Coverage Report

Created: 2023-03-26 07:41

/src/openvswitch/lib/ovs-thread.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2013, 2014, 2015, 2016 Nicira, Inc.
3
 *
4
 * Licensed under the Apache License, Version 2.0 (the "License");
5
 * you may not use this file except in compliance with the License.
6
 * You may obtain a copy of the License at:
7
 *
8
 *     http://www.apache.org/licenses/LICENSE-2.0
9
 *
10
 * Unless required by applicable law or agreed to in writing, software
11
 * distributed under the License is distributed on an "AS IS" BASIS,
12
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
 * See the License for the specific language governing permissions and
14
 * limitations under the License.
15
 */
16
17
#include <config.h>
18
#include "ovs-thread.h"
19
#include <errno.h>
20
#include <poll.h>
21
#ifndef _WIN32
22
#include <signal.h>
23
#endif
24
#include <stdlib.h>
25
#include <unistd.h>
26
#include "compiler.h"
27
#include "fatal-signal.h"
28
#include "hash.h"
29
#include "openvswitch/list.h"
30
#include "ovs-rcu.h"
31
#include "openvswitch/poll-loop.h"
32
#include "seq.h"
33
#include "socket-util.h"
34
#include "timeval.h"
35
#include "util.h"
36
37
#ifdef __CHECKER__
38
/* Omit the definitions in this file because they are somewhat difficult to
39
 * write without prompting "sparse" complaints, without ugliness or
40
 * cut-and-paste.  Since "sparse" is just a checker, not a compiler, it
41
 * doesn't matter that we don't define them. */
42
#else
43
#include "openvswitch/vlog.h"
44
45
VLOG_DEFINE_THIS_MODULE(ovs_thread);
46
47
/* If there is a reason that we cannot fork anymore (unless the fork will be
48
 * immediately followed by an exec), then this points to a string that
49
 * explains why. */
50
static const char *must_not_fork;
51
52
/* True if we created any threads beyond the main initial thread. */
53
static bool multithreaded;
54
55
#define LOCK_FUNCTION(TYPE, FUN) \
56
    void \
57
    ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
58
                            const char *where) \
59
        OVS_NO_THREAD_SAFETY_ANALYSIS \
60
173
    { \
61
173
        struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
62
173
        int error; \
63
173
 \
64
173
        /* Verify that 'l' was initialized. */ \
65
173
        if (OVS_UNLIKELY(!l->where)) { \
66
0
            ovs_abort(0, "%s: %s() passed uninitialized ovs_"#TYPE, \
67
0
                      where, __func__); \
68
0
        } \
69
173
 \
70
173
        error = pthread_##TYPE##_##FUN(&l->lock); \
71
173
        if (OVS_UNLIKELY(error)) { \
72
0
            ovs_abort(error, "%s: pthread_%s_%s failed", where, #TYPE, #FUN); \
73
0
        } \
74
173
        l->where = where; \
75
173
 }
ovs_mutex_lock_at
Line
Count
Source
60
173
    { \
61
173
        struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
62
173
        int error; \
63
173
 \
64
173
        /* Verify that 'l' was initialized. */ \
65
173
        if (OVS_UNLIKELY(!l->where)) { \
66
0
            ovs_abort(0, "%s: %s() passed uninitialized ovs_"#TYPE, \
67
0
                      where, __func__); \
68
0
        } \
69
173
 \
70
173
        error = pthread_##TYPE##_##FUN(&l->lock); \
71
173
        if (OVS_UNLIKELY(error)) { \
72
0
            ovs_abort(error, "%s: pthread_%s_%s failed", where, #TYPE, #FUN); \
73
0
        } \
74
173
        l->where = where; \
75
173
 }
Unexecuted instantiation: ovs_rwlock_rdlock_at
Unexecuted instantiation: ovs_rwlock_wrlock_at
Unexecuted instantiation: ovs_spin_lock_at
76
LOCK_FUNCTION(mutex, lock);
77
LOCK_FUNCTION(rwlock, rdlock);
78
LOCK_FUNCTION(rwlock, wrlock);
79
#ifdef HAVE_PTHREAD_SPIN_LOCK
80
LOCK_FUNCTION(spin, lock);
81
#endif
82
83
#define TRY_LOCK_FUNCTION(TYPE, FUN) \
84
    int \
85
    ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
86
                            const char *where) \
87
        OVS_NO_THREAD_SAFETY_ANALYSIS \
88
0
    { \
89
0
        struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
90
0
        int error; \
91
0
 \
92
0
        /* Verify that 'l' was initialized. */ \
93
0
        if (OVS_UNLIKELY(!l->where)) { \
94
0
            ovs_abort(0, "%s: %s() passed uninitialized ovs_"#TYPE, \
95
0
                      where, __func__); \
96
0
        } \
97
0
 \
98
0
        error = pthread_##TYPE##_##FUN(&l->lock); \
99
0
        if (OVS_UNLIKELY(error) && error != EBUSY) { \
100
0
            ovs_abort(error, "%s: pthread_%s_%s failed", where, #TYPE, #FUN); \
101
0
        } \
102
0
        if (!error) { \
103
0
            l->where = where; \
104
0
        } \
105
0
        return error; \
106
0
    }
Unexecuted instantiation: ovs_mutex_trylock_at
Unexecuted instantiation: ovs_rwlock_tryrdlock_at
Unexecuted instantiation: ovs_rwlock_trywrlock_at
Unexecuted instantiation: ovs_spin_trylock_at
107
TRY_LOCK_FUNCTION(mutex, trylock);
108
TRY_LOCK_FUNCTION(rwlock, tryrdlock);
109
TRY_LOCK_FUNCTION(rwlock, trywrlock);
110
#ifdef HAVE_PTHREAD_SPIN_LOCK
111
TRY_LOCK_FUNCTION(spin, trylock);
112
#endif
113
114
#define UNLOCK_FUNCTION(TYPE, FUN, WHERE) \
115
    void \
116
    ovs_##TYPE##_##FUN(const struct ovs_##TYPE *l_) \
117
        OVS_NO_THREAD_SAFETY_ANALYSIS \
118
173
    { \
119
173
        struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
120
173
        int error; \
121
173
 \
122
173
        /* Verify that 'l' was initialized. */ \
123
173
        ovs_assert(l->where); \
124
173
 \
125
173
        l->where = WHERE; \
126
173
        error = pthread_##TYPE##_##FUN(&l->lock); \
127
173
        if (OVS_UNLIKELY(error)) { \
128
0
            ovs_abort(error, "pthread_%s_%s failed", #TYPE, #FUN); \
129
0
        } \
130
173
    }
ovs_mutex_unlock
Line
Count
Source
118
173
    { \
119
173
        struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
120
173
        int error; \
121
173
 \
122
173
        /* Verify that 'l' was initialized. */ \
123
173
        ovs_assert(l->where); \
124
173
 \
125
173
        l->where = WHERE; \
126
173
        error = pthread_##TYPE##_##FUN(&l->lock); \
127
173
        if (OVS_UNLIKELY(error)) { \
128
0
            ovs_abort(error, "pthread_%s_%s failed", #TYPE, #FUN); \
129
0
        } \
130
173
    }
Unexecuted instantiation: ovs_mutex_destroy
Unexecuted instantiation: ovs_rwlock_unlock
Unexecuted instantiation: ovs_rwlock_destroy
Unexecuted instantiation: ovs_spin_unlock
Unexecuted instantiation: ovs_spin_destroy
131
UNLOCK_FUNCTION(mutex, unlock, "<unlocked>");
132
UNLOCK_FUNCTION(mutex, destroy, NULL);
133
UNLOCK_FUNCTION(rwlock, unlock, "<unlocked>");
134
UNLOCK_FUNCTION(rwlock, destroy, NULL);
135
#ifdef HAVE_PTHREAD_SPIN_LOCK
136
UNLOCK_FUNCTION(spin, unlock, "<unlocked>");
137
UNLOCK_FUNCTION(spin, destroy, NULL);
138
#endif
139
140
#define XPTHREAD_FUNC1(FUNCTION, PARAM1)                \
141
    void                                                \
142
    x##FUNCTION(PARAM1 arg1)                            \
143
0
    {                                                   \
144
0
        int error = FUNCTION(arg1);                     \
145
0
        if (OVS_UNLIKELY(error)) {                      \
146
0
            ovs_abort(error, "%s failed", #FUNCTION);   \
147
0
        }                                               \
148
0
    }
Unexecuted instantiation: xpthread_mutexattr_init
Unexecuted instantiation: xpthread_mutexattr_destroy
Unexecuted instantiation: xpthread_rwlockattr_init
Unexecuted instantiation: xpthread_rwlockattr_destroy
Unexecuted instantiation: xpthread_cond_destroy
Unexecuted instantiation: xpthread_cond_signal
Unexecuted instantiation: xpthread_cond_broadcast
Unexecuted instantiation: xpthread_key_delete
149
#define XPTHREAD_FUNC2(FUNCTION, PARAM1, PARAM2)        \
150
    void                                                \
151
    x##FUNCTION(PARAM1 arg1, PARAM2 arg2)               \
152
0
    {                                                   \
153
0
        int error = FUNCTION(arg1, arg2);               \
154
0
        if (OVS_UNLIKELY(error)) {                      \
155
0
            ovs_abort(error, "%s failed", #FUNCTION);   \
156
0
        }                                               \
157
0
    }
Unexecuted instantiation: xpthread_mutexattr_settype
Unexecuted instantiation: xpthread_mutexattr_gettype
Unexecuted instantiation: xpthread_rwlockattr_setkind_np
Unexecuted instantiation: xpthread_cond_init
Unexecuted instantiation: xpthread_join
Unexecuted instantiation: xpthread_key_create
Unexecuted instantiation: xpthread_setspecific
158
#define XPTHREAD_FUNC3(FUNCTION, PARAM1, PARAM2, PARAM3)\
159
    void                                                \
160
    x##FUNCTION(PARAM1 arg1, PARAM2 arg2, PARAM3 arg3)  \
161
0
    {                                                   \
162
0
        int error = FUNCTION(arg1, arg2, arg3);         \
163
0
        if (OVS_UNLIKELY(error)) {                      \
164
0
            ovs_abort(error, "%s failed", #FUNCTION);   \
165
0
        }                                               \
166
0
    }
167
168
XPTHREAD_FUNC1(pthread_mutexattr_init, pthread_mutexattr_t *);
169
XPTHREAD_FUNC1(pthread_mutexattr_destroy, pthread_mutexattr_t *);
170
XPTHREAD_FUNC2(pthread_mutexattr_settype, pthread_mutexattr_t *, int);
171
XPTHREAD_FUNC2(pthread_mutexattr_gettype, pthread_mutexattr_t *, int *);
172
173
XPTHREAD_FUNC1(pthread_rwlockattr_init, pthread_rwlockattr_t *);
174
XPTHREAD_FUNC1(pthread_rwlockattr_destroy, pthread_rwlockattr_t *);
175
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
176
XPTHREAD_FUNC2(pthread_rwlockattr_setkind_np, pthread_rwlockattr_t *, int);
177
#endif
178
179
XPTHREAD_FUNC2(pthread_cond_init, pthread_cond_t *, pthread_condattr_t *);
180
XPTHREAD_FUNC1(pthread_cond_destroy, pthread_cond_t *);
181
XPTHREAD_FUNC1(pthread_cond_signal, pthread_cond_t *);
182
XPTHREAD_FUNC1(pthread_cond_broadcast, pthread_cond_t *);
183
184
XPTHREAD_FUNC2(pthread_join, pthread_t, void **);
185
186
typedef void destructor_func(void *);
187
XPTHREAD_FUNC2(pthread_key_create, pthread_key_t *, destructor_func *);
188
XPTHREAD_FUNC1(pthread_key_delete, pthread_key_t);
189
XPTHREAD_FUNC2(pthread_setspecific, pthread_key_t, const void *);
190
191
#ifndef _WIN32
192
XPTHREAD_FUNC3(pthread_sigmask, int, const sigset_t *, sigset_t *);
193
#endif
194
195
static void
196
ovs_mutex_init__(const struct ovs_mutex *l_, int type)
197
0
{
198
0
    struct ovs_mutex *l = CONST_CAST(struct ovs_mutex *, l_);
199
0
    pthread_mutexattr_t attr;
200
0
    int error;
201
202
0
    l->where = "<unlocked>";
203
0
    xpthread_mutexattr_init(&attr);
204
0
    xpthread_mutexattr_settype(&attr, type);
205
0
    error = pthread_mutex_init(&l->lock, &attr);
206
0
    if (OVS_UNLIKELY(error)) {
207
0
        ovs_abort(error, "pthread_mutex_init failed");
208
0
    }
209
0
    xpthread_mutexattr_destroy(&attr);
210
0
}
211
212
/* Initializes 'mutex' as a normal (non-recursive) mutex. */
213
void
214
ovs_mutex_init(const struct ovs_mutex *mutex)
215
0
{
216
0
    ovs_mutex_init__(mutex, PTHREAD_MUTEX_ERRORCHECK);
217
0
}
218
219
/* Initializes 'mutex' as a recursive mutex. */
220
void
221
ovs_mutex_init_recursive(const struct ovs_mutex *mutex)
222
0
{
223
0
    ovs_mutex_init__(mutex, PTHREAD_MUTEX_RECURSIVE);
224
0
}
225
226
/* Initializes 'mutex' as a recursive mutex. */
227
void
228
ovs_mutex_init_adaptive(const struct ovs_mutex *mutex)
229
0
{
230
0
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
231
0
    ovs_mutex_init__(mutex, PTHREAD_MUTEX_ADAPTIVE_NP);
232
#else
233
    ovs_mutex_init(mutex);
234
#endif
235
0
}
236
237
void
238
ovs_rwlock_init(const struct ovs_rwlock *l_)
239
0
{
240
0
    struct ovs_rwlock *l = CONST_CAST(struct ovs_rwlock *, l_);
241
0
    int error;
242
243
0
    l->where = "<unlocked>";
244
245
0
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
246
0
    pthread_rwlockattr_t attr;
247
0
    xpthread_rwlockattr_init(&attr);
248
0
    xpthread_rwlockattr_setkind_np(
249
0
        &attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
250
0
    error = pthread_rwlock_init(&l->lock, &attr);
251
0
    xpthread_rwlockattr_destroy(&attr);
252
#else
253
    /* It is important to avoid passing a rwlockattr in this case because
254
     * Windows pthreads 2.9.1 (and earlier) fail and abort if passed one, even
255
     * one without any special attributes. */
256
    error = pthread_rwlock_init(&l->lock, NULL);
257
#endif
258
259
0
    if (OVS_UNLIKELY(error)) {
260
0
        ovs_abort(error, "pthread_rwlock_init failed");
261
0
    }
262
0
}
263
264
/* Provides an error-checking wrapper around pthread_cond_wait().
265
 *
266
 * If the wait can take a significant amount of time, consider bracketing this
267
 * call with calls to ovsrcu_quiesce_start() and ovsrcu_quiesce_end().  */
268
void
269
ovs_mutex_cond_wait(pthread_cond_t *cond, const struct ovs_mutex *mutex_)
270
    OVS_NO_THREAD_SAFETY_ANALYSIS
271
0
{
272
0
    struct ovs_mutex *mutex = CONST_CAST(struct ovs_mutex *, mutex_);
273
0
    int error;
274
275
0
    error = pthread_cond_wait(cond, &mutex->lock);
276
277
0
    if (OVS_UNLIKELY(error)) {
278
0
        ovs_abort(error, "pthread_cond_wait failed");
279
0
    }
280
0
}
281
282
#ifdef HAVE_PTHREAD_SPIN_LOCK
283
static void
284
ovs_spin_init__(const struct ovs_spin *l_, int pshared)
285
0
{
286
0
    struct ovs_spin *l = CONST_CAST(struct ovs_spin *, l_);
287
0
    int error;
288
289
0
    l->where = "<unlocked>";
290
0
    error = pthread_spin_init(&l->lock, pshared);
291
0
    if (OVS_UNLIKELY(error)) {
292
0
        ovs_abort(error, "pthread_spin_init failed");
293
0
    }
294
0
}
295
296
void
297
ovs_spin_init(const struct ovs_spin *spin)
298
0
{
299
0
    ovs_spin_init__(spin, PTHREAD_PROCESS_PRIVATE);
300
0
}
301
#endif
302
303
struct ovs_barrier_impl {
304
    uint32_t size;            /* Number of threads to wait. */
305
    atomic_count count;       /* Number of threads already hit the barrier. */
306
    struct seq *seq;
307
    struct ovs_refcount refcnt;
308
};
309
310
static void
311
ovs_barrier_impl_ref(struct ovs_barrier_impl *impl)
312
0
{
313
0
    ovs_refcount_ref(&impl->refcnt);
314
0
}
315
316
static void
317
ovs_barrier_impl_unref(struct ovs_barrier_impl *impl)
318
0
{
319
0
    if (ovs_refcount_unref(&impl->refcnt) == 1) {
320
0
        seq_destroy(impl->seq);
321
0
        free(impl);
322
0
    }
323
0
}
324
325
/* Initializes the 'barrier'.  'size' is the number of threads
326
 * expected to hit the barrier. */
327
void
328
ovs_barrier_init(struct ovs_barrier *barrier, uint32_t size)
329
0
{
330
0
    struct ovs_barrier_impl *impl;
331
332
0
    impl = xmalloc(sizeof *impl);
333
0
    impl->size = size;
334
0
    atomic_count_init(&impl->count, 0);
335
0
    impl->seq = seq_create();
336
0
    ovs_refcount_init(&impl->refcnt);
337
338
0
    ovsrcu_set(&barrier->impl, impl);
339
0
}
340
341
/* Destroys the 'barrier'. */
342
void
343
ovs_barrier_destroy(struct ovs_barrier *barrier)
344
0
{
345
0
    struct ovs_barrier_impl *impl;
346
347
0
    impl = ovsrcu_get(struct ovs_barrier_impl *, &barrier->impl);
348
0
    ovsrcu_set(&barrier->impl, NULL);
349
0
    ovs_barrier_impl_unref(impl);
350
0
}
351
352
/* Makes the calling thread block on the 'barrier' until all
353
 * 'barrier->size' threads hit the barrier.
354
 * ovs_barrier provides the necessary acquire-release semantics to make
355
 * the effects of prior memory accesses of all the participating threads
356
 * visible on return and to prevent the following memory accesses to be
357
 * reordered before the ovs_barrier_block(). */
358
void
359
ovs_barrier_block(struct ovs_barrier *barrier)
360
0
{
361
0
    struct ovs_barrier_impl *impl;
362
0
    uint32_t orig;
363
0
    uint64_t seq;
364
365
0
    impl = ovsrcu_get(struct ovs_barrier_impl *, &barrier->impl);
366
0
    ovs_barrier_impl_ref(impl);
367
368
0
    seq = seq_read(impl->seq);
369
0
    orig = atomic_count_inc(&impl->count);
370
0
    if (orig + 1 == impl->size) {
371
0
        atomic_count_set(&impl->count, 0);
372
        /* seq_change() serves as a release barrier against the other threads,
373
         * so the zeroed count is visible to them as they continue. */
374
0
        seq_change(impl->seq);
375
0
    } else {
376
        /* To prevent thread from waking up by other event,
377
         * keeps waiting for the change of 'barrier->seq'. */
378
0
        while (seq == seq_read(impl->seq)) {
379
0
            seq_wait(impl->seq, seq);
380
0
            poll_block();
381
0
        }
382
0
    }
383
384
0
    ovs_barrier_impl_unref(impl);
385
0
}
386

387
DEFINE_EXTERN_PER_THREAD_DATA(ovsthread_id, OVSTHREAD_ID_UNSET);
388
389
struct ovsthread_aux {
390
    void *(*start)(void *);
391
    void *arg;
392
    char name[16];
393
};
394
395
unsigned int
396
ovsthread_id_init(void)
397
0
{
398
0
    static atomic_count next_id = ATOMIC_COUNT_INIT(0);
399
400
0
    ovs_assert(*ovsthread_id_get() == OVSTHREAD_ID_UNSET);
401
0
    return *ovsthread_id_get() = atomic_count_inc(&next_id);
402
0
}
403
404
static void *
405
ovsthread_wrapper(void *aux_)
406
0
{
407
0
    struct ovsthread_aux *auxp = aux_;
408
0
    struct ovsthread_aux aux;
409
0
    unsigned int id;
410
411
0
    id = ovsthread_id_init();
412
413
0
    aux = *auxp;
414
0
    free(auxp);
415
416
    /* The order of the following calls is important, because
417
     * ovsrcu_quiesce_end() saves a copy of the thread name. */
418
0
    char *subprogram_name = xasprintf("%s%u", aux.name, id);
419
0
    set_subprogram_name(subprogram_name);
420
0
    free(subprogram_name);
421
0
    ovsrcu_quiesce_end();
422
423
0
    return aux.start(aux.arg);
424
0
}
425
426
static void
427
set_min_stack_size(pthread_attr_t *attr, size_t min_stacksize)
428
0
{
429
0
    size_t stacksize;
430
0
    int error;
431
432
0
    error = pthread_attr_getstacksize(attr, &stacksize);
433
0
    if (error) {
434
0
        ovs_abort(error, "pthread_attr_getstacksize failed");
435
0
    }
436
437
0
    if (stacksize < min_stacksize) {
438
0
        error = pthread_attr_setstacksize(attr, min_stacksize);
439
0
        if (error) {
440
0
            ovs_abort(error, "pthread_attr_setstacksize failed");
441
0
        }
442
0
    }
443
0
}
444
445
/* Starts a thread that calls 'start(arg)'.  Sets the thread's name to 'name'
446
 * (suffixed by its ovsthread_id()).  Returns the new thread's pthread_t. */
447
pthread_t
448
ovs_thread_create(const char *name, void *(*start)(void *), void *arg)
449
0
{
450
0
    static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
451
0
    struct ovsthread_aux *aux;
452
0
    pthread_t thread;
453
0
    int error;
454
455
0
    forbid_forking("multiple threads exist");
456
457
0
    if (ovsthread_once_start(&once)) {
458
        /* The first call to this function has to happen in the main thread.
459
         * Before the process becomes multithreaded we make sure that the
460
         * main thread is considered non quiescent.
461
         *
462
         * For other threads this is done in ovs_thread_wrapper(), but the
463
         * main thread has no such wrapper.
464
         *
465
         * There's no reason to call ovsrcu_quiesce_end() in subsequent
466
         * invocations of this function and it might introduce problems
467
         * for other threads. */
468
0
        ovsrcu_quiesce_end();
469
0
        ovsthread_once_done(&once);
470
0
    }
471
472
0
    multithreaded = true;
473
0
    aux = xmalloc(sizeof *aux);
474
0
    aux->start = start;
475
0
    aux->arg = arg;
476
0
    ovs_strlcpy(aux->name, name, sizeof aux->name);
477
478
    /* Some small systems use a default stack size as small as 80 kB, but OVS
479
     * requires approximately 384 kB according to the following analysis:
480
     * https://mail.openvswitch.org/pipermail/ovs-dev/2016-January/308592.html
481
     *
482
     * We use 512 kB to give us some margin of error. */
483
0
    pthread_attr_t attr;
484
0
    pthread_attr_init(&attr);
485
0
    set_min_stack_size(&attr, 512 * 1024);
486
487
0
    error = pthread_create(&thread, &attr, ovsthread_wrapper, aux);
488
0
    if (error) {
489
0
        ovs_abort(error, "pthread_create failed");
490
0
    }
491
0
    pthread_attr_destroy(&attr);
492
0
    return thread;
493
0
}
494

495
bool
496
ovsthread_once_start__(struct ovsthread_once *once)
497
0
{
498
0
    ovs_mutex_lock(&once->mutex);
499
    /* Mutex synchronizes memory, so we get the current value of 'done'. */
500
0
    if (!once->done) {
501
0
        return true;
502
0
    }
503
0
    ovs_mutex_unlock(&once->mutex);
504
0
    return false;
505
0
}
506
507
void
508
ovsthread_once_done(struct ovsthread_once *once)
509
0
{
510
    /* We need release semantics here, so that the following store may not
511
     * be moved ahead of any of the preceding initialization operations.
512
     * A release atomic_thread_fence provides that prior memory accesses
513
     * will not be reordered to take place after the following store. */
514
0
    atomic_thread_fence(memory_order_release);
515
0
    once->done = true;
516
0
    ovs_mutex_unlock(&once->mutex);
517
0
}
518

519
bool
520
single_threaded(void)
521
0
{
522
0
    return !multithreaded;
523
0
}
524
525
/* Asserts that the process has not yet created any threads (beyond the initial
526
 * thread).
527
 *
528
 * ('where' is used in logging.  Commonly one would use
529
 * assert_single_threaded() to automatically provide the caller's source file
530
 * and line number for 'where'.) */
531
void
532
assert_single_threaded_at(const char *where)
533
0
{
534
0
    if (multithreaded) {
535
0
        VLOG_FATAL("%s: attempted operation not allowed when multithreaded",
536
0
                   where);
537
0
    }
538
0
}
539
540
#ifndef _WIN32
541
/* Forks the current process (checking that this is allowed).  Aborts with
542
 * VLOG_FATAL if fork() returns an error, and otherwise returns the value
543
 * returned by fork().
544
 *
545
 * ('where' is used in logging.  Commonly one would use xfork() to
546
 * automatically provide the caller's source file and line number for
547
 * 'where'.) */
548
pid_t
549
xfork_at(const char *where)
550
0
{
551
0
    pid_t pid;
552
553
0
    if (must_not_fork) {
554
0
        VLOG_FATAL("%s: attempted to fork but forking not allowed (%s)",
555
0
                   where, must_not_fork);
556
0
    }
557
558
0
    pid = fork();
559
0
    if (pid < 0) {
560
0
        VLOG_FATAL("%s: fork failed (%s)", where, ovs_strerror(errno));
561
0
    }
562
0
    return pid;
563
0
}
564
#endif
565
566
/* Notes that the process must not call fork() from now on, for the specified
567
 * 'reason'.  (The process may still fork() if it execs itself immediately
568
 * afterward.) */
569
void
570
forbid_forking(const char *reason)
571
0
{
572
0
    ovs_assert(reason != NULL);
573
0
    must_not_fork = reason;
574
0
}
575
576
/* Returns true if the process is allowed to fork, false otherwise. */
577
bool
578
may_fork(void)
579
0
{
580
0
    return !must_not_fork;
581
0
}
582

583
/* ovsthread_stats. */
584
585
void
586
ovsthread_stats_init(struct ovsthread_stats *stats)
587
0
{
588
0
    int i;
589
590
0
    ovs_mutex_init(&stats->mutex);
591
0
    for (i = 0; i < ARRAY_SIZE(stats->buckets); i++) {
592
0
        stats->buckets[i] = NULL;
593
0
    }
594
0
}
595
596
void
597
ovsthread_stats_destroy(struct ovsthread_stats *stats)
598
0
{
599
0
    ovs_mutex_destroy(&stats->mutex);
600
0
}
601
602
void *
603
ovsthread_stats_bucket_get(struct ovsthread_stats *stats,
604
                           void *(*new_bucket)(void))
605
0
{
606
0
    unsigned int idx = ovsthread_id_self() & (ARRAY_SIZE(stats->buckets) - 1);
607
0
    void *bucket = stats->buckets[idx];
608
0
    if (!bucket) {
609
0
        ovs_mutex_lock(&stats->mutex);
610
0
        bucket = stats->buckets[idx];
611
0
        if (!bucket) {
612
0
            bucket = stats->buckets[idx] = new_bucket();
613
0
        }
614
0
        ovs_mutex_unlock(&stats->mutex);
615
0
    }
616
0
    return bucket;
617
0
}
618
619
size_t
620
ovs_thread_stats_next_bucket(const struct ovsthread_stats *stats, size_t i)
621
0
{
622
0
    for (; i < ARRAY_SIZE(stats->buckets); i++) {
623
0
        if (stats->buckets[i]) {
624
0
            break;
625
0
        }
626
0
    }
627
0
    return i;
628
0
}
629
630

631
static int
632
count_cpu_cores__(void)
633
0
{
634
0
    long int n_cores;
635
636
0
#ifndef _WIN32
637
0
    n_cores = sysconf(_SC_NPROCESSORS_ONLN);
638
#else
639
    SYSTEM_INFO sysinfo;
640
    GetSystemInfo(&sysinfo);
641
    n_cores = sysinfo.dwNumberOfProcessors;
642
#endif
643
0
#ifdef __linux__
644
0
    if (n_cores > 0) {
645
0
        cpu_set_t *set = CPU_ALLOC(n_cores);
646
647
0
        if (set) {
648
0
            size_t size = CPU_ALLOC_SIZE(n_cores);
649
650
0
            if (!sched_getaffinity(0, size, set)) {
651
0
                n_cores = CPU_COUNT_S(size, set);
652
0
            }
653
0
            CPU_FREE(set);
654
0
        }
655
0
    }
656
0
#endif
657
0
    return n_cores > 0 ? n_cores : 0;
658
0
}
659
660
/* It's unlikely that the available cpus change several times per second and
661
 * even if it does, it's not needed (or desired) to react to such changes so
662
 * quickly. */
663
0
#define COUNT_CPU_UPDATE_TIME_MS 10000
664
665
static struct ovs_mutex cpu_cores_mutex = OVS_MUTEX_INITIALIZER;
666
667
/* Returns the current total number of cores available to this process, or 0
668
 * if the number cannot be determined. */
669
int
670
count_cpu_cores(void)
671
0
{
672
0
    static long long int last_updated = 0;
673
0
    long long int now = time_msec();
674
0
    static int cpu_cores;
675
676
0
    ovs_mutex_lock(&cpu_cores_mutex);
677
0
    if (now - last_updated >= COUNT_CPU_UPDATE_TIME_MS) {
678
0
        last_updated = now;
679
0
        cpu_cores = count_cpu_cores__();
680
0
    }
681
0
    ovs_mutex_unlock(&cpu_cores_mutex);
682
0
    return cpu_cores;
683
0
}
684
685
/* Returns the total number of cores on the system, or 0 if the
686
 * number cannot be determined. */
687
int
688
count_total_cores(void)
689
0
{
690
0
    long int n_cores;
691
692
0
#ifndef _WIN32
693
0
    n_cores = sysconf(_SC_NPROCESSORS_CONF);
694
#else
695
    n_cores = 0;
696
    errno = ENOTSUP;
697
#endif
698
699
0
    return n_cores > 0 ? n_cores : 0;
700
0
}
701
702
/* Returns 'true' if current thread is PMD thread. */
703
bool
704
thread_is_pmd(void)
705
0
{
706
0
    const char *name = get_subprogram_name();
707
0
    return !strncmp(name, "pmd", 3);
708
0
}
709
710

711
/* ovsthread_key. */
712
713
0
#define L1_SIZE 1024
714
0
#define L2_SIZE 1024
715
0
#define MAX_KEYS (L1_SIZE * L2_SIZE)
716
717
/* A piece of thread-specific data. */
718
struct ovsthread_key {
719
    struct ovs_list list_node;  /* In 'inuse_keys' or 'free_keys'. */
720
    void (*destructor)(void *); /* Called at thread exit. */
721
722
    /* Indexes into the per-thread array in struct ovsthread_key_slots.
723
     * This key's data is stored in p1[index / L2_SIZE][index % L2_SIZE]. */
724
    unsigned int index;
725
};
726
727
/* Per-thread data structure. */
728
struct ovsthread_key_slots {
729
    struct ovs_list list_node;  /* In 'slots_list'. */
730
    void **p1[L1_SIZE];
731
};
732
733
/* Contains "struct ovsthread_key_slots *". */
734
static pthread_key_t tsd_key;
735
736
/* Guards data structures below. */
737
static struct ovs_mutex key_mutex = OVS_MUTEX_INITIALIZER;
738
739
/* 'inuse_keys' holds "struct ovsthread_key"s that have been created and not
740
 * yet destroyed.
741
 *
742
 * 'free_keys' holds "struct ovsthread_key"s that have been deleted and are
743
 * ready for reuse.  (We keep them around only to be able to easily locate
744
 * free indexes.)
745
 *
746
 * Together, 'inuse_keys' and 'free_keys' hold an ovsthread_key for every index
747
 * from 0 to n_keys - 1, inclusive. */
748
static struct ovs_list inuse_keys OVS_GUARDED_BY(key_mutex)
749
    = OVS_LIST_INITIALIZER(&inuse_keys);
750
static struct ovs_list free_keys OVS_GUARDED_BY(key_mutex)
751
    = OVS_LIST_INITIALIZER(&free_keys);
752
static unsigned int n_keys OVS_GUARDED_BY(key_mutex);
753
754
/* All existing struct ovsthread_key_slots. */
755
static struct ovs_list slots_list OVS_GUARDED_BY(key_mutex)
756
    = OVS_LIST_INITIALIZER(&slots_list);
757
758
static void *
759
clear_slot(struct ovsthread_key_slots *slots, unsigned int index)
760
0
{
761
0
    void **p2 = slots->p1[index / L2_SIZE];
762
0
    if (p2) {
763
0
        void **valuep = &p2[index % L2_SIZE];
764
0
        void *value = *valuep;
765
0
        *valuep = NULL;
766
0
        return value;
767
0
    } else {
768
0
        return NULL;
769
0
    }
770
0
}
771
772
static void
773
ovsthread_key_destruct__(void *slots_)
774
0
{
775
0
    struct ovsthread_key_slots *slots = slots_;
776
0
    struct ovsthread_key *key;
777
0
    unsigned int n;
778
0
    int i;
779
780
0
    ovs_mutex_lock(&key_mutex);
781
0
    ovs_list_remove(&slots->list_node);
782
0
    LIST_FOR_EACH (key, list_node, &inuse_keys) {
783
0
        void *value = clear_slot(slots, key->index);
784
0
        if (value && key->destructor) {
785
0
            key->destructor(value);
786
0
        }
787
0
    }
788
0
    n = n_keys;
789
0
    ovs_mutex_unlock(&key_mutex);
790
791
0
    for (i = 0; i < DIV_ROUND_UP(n, L2_SIZE); i++) {
792
0
        free(slots->p1[i]);
793
0
    }
794
0
    free(slots);
795
0
}
796
797
/* Cancels the callback to ovsthread_key_destruct__().
798
 *
799
 * Cancelling the call to the destructor during the main thread exit
800
 * is needed while using pthreads-win32 library in Windows. It has been
801
 * observed that in pthreads-win32, a call to the destructor during
802
 * main thread exit causes undefined behavior. */
803
static void
804
ovsthread_cancel_ovsthread_key_destruct__(void *aux OVS_UNUSED)
805
0
{
806
0
    pthread_setspecific(tsd_key, NULL);
807
0
}
808
809
/* Initializes '*keyp' as a thread-specific data key.  The data items are
810
 * initially null in all threads.
811
 *
812
 * If a thread exits with non-null data, then 'destructor', if nonnull, will be
813
 * called passing the final data value as its argument.  'destructor' must not
814
 * call any thread-specific data functions in this API.
815
 *
816
 * This function is similar to xpthread_key_create(). */
817
void
818
ovsthread_key_create(ovsthread_key_t *keyp, void (*destructor)(void *))
819
0
{
820
0
    static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
821
0
    struct ovsthread_key *key;
822
823
0
    if (ovsthread_once_start(&once)) {
824
0
        xpthread_key_create(&tsd_key, ovsthread_key_destruct__);
825
0
        fatal_signal_add_hook(ovsthread_cancel_ovsthread_key_destruct__,
826
0
                              NULL, NULL, true);
827
0
        ovsthread_once_done(&once);
828
0
    }
829
830
0
    ovs_mutex_lock(&key_mutex);
831
0
    if (ovs_list_is_empty(&free_keys)) {
832
0
        key = xmalloc(sizeof *key);
833
0
        key->index = n_keys++;
834
0
        if (key->index >= MAX_KEYS) {
835
0
            abort();
836
0
        }
837
0
    } else {
838
0
        key = CONTAINER_OF(ovs_list_pop_back(&free_keys),
839
0
                            struct ovsthread_key, list_node);
840
0
    }
841
0
    ovs_list_push_back(&inuse_keys, &key->list_node);
842
0
    key->destructor = destructor;
843
0
    ovs_mutex_unlock(&key_mutex);
844
845
0
    *keyp = key;
846
0
}
847
848
/* Frees 'key'.  The destructor supplied to ovsthread_key_create(), if any, is
849
 * not called.
850
 *
851
 * This function is similar to xpthread_key_delete(). */
852
void
853
ovsthread_key_delete(ovsthread_key_t key)
854
0
{
855
0
    struct ovsthread_key_slots *slots;
856
857
0
    ovs_mutex_lock(&key_mutex);
858
859
    /* Move 'key' from 'inuse_keys' to 'free_keys'. */
860
0
    ovs_list_remove(&key->list_node);
861
0
    ovs_list_push_back(&free_keys, &key->list_node);
862
863
    /* Clear this slot in all threads. */
864
0
    LIST_FOR_EACH (slots, list_node, &slots_list) {
865
0
        clear_slot(slots, key->index);
866
0
    }
867
868
0
    ovs_mutex_unlock(&key_mutex);
869
0
}
870
871
static void **
872
ovsthread_key_lookup__(const struct ovsthread_key *key)
873
0
{
874
0
    struct ovsthread_key_slots *slots;
875
0
    void **p2;
876
877
0
    slots = pthread_getspecific(tsd_key);
878
0
    if (!slots) {
879
0
        slots = xzalloc(sizeof *slots);
880
881
0
        ovs_mutex_lock(&key_mutex);
882
0
        pthread_setspecific(tsd_key, slots);
883
0
        ovs_list_push_back(&slots_list, &slots->list_node);
884
0
        ovs_mutex_unlock(&key_mutex);
885
0
    }
886
887
0
    p2 = slots->p1[key->index / L2_SIZE];
888
0
    if (!p2) {
889
0
        p2 = xzalloc(L2_SIZE * sizeof *p2);
890
0
        slots->p1[key->index / L2_SIZE] = p2;
891
0
    }
892
893
0
    return &p2[key->index % L2_SIZE];
894
0
}
895
896
/* Sets the value of thread-specific data item 'key', in the current thread, to
897
 * 'value'.
898
 *
899
 * This function is similar to pthread_setspecific(). */
900
void
901
ovsthread_setspecific(ovsthread_key_t key, const void *value)
902
0
{
903
0
    *ovsthread_key_lookup__(key) = CONST_CAST(void *, value);
904
0
}
905
906
/* Returns the value of thread-specific data item 'key' in the current thread.
907
 *
908
 * This function is similar to pthread_getspecific(). */
909
void *
910
ovsthread_getspecific(ovsthread_key_t key)
911
0
{
912
0
    return *ovsthread_key_lookup__(key);
913
0
}
914
#endif