77M
        mask &= 1;
1384
9.77M
        mask--;
1385
214M
        for (j = 0; j < NLIMBS * 3; j++)
1386
205M
            outlimbs[j] |= inlimbs[j] & mask;
1387
9.77M
    }
1388
600k
}
1389
1390
/* get_bit returns the |i|th bit in |in| */
1391
static char get_bit(const felem_bytearray in, int i)
1392
2.68M
{
1393
2.68M
    if (i < 0 || i >= 384)
1394
4.41k
        return 0;
1395
2.68M
    return (in[i >> 3] >> (i & 7)) & 1;
1396
2.68M
}
1397
1398
/*
1399
 * Interleaved point multiplication using precomputed point multiples: The
1400
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1401
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1402
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1403
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1404
 */
1405
static void batch_mul(felem x_out, felem y_out, felem z_out,
1406
    const felem_bytearray scalars[],
1407
    const unsigned int num_points, const u8 *g_scalar,
1408
    const int mixed, const felem pre_comp[][17][3],
1409
    const felem g_pre_comp[16][3])
1410
6.52k
{
1411
6.52k
    int i, skip;
1412
6.52k
    unsigned int num, gen_mul = (g_scalar != NULL);
1413
6.52k
    felem nq[3], tmp[4];
1414
6.52k
    limb bits;
1415
6.52k
    u8 sign, digit;
1416
1417
    /* set nq to the point at infinity */
1418
6.52k
    memset(nq, 0, sizeof(nq));
1419
1420
    /*
1421
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1422
     * of the generator (last quarter of rounds) and additions of other
1423
     * points multiples (every 5th round).
1424
     */
1425
6.52k
    skip = 1; /* save two point operations in the first
1426
               * round */
1427
1.27M
    for (i = (num_points ? 380 : 98); i >= 0; --i) {
1428
        /* double */
1429
1.26M
        if (!skip)
1430
1.26M
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1431
1432
        /* add multiples of the generator */
1433
1.26M
        if (gen_mul && (i <= 98)) {
1434
430k
            bits = get_bit(g_scalar, i + 285) << 3;
1435
430k
            if (i < 95) {
1436
412k
                bits |= get_bit(g_scalar, i + 190) << 2;
1437
412k
                bits |= get_bit(g_scalar, i + 95) << 1;
1438
412k
                bits |= get_bit(g_scalar, i);
1439
412k
            }
1440
            /* select the point to add, in constant time */
1441
430k
            select_point(bits, 16, g_pre_comp, tmp);
1442
430k
            if (!skip) {
1443
                /* The 1 argument below is for "mixed" */
1444
425k
                point_add(nq[0], nq[1], nq[2],
1445
425k
                    nq[0], nq[1], nq[2], 1,
1446
425k
                    tmp[0], tmp[1], tmp[2]);
1447
425k
            } else {
1448
4.31k
                memcpy(nq, tmp, 3 * sizeof(felem));
1449
4.31k
                skip = 0;
1450
4.31k
            }
1451
430k
        }
1452
1453
        /* do other additions every 5 doublings */
1454
1.26M
        if (num_points && (i % 5 == 0)) {
1455
            /* loop over all scalars */
1456
339k
            for (num = 0; num < num_points; ++num) {
1457
169k
                bits = get_bit(scalars[num], i + 4) << 5;
1458
169k
                bits |= get_bit(scalars[num], i + 3) << 4;
1459
169k
                bits |= get_bit(scalars[num], i + 2) << 3;
1460
169k
                bits |= get_bit(scalars[num], i + 1) << 2;
1461
169k
                bits |= get_bit(scalars[num], i) << 1;
1462
169k
                bits |= get_bit(scalars[num], i - 1);
1463
169k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1464
1465
                /*
1466
                 * select the point to add or subtract, in constant time
1467
                 */
1468
169k
                select_point(digit, 17, pre_comp[num], tmp);
1469
169k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1470
                                            * point */
1471
169k
                copy_conditional(tmp[1], tmp[3], (-(limb)sign));
1472
1473
169k
                if (!skip) {
1474
167k
                    point_add(nq[0], nq[1], nq[2],
1475
167k
                        nq[0], nq[1], nq[2], mixed,
1476
167k
                        tmp[0], tmp[1], tmp[2]);
1477
167k
                } else {
1478
2.20k
                    memcpy(nq, tmp, 3 * sizeof(felem));
1479
2.20k
                    skip = 0;
1480
2.20k
                }
1481
169k
            }
1482
169k
        }
1483
1.26M
    }
1484
6.52k
    felem_assign(x_out, nq[0]);
1485
6.52k
    felem_assign(y_out, nq[1]);
1486
6.52k
    felem_assign(z_out, nq[2]);
1487
6.52k
}
1488
1489
/* Precomputation for the group generator. */
1490
struct nistp384_pre_comp_st {
1491
    felem g_pre_comp[16][3];
1492
    CRYPTO_REF_COUNT references;
1493
};
1494
1495
const EC_METHOD *ossl_ec_GFp_nistp384_method(void)
1496
17.7k
{
1497
17.7k
    static const EC_METHOD ret = {
1498
17.7k
        EC_FLAGS_DEFAULT_OCT,
1499
17.7k
        NID_X9_62_prime_field,
1500
17.7k
        ossl_ec_GFp_nistp384_group_init,
1501
17.7k
        ossl_ec_GFp_simple_group_finish,
1502
17.7k
        ossl_ec_GFp_simple_group_clear_finish,
1503
17.7k
        ossl_ec_GFp_nist_group_copy,
1504
17.7k
        ossl_ec_GFp_nistp384_group_set_curve,
1505
17.7k
        ossl_ec_GFp_simple_group_get_curve,
1506
17.7k
        ossl_ec_GFp_simple_group_get_degree,
1507
17.7k
        ossl_ec_group_simple_order_bits,
1508
17.7k
        ossl_ec_GFp_simple_group_check_discriminant,
1509
17.7k
        ossl_ec_GFp_simple_point_init,
1510
17.7k
        ossl_ec_GFp_simple_point_finish,
1511
17.7k
        ossl_ec_GFp_simple_point_clear_finish,
1512
17.7k
        ossl_ec_GFp_simple_point_copy,
1513
17.7k
        ossl_ec_GFp_simple_point_set_to_infinity,
1514
17.7k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1515
17.7k
        ossl_ec_GFp_nistp384_point_get_affine_coordinates,
1516
17.7k
        0, /* point_set_compressed_coordinates */
1517
17.7k
        0, /* point2oct */
1518
17.7k
        0, /* oct2point */
1519
17.7k
        ossl_ec_GFp_simple_add,
1520
17.7k
        ossl_ec_GFp_simple_dbl,
1521
17.7k
        ossl_ec_GFp_simple_invert,
1522
17.7k
        ossl_ec_GFp_simple_is_at_infinity,
1523
17.7k
        ossl_ec_GFp_simple_is_on_curve,
1524
17.7k
        ossl_ec_GFp_simple_cmp,
1525
17.7k
        ossl_ec_GFp_simple_make_affine,
1526
17.7k
        ossl_ec_GFp_simple_points_make_affine,
1527
17.7k
        ossl_ec_GFp_nistp384_points_mul,
1528
17.7k
        ossl_ec_GFp_nistp384_precompute_mult,
1529
17.7k
        ossl_ec_GFp_nistp384_have_precompute_mult,
1530
17.7k
        ossl_ec_GFp_nist_field_mul,
1531
17.7k
        ossl_ec_GFp_nist_field_sqr,
1532
17.7k
        0, /* field_div */
1533
17.7k
        ossl_ec_GFp_simple_field_inv,
1534
17.7k
        0, /* field_encode */
1535
17.7k
        0, /* field_decode */
1536
17.7k
        0, /* field_set_to_one */
1537
17.7k
        ossl_ec_key_simple_priv2oct,
1538
17.7k
        ossl_ec_key_simple_oct2priv,
1539
17.7k
        0, /* set private */
1540
17.7k
        ossl_ec_key_simple_generate_key,
1541
17.7k
        ossl_ec_key_simple_check_key,
1542
17.7k
        ossl_ec_key_simple_generate_public_key,
1543
17.7k
        0, /* keycopy */
1544
17.7k
        0, /* keyfinish */
1545
17.7k
        ossl_ecdh_simple_compute_key,
1546
17.7k
        ossl_ecdsa_simple_sign_setup,
1547
17.7k
        ossl_ecdsa_simple_sign_sig,
1548
17.7k
        ossl_ecdsa_simple_verify_sig,
1549
17.7k
        0, /* field_inverse_mod_ord */
1550
17.7k
        0, /* blind_coordinates */
1551
17.7k
        0, /* ladder_pre */
1552
17.7k
        0, /* ladder_step */
1553
17.7k
        0 /* ladder_post */
1554
17.7k
    };
1555
1556
17.7k
    return &ret;
1557
17.7k
}
1558
1559
/******************************************************************************/
1560
/*
1561
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1562
 */
1563
1564
static NISTP384_PRE_COMP *nistp384_pre_comp_new(void)
1565
0
{
1566
0
    NISTP384_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1567
1568
0
    if (ret == NULL)
1569
0
        return ret;
1570
1571
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1572
0
        OPENSSL_free(ret);
1573
0
        return NULL;
1574
0
    }
1575
0
    return ret;
1576
0
}
1577
1578
NISTP384_PRE_COMP *ossl_ec_nistp384_pre_comp_dup(NISTP384_PRE_COMP *p)
1579
0
{
1580
0
    int i;
1581
1582
0
    if (p != NULL)
1583
0
        CRYPTO_UP_REF(&p->references, &i);
1584
0
    return p;
1585
0
}
1586
1587
void ossl_ec_nistp384_pre_comp_free(NISTP384_PRE_COMP *p)
1588
0
{
1589
0
    int i;
1590
1591
0
    if (p == NULL)
1592
0
        return;
1593
1594
0
    CRYPTO_DOWN_REF(&p->references, &i);
1595
0
    REF_PRINT_COUNT("ossl_ec_nistp384", i, p);
1596
0
    if (i > 0)
1597
0
        return;
1598
0
    REF_ASSERT_ISNT(i < 0);
1599
1600
0
    CRYPTO_FREE_REF(&p->references);
1601
0
    OPENSSL_free(p);
1602
0
}
1603
1604
/******************************************************************************/
1605
/*
1606
 * OPENSSL EC_METHOD FUNCTIONS
1607
 */
1608
1609
int ossl_ec_GFp_nistp384_group_init(EC_GROUP *group)
1610
37.7k
{
1611
37.7k
    int ret;
1612
1613
37.7k
    ret = ossl_ec_GFp_simple_group_init(group);
1614
37.7k
    group->a_is_minus3 = 1;
1615
37.7k
    return ret;
1616
37.7k
}
1617
1618
int ossl_ec_GFp_nistp384_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1619
    const BIGNUM *a, const BIGNUM *b,
1620
    BN_CTX *ctx)
1621
17.7k
{
1622
17.7k
    int ret = 0;
1623
17.7k
    BIGNUM *curve_p, *curve_a, *curve_b;
1624
17.7k
#ifndef FIPS_MODULE
1625
17.7k
    BN_CTX *new_ctx = NULL;
1626
1627
17.7k
    if (ctx == NULL)
1628
0
        ctx = new_ctx = BN_CTX_new();
1629
17.7k
#endif
1630
17.7k
    if (ctx == NULL)
1631
0
        return 0;
1632
1633
17.7k
    BN_CTX_start(ctx);
1634
17.7k
    curve_p = BN_CTX_get(ctx);
1635
17.7k
    curve_a = BN_CTX_get(ctx);
1636
17.7k
    curve_b = BN_CTX_get(ctx);
1637
17.7k
    if (curve_b == NULL)
1638
0
        goto err;
1639
17.7k
    BN_bin2bn(nistp384_curve_params[0], sizeof(felem_bytearray), curve_p);
1640
17.7k
    BN_bin2bn(nistp384_curve_params[1], sizeof(felem_bytearray), curve_a);
1641
17.7k
    BN_bin2bn(nistp384_curve_params[2], sizeof(felem_bytearray), curve_b);
1642
17.7k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1643
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1644
0
        goto err;
1645
0
    }
1646
17.7k
    group->field_mod_func = BN_nist_mod_384;
1647
17.7k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1648
17.7k
err:
1649
17.7k
    BN_CTX_end(ctx);
1650
17.7k
#ifndef FIPS_MODULE
1651
17.7k
    BN_CTX_free(new_ctx);
1652
17.7k
#endif
1653
17.7k
    return ret;
1654
17.7k
}
1655
1656
/*
1657
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1658
 * (X/Z^2, Y/Z^3)
1659
 */
1660
int ossl_ec_GFp_nistp384_point_get_affine_coordinates(const EC_GROUP *group,
1661
    const EC_POINT *point,
1662
    BIGNUM *x, BIGNUM *y,
1663
    BN_CTX *ctx)
1664
8.27k
{
1665
8.27k
    felem z1, z2, x_in, y_in, x_out, y_out;
1666
8.27k
    widefelem tmp;
1667
1668
8.27k
    if (EC_POINT_is_at_infinity(group, point)) {
1669
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1670
0
        return 0;
1671
0
    }
1672
8.27k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z)))
1673
0
        return 0;
1674
8.27k
    felem_inv(z2, z1);
1675
8.27k
    felem_square(tmp, z2);
1676
8.27k
    felem_reduce(z1, tmp);
1677
8.27k
    felem_mul(tmp, x_in, z1);
1678
8.27k
    felem_reduce(x_in, tmp);
1679
8.27k
    felem_contract(x_out, x_in);
1680
8.27k
    if (x != NULL) {
1681
8.27k
        if (!felem_to_BN(x, x_out)) {
1682
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1683
0
            return 0;
1684
0
        }
1685
8.27k
    }
1686
8.27k
    felem_mul(tmp, z1, z2);
1687
8.27k
    felem_reduce(z1, tmp);
1688
8.27k
    felem_mul(tmp, y_in, z1);
1689
8.27k
    felem_reduce(y_in, tmp);
1690
8.27k
    felem_contract(y_out, y_in);
1691
8.27k
    if (y != NULL) {
1692
6.52k
        if (!felem_to_BN(y, y_out)) {
1693
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1694
0
            return 0;
1695
0
        }
1696
6.52k
    }
1697
8.27k
    return 1;
1698
8.27k
}
1699
1700
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1701
static void make_points_affine(size_t num, felem points[][3],
1702
    felem tmp_felems[])
1703
0
{
1704
    /*
1705
     * Runs in constant time, unless an input is the point at infinity (which
1706
     * normally shouldn't happen).
1707
     */
1708
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1709
0
        points,
1710
0
        sizeof(felem),
1711
0
        tmp_felems,
1712
0
        (void (*)(void *))felem_one,
1713
0
        felem_is_zero_int,
1714
0
        (void (*)(void *, const void *))
1715
0
            felem_assign,
1716
0
        (void (*)(void *, const void *))
1717
0
            felem_square_reduce,
1718
0
        (void (*)(void *, const void *, const void *))
1719
0
            felem_mul_reduce,
1720
0
        (void (*)(void *, const void *))
1721
0
            felem_inv,
1722
0
        (void (*)(void *, const void *))
1723
0
            felem_contract);
1724
0
}
1725
1726
/*
1727
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1728
 * values Result is stored in r (r can equal one of the inputs).
1729
 */
1730
int ossl_ec_GFp_nistp384_points_mul(const EC_GROUP *group, EC_POINT *r,
1731
    const BIGNUM *scalar, size_t num,
1732
    const EC_POINT *points[],
1733
    const BIGNUM *scalars[], BN_CTX *ctx)
1734
6.52k
{
1735
6.52k
    int ret = 0;
1736
6.52k
    int j;
1737
6.52k
    int mixed = 0;
1738
6.52k
    BIGNUM *x, *y, *z, *tmp_scalar;
1739
6.52k
    felem_bytearray g_secret;
1740
6.52k
    felem_bytearray *secrets = NULL;
1741
6.52k
    felem(*pre_comp)[17][3] = NULL;
1742
6.52k
    felem *tmp_felems = NULL;
1743
6.52k
    unsigned int i;
1744
6.52k
    int num_bytes;
1745
6.52k
    int have_pre_comp = 0;
1746
6.52k
    size_t num_points = num;
1747
6.52k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1748
6.52k
    NISTP384_PRE_COMP *pre = NULL;
1749
6.52k
    felem(*g_pre_comp)[3] = NULL;
1750
6.52k
    EC_POINT *generator = NULL;
1751
6.52k
    const EC_POINT *p = NULL;
1752
6.52k
    const BIGNUM *p_scalar = NULL;
1753
1754
6.52k
    BN_CTX_start(ctx);
1755
6.52k
    x = BN_CTX_get(ctx);
1756
6.52k
    y = BN_CTX_get(ctx);
1757
6.52k
    z = BN_CTX_get(ctx);
1758
6.52k
    tmp_scalar = BN_CTX_get(ctx);
1759
6.52k
    if (tmp_scalar == NULL)
1760
0
        goto err;
1761
1762
6.52k
    if (scalar != NULL) {
1763
4.34k
        pre = group->pre_comp.nistp384;
1764
4.34k
        if (pre)
1765
            /* we have precomputation, try to use it */
1766
0
            g_pre_comp = &pre->g_pre_comp[0];
1767
4.34k
        else
1768
            /* try to use the standard precomputation */
1769
4.34k
            g_pre_comp = (felem(*)[3])gmul;
1770
4.34k
        generator = EC_POINT_new(group);
1771
4.34k
        if (generator == NULL)
1772
0
            goto err;
1773
        /* get the generator from precomputation */
1774
4.34k
        if (!felem_to_BN(x, g_pre_comp[1][0]) || !felem_to_BN(y, g_pre_comp[1][1]) || !felem_to_BN(z, g_pre_comp[1][2])) {
1775
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1776
0
            goto err;
1777
0
        }
1778
4.34k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1779
4.34k
                generator,
1780
4.34k
                x, y, z, ctx))
1781
0
            goto err;
1782
4.34k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1783
            /* precomputation matches generator */
1784
4.34k
            have_pre_comp = 1;
1785
0
        else
1786
            /*
1787
             * we don't have valid precomputation: treat the generator as a
1788
             * random point
1789
             */
1790
0
            num_points++;
1791
4.34k
    }
1792
1793
6.52k
    if (num_points > 0) {
1794
2.20k
        if (num_points >= 2) {
1795
            /*
1796
             * unless we precompute multiples for just one point, converting
1797
             * those into affine form is time well spent
1798
             */
1799
0
            mixed = 1;
1800
0
        }
1801
2.20k
        secrets = OPENSSL_calloc(num_points, sizeof(*secrets));
1802
2.20k
        pre_comp = OPENSSL_calloc(num_points, sizeof(*pre_comp));
1803
2.20k
        if (mixed)
1804
0
            tmp_felems = OPENSSL_malloc_array(num_points * 17 + 1, sizeof(*tmp_felems));
1805
2.20k
        if ((secrets == NULL) || (pre_comp == NULL)
1806
2.20k
            || (mixed && (tmp_felems == NULL)))
1807
0
            goto err;
1808
1809
        /*
1810
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1811
         * i.e., they contribute nothing to the linear combination
1812
         */
1813
4.41k
        for (i = 0; i < num_points; ++i) {
1814
2.20k
            if (i == num) {
1815
                /*
1816
                 * we didn't have a valid precomputation, so we pick the
1817
                 * generator
1818
                 */
1819
0
                p = EC_GROUP_get0_generator(group);
1820
0
                p_scalar = scalar;
1821
2.20k
            } else {
1822
                /* the i^th point */
1823
2.20k
                p = points[i];
1824
2.20k
                p_scalar = scalars[i];
1825
2.20k
            }
1826
2.20k
            if (p_scalar != NULL && p != NULL) {
1827
                /* reduce scalar to 0 <= scalar < 2^384 */
1828
2.20k
                if ((BN_num_bits(p_scalar) > 384)
1829
2.20k
                    || (BN_is_negative(p_scalar))) {
1830
                    /*
1831
                     * this is an unusual input, and we don't guarantee
1832
                     * constant-timeness
1833
                     */
1834
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1835
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1836
0
                        goto err;
1837
0
                    }
1838
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1839
0
                        secrets[i], sizeof(secrets[i]));
1840
2.20k
                } else {
1841
2.20k
                    num_bytes = BN_bn2lebinpad(p_scalar,
1842
2.20k
                        secrets[i], sizeof(secrets[i]));
1843
2.20k
                }
1844
2.20k
                if (num_bytes < 0) {
1845
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1846
0
                    goto err;
1847
0
                }
1848
                /* precompute multiples */
1849
2.20k
                if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z)))
1850
0
                    goto err;
1851
2.20k
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1852
2.20k
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1853
2.20k
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1854
35.3k
                for (j = 2; j <= 16; ++j) {
1855
33.1k
                    if (j & 1) {
1856
15.4k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1857
15.4k
                            pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], 0,
1858
15.4k
                            pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]);
1859
17.6k
                    } else {
1860
17.6k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1861
17.6k
                            pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
1862
17.6k
                    }
1863
33.1k
                }
1864
2.20k
            }
1865
2.20k
        }
1866
2.20k
        if (mixed)
1867
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1868
2.20k
    }
1869
1870
    /* the scalar for the generator */
1871
6.52k
    if (scalar != NULL && have_pre_comp) {
1872
4.34k
        memset(g_secret, 0, sizeof(g_secret));
1873
        /* reduce scalar to 0 <= scalar < 2^384 */
1874
4.34k
        if ((BN_num_bits(scalar) > 384) || (BN_is_negative(scalar))) {
1875
            /*
1876
             * this is an unusual input, and we don't guarantee
1877
             * constant-timeness
1878
             */
1879
45
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1880
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1881
0
                goto err;
1882
0
            }
1883
45
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1884
4.30k
        } else {
1885
4.30k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1886
4.30k
        }
1887
        /* do the multiplication with generator precomputation */
1888
4.34k
        batch_mul(x_out, y_out, z_out,
1889
4.34k
            (const felem_bytearray(*))secrets, num_points,
1890
4.34k
            g_secret,
1891
4.34k
            mixed, (const felem(*)[17][3])pre_comp,
1892
4.34k
            (const felem(*)[3])g_pre_comp);
1893
4.34k
    } else {
1894
        /* do the multiplication without generator precomputation */
1895
2.17k
        batch_mul(x_out, y_out, z_out,
1896
2.17k
            (const felem_bytearray(*))secrets, num_points,
1897
2.17k
            NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1898
2.17k
    }
1899
    /* reduce the output to its unique minimal representation */
1900
6.52k
    felem_contract(x_in, x_out);
1901
6.52k
    felem_contract(y_in, y_out);
1902
6.52k
    felem_contract(z_in, z_out);
1903
6.52k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) {
1904
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1905
0
        goto err;
1906
0
    }
1907
6.52k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1908
6.52k
        ctx);
1909
1910
6.52k
err:
1911
6.52k
    BN_CTX_end(ctx);
1912
6.52k
    EC_POINT_free(generator);
1913
6.52k
    OPENSSL_free(secrets);
1914
6.52k
    OPENSSL_free(pre_comp);
1915
6.52k
    OPENSSL_free(tmp_felems);
1916
6.52k
    return ret;
1917
6.52k
}
1918
1919
int ossl_ec_GFp_nistp384_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1920
0
{
1921
0
    int ret = 0;
1922
0
    NISTP384_PRE_COMP *pre = NULL;
1923
0
    int i, j;
1924
0
    BIGNUM *x, *y;
1925
0
    EC_POINT *generator = NULL;
1926
0
    felem tmp_felems[16];
1927
0
#ifndef FIPS_MODULE
1928
0
    BN_CTX *new_ctx = NULL;
1929
0
#endif
1930
1931
    /* throw away old precomputation */
1932
0
    EC_pre_comp_free(group);
1933
1934
0
#ifndef FIPS_MODULE
1935
0
    if (ctx == NULL)
1936
0
        ctx = new_ctx = BN_CTX_new();
1937
0
#endif
1938
0
    if (ctx == NULL)
1939
0
        return 0;
1940
1941
0
    BN_CTX_start(ctx);
1942
0
    x = BN_CTX_get(ctx);
1943
0
    y = BN_CTX_get(ctx);
1944
0
    if (y == NULL)
1945
0
        goto err;
1946
    /* get the generator */
1947
0
    if (group->generator == NULL)
1948
0
        goto err;
1949
0
    generator = EC_POINT_new(group);
1950
0
    if (generator == NULL)
1951
0
        goto err;
1952
0
    BN_bin2bn(nistp384_curve_params[3], sizeof(felem_bytearray), x);
1953
0
    BN_bin2bn(nistp384_curve_params[4], sizeof(felem_bytearray), y);
1954
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1955
0
        goto err;
1956
0
    if ((pre = nistp384_pre_comp_new()) == NULL)
1957
0
        goto err;
1958
    /*
1959
     * if the generator is the standard one, use built-in precomputation
1960
     */
1961
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1962
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1963
0
        goto done;
1964
0
    }
1965
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
1966
0
        goto err;
1967
    /* compute 2^95*G, 2^190*G, 2^285*G */
1968
0
    for (i = 1; i <= 4; i <<= 1) {
1969
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
1970
0
            pre->g_pre_comp[i][0], pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
1971
0
        for (j = 0; j < 94; ++j) {
1972
0
            point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
1973
0
                pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2]);
1974
0
        }
1975
0
    }
1976
    /* g_pre_comp[0] is the point at infinity */
1977
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
1978
    /* the remaining multiples */
1979
    /* 2^95*G + 2^190*G */
1980
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], pre->g_pre_comp[6][2],
1981
0
        pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], 0,
1982
0
        pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]);
1983
    /* 2^95*G + 2^285*G */
1984
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], pre->g_pre_comp[10][2],
1985
0
        pre->g_pre_comp[8][0], pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], 0,
1986
0
        pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]);
1987
    /* 2^190*G + 2^285*G */
1988
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
1989
0
        pre->g_pre_comp[8][0], pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], 0,
1990
0
        pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], pre->g_pre_comp[4][2]);
1991
    /* 2^95*G + 2^190*G + 2^285*G */
1992
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], pre->g_pre_comp[14][2],
1993
0
        pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], 0,
1994
0
        pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]);
1995
0
    for (i = 1; i < 8; ++i) {
1996
        /* odd multiples: add G */
1997
0
        point_add(pre->g_pre_comp[2 * i + 1][0], pre->g_pre_comp[2 * i + 1][1], pre->g_pre_comp[2 * i + 1][2],
1998
0
            pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
1999
0
            pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], pre->g_pre_comp[1][2]);
2000
0
    }
2001
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2002
2003
0
done:
2004
0
    SETPRECOMP(group, nistp384, pre);
2005
0
    ret = 1;
2006
0
    pre = NULL;
2007
0
err:
2008
0
    BN_CTX_end(ctx);
2009
0
    EC_POINT_free(generator);
2010
0
#ifndef FIPS_MODULE
2011
0
    BN_CTX_free(new_ctx);
2012
0
#endif
2013
0
    ossl_ec_nistp384_pre_comp_free(pre);
2014
0
    return ret;
2015
0
}
2016
2017
int ossl_ec_GFp_nistp384_have_precompute_mult(const EC_GROUP *group)
2018
0
{
2019
    return HAVEPRECOMP(group, nistp384);
2020
0
}