Coverage Report

Created: 2025-07-01 06:50

/src/openvswitch/lib/classifier.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2009-2017 Nicira, Inc.
3
 *
4
 * Licensed under the Apache License, Version 2.0 (the "License");
5
 * you may not use this file except in compliance with the License.
6
 * You may obtain a copy of the License at:
7
 *
8
 *     http://www.apache.org/licenses/LICENSE-2.0
9
 *
10
 * Unless required by applicable law or agreed to in writing, software
11
 * distributed under the License is distributed on an "AS IS" BASIS,
12
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
 * See the License for the specific language governing permissions and
14
 * limitations under the License.
15
 */
16
17
#include <config.h>
18
#include "classifier.h"
19
#include "classifier-private.h"
20
#include <errno.h>
21
#include <sys/types.h>
22
#include <netinet/in.h>
23
#include "byte-order.h"
24
#include "openvswitch/dynamic-string.h"
25
#include "odp-util.h"
26
#include "packets.h"
27
#include "util.h"
28
29
struct trie_ctx;
30
31
/* A collection of "struct cls_conjunction"s currently embedded into a
32
 * cls_match. */
33
struct cls_conjunction_set {
34
    /* Link back to the cls_match.
35
     *
36
     * cls_conjunction_set is mostly used during classifier lookup, and, in
37
     * turn, during classifier lookup the most used member of
38
     * cls_conjunction_set is the rule's priority, so we cache it here for fast
39
     * access. */
40
    struct cls_match *match;
41
    int priority;               /* Cached copy of match->priority. */
42
43
    /* Conjunction information.
44
     *
45
     * 'min_n_clauses' allows some optimization during classifier lookup. */
46
    unsigned int n;             /* Number of elements in 'conj'. */
47
    unsigned int min_n_clauses; /* Smallest 'n' among elements of 'conj'. */
48
    struct cls_conjunction conj[];
49
};
50
51
/* Ports trie depends on both ports sharing the same ovs_be32. */
52
0
#define TP_PORTS_OFS32 (offsetof(struct flow, tp_src) / 4)
53
BUILD_ASSERT_DECL(TP_PORTS_OFS32 == offsetof(struct flow, tp_dst) / 4);
54
BUILD_ASSERT_DECL(TP_PORTS_OFS32 % 2 == 0);
55
#define TP_PORTS_OFS64 (TP_PORTS_OFS32 / 2)
56
57
static size_t
58
cls_conjunction_set_size(size_t n)
59
0
{
60
0
    return (sizeof(struct cls_conjunction_set)
61
0
            + n * sizeof(struct cls_conjunction));
62
0
}
63
64
static struct cls_conjunction_set *
65
cls_conjunction_set_alloc(struct cls_match *match,
66
                          const struct cls_conjunction conj[], size_t n)
67
0
{
68
0
    if (n) {
69
0
        size_t min_n_clauses = conj[0].n_clauses;
70
0
        for (size_t i = 1; i < n; i++) {
71
0
            min_n_clauses = MIN(min_n_clauses, conj[i].n_clauses);
72
0
        }
73
74
0
        struct cls_conjunction_set *set = xmalloc(cls_conjunction_set_size(n));
75
0
        set->match = match;
76
0
        set->priority = match->priority;
77
0
        set->n = n;
78
0
        set->min_n_clauses = min_n_clauses;
79
0
        memcpy(set->conj, conj, n * sizeof *conj);
80
0
        return set;
81
0
    } else {
82
0
        return NULL;
83
0
    }
84
0
}
85
86
static struct cls_match *
87
cls_match_alloc(const struct cls_rule *rule, ovs_version_t version,
88
                const struct cls_conjunction conj[], size_t n)
89
0
{
90
0
    size_t count = miniflow_n_values(rule->match.flow);
91
92
0
    struct cls_match *cls_match
93
0
        = xmalloc(sizeof *cls_match + MINIFLOW_VALUES_SIZE(count));
94
95
0
    ovsrcu_init(&cls_match->next, NULL);
96
0
    *CONST_CAST(const struct cls_rule **, &cls_match->cls_rule) = rule;
97
0
    *CONST_CAST(int *, &cls_match->priority) = rule->priority;
98
    /* Make rule initially invisible. */
99
0
    cls_match->versions = VERSIONS_INITIALIZER(version, version);
100
0
    miniflow_clone(CONST_CAST(struct miniflow *, &cls_match->flow),
101
0
                   rule->match.flow, count);
102
0
    ovsrcu_set_hidden(&cls_match->conj_set,
103
0
                      cls_conjunction_set_alloc(cls_match, conj, n));
104
105
0
    return cls_match;
106
0
}
107
108
static struct cls_subtable *find_subtable(const struct classifier *cls,
109
                                          const struct minimask *);
110
static struct cls_subtable *insert_subtable(struct classifier *cls,
111
                                            const struct minimask *);
112
static void destroy_subtable(struct classifier *cls, struct cls_subtable *);
113
114
static const struct cls_match *find_match_wc(const struct cls_subtable *,
115
                                             ovs_version_t version,
116
                                             const struct flow *,
117
                                             struct trie_ctx *,
118
                                             uint32_t n_tries,
119
                                             struct flow_wildcards *);
120
static struct cls_match *find_equal(const struct cls_subtable *,
121
                                    const struct miniflow *, uint32_t hash);
122
123
/* Return the next visible (lower-priority) rule in the list.  Multiple
124
 * identical rules with the same priority may exist transitionally, but when
125
 * versioning is used at most one of them is ever visible for lookups on any
126
 * given 'version'. */
127
static inline const struct cls_match *
128
next_visible_rule_in_list(const struct cls_match *rule, ovs_version_t version)
129
0
{
130
0
    do {
131
0
        rule = cls_match_next(rule);
132
0
    } while (rule && !cls_match_visible_in_version(rule, version));
133
134
0
    return rule;
135
0
}
136
137
/* Type with maximum supported prefix length. */
138
union trie_prefix {
139
    struct in6_addr ipv6;  /* For sizing. */
140
    ovs_be32 be32;         /* For access. */
141
};
142
143
static unsigned int minimask_get_prefix_len(const struct minimask *,
144
                                            const struct mf_field *);
145
static void trie_init(struct classifier *cls, int trie_idx,
146
                      const struct mf_field *);
147
static unsigned int trie_lookup(const struct cls_trie *, const struct flow *,
148
                                union trie_prefix *plens);
149
static unsigned int trie_lookup_value(const rcu_trie_ptr *,
150
                                      const ovs_be32 value[], ovs_be32 plens[],
151
                                      unsigned int value_bits);
152
static void trie_destroy(struct cls_trie *);
153
static void trie_insert(struct cls_trie *, const struct cls_rule *, int mlen);
154
static void trie_insert_prefix(rcu_trie_ptr *, const ovs_be32 *prefix,
155
                               int mlen);
156
static void trie_remove(struct cls_trie *, const struct cls_rule *, int mlen);
157
static void trie_remove_prefix(rcu_trie_ptr *, const ovs_be32 *prefix,
158
                               int mlen);
159
static void mask_set_prefix_bits(struct flow_wildcards *, uint8_t be32ofs,
160
                                 unsigned int n_bits);
161
static bool mask_prefix_bits_set(const struct flow_wildcards *,
162
                                 uint8_t be32ofs, unsigned int n_bits);
163

164
/* cls_rule. */
165
166
static inline void
167
cls_rule_init__(struct cls_rule *rule, unsigned int priority)
168
0
{
169
0
    rculist_init(&rule->node);
170
0
    *CONST_CAST(int *, &rule->priority) = priority;
171
0
    ovsrcu_init(&rule->cls_match, NULL);
172
0
}
173
174
/* Initializes 'rule' to match packets specified by 'match' at the given
175
 * 'priority'.  'match' must satisfy the invariant described in the comment at
176
 * the definition of struct match.
177
 *
178
 * The caller must eventually destroy 'rule' with cls_rule_destroy().
179
 *
180
 * Clients should not use priority INT_MIN.  (OpenFlow uses priorities between
181
 * 0 and UINT16_MAX, inclusive.) */
182
void
183
cls_rule_init(struct cls_rule *rule, const struct match *match, int priority)
184
0
{
185
0
    cls_rule_init__(rule, priority);
186
0
    minimatch_init(CONST_CAST(struct minimatch *, &rule->match), match);
187
0
}
188
189
/* Same as cls_rule_init() for initialization from a "struct minimatch". */
190
void
191
cls_rule_init_from_minimatch(struct cls_rule *rule,
192
                             const struct minimatch *match, int priority)
193
0
{
194
0
    cls_rule_init__(rule, priority);
195
0
    minimatch_clone(CONST_CAST(struct minimatch *, &rule->match), match);
196
0
}
197
198
/* Initializes 'dst' as a copy of 'src'.
199
 *
200
 * The caller must eventually destroy 'dst' with cls_rule_destroy(). */
201
void
202
cls_rule_clone(struct cls_rule *dst, const struct cls_rule *src)
203
0
{
204
0
    cls_rule_init__(dst, src->priority);
205
0
    minimatch_clone(CONST_CAST(struct minimatch *, &dst->match), &src->match);
206
0
}
207
208
/* Initializes 'dst' with the data in 'src', destroying 'src'.
209
 *
210
 * 'src' must be a cls_rule NOT in a classifier.
211
 *
212
 * The caller must eventually destroy 'dst' with cls_rule_destroy(). */
213
void
214
cls_rule_move(struct cls_rule *dst, struct cls_rule *src)
215
0
{
216
0
    cls_rule_init__(dst, src->priority);
217
0
    minimatch_move(CONST_CAST(struct minimatch *, &dst->match),
218
0
                   CONST_CAST(struct minimatch *, &src->match));
219
0
}
220
221
/* Frees memory referenced by 'rule'.  Doesn't free 'rule' itself (it's
222
 * normally embedded into a larger structure).
223
 *
224
 * ('rule' must not currently be in a classifier.) */
225
void
226
cls_rule_destroy(struct cls_rule *rule)
227
    OVS_NO_THREAD_SAFETY_ANALYSIS
228
0
{
229
    /* Must not be in a classifier. */
230
0
    ovs_assert(!get_cls_match_protected(rule));
231
232
    /* Check that the rule has been properly removed from the classifier. */
233
0
    ovs_assert(rule->node.prev == RCULIST_POISON
234
0
               || rculist_is_empty(&rule->node));
235
0
    rculist_poison__(&rule->node);   /* Poisons also the next pointer. */
236
237
0
    minimatch_destroy(CONST_CAST(struct minimatch *, &rule->match));
238
0
}
239
240
/* This may only be called by the exclusive writer. */
241
void
242
cls_rule_set_conjunctions(struct cls_rule *cr,
243
                          const struct cls_conjunction *conj, size_t n)
244
0
{
245
0
    struct cls_match *match = get_cls_match_protected(cr);
246
0
    struct cls_conjunction_set *old
247
0
        = ovsrcu_get_protected(struct cls_conjunction_set *, &match->conj_set);
248
0
    struct cls_conjunction *old_conj = old ? old->conj : NULL;
249
0
    unsigned int old_n = old ? old->n : 0;
250
251
0
    if (old_n != n || (n && memcmp(old_conj, conj, n * sizeof *conj))) {
252
0
        if (old) {
253
0
            ovsrcu_postpone(free, old);
254
0
        }
255
0
        ovsrcu_set(&match->conj_set,
256
0
                   cls_conjunction_set_alloc(match, conj, n));
257
0
    }
258
0
}
259
260
261
/* Returns true if 'a' and 'b' match the same packets at the same priority,
262
 * false if they differ in some way. */
263
bool
264
cls_rule_equal(const struct cls_rule *a, const struct cls_rule *b)
265
0
{
266
0
    return a->priority == b->priority && minimatch_equal(&a->match, &b->match);
267
0
}
268
269
/* Appends a string describing 'rule' to 's'. */
270
void
271
cls_rule_format(const struct cls_rule *rule, const struct tun_table *tun_table,
272
                const struct ofputil_port_map *port_map, struct ds *s)
273
0
{
274
0
    minimatch_format(&rule->match, tun_table, port_map, s, rule->priority);
275
0
}
276
277
/* Returns true if 'rule' matches every packet, false otherwise. */
278
bool
279
cls_rule_is_catchall(const struct cls_rule *rule)
280
0
{
281
0
    return minimask_is_catchall(rule->match.mask);
282
0
}
283
284
/* Makes 'rule' invisible in 'remove_version'.  Once that version is used in
285
 * lookups, the caller should remove 'rule' via ovsrcu_postpone().
286
 *
287
 * 'rule' must be in a classifier.
288
 * This may only be called by the exclusive writer. */
289
void
290
cls_rule_make_invisible_in_version(const struct cls_rule *rule,
291
                                   ovs_version_t remove_version)
292
0
{
293
0
    struct cls_match *cls_match = get_cls_match_protected(rule);
294
295
0
    ovs_assert(remove_version >= cls_match->versions.add_version);
296
297
0
    cls_match_set_remove_version(cls_match, remove_version);
298
0
}
299
300
/* This undoes the change made by cls_rule_make_invisible_in_version().
301
 *
302
 * 'rule' must be in a classifier.
303
 * This may only be called by the exclusive writer. */
304
void
305
cls_rule_restore_visibility(const struct cls_rule *rule)
306
0
{
307
0
    cls_match_set_remove_version(get_cls_match_protected(rule),
308
0
                                 OVS_VERSION_NOT_REMOVED);
309
0
}
310
311
/* Return true if 'rule' is visible in 'version'.
312
 *
313
 * 'rule' must be in a classifier. */
314
bool
315
cls_rule_visible_in_version(const struct cls_rule *rule, ovs_version_t version)
316
0
{
317
0
    struct cls_match *cls_match = get_cls_match(rule);
318
319
0
    return cls_match && cls_match_visible_in_version(cls_match, version);
320
0
}
321

322
/* Initializes 'cls' as a classifier that initially contains no classification
323
 * rules. */
324
void
325
classifier_init(struct classifier *cls, const uint8_t *flow_segments)
326
0
{
327
0
    cls->n_rules = 0;
328
0
    cmap_init(&cls->subtables_map);
329
0
    pvector_init(&cls->subtables);
330
0
    cls->n_flow_segments = 0;
331
0
    if (flow_segments) {
332
0
        while (cls->n_flow_segments < CLS_MAX_INDICES
333
0
               && *flow_segments < FLOW_U64S) {
334
0
            cls->flow_segments[cls->n_flow_segments++] = *flow_segments++;
335
0
        }
336
0
    }
337
0
    memset(cls->tries, 0, sizeof cls->tries);
338
0
    atomic_store_explicit(&cls->n_tries, 0, memory_order_release);
339
0
    cls->publish = true;
340
0
}
341
342
/* Destroys 'cls'.  Rules within 'cls', if any, are not freed; this is the
343
 * caller's responsibility.
344
 * May only be called after all the readers have been terminated. */
345
void
346
classifier_destroy(struct classifier *cls)
347
0
{
348
0
    if (cls) {
349
0
        struct cls_subtable *subtable;
350
0
        uint32_t i, n_tries;
351
352
0
        atomic_read_relaxed(&cls->n_tries, &n_tries);
353
0
        for (i = 0; i < n_tries; i++) {
354
0
            trie_destroy(&cls->tries[i]);
355
0
        }
356
357
0
        CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
358
0
            destroy_subtable(cls, subtable);
359
0
        }
360
0
        cmap_destroy(&cls->subtables_map);
361
362
0
        pvector_destroy(&cls->subtables);
363
0
    }
364
0
}
365
366
/* Set the fields for which prefix lookup should be performed. */
367
bool
368
classifier_set_prefix_fields(struct classifier *cls,
369
                             const enum mf_field_id *trie_fields,
370
                             unsigned int n_fields)
371
0
{
372
0
    const struct mf_field *new_fields[CLS_MAX_TRIES];
373
0
    struct mf_bitmap fields = MF_BITMAP_INITIALIZER;
374
0
    uint32_t i, n_tries = 0, old_n_tries;
375
0
    uint32_t first_changed = 0;
376
0
    bool changed = false;
377
378
0
    atomic_read_relaxed(&cls->n_tries, &old_n_tries);
379
380
0
    for (i = 0; i < n_fields && n_tries < CLS_MAX_TRIES; i++) {
381
0
        const struct mf_field *field = mf_from_id(trie_fields[i]);
382
0
        if (field->flow_be32ofs < 0 || field->n_bits % 32) {
383
            /* Incompatible field.  This is the only place where we
384
             * enforce these requirements, but the rest of the trie code
385
             * depends on the flow_be32ofs to be non-negative and the
386
             * field length to be a multiple of 32 bits. */
387
0
            continue;
388
0
        }
389
390
0
        if (bitmap_is_set(fields.bm, trie_fields[i])) {
391
            /* Duplicate field, there is no need to build more than
392
             * one index for any one field. */
393
0
            continue;
394
0
        }
395
0
        bitmap_set1(fields.bm, trie_fields[i]);
396
397
0
        new_fields[n_tries] = NULL;
398
0
        if (n_tries >= old_n_tries || field != cls->tries[n_tries].field) {
399
0
            new_fields[n_tries] = field;
400
0
            if (!changed) {
401
0
                first_changed = n_tries;
402
0
            }
403
0
            changed = true;
404
0
        }
405
0
        n_tries++;
406
0
    }
407
408
0
    if (changed || n_tries < old_n_tries) {
409
0
        if (!changed) {
410
            /* Threre are no new or changed fields, only removing a few. */
411
0
            first_changed = n_tries;
412
0
        }
413
        /* Trie configuration needs to change.  Disable trie lookups and wait
414
         * for all the current readers to be done with the old configuration.
415
         * The readers may temporarily function without the trie lookup based
416
         * optimizations.  Keeping the few first entries that didn't change
417
         * accessible.
418
         *
419
         * This store can be relaxed because ovsrcu_synchronize() functions as
420
         * a memory barrier. */
421
0
        atomic_store_relaxed(&cls->n_tries, first_changed);
422
0
        ovsrcu_synchronize();
423
424
        /* Now set up the tries for new and changed fields. */
425
0
        for (i = first_changed; i < n_tries; i++) {
426
0
            if (new_fields[i]) {
427
0
                trie_destroy(&cls->tries[i]);
428
0
                trie_init(cls, i, new_fields[i]);
429
0
            }
430
0
        }
431
        /* Destroy the rest, if any. */
432
0
        for (; i < old_n_tries; i++) {
433
0
            trie_destroy(&cls->tries[i]);
434
0
        }
435
436
        /* Re-enable trie lookups.  Using release memory order, so all the
437
         * previous stores are visible in the classifier_lookup(). */
438
0
        atomic_store_explicit(&cls->n_tries, n_tries, memory_order_release);
439
0
        return true;
440
0
    }
441
442
0
    return false; /* No change. */
443
0
}
444
445
static void
446
trie_init(struct classifier *cls, int trie_idx, const struct mf_field *field)
447
0
{
448
0
    struct cls_trie *trie = &cls->tries[trie_idx];
449
0
    struct cls_subtable *subtable;
450
451
0
    ovs_assert(field);
452
0
    ovs_assert(!trie->field);
453
454
0
    trie->field = field;
455
0
    ovsrcu_set_hidden(&trie->root, NULL);
456
457
    /* Add existing rules to the new trie. */
458
0
    CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
459
0
        unsigned int plen;
460
461
0
        plen = minimask_get_prefix_len(&subtable->mask, field);
462
0
        if (plen) {
463
0
            struct cls_match *head;
464
465
0
            CMAP_FOR_EACH (head, cmap_node, &subtable->rules) {
466
0
                trie_insert(trie, head->cls_rule, plen);
467
0
            }
468
0
        }
469
        /* Initialize subtable's prefix length on this field. */
470
0
        subtable->trie_plen[trie_idx] = plen;
471
0
    }
472
0
}
473
474
/* Returns true if 'cls' contains no classification rules, false otherwise.
475
 * Checking the cmap requires no locking. */
476
bool
477
classifier_is_empty(const struct classifier *cls)
478
0
{
479
0
    return cmap_is_empty(&cls->subtables_map);
480
0
}
481
482
/* Returns the number of rules in 'cls'. */
483
int
484
classifier_count(const struct classifier *cls)
485
0
{
486
    /* n_rules is an int, so in the presence of concurrent writers this will
487
     * return either the old or a new value. */
488
0
    return cls->n_rules;
489
0
}
490
491
static inline ovs_be32 minimatch_get_ports(const struct minimatch *match)
492
0
{
493
    /* Could optimize to use the same map if needed for fast path. */
494
0
    return (miniflow_get_ports(match->flow)
495
0
            & miniflow_get_ports(&match->mask->masks));
496
0
}
497
498
/* Inserts 'rule' into 'cls' in 'version'.  Until 'rule' is removed from 'cls',
499
 * the caller must not modify or free it.
500
 *
501
 * If 'cls' already contains an identical rule (including wildcards, values of
502
 * fixed fields, and priority) that is visible in 'version', replaces the old
503
 * rule by 'rule' and returns the rule that was replaced.  The caller takes
504
 * ownership of the returned rule and is thus responsible for destroying it
505
 * with cls_rule_destroy(), after RCU grace period has passed (see
506
 * ovsrcu_postpone()).
507
 *
508
 * Returns NULL if 'cls' does not contain a rule with an identical key, after
509
 * inserting the new rule.  In this case, no rules are displaced by the new
510
 * rule, even rules that cannot have any effect because the new rule matches a
511
 * superset of their flows and has higher priority.
512
 */
513
const struct cls_rule *
514
classifier_replace(struct classifier *cls, const struct cls_rule *rule,
515
                   ovs_version_t version,
516
                   const struct cls_conjunction *conjs, size_t n_conjs)
517
0
{
518
0
    struct cls_match *new;
519
0
    struct cls_subtable *subtable;
520
0
    uint32_t ihash[CLS_MAX_INDICES];
521
0
    struct cls_match *head;
522
0
    unsigned int mask_offset;
523
0
    size_t n_rules = 0;
524
0
    uint32_t i, n_tries;
525
0
    uint8_t n_indices;
526
0
    uint32_t basis;
527
0
    uint32_t hash;
528
529
    /* 'new' is initially invisible to lookups. */
530
0
    new = cls_match_alloc(rule, version, conjs, n_conjs);
531
0
    ovsrcu_set(&CONST_CAST(struct cls_rule *, rule)->cls_match, new);
532
533
0
    subtable = find_subtable(cls, rule->match.mask);
534
0
    if (!subtable) {
535
0
        subtable = insert_subtable(cls, rule->match.mask);
536
0
    }
537
538
    /* Compute hashes in segments. */
539
0
    basis = 0;
540
0
    mask_offset = 0;
541
0
    n_indices = subtable->n_indices;
542
0
    for (i = 0; i < n_indices; i++) {
543
0
        ihash[i] = minimatch_hash_range(&rule->match, subtable->index_maps[i],
544
0
                                        &mask_offset, &basis);
545
0
    }
546
0
    hash = minimatch_hash_range(&rule->match, subtable->index_maps[i],
547
0
                                &mask_offset, &basis);
548
549
0
    head = find_equal(subtable, rule->match.flow, hash);
550
0
    if (!head) {
551
        /* Add rule to tries.
552
         *
553
         * Concurrent readers might miss seeing the rule until this update,
554
         * which might require being fixed up by revalidation later. */
555
0
        atomic_read_relaxed(&cls->n_tries, &n_tries);
556
0
        for (i = 0; i < n_tries; i++) {
557
0
            if (subtable->trie_plen[i]) {
558
0
                trie_insert(&cls->tries[i], rule, subtable->trie_plen[i]);
559
0
            }
560
0
        }
561
562
        /* Add rule to ports trie. */
563
0
        if (subtable->ports_mask_len) {
564
            /* We mask the value to be inserted to always have the wildcarded
565
             * bits in known (zero) state, so we can include them in comparison
566
             * and they will always match (== their original value does not
567
             * matter). */
568
0
            ovs_be32 masked_ports = minimatch_get_ports(&rule->match);
569
570
0
            trie_insert_prefix(&subtable->ports_trie, &masked_ports,
571
0
                               subtable->ports_mask_len);
572
0
        }
573
574
        /* Add new node to segment indices. */
575
0
        for (i = 0; i < n_indices; i++) {
576
0
            ccmap_inc(&subtable->indices[i], ihash[i]);
577
0
        }
578
0
        n_rules = cmap_insert(&subtable->rules, &new->cmap_node, hash);
579
0
    } else {   /* Equal rules exist in the classifier already. */
580
0
        struct cls_match *prev, *iter;
581
582
        /* Scan the list for the insertion point that will keep the list in
583
         * order of decreasing priority.  Insert after rules marked invisible
584
         * in any version of the same priority. */
585
0
        FOR_EACH_RULE_IN_LIST_PROTECTED (iter, prev, head) {
586
0
            if (rule->priority > iter->priority
587
0
                || (rule->priority == iter->priority
588
0
                    && !cls_match_is_eventually_invisible(iter))) {
589
0
                break;
590
0
            }
591
0
        }
592
593
        /* Replace 'iter' with 'new' or insert 'new' between 'prev' and
594
         * 'iter'. */
595
0
        if (iter) {
596
0
            struct cls_rule *old;
597
598
0
            if (rule->priority == iter->priority) {
599
0
                cls_match_replace(prev, iter, new);
600
0
                old = CONST_CAST(struct cls_rule *, iter->cls_rule);
601
0
            } else {
602
0
                cls_match_insert(prev, iter, new);
603
0
                old = NULL;
604
0
            }
605
606
            /* Replace the existing head in data structures, if rule is the new
607
             * head. */
608
0
            if (iter == head) {
609
0
                cmap_replace(&subtable->rules, &head->cmap_node,
610
0
                             &new->cmap_node, hash);
611
0
            }
612
613
0
            if (old) {
614
0
                struct cls_conjunction_set *conj_set;
615
616
0
                conj_set = ovsrcu_get_protected(struct cls_conjunction_set *,
617
0
                                                &iter->conj_set);
618
0
                if (conj_set) {
619
0
                    ovsrcu_postpone(free, conj_set);
620
0
                }
621
622
0
                ovsrcu_set(&old->cls_match, NULL); /* Marks old rule as removed
623
                                                    * from the classifier. */
624
0
                ovsrcu_postpone(cls_match_free_cb, iter);
625
626
                /* No change in subtable's max priority or max count. */
627
628
                /* Make 'new' visible to lookups in the appropriate version. */
629
0
                cls_match_set_remove_version(new, OVS_VERSION_NOT_REMOVED);
630
631
                /* Make rule visible to iterators (immediately). */
632
0
                rculist_replace(CONST_CAST(struct rculist *, &rule->node),
633
0
                                &old->node);
634
635
                /* Return displaced rule.  Caller is responsible for keeping it
636
                 * around until all threads quiesce. */
637
0
                return old;
638
0
            }
639
0
        } else {
640
            /* 'new' is new node after 'prev' */
641
0
            cls_match_insert(prev, iter, new);
642
0
        }
643
0
    }
644
645
    /* Make 'new' visible to lookups in the appropriate version. */
646
0
    cls_match_set_remove_version(new, OVS_VERSION_NOT_REMOVED);
647
648
    /* Make rule visible to iterators (immediately). */
649
0
    rculist_push_back(&subtable->rules_list,
650
0
                      CONST_CAST(struct rculist *, &rule->node));
651
652
    /* Rule was added, not replaced.  Update 'subtable's 'max_priority' and
653
     * 'max_count', if necessary.
654
     *
655
     * The rule was already inserted, but concurrent readers may not see the
656
     * rule yet as the subtables vector is not updated yet.  This will have to
657
     * be fixed by revalidation later. */
658
0
    if (n_rules == 1) {
659
0
        subtable->max_priority = rule->priority;
660
0
        subtable->max_count = 1;
661
0
        pvector_insert(&cls->subtables, subtable, rule->priority);
662
0
    } else if (rule->priority == subtable->max_priority) {
663
0
        ++subtable->max_count;
664
0
    } else if (rule->priority > subtable->max_priority) {
665
0
        subtable->max_priority = rule->priority;
666
0
        subtable->max_count = 1;
667
0
        pvector_change_priority(&cls->subtables, subtable, rule->priority);
668
0
    }
669
670
    /* Nothing was replaced. */
671
0
    cls->n_rules++;
672
673
0
    if (cls->publish) {
674
0
        pvector_publish(&cls->subtables);
675
0
    }
676
677
0
    return NULL;
678
0
}
679
680
/* Inserts 'rule' into 'cls'.  Until 'rule' is removed from 'cls', the caller
681
 * must not modify or free it.
682
 *
683
 * 'cls' must not contain an identical rule (including wildcards, values of
684
 * fixed fields, and priority).  Use classifier_find_rule_exactly() to find
685
 * such a rule. */
686
void
687
classifier_insert(struct classifier *cls, const struct cls_rule *rule,
688
                  ovs_version_t version, const struct cls_conjunction conj[],
689
                  size_t n_conj)
690
0
{
691
0
    const struct cls_rule *displaced_rule
692
0
        = classifier_replace(cls, rule, version, conj, n_conj);
693
0
    ovs_assert(!displaced_rule);
694
0
}
695
696
/* If 'rule' is in 'cls', removes 'rule' from 'cls' and returns true.  It is
697
 * the caller's responsibility to destroy 'rule' with cls_rule_destroy(),
698
 * freeing the memory block in which 'rule' resides, etc., as necessary.
699
 *
700
 * If 'rule' is not in any classifier, returns false without making any
701
 * changes.
702
 *
703
 * 'rule' must not be in some classifier other than 'cls'.
704
 */
705
bool
706
classifier_remove(struct classifier *cls, const struct cls_rule *cls_rule)
707
0
{
708
0
    struct cls_match *rule, *prev, *next, *head;
709
0
    struct cls_conjunction_set *conj_set;
710
0
    struct cls_subtable *subtable;
711
0
    uint32_t basis = 0, hash, ihash[CLS_MAX_INDICES];
712
0
    unsigned int mask_offset;
713
0
    uint32_t i, n_tries;
714
0
    uint8_t n_indices;
715
0
    size_t n_rules;
716
717
0
    rule = get_cls_match_protected(cls_rule);
718
0
    if (!rule) {
719
0
        return false;
720
0
    }
721
    /* Mark as removed. */
722
0
    ovsrcu_set(&CONST_CAST(struct cls_rule *, cls_rule)->cls_match, NULL);
723
724
    /* Remove 'cls_rule' from the subtable's rules list. */
725
0
    rculist_remove(CONST_CAST(struct rculist *, &cls_rule->node));
726
727
0
    subtable = find_subtable(cls, cls_rule->match.mask);
728
0
    ovs_assert(subtable);
729
730
0
    mask_offset = 0;
731
0
    n_indices = subtable->n_indices;
732
0
    for (i = 0; i < n_indices; i++) {
733
0
        ihash[i] = minimatch_hash_range(&cls_rule->match,
734
0
                                        subtable->index_maps[i],
735
0
                                        &mask_offset, &basis);
736
0
    }
737
0
    hash = minimatch_hash_range(&cls_rule->match, subtable->index_maps[i],
738
0
                                &mask_offset, &basis);
739
740
0
    head = find_equal(subtable, cls_rule->match.flow, hash);
741
742
    /* Check if the rule is not the head rule. */
743
0
    if (rule != head) {
744
0
        struct cls_match *iter;
745
746
        /* Not the head rule, but potentially one with the same priority. */
747
        /* Remove from the list of equal rules. */
748
0
        FOR_EACH_RULE_IN_LIST_PROTECTED (iter, prev, head) {
749
0
            if (rule == iter) {
750
0
                break;
751
0
            }
752
0
        }
753
0
        ovs_assert(iter == rule);
754
755
0
        cls_match_remove(prev, rule);
756
757
0
        goto check_priority;
758
0
    }
759
760
    /* 'rule' is the head rule.  Check if there is another rule to
761
     * replace 'rule' in the data structures. */
762
0
    next = cls_match_next_protected(rule);
763
0
    if (next) {
764
0
        cmap_replace(&subtable->rules, &rule->cmap_node, &next->cmap_node,
765
0
                     hash);
766
0
        goto check_priority;
767
0
    }
768
769
    /* 'rule' is last of the kind in the classifier, must remove from all the
770
     * data structures. */
771
772
0
    if (subtable->ports_mask_len) {
773
0
        ovs_be32 masked_ports = minimatch_get_ports(&cls_rule->match);
774
775
0
        trie_remove_prefix(&subtable->ports_trie,
776
0
                           &masked_ports, subtable->ports_mask_len);
777
0
    }
778
0
    atomic_read_relaxed(&cls->n_tries, &n_tries);
779
0
    for (i = 0; i < n_tries; i++) {
780
0
        if (subtable->trie_plen[i]) {
781
0
            trie_remove(&cls->tries[i], cls_rule, subtable->trie_plen[i]);
782
0
        }
783
0
    }
784
785
    /* Remove rule node from indices. */
786
0
    for (i = 0; i < n_indices; i++) {
787
0
        ccmap_dec(&subtable->indices[i], ihash[i]);
788
0
    }
789
0
    n_rules = cmap_remove(&subtable->rules, &rule->cmap_node, hash);
790
791
0
    if (n_rules == 0) {
792
0
        destroy_subtable(cls, subtable);
793
0
    } else {
794
0
check_priority:
795
0
        if (subtable->max_priority == rule->priority
796
0
            && --subtable->max_count == 0) {
797
            /* Find the new 'max_priority' and 'max_count'. */
798
0
            int max_priority = INT_MIN;
799
0
            CMAP_FOR_EACH (head, cmap_node, &subtable->rules) {
800
0
                if (head->priority > max_priority) {
801
0
                    max_priority = head->priority;
802
0
                    subtable->max_count = 1;
803
0
                } else if (head->priority == max_priority) {
804
0
                    ++subtable->max_count;
805
0
                }
806
0
            }
807
0
            subtable->max_priority = max_priority;
808
0
            pvector_change_priority(&cls->subtables, subtable, max_priority);
809
0
        }
810
0
    }
811
812
0
    if (cls->publish) {
813
0
        pvector_publish(&cls->subtables);
814
0
    }
815
816
    /* free the rule. */
817
0
    conj_set = ovsrcu_get_protected(struct cls_conjunction_set *,
818
0
                                    &rule->conj_set);
819
0
    if (conj_set) {
820
0
        ovsrcu_postpone(free, conj_set);
821
0
    }
822
0
    ovsrcu_postpone(cls_match_free_cb, rule);
823
0
    cls->n_rules--;
824
825
0
    return true;
826
0
}
827
828
void
829
classifier_remove_assert(struct classifier *cls,
830
                         const struct cls_rule *cls_rule)
831
0
{
832
0
    ovs_assert(classifier_remove(cls, cls_rule));
833
0
}
834
835
/* Prefix tree context.  Valid when 'lookup_done' is true.  Can skip all
836
 * subtables which have a prefix match on the trie field, but whose prefix
837
 * length is not indicated in 'match_plens'.  For example, a subtable that
838
 * has a 8-bit trie field prefix match can be skipped if
839
 * !be_get_bit_at(&match_plens, 8 - 1).  If skipped, 'maskbits' prefix bits
840
 * must be unwildcarded to make datapath flow only match packets it should. */
841
struct trie_ctx {
842
    const struct cls_trie *trie;
843
    bool lookup_done;        /* Status of the lookup. */
844
    uint8_t be32ofs;         /* U32 offset of the field in question. */
845
    unsigned int maskbits;   /* Prefix length needed to avoid false matches. */
846
    union trie_prefix match_plens;  /* Bitmask of prefix lengths with possible
847
                                     * matches. */
848
};
849
850
static void
851
trie_ctx_init(struct trie_ctx *ctx, const struct cls_trie *trie)
852
0
{
853
0
    ctx->trie = trie;
854
0
    ctx->be32ofs = trie->field->flow_be32ofs;
855
0
    ctx->lookup_done = false;
856
0
}
857
858
static void
859
insert_conj_flows(struct hmapx *conj_flows, uint32_t id, int priority,
860
                  struct cls_conjunction_set **soft, size_t n_soft)
861
0
{
862
0
    struct cls_conjunction_set *conj_set;
863
864
0
    if (!conj_flows) {
865
0
        return;
866
0
    }
867
868
0
    for (size_t i = 0; i < n_soft; i++) {
869
0
        conj_set = soft[i];
870
871
0
        if (conj_set->priority != priority) {
872
0
            continue;
873
0
        }
874
875
0
        for (size_t j = 0; j < conj_set->n; j++) {
876
0
            if (conj_set->conj[j].id == id) {
877
0
                hmapx_add(conj_flows, (void *) (conj_set->match->cls_rule));
878
0
                break;
879
0
            }
880
0
        }
881
0
    }
882
0
}
883
884
struct conjunctive_match {
885
    struct hmap_node hmap_node;
886
    uint32_t id;
887
    uint64_t clauses;
888
};
889
890
static struct conjunctive_match *
891
find_conjunctive_match__(struct hmap *matches, uint64_t id, uint32_t hash)
892
0
{
893
0
    struct conjunctive_match *m;
894
895
0
    HMAP_FOR_EACH_IN_BUCKET (m, hmap_node, hash, matches) {
896
0
        if (m->id == id) {
897
0
            return m;
898
0
        }
899
0
    }
900
0
    return NULL;
901
0
}
902
903
static bool
904
find_conjunctive_match(const struct cls_conjunction_set *set,
905
                       unsigned int max_n_clauses, struct hmap *matches,
906
                       struct conjunctive_match *cm_stubs, size_t n_cm_stubs,
907
                       uint32_t *idp)
908
0
{
909
0
    const struct cls_conjunction *c;
910
911
0
    if (max_n_clauses < set->min_n_clauses) {
912
0
        return false;
913
0
    }
914
915
0
    for (c = set->conj; c < &set->conj[set->n]; c++) {
916
0
        struct conjunctive_match *cm;
917
0
        uint32_t hash;
918
919
0
        if (c->n_clauses > max_n_clauses) {
920
0
            continue;
921
0
        }
922
923
0
        hash = hash_int(c->id, 0);
924
0
        cm = find_conjunctive_match__(matches, c->id, hash);
925
0
        if (!cm) {
926
0
            size_t n = hmap_count(matches);
927
928
0
            cm = n < n_cm_stubs ? &cm_stubs[n] : xmalloc(sizeof *cm);
929
0
            hmap_insert(matches, &cm->hmap_node, hash);
930
0
            cm->id = c->id;
931
0
            cm->clauses = UINT64_MAX << (c->n_clauses & 63);
932
0
        }
933
0
        cm->clauses |= UINT64_C(1) << c->clause;
934
0
        if (cm->clauses == UINT64_MAX) {
935
0
            *idp = cm->id;
936
0
            return true;
937
0
        }
938
0
    }
939
0
    return false;
940
0
}
941
942
static void
943
free_conjunctive_matches(struct hmap *matches,
944
                         struct conjunctive_match *cm_stubs, size_t n_cm_stubs)
945
0
{
946
0
    if (hmap_count(matches) > n_cm_stubs) {
947
0
        struct conjunctive_match *cm;
948
949
0
        HMAP_FOR_EACH_SAFE (cm, hmap_node, matches) {
950
0
            if (!(cm >= cm_stubs && cm < &cm_stubs[n_cm_stubs])) {
951
0
                free(cm);
952
0
            }
953
0
        }
954
0
    }
955
0
    hmap_destroy(matches);
956
0
}
957
958
/* Like classifier_lookup(), except that support for conjunctive matches can be
959
 * configured with 'allow_conjunctive_matches'.  That feature is not exposed
960
 * externally because turning off conjunctive matches is only useful to avoid
961
 * recursion within this function itself.
962
 *
963
 * 'flow' is non-const to allow for temporary modifications during the lookup.
964
 * Any changes are restored before returning.
965
 *
966
 * 'conj_flows' is an optional parameter.  If it is non-null, the matching
967
 * conjunctive flows are inserted. */
968
static const struct cls_rule *
969
classifier_lookup__(const struct classifier *cls, ovs_version_t version,
970
                    struct flow *flow, struct flow_wildcards *wc,
971
                    bool allow_conjunctive_matches,
972
                    struct hmapx *conj_flows)
973
0
{
974
0
    struct trie_ctx trie_ctx[CLS_MAX_TRIES];
975
0
    const struct cls_match *match;
976
    /* Highest-priority flow in 'cls' that certainly matches 'flow'. */
977
0
    const struct cls_match *hard = NULL;
978
0
    int hard_pri = INT_MIN;     /* hard ? hard->priority : INT_MIN. */
979
980
    /* Highest-priority conjunctive flows in 'cls' matching 'flow'.  Since
981
     * these are (components of) conjunctive flows, we can only know whether
982
     * the full conjunctive flow matches after seeing multiple of them.  Thus,
983
     * we refer to these as "soft matches". */
984
0
    struct cls_conjunction_set *soft_stub[64];
985
0
    struct cls_conjunction_set **soft = soft_stub;
986
0
    size_t n_soft = 0, allocated_soft = ARRAY_SIZE(soft_stub);
987
0
    int soft_pri = INT_MIN;    /* n_soft ? MAX(soft[*]->priority) : INT_MIN. */
988
989
0
    uint32_t n_tries;
990
991
    /* Using memory_order_acquire on cls->n_tries to make sure that all the
992
     * configuration changes for these tries are fully visible after the read.
993
     *
994
     * Trie configuration changes typically happen on startup, but can also
995
     * happen in runtime. */
996
0
    atomic_read_explicit(&CONST_CAST(struct classifier *, cls)->n_tries,
997
0
                         &n_tries, memory_order_acquire);
998
999
    /* Initialize trie contexts for find_match_wc(). */
1000
0
    for (uint32_t i = 0; i < n_tries; i++) {
1001
0
        trie_ctx_init(&trie_ctx[i], &cls->tries[i]);
1002
0
    }
1003
1004
    /* Main loop. */
1005
0
    struct cls_subtable *subtable;
1006
0
    PVECTOR_FOR_EACH_PRIORITY (subtable, hard_pri + 1, 2, sizeof *subtable,
1007
0
                               &cls->subtables) {
1008
0
        struct cls_conjunction_set *conj_set;
1009
1010
        /* Skip subtables with no match, or where the match is lower-priority
1011
         * than some certain match we've already found. */
1012
0
        match = find_match_wc(subtable, version, flow, trie_ctx, n_tries, wc);
1013
0
        if (!match || match->priority <= hard_pri) {
1014
0
            continue;
1015
0
        }
1016
1017
0
        conj_set = ovsrcu_get(struct cls_conjunction_set *, &match->conj_set);
1018
0
        if (!conj_set) {
1019
            /* 'match' isn't part of a conjunctive match.  It's the best
1020
             * certain match we've got so far, since we know that it's
1021
             * higher-priority than hard_pri.
1022
             *
1023
             * (There might be a higher-priority conjunctive match.  We can't
1024
             * tell yet.) */
1025
0
            hard = match;
1026
0
            hard_pri = hard->priority;
1027
0
        } else if (allow_conjunctive_matches) {
1028
            /* 'match' is part of a conjunctive match.  Add it to the list. */
1029
0
            if (OVS_UNLIKELY(n_soft >= allocated_soft)) {
1030
0
                struct cls_conjunction_set **old_soft = soft;
1031
1032
0
                allocated_soft *= 2;
1033
0
                soft = xmalloc(allocated_soft * sizeof *soft);
1034
0
                memcpy(soft, old_soft, n_soft * sizeof *soft);
1035
0
                if (old_soft != soft_stub) {
1036
0
                    free(old_soft);
1037
0
                }
1038
0
            }
1039
0
            soft[n_soft++] = conj_set;
1040
1041
            /* Keep track of the highest-priority soft match. */
1042
0
            if (soft_pri < match->priority) {
1043
0
                soft_pri = match->priority;
1044
0
            }
1045
0
        }
1046
0
    }
1047
1048
    /* In the common case, at this point we have no soft matches and we can
1049
     * return immediately.  (We do the same thing if we have potential soft
1050
     * matches but none of them are higher-priority than our hard match.) */
1051
0
    if (hard_pri >= soft_pri) {
1052
0
        if (soft != soft_stub) {
1053
0
            free(soft);
1054
0
        }
1055
0
        return hard ? hard->cls_rule : NULL;
1056
0
    }
1057
1058
    /* At this point, we have some soft matches.  We might also have a hard
1059
     * match; if so, its priority is lower than the highest-priority soft
1060
     * match. */
1061
1062
    /* Soft match loop.
1063
     *
1064
     * Check whether soft matches are real matches. */
1065
0
    for (;;) {
1066
        /* Delete soft matches that are null.  This only happens in second and
1067
         * subsequent iterations of the soft match loop, when we drop back from
1068
         * a high-priority soft match to a lower-priority one.
1069
         *
1070
         * Also, delete soft matches whose priority is less than or equal to
1071
         * the hard match's priority.  In the first iteration of the soft
1072
         * match, these can be in 'soft' because the earlier main loop found
1073
         * the soft match before the hard match.  In second and later iteration
1074
         * of the soft match loop, these can be in 'soft' because we dropped
1075
         * back from a high-priority soft match to a lower-priority soft match.
1076
         *
1077
         * It is tempting to delete soft matches that cannot be satisfied
1078
         * because there are fewer soft matches than required to satisfy any of
1079
         * their conjunctions, but we cannot do that because there might be
1080
         * lower priority soft or hard matches with otherwise identical
1081
         * matches.  (We could special case those here, but there's no
1082
         * need--we'll do so at the bottom of the soft match loop anyway and
1083
         * this duplicates less code.)
1084
         *
1085
         * It's also tempting to break out of the soft match loop if 'n_soft ==
1086
         * 1' but that would also miss lower-priority hard matches.  We could
1087
         * special case that also but again there's no need. */
1088
0
        for (int i = 0; i < n_soft; ) {
1089
0
            if (!soft[i] || soft[i]->priority <= hard_pri) {
1090
0
                soft[i] = soft[--n_soft];
1091
0
            } else {
1092
0
                i++;
1093
0
            }
1094
0
        }
1095
0
        if (!n_soft) {
1096
0
            break;
1097
0
        }
1098
1099
        /* Find the highest priority among the soft matches.  (We know this
1100
         * must be higher than the hard match's priority; otherwise we would
1101
         * have deleted all of the soft matches in the previous loop.)  Count
1102
         * the number of soft matches that have that priority. */
1103
0
        soft_pri = INT_MIN;
1104
0
        int n_soft_pri = 0;
1105
0
        for (int i = 0; i < n_soft; i++) {
1106
0
            if (soft[i]->priority > soft_pri) {
1107
0
                soft_pri = soft[i]->priority;
1108
0
                n_soft_pri = 1;
1109
0
            } else if (soft[i]->priority == soft_pri) {
1110
0
                n_soft_pri++;
1111
0
            }
1112
0
        }
1113
0
        ovs_assert(soft_pri > hard_pri);
1114
1115
        /* Look for a real match among the highest-priority soft matches.
1116
         *
1117
         * It's unusual to have many conjunctive matches, so we use stubs to
1118
         * avoid calling malloc() in the common case.  An hmap has a built-in
1119
         * stub for up to 2 hmap_nodes; possibly, we would benefit a variant
1120
         * with a bigger stub. */
1121
0
        struct conjunctive_match cm_stubs[16];
1122
0
        struct hmap matches;
1123
1124
0
        hmap_init(&matches);
1125
0
        for (int i = 0; i < n_soft; i++) {
1126
0
            uint32_t id;
1127
1128
0
            if (soft[i]->priority == soft_pri
1129
0
                && find_conjunctive_match(soft[i], n_soft_pri, &matches,
1130
0
                                          cm_stubs, ARRAY_SIZE(cm_stubs),
1131
0
                                          &id)) {
1132
0
                uint32_t saved_conj_id = flow->conj_id;
1133
0
                const struct cls_rule *rule;
1134
1135
0
                flow->conj_id = id;
1136
0
                rule = classifier_lookup__(cls, version, flow, wc, false,
1137
0
                                           NULL);
1138
0
                flow->conj_id = saved_conj_id;
1139
1140
0
                if (rule) {
1141
0
                    if (allow_conjunctive_matches) {
1142
0
                        insert_conj_flows(conj_flows, id, soft_pri, soft,
1143
0
                                          n_soft);
1144
0
                    }
1145
0
                    free_conjunctive_matches(&matches,
1146
0
                                             cm_stubs, ARRAY_SIZE(cm_stubs));
1147
0
                    if (soft != soft_stub) {
1148
0
                        free(soft);
1149
0
                    }
1150
0
                    return rule;
1151
0
                }
1152
0
            }
1153
0
        }
1154
0
        free_conjunctive_matches(&matches, cm_stubs, ARRAY_SIZE(cm_stubs));
1155
1156
        /* There's no real match among the highest-priority soft matches.
1157
         * However, if any of those soft matches has a lower-priority but
1158
         * otherwise identical flow match, then we need to consider those for
1159
         * soft or hard matches.
1160
         *
1161
         * The next iteration of the soft match loop will delete any null
1162
         * pointers we put into 'soft' (and some others too). */
1163
0
        for (int i = 0; i < n_soft; i++) {
1164
0
            if (soft[i]->priority != soft_pri) {
1165
0
                continue;
1166
0
            }
1167
1168
            /* Find next-lower-priority flow with identical flow match. */
1169
0
            match = next_visible_rule_in_list(soft[i]->match, version);
1170
0
            if (match) {
1171
0
                soft[i] = ovsrcu_get(struct cls_conjunction_set *,
1172
0
                                     &match->conj_set);
1173
0
                if (!soft[i]) {
1174
                    /* The flow is a hard match; don't treat as a soft
1175
                     * match. */
1176
0
                    if (match->priority > hard_pri) {
1177
0
                        hard = match;
1178
0
                        hard_pri = hard->priority;
1179
0
                    }
1180
0
                }
1181
0
            } else {
1182
                /* No such lower-priority flow (probably the common case). */
1183
0
                soft[i] = NULL;
1184
0
            }
1185
0
        }
1186
0
    }
1187
1188
0
    if (soft != soft_stub) {
1189
0
        free(soft);
1190
0
    }
1191
0
    return hard ? hard->cls_rule : NULL;
1192
0
}
1193
1194
/* Finds and returns the highest-priority rule in 'cls' that matches 'flow' and
1195
 * that is visible in 'version'.  Returns a null pointer if no rules in 'cls'
1196
 * match 'flow'.  If multiple rules of equal priority match 'flow', returns one
1197
 * arbitrarily.
1198
 *
1199
 * If a rule is found and 'wc' is non-null, bitwise-OR's 'wc' with the
1200
 * set of bits that were significant in the lookup.  At some point
1201
 * earlier, 'wc' should have been initialized (e.g., by
1202
 * flow_wildcards_init_catchall()).
1203
 *
1204
 * 'flow' is non-const to allow for temporary modifications during the lookup.
1205
 * Any changes are restored before returning.
1206
 *
1207
 * 'conj_flows' is an optional parameter.  If it is non-null, the matching
1208
 * conjunctive flows are inserted. */
1209
const struct cls_rule *
1210
classifier_lookup(const struct classifier *cls, ovs_version_t version,
1211
                  struct flow *flow, struct flow_wildcards *wc,
1212
                  struct hmapx *conj_flows)
1213
0
{
1214
0
    return classifier_lookup__(cls, version, flow, wc, true, conj_flows);
1215
0
}
1216
1217
/* Finds and returns a rule in 'cls' with exactly the same priority and
1218
 * matching criteria as 'target', and that is visible in 'version'.
1219
 * Only one such rule may ever exist.  Returns a null pointer if 'cls' doesn't
1220
 * contain an exact match. */
1221
const struct cls_rule *
1222
classifier_find_rule_exactly(const struct classifier *cls,
1223
                             const struct cls_rule *target,
1224
                             ovs_version_t version)
1225
0
{
1226
0
    const struct cls_match *head, *rule;
1227
0
    const struct cls_subtable *subtable;
1228
1229
0
    subtable = find_subtable(cls, target->match.mask);
1230
0
    if (!subtable) {
1231
0
        return NULL;
1232
0
    }
1233
1234
0
    head = find_equal(subtable, target->match.flow,
1235
0
                      miniflow_hash_in_minimask(target->match.flow,
1236
0
                                                target->match.mask, 0));
1237
0
    if (!head) {
1238
0
        return NULL;
1239
0
    }
1240
0
    CLS_MATCH_FOR_EACH (rule, head) {
1241
0
        if (rule->priority < target->priority) {
1242
0
            break; /* Not found. */
1243
0
        }
1244
0
        if (rule->priority == target->priority
1245
0
            && cls_match_visible_in_version(rule, version)) {
1246
0
            return rule->cls_rule;
1247
0
        }
1248
0
    }
1249
0
    return NULL;
1250
0
}
1251
1252
/* Finds and returns a rule in 'cls' with priority 'priority' and exactly the
1253
 * same matching criteria as 'target', and that is visible in 'version'.
1254
 * Returns a null pointer if 'cls' doesn't contain an exact match visible in
1255
 * 'version'. */
1256
const struct cls_rule *
1257
classifier_find_match_exactly(const struct classifier *cls,
1258
                              const struct match *target, int priority,
1259
                              ovs_version_t version)
1260
0
{
1261
0
    const struct cls_rule *retval;
1262
0
    struct cls_rule cr;
1263
1264
0
    cls_rule_init(&cr, target, priority);
1265
0
    retval = classifier_find_rule_exactly(cls, &cr, version);
1266
0
    cls_rule_destroy(&cr);
1267
1268
0
    return retval;
1269
0
}
1270
1271
/* Finds and returns a rule in 'cls' with priority 'priority' and exactly the
1272
 * same matching criteria as 'target', and that is visible in 'version'.
1273
 * Returns a null pointer if 'cls' doesn't contain an exact match visible in
1274
 * 'version'. */
1275
const struct cls_rule *
1276
classifier_find_minimatch_exactly(const struct classifier *cls,
1277
                              const struct minimatch *target, int priority,
1278
                              ovs_version_t version)
1279
0
{
1280
0
    const struct cls_rule *retval;
1281
0
    struct cls_rule cr;
1282
1283
0
    cls_rule_init_from_minimatch(&cr, target, priority);
1284
0
    retval = classifier_find_rule_exactly(cls, &cr, version);
1285
0
    cls_rule_destroy(&cr);
1286
1287
0
    return retval;
1288
0
}
1289
1290
/* Checks if 'target' would overlap any other rule in 'cls' in 'version'.  Two
1291
 * rules are considered to overlap if both rules have the same priority and a
1292
 * packet could match both, and if both rules are visible in the same version.
1293
 *
1294
 * A trivial example of overlapping rules is two rules matching disjoint sets
1295
 * of fields. E.g., if one rule matches only on port number, while another only
1296
 * on dl_type, any packet from that specific port and with that specific
1297
 * dl_type could match both, if the rules also have the same priority. */
1298
bool
1299
classifier_rule_overlaps(const struct classifier *cls,
1300
                         const struct cls_rule *target, ovs_version_t version)
1301
0
{
1302
0
    struct cls_subtable *subtable;
1303
1304
    /* Iterate subtables in the descending max priority order. */
1305
0
    PVECTOR_FOR_EACH_PRIORITY (subtable, target->priority, 2,
1306
0
                               sizeof(struct cls_subtable), &cls->subtables) {
1307
0
        struct {
1308
0
            struct minimask mask;
1309
0
            uint64_t storage[FLOW_U64S];
1310
0
        } m;
1311
0
        const struct cls_rule *rule;
1312
1313
0
        minimask_combine(&m.mask, target->match.mask, &subtable->mask,
1314
0
                         m.storage);
1315
1316
0
        RCULIST_FOR_EACH (rule, node, &subtable->rules_list) {
1317
0
            if (rule->priority == target->priority
1318
0
                && miniflow_equal_in_minimask(target->match.flow,
1319
0
                                              rule->match.flow, &m.mask)
1320
0
                && cls_rule_visible_in_version(rule, version)) {
1321
0
                return true;
1322
0
            }
1323
0
        }
1324
0
    }
1325
0
    return false;
1326
0
}
1327
1328
/* Returns true if 'rule' exactly matches 'criteria' or if 'rule' is more
1329
 * specific than 'criteria'.  That is, 'rule' matches 'criteria' and this
1330
 * function returns true if, for every field:
1331
 *
1332
 *   - 'criteria' and 'rule' specify the same (non-wildcarded) value for the
1333
 *     field, or
1334
 *
1335
 *   - 'criteria' wildcards the field,
1336
 *
1337
 * Conversely, 'rule' does not match 'criteria' and this function returns false
1338
 * if, for at least one field:
1339
 *
1340
 *   - 'criteria' and 'rule' specify different values for the field, or
1341
 *
1342
 *   - 'criteria' specifies a value for the field but 'rule' wildcards it.
1343
 *
1344
 * Equivalently, the truth table for whether a field matches is:
1345
 *
1346
 *                                     rule
1347
 *
1348
 *                   c         wildcard    exact
1349
 *                   r        +---------+---------+
1350
 *                   i   wild |   yes   |   yes   |
1351
 *                   t   card |         |         |
1352
 *                   e        +---------+---------+
1353
 *                   r  exact |    no   |if values|
1354
 *                   i        |         |are equal|
1355
 *                   a        +---------+---------+
1356
 *
1357
 * This is the matching rule used by OpenFlow 1.0 non-strict OFPT_FLOW_MOD
1358
 * commands and by OpenFlow 1.0 aggregate and flow stats.
1359
 *
1360
 * Ignores rule->priority. */
1361
bool
1362
cls_rule_is_loose_match(const struct cls_rule *rule,
1363
                        const struct minimatch *criteria)
1364
0
{
1365
0
    return (!minimask_has_extra(rule->match.mask, criteria->mask)
1366
0
            && miniflow_equal_in_minimask(rule->match.flow, criteria->flow,
1367
0
                                          criteria->mask));
1368
0
}
1369

1370
/* Iteration. */
1371
1372
static bool
1373
rule_matches(const struct cls_rule *rule, const struct cls_rule *target,
1374
             ovs_version_t version)
1375
0
{
1376
    /* Rule may only match a target if it is visible in target's version. */
1377
0
    return cls_rule_visible_in_version(rule, version)
1378
0
        && (!target || miniflow_equal_in_minimask(rule->match.flow,
1379
0
                                                  target->match.flow,
1380
0
                                                  target->match.mask));
1381
0
}
1382
1383
static const struct cls_rule *
1384
search_subtable(const struct cls_subtable *subtable,
1385
                struct cls_cursor *cursor)
1386
0
{
1387
0
    if (!cursor->target
1388
0
        || !minimask_has_extra(&subtable->mask, cursor->target->match.mask)) {
1389
0
        const struct cls_rule *rule;
1390
1391
0
        RCULIST_FOR_EACH (rule, node, &subtable->rules_list) {
1392
0
            if (rule_matches(rule, cursor->target, cursor->version)) {
1393
0
                return rule;
1394
0
            }
1395
0
        }
1396
0
    }
1397
0
    return NULL;
1398
0
}
1399
1400
/* Initializes 'cursor' for iterating through rules in 'cls', and returns the
1401
 * cursor.
1402
 *
1403
 *     - If 'target' is null, or if the 'target' is a catchall target, the
1404
 *       cursor will visit every rule in 'cls' that is visible in 'version'.
1405
 *
1406
 *     - If 'target' is nonnull, the cursor will visit each 'rule' in 'cls'
1407
 *       such that cls_rule_is_loose_match(rule, target) returns true and that
1408
 *       the rule is visible in 'version'.
1409
 *
1410
 * Ignores target->priority. */
1411
struct cls_cursor
1412
cls_cursor_start(const struct classifier *cls, const struct cls_rule *target,
1413
                 ovs_version_t version)
1414
0
{
1415
0
    struct cls_cursor cursor;
1416
0
    struct cls_subtable *subtable;
1417
1418
0
    memset(&cursor, 0x0, sizeof cursor);
1419
0
    cursor.cls = cls;
1420
0
    cursor.target = target && !cls_rule_is_catchall(target) ? target : NULL;
1421
0
    cursor.version = version;
1422
0
    cursor.rule = NULL;
1423
1424
    /* Find first rule. */
1425
0
    PVECTOR_CURSOR_FOR_EACH (subtable, &cursor.subtables,
1426
0
                             &cursor.cls->subtables) {
1427
0
        const struct cls_rule *rule = search_subtable(subtable, &cursor);
1428
1429
0
        if (rule) {
1430
0
            cursor.subtable = subtable;
1431
0
            cursor.rule = rule;
1432
0
            break;
1433
0
        }
1434
0
    }
1435
1436
0
    return cursor;
1437
0
}
1438
1439
static const struct cls_rule *
1440
cls_cursor_next(struct cls_cursor *cursor)
1441
0
{
1442
0
    const struct cls_rule *rule;
1443
0
    const struct cls_subtable *subtable;
1444
1445
0
    rule = cursor->rule;
1446
0
    subtable = cursor->subtable;
1447
0
    RCULIST_FOR_EACH_CONTINUE (rule, node, &subtable->rules_list) {
1448
0
        if (rule_matches(rule, cursor->target, cursor->version)) {
1449
0
            return rule;
1450
0
        }
1451
0
    }
1452
1453
0
    PVECTOR_CURSOR_FOR_EACH_CONTINUE (subtable, &cursor->subtables) {
1454
0
        rule = search_subtable(subtable, cursor);
1455
0
        if (rule) {
1456
0
            cursor->subtable = subtable;
1457
0
            return rule;
1458
0
        }
1459
0
    }
1460
1461
0
    return NULL;
1462
0
}
1463
1464
/* Sets 'cursor->rule' to the next matching cls_rule in 'cursor''s iteration,
1465
 * or to null if all matching rules have been visited. */
1466
void
1467
cls_cursor_advance(struct cls_cursor *cursor)
1468
0
{
1469
0
    cursor->rule = cls_cursor_next(cursor);
1470
0
}
1471

1472
static struct cls_subtable *
1473
find_subtable(const struct classifier *cls, const struct minimask *mask)
1474
0
{
1475
0
    struct cls_subtable *subtable;
1476
1477
0
    CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, minimask_hash(mask, 0),
1478
0
                             &cls->subtables_map) {
1479
0
        if (minimask_equal(mask, &subtable->mask)) {
1480
0
            return subtable;
1481
0
        }
1482
0
    }
1483
0
    return NULL;
1484
0
}
1485
1486
/* Initializes 'map' with a subset of 'miniflow''s maps that includes only the
1487
 * portions with u64-offset 'i' such that 'start' <= i < 'end'.  Does not copy
1488
 * any data from 'miniflow' to 'map'. */
1489
static struct flowmap
1490
miniflow_get_map_in_range(const struct miniflow *miniflow, uint8_t start,
1491
                          uint8_t end)
1492
0
{
1493
0
    struct flowmap map;
1494
0
    size_t ofs = 0;
1495
1496
0
    map = miniflow->map;
1497
1498
    /* Clear the bits before 'start'. */
1499
0
    while (start >= MAP_T_BITS) {
1500
0
        start -= MAP_T_BITS;
1501
0
        ofs += MAP_T_BITS;
1502
0
        map.bits[start / MAP_T_BITS] = 0;
1503
0
    }
1504
0
    if (start > 0) {
1505
0
        flowmap_clear(&map, ofs, start);
1506
0
    }
1507
1508
    /* Clear the bits starting at 'end'. */
1509
0
    if (end < FLOW_U64S) {
1510
        /* flowmap_clear() can handle at most MAP_T_BITS at a time. */
1511
0
        ovs_assert(FLOW_U64S - end <= MAP_T_BITS);
1512
0
        flowmap_clear(&map, end, FLOW_U64S - end);
1513
0
    }
1514
0
    return map;
1515
0
}
1516
1517
static void
1518
subtable_destroy_cb(struct cls_subtable *subtable)
1519
0
{
1520
0
    int i;
1521
1522
0
    ovs_assert(ovsrcu_get_protected(struct trie_node *, &subtable->ports_trie)
1523
0
               == NULL);
1524
0
    ovs_assert(cmap_is_empty(&subtable->rules));
1525
0
    ovs_assert(rculist_is_empty(&subtable->rules_list));
1526
1527
0
    for (i = 0; i < subtable->n_indices; i++) {
1528
0
        ccmap_destroy(&subtable->indices[i]);
1529
0
    }
1530
0
    cmap_destroy(&subtable->rules);
1531
1532
0
    ovsrcu_postpone(free, subtable);
1533
0
}
1534
1535
/* The new subtable will be visible to the readers only after this. */
1536
static struct cls_subtable *
1537
insert_subtable(struct classifier *cls, const struct minimask *mask)
1538
0
{
1539
0
    uint32_t hash = minimask_hash(mask, 0);
1540
0
    uint32_t i, n_tries, index = 0;
1541
0
    struct cls_subtable *subtable;
1542
0
    struct flowmap stage_map;
1543
0
    uint8_t prev;
1544
0
    size_t count = miniflow_n_values(&mask->masks);
1545
1546
0
    subtable = xzalloc(sizeof *subtable + MINIFLOW_VALUES_SIZE(count));
1547
0
    cmap_init(&subtable->rules);
1548
0
    miniflow_clone(CONST_CAST(struct miniflow *, &subtable->mask.masks),
1549
0
                   &mask->masks, count);
1550
1551
    /* Init indices for segmented lookup, if any. */
1552
0
    prev = 0;
1553
0
    for (i = 0; i < cls->n_flow_segments; i++) {
1554
0
        stage_map = miniflow_get_map_in_range(&mask->masks, prev,
1555
0
                                              cls->flow_segments[i]);
1556
        /* Add an index if it adds mask bits. */
1557
0
        if (!flowmap_is_empty(stage_map)) {
1558
0
            ccmap_init(&subtable->indices[index]);
1559
0
            *CONST_CAST(struct flowmap *, &subtable->index_maps[index])
1560
0
                = stage_map;
1561
0
            index++;
1562
0
        }
1563
0
        prev = cls->flow_segments[i];
1564
0
    }
1565
    /* Map for the final stage. */
1566
0
    *CONST_CAST(struct flowmap *, &subtable->index_maps[index])
1567
0
        = miniflow_get_map_in_range(&mask->masks, prev, FLOW_U64S);
1568
    /* Check if the final stage adds any bits. */
1569
0
    if (index > 0) {
1570
0
        if (flowmap_is_empty(subtable->index_maps[index])) {
1571
            /* Remove the last index, as it has the same fields as the rules
1572
             * map. */
1573
0
            --index;
1574
0
            ccmap_destroy(&subtable->indices[index]);
1575
0
        }
1576
0
    }
1577
0
    *CONST_CAST(uint8_t *, &subtable->n_indices) = index;
1578
1579
0
    atomic_read_relaxed(&cls->n_tries, &n_tries);
1580
0
    for (i = 0; i < n_tries; i++) {
1581
0
        subtable->trie_plen[i] = minimask_get_prefix_len(mask,
1582
0
                                                         cls->tries[i].field);
1583
0
    }
1584
1585
    /* Ports trie. */
1586
0
    ovsrcu_set_hidden(&subtable->ports_trie, NULL);
1587
0
    *CONST_CAST(int *, &subtable->ports_mask_len)
1588
0
        = 32 - ctz32(ntohl(miniflow_get_ports(&mask->masks)));
1589
1590
    /* List of rules. */
1591
0
    rculist_init(&subtable->rules_list);
1592
1593
0
    cmap_insert(&cls->subtables_map, &subtable->cmap_node, hash);
1594
1595
0
    return subtable;
1596
0
}
1597
1598
/* RCU readers may still access the subtable before it is actually freed. */
1599
static void
1600
destroy_subtable(struct classifier *cls, struct cls_subtable *subtable)
1601
0
{
1602
0
    pvector_remove(&cls->subtables, subtable);
1603
0
    cmap_remove(&cls->subtables_map, &subtable->cmap_node,
1604
0
                minimask_hash(&subtable->mask, 0));
1605
1606
0
    ovsrcu_postpone(subtable_destroy_cb, subtable);
1607
0
}
1608
1609
static unsigned int be_get_bit_at(const ovs_be32 value[], unsigned int ofs);
1610
1611
/* Return 'true' if can skip rest of the subtable based on the prefix trie
1612
 * lookup results. */
1613
static inline bool
1614
check_tries(struct trie_ctx trie_ctx[CLS_MAX_TRIES], uint32_t n_tries,
1615
            const unsigned int field_plen[CLS_MAX_TRIES],
1616
            const struct flowmap range_map, const struct flow *flow,
1617
            struct flow_wildcards *wc)
1618
0
{
1619
0
    uint32_t j;
1620
1621
    /* Check if we could avoid fully unwildcarding the next level of
1622
     * fields using the prefix tries.  The trie checks are done only as
1623
     * needed to avoid folding in additional bits to the wildcards mask. */
1624
0
    for (j = 0; j < n_tries; j++) {
1625
0
        struct trie_ctx *ctx = &trie_ctx[j];
1626
1627
        /* Is the trie field relevant for this subtable, and
1628
         * is the trie field within the current range of fields? */
1629
0
        if (field_plen[j] && flowmap_is_set(&range_map, ctx->be32ofs / 2)) {
1630
            /* On-demand trie lookup. */
1631
0
            if (!ctx->lookup_done) {
1632
0
                memset(&ctx->match_plens, 0, sizeof ctx->match_plens);
1633
0
                ctx->maskbits = trie_lookup(ctx->trie, flow, &ctx->match_plens);
1634
0
                ctx->lookup_done = true;
1635
0
            }
1636
            /* Possible to skip the rest of the subtable if subtable's
1637
             * prefix on the field is not included in the lookup result. */
1638
0
            if (!be_get_bit_at(&ctx->match_plens.be32, field_plen[j] - 1)) {
1639
                /* We want the trie lookup to never result in unwildcarding
1640
                 * any bits that would not be unwildcarded otherwise.
1641
                 * Since the trie is shared by the whole classifier, it is
1642
                 * possible that the 'maskbits' contain bits that are
1643
                 * irrelevant for the partition relevant for the current
1644
                 * packet.  Hence the checks below. */
1645
1646
                /* Check that the trie result will not unwildcard more bits
1647
                 * than this subtable would otherwise. */
1648
0
                if (ctx->maskbits <= field_plen[j]) {
1649
                    /* Unwildcard the bits and skip the rest. */
1650
0
                    mask_set_prefix_bits(wc, ctx->be32ofs, ctx->maskbits);
1651
                    /* Note: Prerequisite already unwildcarded, as the only
1652
                     * prerequisite of the supported trie lookup fields is
1653
                     * the ethertype, which is always unwildcarded. */
1654
0
                    return true;
1655
0
                }
1656
                /* Can skip if the field is already unwildcarded. */
1657
0
                if (mask_prefix_bits_set(wc, ctx->be32ofs, ctx->maskbits)) {
1658
0
                    return true;
1659
0
                }
1660
0
            }
1661
0
        }
1662
0
    }
1663
0
    return false;
1664
0
}
1665
1666
/* Returns true if 'target' satisifies 'flow'/'mask', that is, if each bit
1667
 * for which 'flow', for which 'mask' has a bit set, specifies a particular
1668
 * value has the correct value in 'target'.
1669
 *
1670
 * This function is equivalent to miniflow_equal_flow_in_minimask(flow,
1671
 * target, mask) but this is faster because of the invariant that
1672
 * flow->map and mask->masks.map are the same, and that this version
1673
 * takes the 'wc'. */
1674
static inline bool
1675
miniflow_and_mask_matches_flow(const struct miniflow *flow,
1676
                               const struct minimask *mask,
1677
                               const struct flow *target)
1678
0
{
1679
0
    const uint64_t *flowp = miniflow_get_values(flow);
1680
0
    const uint64_t *maskp = miniflow_get_values(&mask->masks);
1681
0
    const uint64_t *target_u64 = (const uint64_t *)target;
1682
0
    map_t map;
1683
1684
0
    FLOWMAP_FOR_EACH_MAP (map, mask->masks.map) {
1685
0
        size_t idx;
1686
1687
0
        MAP_FOR_EACH_INDEX (idx, map) {
1688
0
            if ((*flowp++ ^ target_u64[idx]) & *maskp++) {
1689
0
                return false;
1690
0
            }
1691
0
        }
1692
0
        target_u64 += MAP_T_BITS;
1693
0
    }
1694
0
    return true;
1695
0
}
1696
1697
static inline const struct cls_match *
1698
find_match(const struct cls_subtable *subtable, ovs_version_t version,
1699
           const struct flow *flow, uint32_t hash)
1700
0
{
1701
0
    const struct cls_match *head, *rule;
1702
1703
0
    CMAP_FOR_EACH_WITH_HASH (head, cmap_node, hash, &subtable->rules) {
1704
0
        if (OVS_LIKELY(miniflow_and_mask_matches_flow(&head->flow,
1705
0
                                                      &subtable->mask,
1706
0
                                                      flow))) {
1707
            /* Return highest priority rule that is visible. */
1708
0
            CLS_MATCH_FOR_EACH (rule, head) {
1709
0
                if (OVS_LIKELY(cls_match_visible_in_version(rule, version))) {
1710
0
                    return rule;
1711
0
                }
1712
0
            }
1713
0
        }
1714
0
    }
1715
1716
0
    return NULL;
1717
0
}
1718
1719
static const struct cls_match *
1720
find_match_wc(const struct cls_subtable *subtable, ovs_version_t version,
1721
              const struct flow *flow, struct trie_ctx *trie_ctx,
1722
              uint32_t n_tries, struct flow_wildcards *wc)
1723
0
{
1724
0
    if (OVS_UNLIKELY(!wc)) {
1725
0
        return find_match(subtable, version, flow,
1726
0
                          flow_hash_in_minimask(flow, &subtable->mask, 0));
1727
0
    }
1728
1729
0
    uint32_t basis = 0, hash;
1730
0
    const struct cls_match *rule = NULL;
1731
0
    struct flowmap stages_map = FLOWMAP_EMPTY_INITIALIZER;
1732
0
    unsigned int mask_offset = 0;
1733
0
    bool adjust_ports_mask = false;
1734
0
    ovs_be32 ports_mask;
1735
0
    uint32_t i;
1736
1737
    /* Try to finish early by checking fields in segments. */
1738
0
    for (i = 0; i < subtable->n_indices; i++) {
1739
0
        if (check_tries(trie_ctx, n_tries, subtable->trie_plen,
1740
0
                        subtable->index_maps[i], flow, wc)) {
1741
            /* 'wc' bits for the trie field set, now unwildcard the preceding
1742
             * bits used so far. */
1743
0
            goto no_match;
1744
0
        }
1745
1746
        /* Accumulate the map used so far. */
1747
0
        stages_map = flowmap_or(stages_map, subtable->index_maps[i]);
1748
1749
0
        hash = flow_hash_in_minimask_range(flow, &subtable->mask,
1750
0
                                           subtable->index_maps[i],
1751
0
                                           &mask_offset, &basis);
1752
1753
0
        if (!ccmap_find(&subtable->indices[i], hash)) {
1754
0
            goto no_match;
1755
0
        }
1756
0
    }
1757
    /* Trie check for the final range. */
1758
0
    if (check_tries(trie_ctx, n_tries, subtable->trie_plen,
1759
0
                    subtable->index_maps[i], flow, wc)) {
1760
0
        goto no_match;
1761
0
    }
1762
    /* Accumulate the map used so far. */
1763
0
    stages_map = flowmap_or(stages_map, subtable->index_maps[i]);
1764
1765
0
    hash = flow_hash_in_minimask_range(flow, &subtable->mask,
1766
0
                                       subtable->index_maps[i],
1767
0
                                       &mask_offset, &basis);
1768
0
    rule = find_match(subtable, version, flow, hash);
1769
0
    if (!rule && subtable->ports_mask_len) {
1770
        /* The final stage had ports, but there was no match.  Instead of
1771
         * unwildcarding all the ports bits, use the ports trie to figure out a
1772
         * smaller set of bits to unwildcard. */
1773
0
        unsigned int mbits;
1774
0
        ovs_be32 value, plens;
1775
1776
0
        ports_mask = miniflow_get_ports(&subtable->mask.masks);
1777
0
        value = ((OVS_FORCE ovs_be32 *) flow)[TP_PORTS_OFS32] & ports_mask;
1778
0
        mbits = trie_lookup_value(&subtable->ports_trie, &value, &plens, 32);
1779
1780
0
        ports_mask &= be32_prefix_mask(mbits);
1781
0
        ports_mask |= ((OVS_FORCE ovs_be32 *) &wc->masks)[TP_PORTS_OFS32];
1782
1783
0
        adjust_ports_mask = true;
1784
1785
0
        goto no_match;
1786
0
    }
1787
1788
    /* Must unwildcard all the fields, as they were looked at. */
1789
0
    flow_wildcards_fold_minimask(wc, &subtable->mask);
1790
0
    return rule;
1791
1792
0
no_match:
1793
    /* Unwildcard the bits in stages so far, as they were used in determining
1794
     * there is no match. */
1795
0
    flow_wildcards_fold_minimask_in_map(wc, &subtable->mask, stages_map);
1796
0
    if (adjust_ports_mask) {
1797
        /* This has to be done after updating flow wildcards to overwrite
1798
         * the ports mask back.  We can't simply disable the corresponding bit
1799
         * in the stages map, because it has 64-bit resolution, i.e. one
1800
         * bit covers not only tp_src/dst, but also ct_tp_src/dst, which are
1801
         * not covered by the trie. */
1802
0
        ((OVS_FORCE ovs_be32 *) &wc->masks)[TP_PORTS_OFS32] = ports_mask;
1803
0
    }
1804
0
    return NULL;
1805
0
}
1806
1807
static struct cls_match *
1808
find_equal(const struct cls_subtable *subtable, const struct miniflow *flow,
1809
           uint32_t hash)
1810
0
{
1811
0
    struct cls_match *head;
1812
1813
0
    CMAP_FOR_EACH_WITH_HASH (head, cmap_node, hash, &subtable->rules) {
1814
0
        if (miniflow_equal(&head->flow, flow)) {
1815
0
            return head;
1816
0
        }
1817
0
    }
1818
0
    return NULL;
1819
0
}
1820

1821
/* A longest-prefix match tree. */
1822
1823
/* Return at least 'plen' bits of the 'prefix', starting at bit offset 'ofs'.
1824
 * Prefixes are in the network byte order, and the offset 0 corresponds to
1825
 * the most significant bit of the first byte.  The offset can be read as
1826
 * "how many bits to skip from the start of the prefix starting at 'pr'". */
1827
static uint32_t
1828
raw_get_prefix(const ovs_be32 pr[], unsigned int ofs, unsigned int plen)
1829
0
{
1830
0
    uint32_t prefix;
1831
1832
0
    pr += ofs / 32; /* Where to start. */
1833
0
    ofs %= 32;      /* How many bits to skip at 'pr'. */
1834
1835
0
    prefix = ntohl(*pr) << ofs; /* Get the first 32 - ofs bits. */
1836
0
    if (plen > 32 - ofs) {      /* Need more than we have already? */
1837
0
        prefix |= ntohl(*++pr) >> (32 - ofs);
1838
0
    }
1839
    /* Return with possible unwanted bits at the end. */
1840
0
    return prefix;
1841
0
}
1842
1843
/* Return min(TRIE_PREFIX_BITS, plen) bits of the 'prefix', starting at bit
1844
 * offset 'ofs'.  Prefixes are in the network byte order, and the offset 0
1845
 * corresponds to the most significant bit of the first byte.  The offset can
1846
 * be read as "how many bits to skip from the start of the prefix starting at
1847
 * 'pr'". */
1848
static uint32_t
1849
trie_get_prefix(const ovs_be32 pr[], unsigned int ofs, unsigned int plen)
1850
0
{
1851
0
    if (!plen) {
1852
0
        return 0;
1853
0
    }
1854
0
    if (plen > TRIE_PREFIX_BITS) {
1855
0
        plen = TRIE_PREFIX_BITS; /* Get at most TRIE_PREFIX_BITS. */
1856
0
    }
1857
    /* Return with unwanted bits cleared. */
1858
0
    return raw_get_prefix(pr, ofs, plen) & ~0u << (32 - plen);
1859
0
}
1860
1861
/* Return the number of equal bits in 'n_bits' of 'prefix's MSBs and a 'value'
1862
 * starting at "MSB 0"-based offset 'ofs'. */
1863
static unsigned int
1864
prefix_equal_bits(uint32_t prefix, unsigned int n_bits, const ovs_be32 value[],
1865
                  unsigned int ofs)
1866
0
{
1867
0
    uint64_t diff = prefix ^ raw_get_prefix(value, ofs, n_bits);
1868
    /* Set the bit after the relevant bits to limit the result. */
1869
0
    return raw_clz64(diff << 32 | UINT64_C(1) << (63 - n_bits));
1870
0
}
1871
1872
/* Return the number of equal bits in 'node' prefix and a 'prefix' of length
1873
 * 'plen', starting at "MSB 0"-based offset 'ofs'. */
1874
static unsigned int
1875
trie_prefix_equal_bits(const struct trie_node *node, const ovs_be32 prefix[],
1876
                       unsigned int ofs, unsigned int plen)
1877
0
{
1878
0
    return prefix_equal_bits(node->prefix, MIN(node->n_bits, plen - ofs),
1879
0
                             prefix, ofs);
1880
0
}
1881
1882
/* Return the bit at ("MSB 0"-based) offset 'ofs' as an int.  'ofs' can
1883
 * be greater than 31. */
1884
static unsigned int
1885
be_get_bit_at(const ovs_be32 value[], unsigned int ofs)
1886
0
{
1887
0
    return (((const uint8_t *)value)[ofs / 8] >> (7 - ofs % 8)) & 1u;
1888
0
}
1889
1890
/* Return the bit at ("MSB 0"-based) offset 'ofs' as an int.  'ofs' must
1891
 * be between 0 and 31, inclusive. */
1892
static unsigned int
1893
get_bit_at(const uint32_t prefix, unsigned int ofs)
1894
0
{
1895
0
    return (prefix >> (31 - ofs)) & 1u;
1896
0
}
1897
1898
/* Create new branch. */
1899
static struct trie_node *
1900
trie_branch_create(const ovs_be32 *prefix, unsigned int ofs, unsigned int plen,
1901
                   unsigned int n_rules)
1902
0
{
1903
0
    struct trie_node *node = xmalloc(sizeof *node);
1904
1905
0
    node->prefix = trie_get_prefix(prefix, ofs, plen);
1906
1907
0
    if (plen <= TRIE_PREFIX_BITS) {
1908
0
        node->n_bits = plen;
1909
0
        ovsrcu_set_hidden(&node->edges[0], NULL);
1910
0
        ovsrcu_set_hidden(&node->edges[1], NULL);
1911
0
        node->n_rules = n_rules;
1912
0
    } else { /* Need intermediate nodes. */
1913
0
        struct trie_node *subnode = trie_branch_create(prefix,
1914
0
                                                       ofs + TRIE_PREFIX_BITS,
1915
0
                                                       plen - TRIE_PREFIX_BITS,
1916
0
                                                       n_rules);
1917
0
        int bit = get_bit_at(subnode->prefix, 0);
1918
0
        node->n_bits = TRIE_PREFIX_BITS;
1919
0
        ovsrcu_set_hidden(&node->edges[bit], subnode);
1920
0
        ovsrcu_set_hidden(&node->edges[!bit], NULL);
1921
0
        node->n_rules = 0;
1922
0
    }
1923
0
    return node;
1924
0
}
1925
1926
static void
1927
trie_node_destroy(const struct trie_node *node)
1928
0
{
1929
0
    ovsrcu_postpone(free, CONST_CAST(struct trie_node *, node));
1930
0
}
1931
1932
/* Copy a trie node for modification and postpone delete the old one. */
1933
static struct trie_node *
1934
trie_node_rcu_realloc(const struct trie_node *node)
1935
0
{
1936
0
    struct trie_node *new_node = xmalloc(sizeof *node);
1937
1938
0
    *new_node = *node;
1939
0
    trie_node_destroy(node);
1940
1941
0
    return new_node;
1942
0
}
1943
1944
static void
1945
trie_destroy__(rcu_trie_ptr *trie)
1946
0
{
1947
0
    struct trie_node *node = ovsrcu_get_protected(struct trie_node *, trie);
1948
1949
0
    if (node) {
1950
0
        ovsrcu_set_hidden(trie, NULL);
1951
0
        trie_destroy__(&node->edges[0]);
1952
0
        trie_destroy__(&node->edges[1]);
1953
0
        trie_node_destroy(node);
1954
0
    }
1955
0
}
1956
1957
static void
1958
trie_destroy(struct cls_trie *trie)
1959
0
{
1960
0
    if (!trie) {
1961
0
        return;
1962
0
    }
1963
1964
0
    trie_destroy__(&trie->root);
1965
0
    trie->field = NULL;
1966
0
}
1967
1968
static bool
1969
trie_is_leaf(const struct trie_node *trie)
1970
0
{
1971
    /* No children? */
1972
0
    return !ovsrcu_get(struct trie_node *, &trie->edges[0])
1973
0
        && !ovsrcu_get(struct trie_node *, &trie->edges[1]);
1974
0
}
1975
1976
static void
1977
mask_set_prefix_bits(struct flow_wildcards *wc, uint8_t be32ofs,
1978
                     unsigned int n_bits)
1979
0
{
1980
0
    ovs_be32 *mask = &((ovs_be32 *)&wc->masks)[be32ofs];
1981
0
    unsigned int i;
1982
1983
0
    for (i = 0; i < n_bits / 32; i++) {
1984
0
        mask[i] = OVS_BE32_MAX;
1985
0
    }
1986
0
    if (n_bits % 32) {
1987
0
        mask[i] |= htonl(~0u << (32 - n_bits % 32));
1988
0
    }
1989
0
}
1990
1991
static bool
1992
mask_prefix_bits_set(const struct flow_wildcards *wc, uint8_t be32ofs,
1993
                     unsigned int n_bits)
1994
0
{
1995
0
    ovs_be32 *mask = &((ovs_be32 *)&wc->masks)[be32ofs];
1996
0
    unsigned int i;
1997
0
    ovs_be32 zeroes = 0;
1998
1999
0
    for (i = 0; i < n_bits / 32; i++) {
2000
0
        zeroes |= ~mask[i];
2001
0
    }
2002
0
    if (n_bits % 32) {
2003
0
        zeroes |= ~mask[i] & htonl(~0u << (32 - n_bits % 32));
2004
0
    }
2005
2006
0
    return !zeroes; /* All 'n_bits' bits set. */
2007
0
}
2008
2009
static rcu_trie_ptr *
2010
trie_next_edge(struct trie_node *node, const ovs_be32 value[],
2011
               unsigned int ofs)
2012
0
{
2013
0
    return node->edges + be_get_bit_at(value, ofs);
2014
0
}
2015
2016
static const struct trie_node *
2017
trie_next_node(const struct trie_node *node, const ovs_be32 value[],
2018
               unsigned int ofs)
2019
0
{
2020
0
    return ovsrcu_get(struct trie_node *,
2021
0
                      &node->edges[be_get_bit_at(value, ofs)]);
2022
0
}
2023
2024
/* Set the bit at ("MSB 0"-based) offset 'ofs'.  'ofs' can be greater than 31.
2025
 */
2026
static void
2027
be_set_bit_at(ovs_be32 value[], unsigned int ofs)
2028
0
{
2029
0
    ((uint8_t *)value)[ofs / 8] |= 1u << (7 - ofs % 8);
2030
0
}
2031
2032
/* Returns the number of bits in the prefix mask necessary to determine a
2033
 * mismatch, in case there are longer prefixes in the tree below the one that
2034
 * matched.
2035
 * '*plens' will have a bit set for each prefix length that may have matching
2036
 * rules.  The caller is responsible for clearing the '*plens' prior to
2037
 * calling this.
2038
 */
2039
static unsigned int
2040
trie_lookup_value(const rcu_trie_ptr *trie, const ovs_be32 value[],
2041
                  ovs_be32 plens[], unsigned int n_bits)
2042
0
{
2043
0
    const struct trie_node *prev = NULL;
2044
0
    const struct trie_node *node = ovsrcu_get(struct trie_node *, trie);
2045
0
    unsigned int match_len = 0; /* Number of matching bits. */
2046
2047
0
    for (; node; prev = node, node = trie_next_node(node, value, match_len)) {
2048
0
        unsigned int eqbits;
2049
        /* Check if this edge can be followed. */
2050
0
        eqbits = prefix_equal_bits(node->prefix, node->n_bits, value,
2051
0
                                   match_len);
2052
0
        match_len += eqbits;
2053
0
        if (eqbits < node->n_bits) { /* Mismatch, nothing more to be found. */
2054
            /* Bit at offset 'match_len' differed. */
2055
0
            return match_len + 1; /* Includes the first mismatching bit. */
2056
0
        }
2057
        /* Full match, check if rules exist at this prefix length. */
2058
0
        if (node->n_rules > 0) {
2059
0
            be_set_bit_at(plens, match_len - 1);
2060
0
        }
2061
0
        if (match_len >= n_bits) {
2062
0
            return n_bits; /* Full prefix. */
2063
0
        }
2064
0
    }
2065
    /* node == NULL.  Full match so far, but we tried to follow an
2066
     * non-existing branch.  Need to exclude the other branch if it exists
2067
     * (it does not if we were called on an empty trie or 'prev' is a leaf
2068
     * node). */
2069
0
    return !prev || trie_is_leaf(prev) ? match_len : match_len + 1;
2070
0
}
2071
2072
static unsigned int
2073
trie_lookup(const struct cls_trie *trie, const struct flow *flow,
2074
            union trie_prefix *plens)
2075
0
{
2076
0
    const struct mf_field *mf = trie->field;
2077
2078
    /* Check that current flow matches the prerequisites for the trie
2079
     * field.  Some match fields are used for multiple purposes, so we
2080
     * must check that the trie is relevant for this flow. */
2081
0
    if (mf_are_prereqs_ok(mf, flow, NULL)) {
2082
0
        return trie_lookup_value(&trie->root,
2083
0
                                 &((ovs_be32 *)flow)[mf->flow_be32ofs],
2084
0
                                 &plens->be32, mf->n_bits);
2085
0
    }
2086
0
    memset(plens, 0xff, sizeof *plens); /* All prefixes, no skipping. */
2087
0
    return 0; /* Value not used in this case. */
2088
0
}
2089
2090
/* Returns the length of a prefix match mask for the field 'mf' in 'minimask'.
2091
 * Returns the u32 offset to the miniflow data in '*miniflow_index', if
2092
 * 'miniflow_index' is not NULL. */
2093
static unsigned int
2094
minimask_get_prefix_len(const struct minimask *minimask,
2095
                        const struct mf_field *mf)
2096
0
{
2097
0
    unsigned int n_bits = 0, mask_tz = 0; /* Non-zero when end of mask seen. */
2098
0
    uint8_t be32_ofs = mf->flow_be32ofs;
2099
0
    uint8_t be32_end = be32_ofs + mf->n_bytes / 4;
2100
2101
0
    for (; be32_ofs < be32_end; ++be32_ofs) {
2102
0
        uint32_t mask = ntohl(minimask_get_be32(minimask, be32_ofs));
2103
2104
        /* Validate mask, count the mask length. */
2105
0
        if (mask_tz) {
2106
0
            if (mask) {
2107
0
                return 0; /* No bits allowed after mask ended. */
2108
0
            }
2109
0
        } else {
2110
0
            if (~mask & (~mask + 1)) {
2111
0
                return 0; /* Mask not contiguous. */
2112
0
            }
2113
0
            mask_tz = ctz32(mask);
2114
0
            n_bits += 32 - mask_tz;
2115
0
        }
2116
0
    }
2117
2118
0
    return n_bits;
2119
0
}
2120
2121
/*
2122
 * This is called only when mask prefix is known to be CIDR and non-zero.
2123
 * Relies on the fact that the flow and mask have the same map, and since
2124
 * the mask is CIDR, the storage for the flow field exists even if it
2125
 * happened to be zeros.
2126
 */
2127
static const ovs_be32 *
2128
minimatch_get_prefix(const struct minimatch *match, const struct mf_field *mf)
2129
0
{
2130
0
    size_t u64_ofs = mf->flow_be32ofs / 2;
2131
2132
0
    return (OVS_FORCE const ovs_be32 *)miniflow_get__(match->flow, u64_ofs)
2133
0
        + (mf->flow_be32ofs & 1);
2134
0
}
2135
2136
/* Insert rule in to the prefix tree.
2137
 * 'mlen' must be the (non-zero) CIDR prefix length of the 'trie->field' mask
2138
 * in 'rule'. */
2139
static void
2140
trie_insert(struct cls_trie *trie, const struct cls_rule *rule, int mlen)
2141
0
{
2142
0
    trie_insert_prefix(&trie->root,
2143
0
                       minimatch_get_prefix(&rule->match, trie->field), mlen);
2144
0
}
2145
2146
static void
2147
trie_insert_prefix(rcu_trie_ptr *edge, const ovs_be32 *prefix, int mlen)
2148
0
{
2149
0
    struct trie_node *node;
2150
0
    int ofs = 0;
2151
2152
    /* Walk the tree. */
2153
0
    for (; (node = ovsrcu_get_protected(struct trie_node *, edge));
2154
0
         edge = trie_next_edge(node, prefix, ofs)) {
2155
0
        unsigned int eqbits = trie_prefix_equal_bits(node, prefix, ofs, mlen);
2156
0
        ofs += eqbits;
2157
0
        if (eqbits < node->n_bits) {
2158
            /* Mismatch, new node needs to be inserted above. */
2159
0
            int old_branch = get_bit_at(node->prefix, eqbits);
2160
0
            struct trie_node *new_parent;
2161
2162
0
            new_parent = trie_branch_create(prefix, ofs - eqbits, eqbits,
2163
0
                                            ofs == mlen ? 1 : 0);
2164
            /* Copy the node to modify it. */
2165
0
            node = trie_node_rcu_realloc(node);
2166
            /* Adjust the new node for its new position in the tree. */
2167
0
            node->prefix <<= eqbits;
2168
0
            node->n_bits -= eqbits;
2169
0
            ovsrcu_set_hidden(&new_parent->edges[old_branch], node);
2170
2171
            /* Check if need a new branch for the new rule. */
2172
0
            if (ofs < mlen) {
2173
0
                ovsrcu_set_hidden(&new_parent->edges[!old_branch],
2174
0
                                  trie_branch_create(prefix, ofs, mlen - ofs,
2175
0
                                                     1));
2176
0
            }
2177
0
            ovsrcu_set(edge, new_parent); /* Publish changes. */
2178
0
            return;
2179
0
        }
2180
        /* Full match so far. */
2181
2182
0
        if (ofs == mlen) {
2183
            /* Full match at the current node, rule needs to be added here. */
2184
0
            node->n_rules++;
2185
0
            return;
2186
0
        }
2187
0
    }
2188
    /* Must insert a new tree branch for the new rule. */
2189
0
    ovsrcu_set(edge, trie_branch_create(prefix, ofs, mlen - ofs, 1));
2190
0
}
2191
2192
/* 'mlen' must be the (non-zero) CIDR prefix length of the 'trie->field' mask
2193
 * in 'rule'. */
2194
static void
2195
trie_remove(struct cls_trie *trie, const struct cls_rule *rule, int mlen)
2196
0
{
2197
0
    trie_remove_prefix(&trie->root,
2198
0
                       minimatch_get_prefix(&rule->match, trie->field), mlen);
2199
0
}
2200
2201
/* 'mlen' must be the (non-zero) CIDR prefix length of the 'trie->field' mask
2202
 * in 'rule'. */
2203
static void
2204
trie_remove_prefix(rcu_trie_ptr *root, const ovs_be32 *prefix, int mlen)
2205
0
{
2206
0
    struct trie_node *node;
2207
0
    rcu_trie_ptr *edges[sizeof(union trie_prefix) * CHAR_BIT];
2208
0
    int depth = 0, ofs = 0;
2209
2210
    /* Walk the tree. */
2211
0
    for (edges[0] = root;
2212
0
         (node = ovsrcu_get_protected(struct trie_node *, edges[depth]));
2213
0
         edges[++depth] = trie_next_edge(node, prefix, ofs)) {
2214
0
        unsigned int eqbits = trie_prefix_equal_bits(node, prefix, ofs, mlen);
2215
2216
0
        if (eqbits < node->n_bits) {
2217
            /* Mismatch, nothing to be removed.  This should never happen, as
2218
             * only rules in the classifier are ever removed. */
2219
0
            break; /* Log a warning. */
2220
0
        }
2221
        /* Full match so far. */
2222
0
        ofs += eqbits;
2223
2224
0
        if (ofs == mlen) {
2225
            /* Full prefix match at the current node, remove rule here. */
2226
0
            if (!node->n_rules) {
2227
0
                break; /* Log a warning. */
2228
0
            }
2229
0
            node->n_rules--;
2230
2231
            /* Check if can prune the tree. */
2232
0
            while (!node->n_rules) {
2233
0
                struct trie_node *next,
2234
0
                    *edge0 = ovsrcu_get_protected(struct trie_node *,
2235
0
                                                  &node->edges[0]),
2236
0
                    *edge1 = ovsrcu_get_protected(struct trie_node *,
2237
0
                                                  &node->edges[1]);
2238
2239
0
                if (edge0 && edge1) {
2240
0
                    break; /* A branching point, cannot prune. */
2241
0
                }
2242
2243
                /* Else have at most one child node, remove this node. */
2244
0
                next = edge0 ? edge0 : edge1;
2245
2246
0
                if (next) {
2247
0
                    if (node->n_bits + next->n_bits > TRIE_PREFIX_BITS) {
2248
0
                        break;   /* Cannot combine. */
2249
0
                    }
2250
0
                    next = trie_node_rcu_realloc(next); /* Modify. */
2251
2252
                    /* Combine node with next. */
2253
0
                    next->prefix = node->prefix | next->prefix >> node->n_bits;
2254
0
                    next->n_bits += node->n_bits;
2255
0
                }
2256
                /* Update the parent's edge. */
2257
0
                ovsrcu_set(edges[depth], next); /* Publish changes. */
2258
0
                trie_node_destroy(node);
2259
2260
0
                if (next || !depth) {
2261
                    /* Branch not pruned or at root, nothing more to do. */
2262
0
                    break;
2263
0
                }
2264
0
                node = ovsrcu_get_protected(struct trie_node *,
2265
0
                                            edges[--depth]);
2266
0
            }
2267
0
            return;
2268
0
        }
2269
0
    }
2270
    /* Cannot go deeper. This should never happen, since only rules
2271
     * that actually exist in the classifier are ever removed. */
2272
0
}
2273

2274
2275
#define CLS_MATCH_POISON (struct cls_match *)(UINTPTR_MAX / 0xf * 0xb)
2276
2277
void
2278
cls_match_free_cb(struct cls_match *rule)
2279
0
{
2280
0
    ovsrcu_set_hidden(&rule->next, CLS_MATCH_POISON);
2281
0
    free(rule);
2282
0
}