Coverage Report

Created: 2023-03-26 07:41

/src/openvswitch/lib/ipf.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2019 Nicira, Inc.
3
 *
4
 * Licensed under the Apache License, Version 2.0 (the "License");
5
 * you may not use this file except in compliance with the License.
6
 * You may obtain a copy of the License at:
7
 *
8
 *     http://www.apache.org/licenses/LICENSE-2.0
9
 *
10
 * Unless required by applicable law or agreed to in writing, software
11
 * distributed under the License is distributed on an "AS IS" BASIS,
12
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
 * See the License for the specific language governing permissions and
14
 * limitations under the License.
15
 */
16
17
#include <config.h>
18
#include <ctype.h>
19
#include <errno.h>
20
#include <sys/types.h>
21
#include <netinet/in.h>
22
#include <netinet/ip6.h>
23
#include <netinet/icmp6.h>
24
#include <string.h>
25
26
#include "coverage.h"
27
#include "csum.h"
28
#include "ipf.h"
29
#include "latch.h"
30
#include "openvswitch/hmap.h"
31
#include "openvswitch/poll-loop.h"
32
#include "openvswitch/vlog.h"
33
#include "ovs-atomic.h"
34
#include "packets.h"
35
#include "util.h"
36
37
VLOG_DEFINE_THIS_MODULE(ipf);
38
COVERAGE_DEFINE(ipf_stuck_frag_list_purged);
39
COVERAGE_DEFINE(ipf_l3csum_err);
40
41
enum {
42
    IPV4_PACKET_MAX_HDR_SIZE = 60,
43
    IPV4_PACKET_MAX_SIZE = 65535,
44
    IPV6_PACKET_MAX_DATA = 65535,
45
};
46
47
enum ipf_list_state {
48
    IPF_LIST_STATE_UNUSED,
49
    IPF_LIST_STATE_REASS_FAIL,
50
    IPF_LIST_STATE_OTHER_SEEN,
51
    IPF_LIST_STATE_FIRST_SEEN,
52
    IPF_LIST_STATE_LAST_SEEN,
53
    IPF_LIST_STATE_FIRST_LAST_SEEN,
54
    IPF_LIST_STATE_COMPLETED,
55
    IPF_LIST_STATE_NUM,
56
};
57
58
static char *ipf_state_name[IPF_LIST_STATE_NUM] =
59
    {"unused", "reassemble fail", "other frag", "first frag", "last frag",
60
     "first/last frag", "complete"};
61
62
enum ipf_list_type {
63
    IPF_FRAG_COMPLETED_LIST,
64
    IPF_FRAG_EXPIRY_LIST,
65
};
66
67
enum {
68
    IPF_INVALID_IDX = -1,
69
    IPF_V4_FRAG_SIZE_LBOUND = 400,
70
    IPF_V4_FRAG_SIZE_MIN_DEF = 1200,
71
    IPF_V6_FRAG_SIZE_LBOUND = 400, /* Useful for testing. */
72
    IPF_V6_FRAG_SIZE_MIN_DEF = 1280,
73
    IPF_MAX_FRAGS_DEFAULT = 1000,
74
    IPF_NFRAG_UBOUND = 5000,
75
};
76
77
enum ipf_counter_type {
78
    IPF_NFRAGS_ACCEPTED,
79
    IPF_NFRAGS_COMPL_SENT,
80
    IPF_NFRAGS_EXPD_SENT,
81
    IPF_NFRAGS_TOO_SMALL,
82
    IPF_NFRAGS_OVERLAP,
83
    IPF_NFRAGS_PURGED,
84
    IPF_NFRAGS_NUM_CNTS,
85
};
86
87
union ipf_addr {
88
    ovs_be32 ipv4;
89
    struct in6_addr ipv6;
90
};
91
92
/* Represents a single fragment; part of a list of fragments. */
93
struct ipf_frag {
94
    struct dp_packet *pkt;
95
    uint16_t start_data_byte;
96
    uint16_t end_data_byte;
97
};
98
99
/* The key for a collection of fragments potentially making up an unfragmented
100
 * packet. */
101
struct ipf_list_key {
102
    /* ipf_list_key_hash() requires 'src_addr' and 'dst_addr' to be the first
103
     * two members. */
104
    union ipf_addr src_addr;
105
    union ipf_addr dst_addr;
106
    uint32_t recirc_id;
107
    ovs_be32 ip_id;   /* V6 is 32 bits. */
108
    ovs_be16 dl_type;
109
    uint16_t zone;
110
    uint8_t nw_proto;
111
};
112
113
/* A collection of fragments potentially making up an unfragmented packet. */
114
struct ipf_list {
115
    struct hmap_node node;         /* In struct ipf's 'frag_lists'. */
116
    struct ovs_list list_node;     /* In struct ipf's 'frag_exp_list' or
117
                                    * 'frag_complete_list'. */
118
    struct ipf_frag *frag_list;    /* List of fragments for this list. */
119
    struct ipf_list_key key;       /* The key for the fragemnt list. */
120
    struct dp_packet *reass_execute_ctx; /* Reassembled packet. */
121
    long long expiration;          /* In milliseconds. */
122
    int last_sent_idx;             /* Last sent fragment idx. */
123
    int last_inuse_idx;            /* Last inuse fragment idx. */
124
    int size;                      /* Fragment list size. */
125
    uint8_t state;                 /* Frag list state; see ipf_list_state. */
126
};
127
128
/* Represents a reassambled packet which typically is passed through
129
 * conntrack. */
130
struct reassembled_pkt {
131
    struct ovs_list rp_list_node;  /* In struct ipf's
132
                                    * 'reassembled_pkt_list'. */
133
    struct dp_packet *pkt;
134
    struct ipf_list *list;
135
};
136
137
struct ipf {
138
    /* The clean thread is used to clean up fragments in the 'ipf'
139
     * module if packet batches are not longer be sent through its user. */
140
    pthread_t ipf_clean_thread;
141
    struct latch ipf_clean_thread_exit;
142
143
    int max_v4_frag_list_size;
144
145
    struct ovs_mutex ipf_lock; /* Protects all of the following. */
146
    /* These contain 'struct ipf_list's. */
147
    struct hmap frag_lists OVS_GUARDED;
148
    struct ovs_list frag_exp_list OVS_GUARDED;
149
    struct ovs_list frag_complete_list OVS_GUARDED;
150
    /* Contains 'struct reassembled_pkt's. */
151
    struct ovs_list reassembled_pkt_list OVS_GUARDED;
152
153
    /* Used to allow disabling fragmentation reassembly. */
154
    atomic_bool ifp_v4_enabled;
155
    atomic_bool ifp_v6_enabled;
156
157
    /* Will be clamped above 400 bytes; the value chosen should handle
158
     * alg control packets of interest that use string encoding of mutable
159
     * IP fields; meaning, the control packets should not be fragmented. */
160
    atomic_uint min_v4_frag_size;
161
    atomic_uint min_v6_frag_size;
162
163
    /* Configurable maximum allowable fragments in process. */
164
    atomic_uint nfrag_max;
165
166
    /* Number of fragments in process. */
167
    atomic_count nfrag;
168
169
    atomic_uint64_t n4frag_cnt[IPF_NFRAGS_NUM_CNTS];
170
    atomic_uint64_t n6frag_cnt[IPF_NFRAGS_NUM_CNTS];
171
};
172
173
static void
174
ipf_print_reass_packet(const char *es, const void *pkt)
175
0
{
176
0
    static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
177
0
    if (!VLOG_DROP_WARN(&rl)) {
178
0
        struct ds ds = DS_EMPTY_INITIALIZER;
179
0
        ds_put_hex_dump(&ds, pkt, 128, 0, false);
180
0
        VLOG_WARN("%s\n%s", es, ds_cstr(&ds));
181
0
        ds_destroy(&ds);
182
0
    }
183
0
}
184
185
static void
186
ipf_count(struct ipf *ipf, bool v6, enum ipf_counter_type cntr)
187
0
{
188
0
    atomic_count_inc64(v6 ? &ipf->n6frag_cnt[cntr] : &ipf->n4frag_cnt[cntr]);
189
0
}
190
191
static bool
192
ipf_get_v4_enabled(struct ipf *ipf)
193
0
{
194
0
    bool ifp_v4_enabled_;
195
0
    atomic_read_relaxed(&ipf->ifp_v4_enabled, &ifp_v4_enabled_);
196
0
    return ifp_v4_enabled_;
197
0
}
198
199
static bool
200
ipf_get_v6_enabled(struct ipf *ipf)
201
0
{
202
0
    bool ifp_v6_enabled_;
203
0
    atomic_read_relaxed(&ipf->ifp_v6_enabled, &ifp_v6_enabled_);
204
0
    return ifp_v6_enabled_;
205
0
}
206
207
static bool
208
ipf_get_enabled(struct ipf *ipf)
209
0
{
210
0
    return ipf_get_v4_enabled(ipf) || ipf_get_v6_enabled(ipf);
211
0
}
212
213
static uint32_t
214
ipf_addr_hash_add(uint32_t hash, const union ipf_addr *addr)
215
0
{
216
0
    BUILD_ASSERT_DECL(sizeof *addr % 4 == 0);
217
0
    return hash_add_bytes32(hash, (const uint32_t *) addr, sizeof *addr);
218
0
}
219
220
/* Adds a list of fragments to the list tracking expiry of yet to be
221
 * completed reassembled packets, hence subject to expirty. */
222
static void
223
ipf_expiry_list_add(struct ovs_list *frag_exp_list, struct ipf_list *ipf_list,
224
                    long long now)
225
   /* OVS_REQUIRES(ipf->ipf_lock) */
226
0
{
227
0
    enum {
228
0
        IPF_FRAG_LIST_TIMEOUT = 15000,
229
0
    };
230
231
0
    ipf_list->expiration = now + IPF_FRAG_LIST_TIMEOUT;
232
0
    ovs_list_push_back(frag_exp_list, &ipf_list->list_node);
233
0
}
234
235
/* Adds a list of fragments to the list of completed packets, which will be
236
 * subsequently transmitted. */
237
static void
238
ipf_completed_list_add(struct ovs_list *frag_complete_list,
239
                       struct ipf_list *ipf_list)
240
    /* OVS_REQUIRES(ipf_lock) */
241
0
{
242
0
    ovs_list_push_back(frag_complete_list, &ipf_list->list_node);
243
0
}
244
245
/* Adds a reassmebled packet to the list of reassembled packets, awaiting some
246
 * processing, such as being sent through conntrack. */
247
static void
248
ipf_reassembled_list_add(struct ovs_list *reassembled_pkt_list,
249
                         struct reassembled_pkt *rp)
250
    /* OVS_REQUIRES(ipf_lock) */
251
0
{
252
0
    ovs_list_push_back(reassembled_pkt_list, &rp->rp_list_node);
253
0
}
254
255
/* Removed a frag list from tracking datastructures and frees list heap
256
 * memory. */
257
static void
258
ipf_list_clean(struct hmap *frag_lists,
259
               struct ipf_list *ipf_list)
260
    /* OVS_REQUIRES(ipf_lock) */
261
0
{
262
0
    ovs_list_remove(&ipf_list->list_node);
263
0
    hmap_remove(frag_lists, &ipf_list->node);
264
0
    free(ipf_list->frag_list);
265
0
    free(ipf_list);
266
0
}
267
268
/* Removed a frag list sitting on the expiry list from tracking
269
 * datastructures and frees list heap memory. */
270
static void
271
ipf_expiry_list_clean(struct hmap *frag_lists,
272
                      struct ipf_list *ipf_list)
273
    /* OVS_REQUIRES(ipf_lock) */
274
0
{
275
0
    ipf_list_clean(frag_lists, ipf_list);
276
0
}
277
278
/* Removed a frag list sitting on the completed list from tracking
279
 * datastructures and frees list heap memory. */
280
static void
281
ipf_completed_list_clean(struct hmap *frag_lists,
282
                         struct ipf_list *ipf_list)
283
    /* OVS_REQUIRES(ipf_lock) */
284
0
{
285
0
    ipf_list_clean(frag_lists, ipf_list);
286
0
}
287
288
static void
289
ipf_expiry_list_remove(struct ipf_list *ipf_list)
290
    /* OVS_REQUIRES(ipf_lock) */
291
0
{
292
0
    ovs_list_remove(&ipf_list->list_node);
293
0
}
294
295
static void
296
ipf_reassembled_list_remove(struct reassembled_pkt *rp)
297
    /* OVS_REQUIRES(ipf_lock) */
298
0
{
299
0
    ovs_list_remove(&rp->rp_list_node);
300
0
}
301
302
/* Symmetric */
303
static uint32_t
304
ipf_list_key_hash(const struct ipf_list_key *key, uint32_t basis)
305
0
{
306
0
    uint32_t hsrc, hdst, hash;
307
0
    hsrc = hdst = basis;
308
0
    hsrc = ipf_addr_hash_add(hsrc, &key->src_addr);
309
0
    hdst = ipf_addr_hash_add(hdst, &key->dst_addr);
310
0
    hash = hsrc ^ hdst;
311
312
    /* Hash the rest of the key. */
313
0
    return hash_words((uint32_t *) (&key->dst_addr + 1),
314
0
                      (uint32_t *) (key + 1) -
315
0
                      (uint32_t *) (&key->dst_addr + 1),
316
0
                      hash);
317
0
}
318
319
static bool
320
ipf_is_first_v4_frag(const struct dp_packet *pkt)
321
0
{
322
0
    const struct ip_header *l3 = dp_packet_l3(pkt);
323
0
    if (!(l3->ip_frag_off & htons(IP_FRAG_OFF_MASK)) &&
324
0
        l3->ip_frag_off & htons(IP_MORE_FRAGMENTS)) {
325
0
        return true;
326
0
    }
327
0
    return false;
328
0
}
329
330
static bool
331
ipf_is_last_v4_frag(const struct dp_packet *pkt)
332
0
{
333
0
    const struct ip_header *l3 = dp_packet_l3(pkt);
334
0
    if (l3->ip_frag_off & htons(IP_FRAG_OFF_MASK) &&
335
0
        !(l3->ip_frag_off & htons(IP_MORE_FRAGMENTS))) {
336
0
        return true;
337
0
    }
338
0
    return false;
339
0
}
340
341
static bool
342
ipf_is_v6_frag(ovs_be16 ip6f_offlg)
343
0
{
344
0
    if (ip6f_offlg & (IP6F_OFF_MASK | IP6F_MORE_FRAG)) {
345
0
        return true;
346
0
    }
347
0
    return false;
348
0
}
349
350
static bool
351
ipf_is_first_v6_frag(ovs_be16 ip6f_offlg)
352
0
{
353
0
    if (!(ip6f_offlg & IP6F_OFF_MASK) &&
354
0
        ip6f_offlg & IP6F_MORE_FRAG) {
355
0
        return true;
356
0
    }
357
0
    return false;
358
0
}
359
360
static bool
361
ipf_is_last_v6_frag(ovs_be16 ip6f_offlg)
362
0
{
363
0
    if ((ip6f_offlg & IP6F_OFF_MASK) &&
364
0
        !(ip6f_offlg & IP6F_MORE_FRAG)) {
365
0
        return true;
366
0
    }
367
0
    return false;
368
0
}
369
370
/* Checks for a completed packet collection of fragments. */
371
static bool
372
ipf_list_complete(const struct ipf_list *ipf_list)
373
    /* OVS_REQUIRES(ipf_lock) */
374
0
{
375
0
    for (int i = 1; i <= ipf_list->last_inuse_idx; i++) {
376
0
        if (ipf_list->frag_list[i - 1].end_data_byte + 1
377
0
            != ipf_list->frag_list[i].start_data_byte) {
378
0
            return false;
379
0
        }
380
0
    }
381
0
    return true;
382
0
}
383
384
/* Runs O(n) for a sorted or almost sorted list. */
385
static void
386
ipf_sort(struct ipf_frag *frag_list, size_t last_idx)
387
    /* OVS_REQUIRES(ipf_lock) */
388
0
{
389
0
    for (int li = 1; li <= last_idx; li++) {
390
0
        struct ipf_frag ipf_frag = frag_list[li];
391
0
        int ci = li - 1;
392
0
        while (ci >= 0 &&
393
0
               frag_list[ci].start_data_byte > ipf_frag.start_data_byte) {
394
0
            frag_list[ci + 1] = frag_list[ci];
395
0
            ci--;
396
0
        }
397
0
        frag_list[ci + 1] = ipf_frag;
398
0
    }
399
0
}
400
401
/* Called on a sorted complete list of v4 fragments to reassemble them into
402
 * a single packet that can be processed, such as passing through conntrack.
403
 */
404
static struct dp_packet *
405
ipf_reassemble_v4_frags(struct ipf_list *ipf_list)
406
    /* OVS_REQUIRES(ipf_lock) */
407
0
{
408
0
    struct ipf_frag *frag_list = ipf_list->frag_list;
409
0
    struct dp_packet *pkt = dp_packet_clone(frag_list[0].pkt);
410
0
    dp_packet_set_size(pkt, dp_packet_size(pkt) - dp_packet_l2_pad_size(pkt));
411
0
    struct ip_header *l3 = dp_packet_l3(pkt);
412
0
    int len = ntohs(l3->ip_tot_len);
413
414
0
    int rest_len = frag_list[ipf_list->last_inuse_idx].end_data_byte -
415
0
                   frag_list[1].start_data_byte + 1;
416
417
0
    if (len + rest_len > IPV4_PACKET_MAX_SIZE) {
418
0
        ipf_print_reass_packet(
419
0
            "Unsupported big reassembled v4 packet; v4 hdr:", l3);
420
0
        dp_packet_delete(pkt);
421
0
        return NULL;
422
0
    }
423
424
0
    dp_packet_prealloc_tailroom(pkt, rest_len);
425
426
0
    for (int i = 1; i <= ipf_list->last_inuse_idx; i++) {
427
0
        size_t add_len = frag_list[i].end_data_byte -
428
0
                         frag_list[i].start_data_byte + 1;
429
0
        const char *l4 = dp_packet_l4(frag_list[i].pkt);
430
0
        dp_packet_put(pkt, l4, add_len);
431
0
    }
432
433
0
    len += rest_len;
434
0
    l3 = dp_packet_l3(pkt);
435
0
    ovs_be16 new_ip_frag_off = l3->ip_frag_off & ~htons(IP_MORE_FRAGMENTS);
436
0
    if (!dp_packet_hwol_is_ipv4(pkt)) {
437
0
        l3->ip_csum = recalc_csum16(l3->ip_csum, l3->ip_frag_off,
438
0
                                    new_ip_frag_off);
439
0
        l3->ip_csum = recalc_csum16(l3->ip_csum, l3->ip_tot_len, htons(len));
440
0
    }
441
0
    l3->ip_tot_len = htons(len);
442
0
    l3->ip_frag_off = new_ip_frag_off;
443
0
    dp_packet_set_l2_pad_size(pkt, 0);
444
445
0
    return pkt;
446
0
}
447
448
/* Called on a sorted complete list of v6 fragments to reassemble them into
449
 * a single packet that can be processed, such as passing through conntrack.
450
 */
451
static struct dp_packet *
452
ipf_reassemble_v6_frags(struct ipf_list *ipf_list)
453
    /* OVS_REQUIRES(ipf_lock) */
454
0
{
455
0
    struct ipf_frag *frag_list = ipf_list->frag_list;
456
0
    struct dp_packet *pkt = dp_packet_clone(frag_list[0].pkt);
457
0
    dp_packet_set_size(pkt, dp_packet_size(pkt) - dp_packet_l2_pad_size(pkt));
458
0
    struct  ovs_16aligned_ip6_hdr *l3 = dp_packet_l3(pkt);
459
0
    int pl = ntohs(l3->ip6_plen) - sizeof(struct ovs_16aligned_ip6_frag);
460
461
0
    int rest_len = frag_list[ipf_list->last_inuse_idx].end_data_byte -
462
0
                   frag_list[1].start_data_byte + 1;
463
464
0
    if (pl + rest_len > IPV6_PACKET_MAX_DATA) {
465
0
        ipf_print_reass_packet(
466
0
             "Unsupported big reassembled v6 packet; v6 hdr:", l3);
467
0
        dp_packet_delete(pkt);
468
0
        return NULL;
469
0
    }
470
471
0
    dp_packet_prealloc_tailroom(pkt, rest_len);
472
473
0
    for (int i = 1; i <= ipf_list->last_inuse_idx; i++) {
474
0
        size_t add_len = frag_list[i].end_data_byte -
475
0
                          frag_list[i].start_data_byte + 1;
476
0
        const char *l4 = dp_packet_l4(frag_list[i].pkt);
477
0
        dp_packet_put(pkt, l4, add_len);
478
0
    }
479
480
0
    pl += rest_len;
481
0
    l3 = dp_packet_l3(pkt);
482
483
0
    uint8_t nw_proto = l3->ip6_nxt;
484
0
    uint8_t nw_frag = 0;
485
0
    const void *data = l3 + 1;
486
0
    size_t datasize = pl;
487
488
0
    const struct ovs_16aligned_ip6_frag *frag_hdr = NULL;
489
0
    if (!parse_ipv6_ext_hdrs(&data, &datasize, &nw_proto, &nw_frag, &frag_hdr)
490
0
        || !nw_frag || !frag_hdr) {
491
492
0
        ipf_print_reass_packet("Unparsed reassembled v6 packet; v6 hdr:", l3);
493
0
        dp_packet_delete(pkt);
494
0
        return NULL;
495
0
    }
496
497
0
    struct ovs_16aligned_ip6_frag *fh =
498
0
        CONST_CAST(struct ovs_16aligned_ip6_frag *, frag_hdr);
499
0
    fh->ip6f_offlg = 0;
500
0
    l3->ip6_plen = htons(pl);
501
0
    l3->ip6_ctlun.ip6_un1.ip6_un1_nxt = nw_proto;
502
0
    dp_packet_set_l2_pad_size(pkt, 0);
503
0
    return pkt;
504
0
}
505
506
/* Called when a frag list state transitions to another state. This is
507
 * triggered by new fragment for the list being received.*/
508
static void
509
ipf_list_state_transition(struct ipf *ipf, struct ipf_list *ipf_list,
510
                          bool ff, bool lf, bool v6)
511
    OVS_REQUIRES(ipf->ipf_lock)
512
0
{
513
0
    enum ipf_list_state curr_state = ipf_list->state;
514
0
    enum ipf_list_state next_state;
515
0
    switch (curr_state) {
516
0
    case IPF_LIST_STATE_UNUSED:
517
0
    case IPF_LIST_STATE_OTHER_SEEN:
518
0
        if (ff) {
519
0
            next_state = IPF_LIST_STATE_FIRST_SEEN;
520
0
        } else if (lf) {
521
0
            next_state = IPF_LIST_STATE_LAST_SEEN;
522
0
        } else {
523
0
            next_state = IPF_LIST_STATE_OTHER_SEEN;
524
0
        }
525
0
        break;
526
0
    case IPF_LIST_STATE_FIRST_SEEN:
527
0
        if (lf) {
528
0
            next_state = IPF_LIST_STATE_FIRST_LAST_SEEN;
529
0
        } else {
530
0
            next_state = IPF_LIST_STATE_FIRST_SEEN;
531
0
        }
532
0
        break;
533
0
    case IPF_LIST_STATE_LAST_SEEN:
534
0
        if (ff) {
535
0
            next_state = IPF_LIST_STATE_FIRST_LAST_SEEN;
536
0
        } else {
537
0
            next_state = IPF_LIST_STATE_LAST_SEEN;
538
0
        }
539
0
        break;
540
0
    case IPF_LIST_STATE_FIRST_LAST_SEEN:
541
0
        next_state = IPF_LIST_STATE_FIRST_LAST_SEEN;
542
0
        break;
543
0
    case IPF_LIST_STATE_COMPLETED:
544
0
    case IPF_LIST_STATE_REASS_FAIL:
545
0
    case IPF_LIST_STATE_NUM:
546
0
    default:
547
0
        OVS_NOT_REACHED();
548
0
    }
549
550
0
    if (next_state == IPF_LIST_STATE_FIRST_LAST_SEEN) {
551
0
        ipf_sort(ipf_list->frag_list, ipf_list->last_inuse_idx);
552
0
        if (ipf_list_complete(ipf_list)) {
553
0
            struct dp_packet *reass_pkt = v6
554
0
                ? ipf_reassemble_v6_frags(ipf_list)
555
0
                : ipf_reassemble_v4_frags(ipf_list);
556
0
            if (reass_pkt) {
557
0
                struct reassembled_pkt *rp = xzalloc(sizeof *rp);
558
0
                rp->pkt = reass_pkt;
559
0
                rp->list = ipf_list;
560
0
                ipf_reassembled_list_add(&ipf->reassembled_pkt_list, rp);
561
0
                ipf_expiry_list_remove(ipf_list);
562
0
                next_state = IPF_LIST_STATE_COMPLETED;
563
0
            } else {
564
0
                next_state = IPF_LIST_STATE_REASS_FAIL;
565
0
            }
566
0
        }
567
0
    }
568
0
    ipf_list->state = next_state;
569
0
}
570
571
/* Some sanity checks are redundant, but prudent, in case code paths for
572
 * fragments change in future. The processing cost for fragments is not
573
 * important. */
574
static bool
575
ipf_is_valid_v4_frag(struct ipf *ipf, struct dp_packet *pkt)
576
0
{
577
0
    if (OVS_UNLIKELY(dp_packet_ip_checksum_bad(pkt))) {
578
0
        COVERAGE_INC(ipf_l3csum_err);
579
0
        goto invalid_pkt;
580
0
    }
581
582
0
    const struct eth_header *l2 = dp_packet_eth(pkt);
583
0
    const struct ip_header *l3 = dp_packet_l3(pkt);
584
585
0
    if (OVS_UNLIKELY(!l2 || !l3)) {
586
0
        goto invalid_pkt;
587
0
    }
588
589
0
    size_t l3_size = dp_packet_l3_size(pkt);
590
0
    if (OVS_UNLIKELY(l3_size < IP_HEADER_LEN)) {
591
0
        goto invalid_pkt;
592
0
    }
593
594
0
    if (!IP_IS_FRAGMENT(l3->ip_frag_off)) {
595
0
        return false;
596
0
    }
597
598
0
    uint16_t ip_tot_len = ntohs(l3->ip_tot_len);
599
0
    if (OVS_UNLIKELY(ip_tot_len != l3_size)) {
600
0
        goto invalid_pkt;
601
0
    }
602
603
0
    size_t ip_hdr_len = IP_IHL(l3->ip_ihl_ver) * 4;
604
0
    if (OVS_UNLIKELY(ip_hdr_len < IP_HEADER_LEN)) {
605
0
        goto invalid_pkt;
606
0
    }
607
0
    if (OVS_UNLIKELY(l3_size < ip_hdr_len)) {
608
0
        goto invalid_pkt;
609
0
    }
610
611
0
    if (OVS_UNLIKELY(!dp_packet_ip_checksum_valid(pkt)
612
0
                     && !dp_packet_hwol_is_ipv4(pkt)
613
0
                     && csum(l3, ip_hdr_len) != 0)) {
614
0
        COVERAGE_INC(ipf_l3csum_err);
615
0
        goto invalid_pkt;
616
0
    }
617
618
0
    uint32_t min_v4_frag_size_;
619
0
    atomic_read_relaxed(&ipf->min_v4_frag_size, &min_v4_frag_size_);
620
0
    bool lf = ipf_is_last_v4_frag(pkt);
621
0
    if (OVS_UNLIKELY(!lf && dp_packet_l3_size(pkt) < min_v4_frag_size_)) {
622
0
        ipf_count(ipf, false, IPF_NFRAGS_TOO_SMALL);
623
0
        goto invalid_pkt;
624
0
    }
625
0
    return true;
626
627
0
invalid_pkt:
628
0
    pkt->md.ct_state = CS_INVALID;
629
0
    return false;
630
0
}
631
632
static bool
633
ipf_v4_key_extract(struct dp_packet *pkt, ovs_be16 dl_type, uint16_t zone,
634
                   struct ipf_list_key *key, uint16_t *start_data_byte,
635
                   uint16_t *end_data_byte, bool *ff, bool *lf)
636
0
{
637
0
    const struct ip_header *l3 = dp_packet_l3(pkt);
638
0
    uint16_t ip_tot_len = ntohs(l3->ip_tot_len);
639
0
    size_t ip_hdr_len = IP_IHL(l3->ip_ihl_ver) * 4;
640
641
0
    *start_data_byte = ntohs(l3->ip_frag_off & htons(IP_FRAG_OFF_MASK)) * 8;
642
0
    *end_data_byte = *start_data_byte + ip_tot_len - ip_hdr_len - 1;
643
0
    *ff = ipf_is_first_v4_frag(pkt);
644
0
    *lf = ipf_is_last_v4_frag(pkt);
645
0
    memset(key, 0, sizeof *key);
646
0
    key->ip_id = be16_to_be32(l3->ip_id);
647
0
    key->dl_type = dl_type;
648
0
    key->src_addr.ipv4 = get_16aligned_be32(&l3->ip_src);
649
0
    key->dst_addr.ipv4 = get_16aligned_be32(&l3->ip_dst);
650
0
    key->nw_proto = l3->ip_proto;
651
0
    key->zone = zone;
652
0
    key->recirc_id = pkt->md.recirc_id;
653
0
    return true;
654
0
}
655
656
/* Some sanity checks are redundant, but prudent, in case code paths for
657
 * fragments change in future. The processing cost for fragments is not
658
 * important. */
659
static bool
660
ipf_is_valid_v6_frag(struct ipf *ipf, struct dp_packet *pkt)
661
0
{
662
0
    const struct eth_header *l2 = dp_packet_eth(pkt);
663
0
    const struct  ovs_16aligned_ip6_hdr *l3 = dp_packet_l3(pkt);
664
0
    const char *l4 = dp_packet_l4(pkt);
665
666
0
    if (OVS_UNLIKELY(!l2 || !l3 || !l4)) {
667
0
        goto invalid_pkt;
668
0
    }
669
670
0
    size_t l3_size = dp_packet_l3_size(pkt);
671
0
    size_t l3_hdr_size = sizeof *l3;
672
673
0
    if (OVS_UNLIKELY(l3_size < l3_hdr_size)) {
674
0
        goto invalid_pkt;
675
0
    }
676
677
0
    uint8_t nw_frag = 0;
678
0
    uint8_t nw_proto = l3->ip6_nxt;
679
0
    const void *data = l3 + 1;
680
0
    size_t datasize = l3_size - l3_hdr_size;
681
0
    const struct ovs_16aligned_ip6_frag *frag_hdr = NULL;
682
0
    if (!parse_ipv6_ext_hdrs(&data, &datasize, &nw_proto, &nw_frag,
683
0
                             &frag_hdr) || !nw_frag || !frag_hdr) {
684
0
        return false;
685
0
    }
686
687
0
    int pl = ntohs(l3->ip6_plen);
688
0
    if (OVS_UNLIKELY(pl + l3_hdr_size != l3_size)) {
689
0
        goto invalid_pkt;
690
0
    }
691
692
0
    ovs_be16 ip6f_offlg = frag_hdr->ip6f_offlg;
693
0
    if (OVS_UNLIKELY(!ipf_is_v6_frag(ip6f_offlg))) {
694
0
        return false;
695
0
    }
696
697
0
    uint32_t min_v6_frag_size_;
698
0
    atomic_read_relaxed(&ipf->min_v6_frag_size, &min_v6_frag_size_);
699
0
    bool lf = ipf_is_last_v6_frag(ip6f_offlg);
700
701
0
    if (OVS_UNLIKELY(!lf && dp_packet_l3_size(pkt) < min_v6_frag_size_)) {
702
0
        ipf_count(ipf, true, IPF_NFRAGS_TOO_SMALL);
703
0
        goto invalid_pkt;
704
0
    }
705
706
0
    return true;
707
708
0
invalid_pkt:
709
0
    pkt->md.ct_state = CS_INVALID;
710
0
    return false;
711
712
0
}
713
714
static void
715
ipf_v6_key_extract(struct dp_packet *pkt, ovs_be16 dl_type, uint16_t zone,
716
                   struct ipf_list_key *key, uint16_t *start_data_byte,
717
                   uint16_t *end_data_byte, bool *ff, bool *lf)
718
0
{
719
0
    const struct ovs_16aligned_ip6_hdr *l3 = dp_packet_l3(pkt);
720
0
    uint8_t nw_frag = 0;
721
0
    uint8_t nw_proto = l3->ip6_nxt;
722
0
    const void *data = l3 + 1;
723
0
    size_t datasize = dp_packet_l3_size(pkt) - sizeof *l3;
724
0
    const struct ovs_16aligned_ip6_frag *frag_hdr = NULL;
725
726
0
    parse_ipv6_ext_hdrs(&data, &datasize, &nw_proto, &nw_frag, &frag_hdr);
727
0
    ovs_assert(nw_frag && frag_hdr);
728
0
    ovs_be16 ip6f_offlg = frag_hdr->ip6f_offlg;
729
0
    *start_data_byte = ntohs(ip6f_offlg & IP6F_OFF_MASK) +
730
0
        sizeof (struct ovs_16aligned_ip6_frag);
731
0
    *end_data_byte = *start_data_byte + dp_packet_l4_size(pkt) - 1;
732
0
    *ff = ipf_is_first_v6_frag(ip6f_offlg);
733
0
    *lf = ipf_is_last_v6_frag(ip6f_offlg);
734
0
    memset(key, 0, sizeof *key);
735
0
    key->ip_id = get_16aligned_be32(&frag_hdr->ip6f_ident);
736
0
    key->dl_type = dl_type;
737
0
    memcpy(&key->src_addr.ipv6, &l3->ip6_src, sizeof key->src_addr.ipv6);
738
    /* We are not supporting parsing of the routing header to use as the
739
     * dst address part of the key. */
740
0
    memcpy(&key->dst_addr.ipv6, &l3->ip6_dst, sizeof key->dst_addr.ipv6);
741
0
    key->nw_proto = 0;   /* Not used for key for V6. */
742
0
    key->zone = zone;
743
0
    key->recirc_id = pkt->md.recirc_id;
744
0
}
745
746
static bool
747
ipf_list_key_eq(const struct ipf_list_key *key1,
748
                const struct ipf_list_key *key2)
749
    /* OVS_REQUIRES(ipf_lock) */
750
0
{
751
0
    if (!memcmp(&key1->src_addr, &key2->src_addr, sizeof key1->src_addr) &&
752
0
        !memcmp(&key1->dst_addr, &key2->dst_addr, sizeof key1->dst_addr) &&
753
0
        key1->dl_type == key2->dl_type &&
754
0
        key1->ip_id == key2->ip_id &&
755
0
        key1->zone == key2->zone &&
756
0
        key1->nw_proto == key2->nw_proto &&
757
0
        key1->recirc_id == key2->recirc_id) {
758
0
        return true;
759
0
    }
760
0
    return false;
761
0
}
762
763
static struct ipf_list *
764
ipf_list_key_lookup(struct ipf *ipf, const struct ipf_list_key *key,
765
                    uint32_t hash)
766
    OVS_REQUIRES(ipf->ipf_lock)
767
0
{
768
0
    struct ipf_list *ipf_list;
769
0
    HMAP_FOR_EACH_WITH_HASH (ipf_list, node, hash, &ipf->frag_lists) {
770
0
        if (ipf_list_key_eq(&ipf_list->key, key)) {
771
0
            return ipf_list;
772
0
        }
773
0
    }
774
0
    return NULL;
775
0
}
776
777
static bool
778
ipf_is_frag_duped(const struct ipf_frag *frag_list, int last_inuse_idx,
779
                  size_t start_data_byte, size_t end_data_byte)
780
    /* OVS_REQUIRES(ipf_lock) */
781
0
{
782
0
    for (int i = 0; i <= last_inuse_idx; i++) {
783
0
        if ((start_data_byte >= frag_list[i].start_data_byte &&
784
0
            start_data_byte <= frag_list[i].end_data_byte) ||
785
0
            (end_data_byte >= frag_list[i].start_data_byte &&
786
0
             end_data_byte <= frag_list[i].end_data_byte)) {
787
0
            return true;
788
0
        }
789
0
    }
790
0
    return false;
791
0
}
792
793
/* Adds a fragment to a list of fragments, if the fragment is not a
794
 * duplicate. If the fragment is a duplicate, that fragment is marked
795
 * invalid to avoid the work that conntrack would do to mark the fragment
796
 * as invalid, which it will in all cases. */
797
static bool
798
ipf_process_frag(struct ipf *ipf, struct ipf_list *ipf_list,
799
                 struct dp_packet *pkt, uint16_t start_data_byte,
800
                 uint16_t end_data_byte, bool ff, bool lf, bool v6)
801
    OVS_REQUIRES(ipf->ipf_lock)
802
0
{
803
0
    bool duped_frag = ipf_is_frag_duped(ipf_list->frag_list,
804
0
        ipf_list->last_inuse_idx, start_data_byte, end_data_byte);
805
0
    int last_inuse_idx = ipf_list->last_inuse_idx;
806
807
0
    if (!duped_frag) {
808
0
        if (last_inuse_idx < ipf_list->size - 1) {
809
            /* In the case of dpdk, it would be unfortunate if we had
810
             * to create a clone fragment outside the dpdk mp due to the
811
             * mempool size being too limited. We will otherwise need to
812
             * recommend not setting the mempool number of buffers too low
813
             * and also clamp the number of fragments. */
814
0
            struct ipf_frag *frag = &ipf_list->frag_list[last_inuse_idx + 1];
815
0
            frag->pkt = dp_packet_clone(pkt);
816
0
            frag->start_data_byte = start_data_byte;
817
0
            frag->end_data_byte = end_data_byte;
818
0
            ipf_list->last_inuse_idx++;
819
0
            atomic_count_inc(&ipf->nfrag);
820
0
            ipf_count(ipf, v6, IPF_NFRAGS_ACCEPTED);
821
0
            ipf_list_state_transition(ipf, ipf_list, ff, lf, v6);
822
0
        } else {
823
0
            OVS_NOT_REACHED();
824
0
        }
825
0
    } else {
826
0
        ipf_count(ipf, v6, IPF_NFRAGS_OVERLAP);
827
0
        pkt->md.ct_state = CS_INVALID;
828
0
        return false;
829
0
    }
830
0
    return true;
831
0
}
832
833
static void
834
ipf_list_init(struct ipf_list *ipf_list, struct ipf_list_key *key,
835
              int max_frag_list_size)
836
0
{
837
0
    ipf_list->key = *key;
838
0
    ipf_list->last_inuse_idx = IPF_INVALID_IDX;
839
0
    ipf_list->last_sent_idx = IPF_INVALID_IDX;
840
0
    ipf_list->reass_execute_ctx = NULL;
841
0
    ipf_list->state = IPF_LIST_STATE_UNUSED;
842
0
    ipf_list->size = max_frag_list_size;
843
0
    ipf_list->frag_list
844
0
        = xzalloc(ipf_list->size * sizeof *ipf_list->frag_list);
845
0
}
846
847
/* Generates a fragment list key from a well formed fragment and either starts
848
 * a new fragment list or increases the size of the existing fragment list,
849
 * while checking if the maximum supported fragements are supported or the
850
 * list size is impossibly big. Calls 'ipf_process_frag()' to add a fragment
851
 * to a list of fragemnts. */
852
static bool
853
ipf_handle_frag(struct ipf *ipf, struct dp_packet *pkt, ovs_be16 dl_type,
854
                uint16_t zone, long long now, uint32_t hash_basis)
855
    OVS_REQUIRES(ipf->ipf_lock)
856
0
{
857
0
    struct ipf_list_key key;
858
    /* Initialize 4 variables for some versions of GCC. */
859
0
    uint16_t start_data_byte = 0;
860
0
    uint16_t end_data_byte = 0;
861
0
    bool ff = false;
862
0
    bool lf = false;
863
0
    bool v6 = dl_type == htons(ETH_TYPE_IPV6);
864
865
0
    if (v6 && ipf_get_v6_enabled(ipf)) {
866
0
        ipf_v6_key_extract(pkt, dl_type, zone, &key, &start_data_byte,
867
0
                           &end_data_byte, &ff, &lf);
868
0
    } else if (!v6 && ipf_get_v4_enabled(ipf)) {
869
0
        ipf_v4_key_extract(pkt, dl_type, zone, &key, &start_data_byte,
870
0
                           &end_data_byte, &ff, &lf);
871
0
    } else {
872
0
        return false;
873
0
    }
874
875
0
    unsigned int nfrag_max;
876
0
    atomic_read_relaxed(&ipf->nfrag_max, &nfrag_max);
877
0
    if (atomic_count_get(&ipf->nfrag) >= nfrag_max) {
878
0
        return false;
879
0
    }
880
881
0
    uint32_t hash = ipf_list_key_hash(&key, hash_basis);
882
0
    struct ipf_list *ipf_list = ipf_list_key_lookup(ipf, &key, hash);
883
0
    enum {
884
0
        IPF_FRAG_LIST_MIN_INCREMENT = 4,
885
0
        IPF_IPV6_MAX_FRAG_LIST_SIZE = 65535,
886
0
    };
887
888
0
    int max_frag_list_size;
889
0
    if (v6) {
890
        /* Because the calculation with extension headers is variable,
891
         * we don't calculate a hard maximum fragment list size upfront.  The
892
         * fragment list size is practically limited by the code, however. */
893
0
        max_frag_list_size = IPF_IPV6_MAX_FRAG_LIST_SIZE;
894
0
    } else {
895
0
        max_frag_list_size = ipf->max_v4_frag_list_size;
896
0
    }
897
898
0
    if (!ipf_list) {
899
0
        ipf_list = xmalloc(sizeof *ipf_list);
900
0
        ipf_list_init(ipf_list, &key,
901
0
                      MIN(max_frag_list_size, IPF_FRAG_LIST_MIN_INCREMENT));
902
0
        hmap_insert(&ipf->frag_lists, &ipf_list->node, hash);
903
0
        ipf_expiry_list_add(&ipf->frag_exp_list, ipf_list, now);
904
0
    } else if (ipf_list->state == IPF_LIST_STATE_REASS_FAIL ||
905
0
               ipf_list->state == IPF_LIST_STATE_COMPLETED) {
906
        /* Bail out as early as possible. */
907
0
        return false;
908
0
    } else if (ipf_list->last_inuse_idx + 1 >= ipf_list->size) {
909
0
        int increment = MIN(IPF_FRAG_LIST_MIN_INCREMENT,
910
0
                            max_frag_list_size - ipf_list->size);
911
        /* Enforce limit. */
912
0
        if (increment > 0) {
913
0
            ipf_list->frag_list =
914
0
                xrealloc(ipf_list->frag_list, (ipf_list->size + increment) *
915
0
                  sizeof *ipf_list->frag_list);
916
0
            ipf_list->size += increment;
917
0
        } else {
918
0
            return false;
919
0
        }
920
0
    }
921
922
0
    return ipf_process_frag(ipf, ipf_list, pkt, start_data_byte,
923
0
                            end_data_byte, ff, lf, v6);
924
0
}
925
926
/* Filters out fragments from a batch of fragments and adjust the batch. */
927
static void
928
ipf_extract_frags_from_batch(struct ipf *ipf, struct dp_packet_batch *pb,
929
                             ovs_be16 dl_type, uint16_t zone, long long now,
930
                             uint32_t hash_basis)
931
0
{
932
0
    const size_t pb_cnt = dp_packet_batch_size(pb);
933
0
    int pb_idx; /* Index in a packet batch. */
934
0
    struct dp_packet *pkt;
935
936
0
    DP_PACKET_BATCH_REFILL_FOR_EACH (pb_idx, pb_cnt, pkt, pb) {
937
0
        if (OVS_UNLIKELY((dl_type == htons(ETH_TYPE_IP) &&
938
0
                          ipf_is_valid_v4_frag(ipf, pkt))
939
0
                          ||
940
0
                          (dl_type == htons(ETH_TYPE_IPV6) &&
941
0
                          ipf_is_valid_v6_frag(ipf, pkt)))) {
942
943
0
            ovs_mutex_lock(&ipf->ipf_lock);
944
0
            if (!ipf_handle_frag(ipf, pkt, dl_type, zone, now, hash_basis)) {
945
0
                dp_packet_batch_refill(pb, pkt, pb_idx);
946
0
            } else {
947
0
                dp_packet_delete(pkt);
948
0
            }
949
0
            ovs_mutex_unlock(&ipf->ipf_lock);
950
0
        } else {
951
0
            dp_packet_batch_refill(pb, pkt, pb_idx);
952
0
        }
953
0
    }
954
0
}
955
956
/* In case of DPDK, a memory source check is done, as DPDK memory pool
957
 * management has trouble dealing with multiple source types.  The
958
 * check_source paramater is used to indicate when this check is needed. */
959
static bool
960
ipf_dp_packet_batch_add(struct dp_packet_batch *pb , struct dp_packet *pkt,
961
                        bool check_source OVS_UNUSED)
962
0
{
963
#ifdef DPDK_NETDEV
964
    if ((dp_packet_batch_is_full(pb)) ||
965
        /* DPDK cannot handle multiple sources in a batch. */
966
        (check_source && !dp_packet_batch_is_empty(pb)
967
         && pb->packets[0]->source != pkt->source)) {
968
#else
969
0
    if (dp_packet_batch_is_full(pb)) {
970
0
#endif
971
0
        return false;
972
0
    }
973
974
0
    dp_packet_batch_add(pb, pkt);
975
0
    return true;
976
0
}
977
978
/* This would be used in rare cases where a list cannot be sent. One rare
979
 * reason known right now is a mempool source check, which exists due to DPDK
980
 * support, where packets are no longer being received on any port with a
981
 * source matching the fragment.  Another reason is a race where all
982
 * conntrack rules are unconfigured when some fragments are yet to be
983
 * flushed.
984
 *
985
 * Returns true if the list was purged. */
986
static bool
987
ipf_purge_list_check(struct ipf *ipf, struct ipf_list *ipf_list,
988
                     long long now)
989
    OVS_REQUIRES(ipf->ipf_lock)
990
0
{
991
0
    enum {
992
0
        IPF_FRAG_LIST_PURGE_TIME_ADJ = 10000
993
0
    };
994
995
0
    if (now < ipf_list->expiration + IPF_FRAG_LIST_PURGE_TIME_ADJ) {
996
0
        return false;
997
0
    }
998
999
0
    while (ipf_list->last_sent_idx < ipf_list->last_inuse_idx) {
1000
0
        struct dp_packet * pkt
1001
0
            = ipf_list->frag_list[ipf_list->last_sent_idx + 1].pkt;
1002
0
        dp_packet_delete(pkt);
1003
0
        atomic_count_dec(&ipf->nfrag);
1004
0
        COVERAGE_INC(ipf_stuck_frag_list_purged);
1005
0
        ipf_count(ipf, ipf_list->key.dl_type == htons(ETH_TYPE_IPV6),
1006
0
                  IPF_NFRAGS_PURGED);
1007
0
        ipf_list->last_sent_idx++;
1008
0
    }
1009
1010
0
    return true;
1011
0
}
1012
1013
/* Does the packet batch management and common accounting work associated
1014
 * with 'ipf_send_completed_frags()' and 'ipf_send_expired_frags()'. */
1015
static bool
1016
ipf_send_frags_in_list(struct ipf *ipf, struct ipf_list *ipf_list,
1017
                       struct dp_packet_batch *pb,
1018
                       enum ipf_list_type list_type, bool v6, long long now)
1019
    OVS_REQUIRES(ipf->ipf_lock)
1020
0
{
1021
0
    if (ipf_purge_list_check(ipf, ipf_list, now)) {
1022
0
        return true;
1023
0
    }
1024
1025
0
    while (ipf_list->last_sent_idx < ipf_list->last_inuse_idx) {
1026
0
        struct dp_packet *pkt
1027
0
            = ipf_list->frag_list[ipf_list->last_sent_idx + 1].pkt;
1028
0
        if (ipf_dp_packet_batch_add(pb, pkt, true)) {
1029
0
            ipf_list->last_sent_idx++;
1030
0
            atomic_count_dec(&ipf->nfrag);
1031
1032
0
            if (list_type == IPF_FRAG_COMPLETED_LIST) {
1033
0
                ipf_count(ipf, v6, IPF_NFRAGS_COMPL_SENT);
1034
0
            } else {
1035
0
                ipf_count(ipf, v6, IPF_NFRAGS_EXPD_SENT);
1036
0
                pkt->md.ct_state = CS_INVALID;
1037
0
            }
1038
1039
0
            if (ipf_list->last_sent_idx == ipf_list->last_inuse_idx) {
1040
0
                return true;
1041
0
            }
1042
0
        } else {
1043
0
            return false;
1044
0
        }
1045
0
    }
1046
0
    OVS_NOT_REACHED();
1047
0
}
1048
1049
/* Adds fragments associated with a completed fragment list to a packet batch
1050
 * to be processed by the calling application, typically conntrack. Also
1051
 * cleans up the list context when it is empty.*/
1052
static void
1053
ipf_send_completed_frags(struct ipf *ipf, struct dp_packet_batch *pb,
1054
                         long long now, bool v6)
1055
0
{
1056
0
    if (ovs_list_is_empty(&ipf->frag_complete_list)) {
1057
0
        return;
1058
0
    }
1059
1060
0
    ovs_mutex_lock(&ipf->ipf_lock);
1061
0
    struct ipf_list *ipf_list;
1062
1063
0
    LIST_FOR_EACH_SAFE (ipf_list, list_node, &ipf->frag_complete_list) {
1064
0
        if (ipf_send_frags_in_list(ipf, ipf_list, pb, IPF_FRAG_COMPLETED_LIST,
1065
0
                                   v6, now)) {
1066
0
            ipf_completed_list_clean(&ipf->frag_lists, ipf_list);
1067
0
        } else {
1068
0
            break;
1069
0
        }
1070
0
    }
1071
1072
0
    ovs_mutex_unlock(&ipf->ipf_lock);
1073
0
}
1074
1075
/* Conservatively adds fragments associated with a expired fragment list to
1076
 * a packet batch to be processed by the calling application, typically
1077
 * conntrack. Also cleans up the list context when it is empty.*/
1078
static void
1079
ipf_send_expired_frags(struct ipf *ipf, struct dp_packet_batch *pb,
1080
                       long long now, bool v6)
1081
0
{
1082
0
    enum {
1083
        /* Very conservative, due to DOS probability. */
1084
0
        IPF_FRAG_LIST_MAX_EXPIRED = 1,
1085
0
    };
1086
1087
1088
0
    if (ovs_list_is_empty(&ipf->frag_exp_list)) {
1089
0
        return;
1090
0
    }
1091
1092
0
    ovs_mutex_lock(&ipf->ipf_lock);
1093
0
    struct ipf_list *ipf_list;
1094
0
    size_t lists_removed = 0;
1095
1096
0
    LIST_FOR_EACH_SAFE (ipf_list, list_node, &ipf->frag_exp_list) {
1097
0
        if (now <= ipf_list->expiration ||
1098
0
            lists_removed >= IPF_FRAG_LIST_MAX_EXPIRED) {
1099
0
            break;
1100
0
        }
1101
1102
0
        if (ipf_send_frags_in_list(ipf, ipf_list, pb, IPF_FRAG_EXPIRY_LIST,
1103
0
                                   v6, now)) {
1104
0
            ipf_expiry_list_clean(&ipf->frag_lists, ipf_list);
1105
0
            lists_removed++;
1106
0
        } else {
1107
0
            break;
1108
0
        }
1109
0
    }
1110
1111
0
    ovs_mutex_unlock(&ipf->ipf_lock);
1112
0
}
1113
1114
/* Adds a reassmebled packet to a packet batch to be processed by the caller.
1115
 */
1116
static void
1117
ipf_execute_reass_pkts(struct ipf *ipf, struct dp_packet_batch *pb)
1118
0
{
1119
0
    if (ovs_list_is_empty(&ipf->reassembled_pkt_list)) {
1120
0
        return;
1121
0
    }
1122
1123
0
    ovs_mutex_lock(&ipf->ipf_lock);
1124
0
    struct reassembled_pkt *rp;
1125
1126
0
    LIST_FOR_EACH_SAFE (rp, rp_list_node, &ipf->reassembled_pkt_list) {
1127
0
        if (!rp->list->reass_execute_ctx &&
1128
0
            ipf_dp_packet_batch_add(pb, rp->pkt, false)) {
1129
0
            rp->list->reass_execute_ctx = rp->pkt;
1130
0
        }
1131
0
    }
1132
1133
0
    ovs_mutex_unlock(&ipf->ipf_lock);
1134
0
}
1135
1136
/* Checks for reassembled packets post processing by conntrack and edits the
1137
 * fragments if needed based on what conntrack decided. */
1138
static void
1139
ipf_post_execute_reass_pkts(struct ipf *ipf,
1140
                            struct dp_packet_batch *pb, bool v6)
1141
0
{
1142
0
    if (ovs_list_is_empty(&ipf->reassembled_pkt_list)) {
1143
0
        return;
1144
0
    }
1145
1146
0
    ovs_mutex_lock(&ipf->ipf_lock);
1147
0
    struct reassembled_pkt *rp;
1148
1149
0
    LIST_FOR_EACH_SAFE (rp, rp_list_node, &ipf->reassembled_pkt_list) {
1150
0
        const size_t pb_cnt = dp_packet_batch_size(pb);
1151
0
        int pb_idx;
1152
0
        struct dp_packet *pkt;
1153
        /* Inner batch loop is constant time since batch size is <=
1154
         * NETDEV_MAX_BURST. */
1155
0
        DP_PACKET_BATCH_REFILL_FOR_EACH (pb_idx, pb_cnt, pkt, pb) {
1156
0
            if (rp && pkt == rp->list->reass_execute_ctx) {
1157
0
                const struct ipf_frag *frag_0 = &rp->list->frag_list[0];
1158
0
                void *l4_frag = dp_packet_l4(frag_0->pkt);
1159
0
                void *l4_reass = dp_packet_l4(pkt);
1160
0
                memcpy(l4_frag, l4_reass, dp_packet_l4_size(frag_0->pkt));
1161
1162
0
                for (int i = 0; i <= rp->list->last_inuse_idx; i++) {
1163
0
                    const struct ipf_frag *frag_i = &rp->list->frag_list[i];
1164
1165
0
                    frag_i->pkt->md.ct_label = pkt->md.ct_label;
1166
0
                    frag_i->pkt->md.ct_mark = pkt->md.ct_mark;
1167
0
                    frag_i->pkt->md.ct_state = pkt->md.ct_state;
1168
0
                    frag_i->pkt->md.ct_zone = pkt->md.ct_zone;
1169
0
                    frag_i->pkt->md.ct_orig_tuple_ipv6 =
1170
0
                        pkt->md.ct_orig_tuple_ipv6;
1171
0
                    if (pkt->md.ct_orig_tuple_ipv6) {
1172
0
                        frag_i->pkt->md.ct_orig_tuple.ipv6 =
1173
0
                            pkt->md.ct_orig_tuple.ipv6;
1174
0
                    } else {
1175
0
                        frag_i->pkt->md.ct_orig_tuple.ipv4 =
1176
0
                            pkt->md.ct_orig_tuple.ipv4;
1177
0
                    }
1178
0
                    if (v6) {
1179
0
                        struct ovs_16aligned_ip6_hdr *l3_frag
1180
0
                            = dp_packet_l3(frag_i->pkt);
1181
0
                        struct ovs_16aligned_ip6_hdr *l3_reass
1182
0
                            = dp_packet_l3(pkt);
1183
0
                        l3_frag->ip6_src = l3_reass->ip6_src;
1184
0
                        l3_frag->ip6_dst = l3_reass->ip6_dst;
1185
0
                    } else {
1186
0
                        struct ip_header *l3_frag = dp_packet_l3(frag_i->pkt);
1187
0
                        struct ip_header *l3_reass = dp_packet_l3(pkt);
1188
0
                        if (!dp_packet_hwol_is_ipv4(frag_i->pkt)) {
1189
0
                            ovs_be32 reass_ip =
1190
0
                                get_16aligned_be32(&l3_reass->ip_src);
1191
0
                            ovs_be32 frag_ip =
1192
0
                                get_16aligned_be32(&l3_frag->ip_src);
1193
1194
0
                            l3_frag->ip_csum = recalc_csum32(l3_frag->ip_csum,
1195
0
                                                             frag_ip,
1196
0
                                                             reass_ip);
1197
0
                            reass_ip = get_16aligned_be32(&l3_reass->ip_dst);
1198
0
                            frag_ip = get_16aligned_be32(&l3_frag->ip_dst);
1199
0
                            l3_frag->ip_csum = recalc_csum32(l3_frag->ip_csum,
1200
0
                                                             frag_ip,
1201
0
                                                             reass_ip);
1202
0
                        }
1203
1204
0
                        l3_frag->ip_src = l3_reass->ip_src;
1205
0
                        l3_frag->ip_dst = l3_reass->ip_dst;
1206
0
                    }
1207
0
                }
1208
1209
0
                ipf_completed_list_add(&ipf->frag_complete_list, rp->list);
1210
0
                ipf_reassembled_list_remove(rp);
1211
0
                dp_packet_delete(rp->pkt);
1212
0
                free(rp);
1213
0
                rp = NULL;
1214
0
            } else {
1215
0
                dp_packet_batch_refill(pb, pkt, pb_idx);
1216
0
            }
1217
0
        }
1218
0
    }
1219
1220
0
    ovs_mutex_unlock(&ipf->ipf_lock);
1221
0
}
1222
1223
/* Extracts any fragments from the batch and reassembles them when a
1224
 * complete packet is received.  Completed packets are attempted to
1225
 * be added to the batch to be sent through conntrack. */
1226
void
1227
ipf_preprocess_conntrack(struct ipf *ipf, struct dp_packet_batch *pb,
1228
                         long long now, ovs_be16 dl_type, uint16_t zone,
1229
                         uint32_t hash_basis)
1230
0
{
1231
0
    if (ipf_get_enabled(ipf)) {
1232
0
        ipf_extract_frags_from_batch(ipf, pb, dl_type, zone, now, hash_basis);
1233
0
    }
1234
1235
0
    if (ipf_get_enabled(ipf) || atomic_count_get(&ipf->nfrag)) {
1236
0
        ipf_execute_reass_pkts(ipf, pb);
1237
0
    }
1238
0
}
1239
1240
/* Updates fragments based on the processing of the reassembled packet sent
1241
 * through conntrack and adds these fragments to any batches seen.  Expired
1242
 * fragments are marked as invalid and also added to the batches seen
1243
 * with low priority.  Reassembled packets are freed. */
1244
void
1245
ipf_postprocess_conntrack(struct ipf *ipf, struct dp_packet_batch *pb,
1246
                          long long now, ovs_be16 dl_type)
1247
0
{
1248
0
    if (ipf_get_enabled(ipf) || atomic_count_get(&ipf->nfrag)) {
1249
0
        bool v6 = dl_type == htons(ETH_TYPE_IPV6);
1250
0
        ipf_post_execute_reass_pkts(ipf, pb, v6);
1251
0
        ipf_send_completed_frags(ipf, pb, now, v6);
1252
0
        ipf_send_expired_frags(ipf, pb, now, v6);
1253
0
    }
1254
0
}
1255
1256
static void *
1257
ipf_clean_thread_main(void *f)
1258
0
{
1259
0
    struct ipf *ipf = f;
1260
1261
0
    enum {
1262
0
        IPF_FRAG_LIST_CLEAN_TIMEOUT = 60000,
1263
0
    };
1264
1265
0
    while (!latch_is_set(&ipf->ipf_clean_thread_exit)) {
1266
1267
0
        long long now = time_msec();
1268
1269
0
        if (!ovs_list_is_empty(&ipf->frag_exp_list) ||
1270
0
            !ovs_list_is_empty(&ipf->frag_complete_list)) {
1271
1272
0
            ovs_mutex_lock(&ipf->ipf_lock);
1273
1274
0
            struct ipf_list *ipf_list;
1275
0
            LIST_FOR_EACH_SAFE (ipf_list, list_node,
1276
0
                                &ipf->frag_exp_list) {
1277
0
                if (ipf_purge_list_check(ipf, ipf_list, now)) {
1278
0
                    ipf_expiry_list_clean(&ipf->frag_lists, ipf_list);
1279
0
                }
1280
0
            }
1281
1282
0
            LIST_FOR_EACH_SAFE (ipf_list, list_node,
1283
0
                                &ipf->frag_complete_list) {
1284
0
                if (ipf_purge_list_check(ipf, ipf_list, now)) {
1285
0
                    ipf_completed_list_clean(&ipf->frag_lists, ipf_list);
1286
0
                }
1287
0
            }
1288
1289
0
            ovs_mutex_unlock(&ipf->ipf_lock);
1290
0
        }
1291
1292
0
        poll_timer_wait_until(now + IPF_FRAG_LIST_CLEAN_TIMEOUT);
1293
0
        latch_wait(&ipf->ipf_clean_thread_exit);
1294
0
        poll_block();
1295
0
    }
1296
1297
0
    return NULL;
1298
0
}
1299
1300
struct ipf *
1301
ipf_init(void)
1302
0
{
1303
0
    struct ipf *ipf = xzalloc(sizeof *ipf);
1304
1305
0
    ovs_mutex_init_adaptive(&ipf->ipf_lock);
1306
0
    ovs_mutex_lock(&ipf->ipf_lock);
1307
0
    hmap_init(&ipf->frag_lists);
1308
0
    ovs_list_init(&ipf->frag_exp_list);
1309
0
    ovs_list_init(&ipf->frag_complete_list);
1310
0
    ovs_list_init(&ipf->reassembled_pkt_list);
1311
0
    atomic_init(&ipf->min_v4_frag_size, IPF_V4_FRAG_SIZE_MIN_DEF);
1312
0
    atomic_init(&ipf->min_v6_frag_size, IPF_V6_FRAG_SIZE_MIN_DEF);
1313
0
    ipf->max_v4_frag_list_size = DIV_ROUND_UP(
1314
0
        IPV4_PACKET_MAX_SIZE - IPV4_PACKET_MAX_HDR_SIZE,
1315
0
        ipf->min_v4_frag_size - IPV4_PACKET_MAX_HDR_SIZE);
1316
0
    ovs_mutex_unlock(&ipf->ipf_lock);
1317
0
    atomic_count_init(&ipf->nfrag, 0);
1318
0
    for (size_t i = 0; i < IPF_NFRAGS_NUM_CNTS; i++) {
1319
0
        atomic_init(&ipf->n4frag_cnt[i], 0);
1320
0
        atomic_init(&ipf->n6frag_cnt[i], 0);
1321
0
    }
1322
0
    atomic_init(&ipf->nfrag_max, IPF_MAX_FRAGS_DEFAULT);
1323
0
    atomic_init(&ipf->ifp_v4_enabled, true);
1324
0
    atomic_init(&ipf->ifp_v6_enabled, true);
1325
0
    latch_init(&ipf->ipf_clean_thread_exit);
1326
0
    ipf->ipf_clean_thread = ovs_thread_create("ipf_clean",
1327
0
                                         ipf_clean_thread_main, ipf);
1328
1329
0
    return ipf;
1330
0
}
1331
1332
void
1333
ipf_destroy(struct ipf *ipf)
1334
0
{
1335
0
    ovs_mutex_lock(&ipf->ipf_lock);
1336
0
    latch_set(&ipf->ipf_clean_thread_exit);
1337
0
    pthread_join(ipf->ipf_clean_thread, NULL);
1338
0
    latch_destroy(&ipf->ipf_clean_thread_exit);
1339
1340
0
    struct ipf_list *ipf_list;
1341
0
    HMAP_FOR_EACH_POP (ipf_list, node, &ipf->frag_lists) {
1342
0
        while (ipf_list->last_sent_idx < ipf_list->last_inuse_idx) {
1343
0
            struct dp_packet *pkt
1344
0
                = ipf_list->frag_list[ipf_list->last_sent_idx + 1].pkt;
1345
0
            dp_packet_delete(pkt);
1346
0
            atomic_count_dec(&ipf->nfrag);
1347
0
            ipf_list->last_sent_idx++;
1348
0
        }
1349
0
        free(ipf_list->frag_list);
1350
0
        free(ipf_list);
1351
0
    }
1352
1353
0
    if (atomic_count_get(&ipf->nfrag)) {
1354
0
        VLOG_WARN("ipf destroy with non-zero fragment count. ");
1355
0
    }
1356
1357
0
    struct reassembled_pkt *rp;
1358
0
    LIST_FOR_EACH_POP (rp, rp_list_node, &ipf->reassembled_pkt_list) {
1359
0
        dp_packet_delete(rp->pkt);
1360
0
        free(rp);
1361
0
    }
1362
1363
0
    hmap_destroy(&ipf->frag_lists);
1364
0
    ovs_list_poison(&ipf->frag_exp_list);
1365
0
    ovs_list_poison(&ipf->frag_complete_list);
1366
0
    ovs_list_poison(&ipf->reassembled_pkt_list);
1367
0
    ovs_mutex_unlock(&ipf->ipf_lock);
1368
0
    ovs_mutex_destroy(&ipf->ipf_lock);
1369
0
    free(ipf);
1370
0
}
1371
1372
int
1373
ipf_set_enabled(struct ipf *ipf, bool v6, bool enable)
1374
0
{
1375
0
    atomic_store_relaxed(v6 ? &ipf->ifp_v6_enabled : &ipf->ifp_v4_enabled,
1376
0
                         enable);
1377
0
    return 0;
1378
0
}
1379
1380
int
1381
ipf_set_min_frag(struct ipf *ipf, bool v6, uint32_t value)
1382
0
{
1383
    /* If the user specifies an unreasonably large number, fragmentation
1384
     * will not work well but it will not blow up. */
1385
0
    if (value < (v6 ? IPF_V6_FRAG_SIZE_LBOUND :  IPF_V4_FRAG_SIZE_LBOUND)) {
1386
0
        return 1;
1387
0
    }
1388
1389
0
    ovs_mutex_lock(&ipf->ipf_lock);
1390
0
    if (v6) {
1391
0
        atomic_store_relaxed(&ipf->min_v6_frag_size, value);
1392
0
    } else {
1393
0
        atomic_store_relaxed(&ipf->min_v4_frag_size, value);
1394
0
        ipf->max_v4_frag_list_size = DIV_ROUND_UP(
1395
0
            IPV4_PACKET_MAX_SIZE - IPV4_PACKET_MAX_HDR_SIZE,
1396
0
            ipf->min_v4_frag_size - IPV4_PACKET_MAX_HDR_SIZE);
1397
0
    }
1398
0
    ovs_mutex_unlock(&ipf->ipf_lock);
1399
0
    return 0;
1400
0
}
1401
1402
int
1403
ipf_set_max_nfrags(struct ipf *ipf, uint32_t value)
1404
0
{
1405
0
    if (value > IPF_NFRAG_UBOUND) {
1406
0
        return 1;
1407
0
    }
1408
0
    atomic_store_relaxed(&ipf->nfrag_max, value);
1409
0
    return 0;
1410
0
}
1411
1412
int
1413
ipf_get_status(struct ipf *ipf, struct ipf_status *ipf_status)
1414
0
{
1415
0
    ipf_status->nfrag = atomic_count_get(&ipf->nfrag);
1416
0
    atomic_read_relaxed(&ipf->nfrag_max, &ipf_status->nfrag_max);
1417
1418
0
    atomic_read_relaxed(&ipf->ifp_v4_enabled, &ipf_status->v4.enabled);
1419
0
    atomic_read_relaxed(&ipf->min_v4_frag_size,
1420
0
                        &ipf_status->v4.min_frag_size);
1421
0
    atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_ACCEPTED],
1422
0
                        &ipf_status->v4.nfrag_accepted);
1423
0
    atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_COMPL_SENT],
1424
0
                        &ipf_status->v4.nfrag_completed_sent);
1425
0
    atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_EXPD_SENT],
1426
0
                        &ipf_status->v4.nfrag_expired_sent);
1427
0
    atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_TOO_SMALL],
1428
0
                        &ipf_status->v4.nfrag_too_small);
1429
0
    atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_OVERLAP],
1430
0
                        &ipf_status->v4.nfrag_overlap);
1431
0
    atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_PURGED],
1432
0
                        &ipf_status->v4.nfrag_purged);
1433
1434
0
    atomic_read_relaxed(&ipf->ifp_v6_enabled, &ipf_status->v6.enabled);
1435
0
    atomic_read_relaxed(&ipf->min_v6_frag_size,
1436
0
                        &ipf_status->v6.min_frag_size);
1437
0
    atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_ACCEPTED],
1438
0
                        &ipf_status->v6.nfrag_accepted);
1439
0
    atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_COMPL_SENT],
1440
0
                        &ipf_status->v6.nfrag_completed_sent);
1441
0
    atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_EXPD_SENT],
1442
0
                        &ipf_status->v6.nfrag_expired_sent);
1443
0
    atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_TOO_SMALL],
1444
0
                        &ipf_status->v6.nfrag_too_small);
1445
0
    atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_OVERLAP],
1446
0
                        &ipf_status->v6.nfrag_overlap);
1447
0
    atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_PURGED],
1448
0
                        &ipf_status->v6.nfrag_purged);
1449
0
    return 0;
1450
0
}
1451
1452
struct ipf_dump_ctx {
1453
    struct hmap_position bucket_pos;
1454
};
1455
1456
/* Allocates an 'ipf_dump_ctx' to keep track of an hmap position. The
1457
 * caller must call ipf_dump_done() when dumping is finished. */
1458
int
1459
ipf_dump_start(struct ipf_dump_ctx **ipf_dump_ctx)
1460
0
{
1461
0
    *ipf_dump_ctx = xzalloc(sizeof **ipf_dump_ctx);
1462
0
    return 0;
1463
0
}
1464
1465
/* Creates a string representation of the state of an 'ipf_list' and puts
1466
 * it in 'ds'. */
1467
static void
1468
ipf_dump_create(const struct ipf_list *ipf_list, struct ds *ds)
1469
0
{
1470
0
    ds_put_cstr(ds, "(");
1471
0
    if (ipf_list->key.dl_type == htons(ETH_TYPE_IP)) {
1472
0
        ds_put_format(ds, "src="IP_FMT",dst="IP_FMT",",
1473
0
                      IP_ARGS(ipf_list->key.src_addr.ipv4),
1474
0
                      IP_ARGS(ipf_list->key.dst_addr.ipv4));
1475
0
    } else {
1476
0
        ds_put_cstr(ds, "src=");
1477
0
        ipv6_format_addr(&ipf_list->key.src_addr.ipv6, ds);
1478
0
        ds_put_cstr(ds, ",dst=");
1479
0
        ipv6_format_addr(&ipf_list->key.dst_addr.ipv6, ds);
1480
0
        ds_put_cstr(ds, ",");
1481
0
    }
1482
1483
0
    ds_put_format(ds, "recirc_id=%u,ip_id=%u,dl_type=0x%x,zone=%u,nw_proto=%u",
1484
0
                  ipf_list->key.recirc_id, ntohl(ipf_list->key.ip_id),
1485
0
                  ntohs(ipf_list->key.dl_type), ipf_list->key.zone,
1486
0
                  ipf_list->key.nw_proto);
1487
1488
0
    ds_put_format(ds, ",num_fragments=%u,state=%s",
1489
0
                  ipf_list->last_inuse_idx + 1,
1490
0
                  ipf_state_name[ipf_list->state]);
1491
1492
0
    ds_put_cstr(ds, ")");
1493
0
}
1494
1495
/* Finds the next ipf list starting from 'ipf_dump_ctx->bucket_pos' and uses
1496
 * ipf_dump_create() to create a string representation of the state of an
1497
 * ipf list, to which 'dump' is pointed to.  Returns EOF when there are no
1498
 * more ipf lists. */
1499
int
1500
ipf_dump_next(struct ipf *ipf, struct ipf_dump_ctx *ipf_dump_ctx, char **dump)
1501
0
{
1502
0
    ovs_mutex_lock(&ipf->ipf_lock);
1503
1504
0
    struct hmap_node *node = hmap_at_position(&ipf->frag_lists,
1505
0
                                              &ipf_dump_ctx->bucket_pos);
1506
0
    if (!node) {
1507
0
        ovs_mutex_unlock(&ipf->ipf_lock);
1508
0
        return EOF;
1509
0
    } else {
1510
0
        struct ipf_list *ipf_list_;
1511
0
        INIT_CONTAINER(ipf_list_, node, node);
1512
0
        struct ipf_list ipf_list = *ipf_list_;
1513
0
        ovs_mutex_unlock(&ipf->ipf_lock);
1514
0
        struct ds ds = DS_EMPTY_INITIALIZER;
1515
0
        ipf_dump_create(&ipf_list, &ds);
1516
0
        *dump = ds_steal_cstr(&ds);
1517
0
        return 0;
1518
0
    }
1519
0
}
1520
1521
/* Frees 'ipf_dump_ctx' allocated by ipf_dump_start(). */
1522
int
1523
ipf_dump_done(struct ipf_dump_ctx *ipf_dump_ctx)
1524
0
{
1525
0
    free(ipf_dump_ctx);
1526
0
    return 0;
1527
0
}