Coverage Report

Created: 2025-07-11 06:11

/src/openvswitch/lib/packets.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
3
 *
4
 * Licensed under the Apache License, Version 2.0 (the "License");
5
 * you may not use this file except in compliance with the License.
6
 * You may obtain a copy of the License at:
7
 *
8
 *     http://www.apache.org/licenses/LICENSE-2.0
9
 *
10
 * Unless required by applicable law or agreed to in writing, software
11
 * distributed under the License is distributed on an "AS IS" BASIS,
12
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
 * See the License for the specific language governing permissions and
14
 * limitations under the License.
15
 */
16
17
#include <config.h>
18
#include "packets.h"
19
#include <sys/types.h>
20
#include <netinet/in.h>
21
#include <arpa/inet.h>
22
#include <sys/socket.h>
23
#include <netinet/ip6.h>
24
#include <netinet/icmp6.h>
25
#include <stdlib.h>
26
#include <netdb.h>
27
#include "byte-order.h"
28
#include "csum.h"
29
#include "crc32c.h"
30
#include "flow.h"
31
#include "openvswitch/hmap.h"
32
#include "openvswitch/dynamic-string.h"
33
#include "ovs-thread.h"
34
#include "odp-util.h"
35
#include "dp-packet.h"
36
#include "unaligned.h"
37
38
const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
39
const struct in6_addr in6addr_all_hosts = IN6ADDR_ALL_HOSTS_INIT;
40
const struct in6_addr in6addr_all_routers = IN6ADDR_ALL_ROUTERS_INIT;
41
42
struct in6_addr
43
flow_tnl_dst(const struct flow_tnl *tnl)
44
0
{
45
0
    return tnl->ip_dst ? in6_addr_mapped_ipv4(tnl->ip_dst) : tnl->ipv6_dst;
46
0
}
47
48
struct in6_addr
49
flow_tnl_src(const struct flow_tnl *tnl)
50
0
{
51
0
    return tnl->ip_src ? in6_addr_mapped_ipv4(tnl->ip_src) : tnl->ipv6_src;
52
0
}
53
54
/* Returns true if 's' consists entirely of hex digits, false otherwise. */
55
static bool
56
is_all_hex(const char *s)
57
0
{
58
0
    return s[strspn(s, "0123456789abcdefABCDEF")] == '\0';
59
0
}
60
61
/* Parses 's' as a 16-digit hexadecimal number representing a datapath ID.  On
62
 * success stores the dpid into '*dpidp' and returns true, on failure stores 0
63
 * into '*dpidp' and returns false.
64
 *
65
 * Rejects an all-zeros dpid as invalid. */
66
bool
67
dpid_from_string(const char *s, uint64_t *dpidp)
68
0
{
69
0
    size_t len = strlen(s);
70
0
    *dpidp = ((len == 16 && is_all_hex(s))
71
0
              || (len <= 18 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
72
0
                  && is_all_hex(s + 2))
73
0
              ? strtoull(s, NULL, 16)
74
0
              : 0);
75
0
    return *dpidp != 0;
76
0
}
77
78
uint64_t
79
eth_addr_to_uint64(const struct eth_addr ea)
80
0
{
81
0
    return (((uint64_t) ntohs(ea.be16[0]) << 32)
82
0
            | ((uint64_t) ntohs(ea.be16[1]) << 16)
83
0
            | ntohs(ea.be16[2]));
84
0
}
85
86
void
87
eth_addr_from_uint64(uint64_t x, struct eth_addr *ea)
88
0
{
89
0
    ea->be16[0] = htons(x >> 32);
90
0
    ea->be16[1] = htons((x & 0xFFFF0000) >> 16);
91
0
    ea->be16[2] = htons(x & 0xFFFF);
92
0
}
93
94
void
95
eth_addr_mark_random(struct eth_addr *ea)
96
0
{
97
0
    ea->ea[0] &= ~1;                /* Unicast. */
98
0
    ea->ea[0] |= 2;                 /* Private. */
99
0
}
100
101
/* Returns true if 'ea' is a reserved address, that a bridge must never
102
 * forward, false otherwise.
103
 *
104
 * If you change this function's behavior, please update corresponding
105
 * documentation in vswitch.xml at the same time. */
106
bool
107
eth_addr_is_reserved(const struct eth_addr ea)
108
0
{
109
0
    struct eth_addr_node {
110
0
        struct hmap_node hmap_node;
111
0
        const uint64_t ea64;
112
0
    };
113
114
0
    static struct eth_addr_node nodes[] = {
115
        /* STP, IEEE pause frames, and other reserved protocols. */
116
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000000ULL },
117
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000001ULL },
118
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000002ULL },
119
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000003ULL },
120
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000004ULL },
121
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000005ULL },
122
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000006ULL },
123
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000007ULL },
124
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000008ULL },
125
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000009ULL },
126
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000aULL },
127
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000bULL },
128
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000cULL },
129
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000dULL },
130
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000eULL },
131
0
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000fULL },
132
133
        /* Extreme protocols. */
134
0
        { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
135
0
        { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
136
0
        { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
137
138
        /* Cisco protocols. */
139
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
140
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
141
                                                            * DTP, VTP. */
142
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
143
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
144
                                                            * FlexLink. */
145
146
        /* Cisco CFM. */
147
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
148
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
149
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
150
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
151
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
152
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
153
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
154
0
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
155
0
    };
156
157
0
    static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
158
0
    struct eth_addr_node *node;
159
0
    static struct hmap addrs;
160
0
    uint64_t ea64;
161
162
0
    if (ovsthread_once_start(&once)) {
163
0
        hmap_init(&addrs);
164
0
        for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
165
0
            hmap_insert(&addrs, &node->hmap_node, hash_uint64(node->ea64));
166
0
        }
167
0
        ovsthread_once_done(&once);
168
0
    }
169
170
0
    ea64 = eth_addr_to_uint64(ea);
171
0
    HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_uint64(ea64), &addrs) {
172
0
        if (node->ea64 == ea64) {
173
0
            return true;
174
0
        }
175
0
    }
176
0
    return false;
177
0
}
178
179
/* Attempts to parse 's' as an Ethernet address.  If successful, stores the
180
 * address in 'ea' and returns true, otherwise zeros 'ea' and returns
181
 * false.  This function checks trailing characters. */
182
bool
183
eth_addr_from_string(const char *s, struct eth_addr *ea)
184
0
{
185
0
    int n = 0;
186
0
    if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*ea), &n)
187
0
        && !s[n]) {
188
0
        return true;
189
0
    } else {
190
0
        *ea = eth_addr_zero;
191
0
        return false;
192
0
    }
193
0
}
194
195
/* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
196
 * This function is used by Open vSwitch to compose packets in cases where
197
 * context is important but content doesn't (or shouldn't) matter.
198
 *
199
 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
200
 * desired. */
201
void
202
compose_rarp(struct dp_packet *b, const struct eth_addr eth_src)
203
0
{
204
0
    struct eth_header *eth;
205
0
    struct arp_eth_header *arp;
206
207
0
    dp_packet_clear(b);
208
0
    dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN
209
0
                             + ARP_ETH_HEADER_LEN);
210
0
    dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
211
0
    eth = dp_packet_put_uninit(b, sizeof *eth);
212
0
    eth->eth_dst = eth_addr_broadcast;
213
0
    eth->eth_src = eth_src;
214
0
    eth->eth_type = htons(ETH_TYPE_RARP);
215
216
0
    arp = dp_packet_put_uninit(b, sizeof *arp);
217
0
    arp->ar_hrd = htons(ARP_HRD_ETHERNET);
218
0
    arp->ar_pro = htons(ARP_PRO_IP);
219
0
    arp->ar_hln = sizeof arp->ar_sha;
220
0
    arp->ar_pln = sizeof arp->ar_spa;
221
0
    arp->ar_op = htons(ARP_OP_RARP);
222
0
    arp->ar_sha = eth_src;
223
0
    put_16aligned_be32(&arp->ar_spa, htonl(0));
224
0
    arp->ar_tha = eth_src;
225
0
    put_16aligned_be32(&arp->ar_tpa, htonl(0));
226
227
0
    dp_packet_set_l3(b, arp);
228
0
    b->packet_type = htonl(PT_ETH);
229
0
}
230
231
/* Insert VLAN header according to given TCI. Packet passed must be Ethernet
232
 * packet.  Ignores the CFI bit of 'tci' using 0 instead.
233
 *
234
 * Also adjusts the layer offsets accordingly. */
235
void
236
eth_push_vlan(struct dp_packet *packet, ovs_be16 tpid, ovs_be16 tci)
237
0
{
238
0
    struct vlan_eth_header *veh;
239
240
    /* Insert new 802.1Q header. */
241
0
    veh = dp_packet_resize_l2(packet, VLAN_HEADER_LEN);
242
0
    memmove(veh, (char *)veh + VLAN_HEADER_LEN, 2 * ETH_ADDR_LEN);
243
0
    veh->veth_type = tpid;
244
0
    veh->veth_tci = tci & htons(~VLAN_CFI);
245
0
}
246
247
/* Removes outermost VLAN header (if any is present) from 'packet'.
248
 *
249
 * 'packet->l2_5' should initially point to 'packet''s outer-most VLAN header
250
 * or may be NULL if there are no VLAN headers. */
251
void
252
eth_pop_vlan(struct dp_packet *packet)
253
0
{
254
0
    struct vlan_eth_header *veh = dp_packet_eth(packet);
255
256
0
    if (veh && dp_packet_size(packet) >= sizeof *veh
257
0
        && eth_type_vlan(veh->veth_type)) {
258
259
0
        memmove((char *)veh + VLAN_HEADER_LEN, veh, 2 * ETH_ADDR_LEN);
260
0
        dp_packet_resize_l2(packet, -VLAN_HEADER_LEN);
261
0
    }
262
0
}
263
264
/* Push Ethernet header onto 'packet' assuming it is layer 3 */
265
void
266
push_eth(struct dp_packet *packet, const struct eth_addr *dst,
267
         const struct eth_addr *src)
268
0
{
269
0
    struct eth_header *eh;
270
271
0
    ovs_assert(!dp_packet_is_eth(packet));
272
0
    eh = dp_packet_resize_l2(packet, ETH_HEADER_LEN);
273
0
    eh->eth_dst = *dst;
274
0
    eh->eth_src = *src;
275
0
    eh->eth_type = pt_ns_type_be(packet->packet_type);
276
0
    packet->packet_type = htonl(PT_ETH);
277
0
}
278
279
/* Removes Ethernet header, including VLAN header, from 'packet'.
280
 *
281
 * Previous to calling this function, 'ofpbuf_l3(packet)' must not be NULL */
282
void
283
pop_eth(struct dp_packet *packet)
284
0
{
285
0
    char *l2_5 = dp_packet_l2_5(packet);
286
0
    char *l3 = dp_packet_l3(packet);
287
0
    ovs_be16 ethertype;
288
0
    int increment;
289
290
0
    ovs_assert(dp_packet_is_eth(packet));
291
0
    ovs_assert(l3 != NULL);
292
293
0
    if (l2_5) {
294
0
        increment = packet->l2_5_ofs;
295
0
        ethertype = *(ALIGNED_CAST(ovs_be16 *, (l2_5 - 2)));
296
0
    } else {
297
0
        increment = packet->l3_ofs;
298
0
        ethertype = *(ALIGNED_CAST(ovs_be16 *, (l3 - 2)));
299
0
    }
300
301
0
    dp_packet_resize_l2(packet, -increment);
302
0
    packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE, ntohs(ethertype));
303
0
}
304
305
/* Set ethertype of the packet. */
306
static void
307
set_ethertype(struct dp_packet *packet, ovs_be16 eth_type)
308
0
{
309
0
    struct eth_header *eh = dp_packet_eth(packet);
310
311
0
    if (!eh) {
312
0
        return;
313
0
    }
314
315
0
    if (eth_type_vlan(eh->eth_type)) {
316
0
        ovs_be16 *p;
317
0
        char *l2_5 = dp_packet_l2_5(packet);
318
319
0
        p = ALIGNED_CAST(ovs_be16 *,
320
0
                         (l2_5 ? l2_5 : (char *)dp_packet_l3(packet)) - 2);
321
0
        *p = eth_type;
322
0
    } else {
323
0
        eh->eth_type = eth_type;
324
0
    }
325
0
}
326
327
static bool is_mpls(struct dp_packet *packet)
328
0
{
329
0
    return packet->l2_5_ofs != UINT16_MAX;
330
0
}
331
332
/* Set time to live (TTL) of an MPLS label stack entry (LSE). */
333
void
334
set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
335
0
{
336
0
    *lse &= ~htonl(MPLS_TTL_MASK);
337
0
    *lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
338
0
}
339
340
/* Set traffic class (TC) of an MPLS label stack entry (LSE). */
341
void
342
set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
343
0
{
344
0
    *lse &= ~htonl(MPLS_TC_MASK);
345
0
    *lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
346
0
}
347
348
/* Set label of an MPLS label stack entry (LSE). */
349
void
350
set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
351
0
{
352
0
    *lse &= ~htonl(MPLS_LABEL_MASK);
353
0
    *lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
354
0
}
355
356
/* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
357
void
358
set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
359
0
{
360
0
    *lse &= ~htonl(MPLS_BOS_MASK);
361
0
    *lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
362
0
}
363
364
/* Compose an MPLS label stack entry (LSE) from its components:
365
 * label, traffic class (TC), time to live (TTL) and
366
 * bottom of stack (BoS) bit. */
367
ovs_be32
368
set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
369
0
{
370
0
    ovs_be32 lse = htonl(0);
371
0
    set_mpls_lse_ttl(&lse, ttl);
372
0
    set_mpls_lse_tc(&lse, tc);
373
0
    set_mpls_lse_bos(&lse, bos);
374
0
    set_mpls_lse_label(&lse, label);
375
0
    return lse;
376
0
}
377
378
/* Set MPLS label stack entry to outermost MPLS header.*/
379
void
380
set_mpls_lse(struct dp_packet *packet, ovs_be32 mpls_lse)
381
0
{
382
    /* Packet type should be MPLS to set label stack entry. */
383
0
    if (is_mpls(packet)) {
384
0
        struct mpls_hdr *mh = dp_packet_l2_5(packet);
385
386
        /* Update mpls label stack entry. */
387
0
        put_16aligned_be32(&mh->mpls_lse, mpls_lse);
388
0
    }
389
0
}
390
391
/* Push MPLS label stack entry 'lse' onto 'packet' as the outermost MPLS
392
 * header.  If 'packet' does not already have any MPLS labels, then its
393
 * Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
394
void
395
push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse)
396
0
{
397
0
    char * header;
398
0
    size_t len;
399
400
0
    if (!eth_type_mpls(ethtype)) {
401
0
        return;
402
0
    }
403
404
0
    if (!is_mpls(packet)) {
405
        /* Set MPLS label stack offset. */
406
0
        packet->l2_5_ofs = packet->l3_ofs;
407
0
    }
408
409
0
    set_ethertype(packet, ethtype);
410
411
    /* Push new MPLS shim header onto packet. */
412
0
    len = packet->l2_5_ofs;
413
0
    header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
414
0
    memmove(header, header + MPLS_HLEN, len);
415
0
    memcpy(header + len, &lse, sizeof lse);
416
417
0
    pkt_metadata_init_conn(&packet->md);
418
0
}
419
420
void
421
add_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse,
422
         bool l3_encap)
423
0
{
424
0
    if (!eth_type_mpls(ethtype)) {
425
0
        return;
426
0
    }
427
428
0
    if (!l3_encap) {
429
0
        struct mpls_hdr *header = dp_packet_resize_l2(packet, MPLS_HLEN);
430
431
0
        put_16aligned_be32(&header->mpls_lse, lse);
432
0
        packet->l2_5_ofs = 0;
433
0
        packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
434
0
                                             ntohs(ethtype));
435
0
    } else {
436
0
        size_t len;
437
0
        char *header;
438
439
0
        if (!is_mpls(packet)) {
440
            /* Set MPLS label stack offset. */
441
0
            packet->l2_5_ofs = packet->l3_ofs;
442
0
        }
443
0
        set_ethertype(packet, ethtype);
444
445
        /* Push new MPLS shim header onto packet. */
446
0
        len = packet->l2_5_ofs;
447
0
        header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
448
0
        memmove(header, header + MPLS_HLEN, len);
449
0
        memcpy(header + len, &lse, sizeof lse);
450
0
    }
451
0
    pkt_metadata_init_conn(&packet->md);
452
0
}
453
454
/* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
455
 * If the label that was removed was the only MPLS label, changes 'packet''s
456
 * Ethertype to 'ethtype' (which ordinarily should not be an MPLS
457
 * Ethertype). */
458
void
459
pop_mpls(struct dp_packet *packet, ovs_be16 ethtype)
460
0
{
461
0
    if (is_mpls(packet)) {
462
0
        struct mpls_hdr *mh = dp_packet_l2_5(packet);
463
0
        size_t len = packet->l2_5_ofs;
464
465
0
        set_ethertype(packet, ethtype);
466
0
        if (get_16aligned_be32(&mh->mpls_lse) & htonl(MPLS_BOS_MASK)) {
467
0
            dp_packet_set_l2_5(packet, NULL);
468
0
        }
469
        /* Shift the l2 header forward. */
470
0
        memmove((char*)dp_packet_data(packet) + MPLS_HLEN, dp_packet_data(packet), len);
471
0
        dp_packet_resize_l2_5(packet, -MPLS_HLEN);
472
473
        /* Invalidate offload flags as they are not valid after
474
         * decapsulation of MPLS header. */
475
0
        dp_packet_reset_offload(packet);
476
477
        /* packet_type must be reset for the MPLS packets with no l2 header */
478
0
        if (!len) {
479
0
            if (ethtype == htons(ETH_TYPE_TEB)) {
480
                /* The inner packet must be classified as ethernet if the
481
                 * ethtype is ETH_TYPE_TEB. */
482
0
                packet->packet_type = htonl(PT_ETH);
483
0
            } else {
484
0
                packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
485
0
                                                     ntohs(ethtype));
486
0
            }
487
0
        }
488
0
    }
489
0
}
490
491
void
492
push_nsh(struct dp_packet *packet, const struct nsh_hdr *nsh_hdr_src)
493
0
{
494
0
    struct nsh_hdr *nsh;
495
0
    size_t length = nsh_hdr_len(nsh_hdr_src);
496
0
    uint8_t next_proto;
497
498
0
    switch (ntohl(packet->packet_type)) {
499
0
        case PT_ETH:
500
0
            next_proto = NSH_P_ETHERNET;
501
0
            break;
502
0
        case PT_IPV4:
503
0
            next_proto = NSH_P_IPV4;
504
0
            break;
505
0
        case PT_IPV6:
506
0
            next_proto = NSH_P_IPV6;
507
0
            break;
508
0
        case PT_NSH:
509
0
            next_proto = NSH_P_NSH;
510
0
            break;
511
0
        default:
512
0
            OVS_NOT_REACHED();
513
0
    }
514
515
0
    nsh = (struct nsh_hdr *) dp_packet_resize_l2(packet, length);
516
0
    memcpy(nsh, nsh_hdr_src, length);
517
0
    nsh->next_proto = next_proto;
518
0
    packet->packet_type = htonl(PT_NSH);
519
0
    dp_packet_reset_offsets(packet);
520
0
    packet->l3_ofs = 0;
521
0
}
522
523
bool
524
pop_nsh(struct dp_packet *packet)
525
0
{
526
0
    struct nsh_hdr *nsh = (struct nsh_hdr *) dp_packet_l3(packet);
527
0
    size_t length;
528
0
    uint32_t next_pt;
529
530
0
    if (packet->packet_type == htonl(PT_NSH) && nsh) {
531
0
        switch (nsh->next_proto) {
532
0
            case NSH_P_ETHERNET:
533
0
                next_pt = PT_ETH;
534
0
                break;
535
0
            case NSH_P_IPV4:
536
0
                next_pt = PT_IPV4;
537
0
                break;
538
0
            case NSH_P_IPV6:
539
0
                next_pt = PT_IPV6;
540
0
                break;
541
0
            case NSH_P_NSH:
542
0
                next_pt = PT_NSH;
543
0
                break;
544
0
            default:
545
                /* Unknown inner packet type. Drop packet. */
546
0
                return false;
547
0
        }
548
549
0
        length = nsh_hdr_len(nsh);
550
0
        dp_packet_reset_packet(packet, length);
551
0
        packet->packet_type = htonl(next_pt);
552
        /* Packet must be recirculated for further processing. */
553
0
    }
554
0
    return true;
555
0
}
556
557
/* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'.  The
558
 * caller must free '*packetp'.  On success, returns NULL.  On failure, returns
559
 * an error message and stores NULL in '*packetp'.
560
 *
561
 * Aligns the L3 header of '*packetp' on a 32-bit boundary. */
562
const char *
563
eth_from_hex(const char *hex, struct dp_packet **packetp)
564
0
{
565
0
    struct dp_packet *packet;
566
567
    /* Use 2 bytes of headroom to 32-bit align the L3 header. */
568
0
    packet = *packetp = dp_packet_new_with_headroom(strlen(hex) / 2, 2);
569
570
0
    if (dp_packet_put_hex(packet, hex, NULL)[0] != '\0') {
571
0
        dp_packet_delete(packet);
572
0
        *packetp = NULL;
573
0
        return "Trailing garbage in packet data";
574
0
    }
575
576
0
    if (dp_packet_size(packet) < ETH_HEADER_LEN) {
577
0
        dp_packet_delete(packet);
578
0
        *packetp = NULL;
579
0
        return "Packet data too short for Ethernet";
580
0
    }
581
582
0
    return NULL;
583
0
}
584
585
void
586
eth_format_masked(const struct eth_addr eth,
587
                  const struct eth_addr *mask, struct ds *s)
588
4.69k
{
589
4.69k
    ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
590
4.69k
    if (mask && !eth_mask_is_exact(*mask)) {
591
4.69k
        ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(*mask));
592
4.69k
    }
593
4.69k
}
594
595
void
596
in6_addr_solicited_node(struct in6_addr *addr, const struct in6_addr *ip6)
597
0
{
598
0
    union ovs_16aligned_in6_addr *taddr =
599
0
        (union ovs_16aligned_in6_addr *) addr;
600
0
    memset(taddr->be16, 0, sizeof(taddr->be16));
601
0
    taddr->be16[0] = htons(0xff02);
602
0
    taddr->be16[5] = htons(0x1);
603
0
    taddr->be16[6] = htons(0xff00);
604
0
    memcpy(&addr->s6_addr[13], &ip6->s6_addr[13], 3);
605
0
}
606
607
/*
608
 * Generates ipv6 EUI64 address from the given eth addr
609
 * and prefix and stores it in 'lla'
610
 */
611
void
612
in6_generate_eui64(struct eth_addr ea, const struct in6_addr *prefix,
613
                   struct in6_addr *lla)
614
0
{
615
0
    union ovs_16aligned_in6_addr *taddr =
616
0
        (union ovs_16aligned_in6_addr *) lla;
617
0
    union ovs_16aligned_in6_addr *prefix_taddr =
618
0
        (union ovs_16aligned_in6_addr *) prefix;
619
0
    taddr->be16[0] = prefix_taddr->be16[0];
620
0
    taddr->be16[1] = prefix_taddr->be16[1];
621
0
    taddr->be16[2] = prefix_taddr->be16[2];
622
0
    taddr->be16[3] = prefix_taddr->be16[3];
623
0
    taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
624
0
    taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
625
0
    taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
626
0
    taddr->be16[7] = ea.be16[2];
627
0
}
628
629
/* Generates ipv6 link local address from the given eth addr
630
 * with prefix 'fe80::/64' and stores it in 'lla'. */
631
void
632
in6_generate_lla(struct eth_addr ea, struct in6_addr *lla)
633
0
{
634
0
    union ovs_16aligned_in6_addr *taddr =
635
0
        (union ovs_16aligned_in6_addr *) lla;
636
0
    memset(taddr->be16, 0, sizeof(taddr->be16));
637
0
    taddr->be16[0] = htons(0xfe80);
638
0
    taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
639
0
    taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
640
0
    taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
641
0
    taddr->be16[7] = ea.be16[2];
642
0
}
643
644
/* Returns true if 'addr' is a link local address.  Otherwise, false. */
645
bool
646
in6_is_lla(struct in6_addr *addr)
647
0
{
648
0
#ifdef s6_addr32
649
0
    return addr->s6_addr32[0] == htonl(0xfe800000) && !(addr->s6_addr32[1]);
650
#else
651
    return addr->s6_addr[0] == 0xfe && addr->s6_addr[1] == 0x80 &&
652
         !(addr->s6_addr[2] | addr->s6_addr[3] | addr->s6_addr[4] |
653
           addr->s6_addr[5] | addr->s6_addr[6] | addr->s6_addr[7]);
654
#endif
655
0
}
656
657
void
658
ipv6_multicast_to_ethernet(struct eth_addr *eth, const struct in6_addr *ip6)
659
0
{
660
0
    eth->ea[0] = 0x33;
661
0
    eth->ea[1] = 0x33;
662
0
    eth->ea[2] = ip6->s6_addr[12];
663
0
    eth->ea[3] = ip6->s6_addr[13];
664
0
    eth->ea[4] = ip6->s6_addr[14];
665
0
    eth->ea[5] = ip6->s6_addr[15];
666
0
}
667
668
/* Given the IP netmask 'netmask', returns the number of bits of the IP address
669
 * that it specifies, that is, the number of 1-bits in 'netmask'.
670
 *
671
 * If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
672
 * still be in the valid range but isn't otherwise meaningful. */
673
int
674
ip_count_cidr_bits(ovs_be32 netmask)
675
0
{
676
0
    return 32 - ctz32(ntohl(netmask));
677
0
}
678
679
void
680
ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
681
0
{
682
0
    ds_put_format(s, IP_FMT, IP_ARGS(ip));
683
0
    if (mask != OVS_BE32_MAX) {
684
0
        if (ip_is_cidr(mask)) {
685
0
            ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
686
0
        } else {
687
0
            ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
688
0
        }
689
0
    }
690
0
}
691
692
/* Parses string 's', which must be an IP address.  Stores the IP address into
693
 * '*ip'.  Returns true if successful, otherwise false. */
694
bool
695
ip_parse(const char *s, ovs_be32 *ip)
696
0
{
697
0
    return inet_pton(AF_INET, s, ip) == 1;
698
0
}
699
700
/* Parses string 's', which must be an IP address with a port number
701
 * with ":" as a separator (e.g.: 192.168.1.2:80).
702
 * Stores the IP address into '*ip' and port number to '*port'.
703
 *
704
 * Returns NULL if successful, otherwise an error message that the caller must
705
 * free(). */
706
char * OVS_WARN_UNUSED_RESULT
707
ip_parse_port(const char *s, ovs_be32 *ip, ovs_be16 *port)
708
0
{
709
0
    int n = 0;
710
0
    if (ovs_scan(s, IP_PORT_SCAN_FMT"%n", IP_PORT_SCAN_ARGS(ip, port), &n)
711
0
        && !s[n]) {
712
0
        return NULL;
713
0
    }
714
715
0
    return xasprintf("%s: invalid IP address or port number", s);
716
0
}
717
718
/* Parses string 's', which must be an IP address with an optional netmask or
719
 * CIDR prefix length.  Stores the IP address into '*ip', netmask into '*mask',
720
 * (255.255.255.255, if 's' lacks a netmask), and number of scanned characters
721
 * into '*n'.
722
 *
723
 * Returns NULL if successful, otherwise an error message that the caller must
724
 * free(). */
725
char * OVS_WARN_UNUSED_RESULT
726
ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip,
727
                    ovs_be32 *mask)
728
0
{
729
0
    int prefix;
730
731
0
    if (ovs_scan_len(s, n, IP_SCAN_FMT"/"IP_SCAN_FMT,
732
0
                 IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask))) {
733
        /* OK. */
734
0
    } else if (ovs_scan_len(s, n, IP_SCAN_FMT"/%d",
735
0
                            IP_SCAN_ARGS(ip), &prefix)) {
736
0
        if (prefix < 0 || prefix > 32) {
737
0
            return xasprintf("%s: IPv4 network prefix bits not between 0 and "
738
0
                              "32, inclusive", s);
739
0
        }
740
0
        *mask = be32_prefix_mask(prefix);
741
0
    } else if (ovs_scan_len(s, n, IP_SCAN_FMT, IP_SCAN_ARGS(ip))) {
742
0
        *mask = OVS_BE32_MAX;
743
0
    } else {
744
0
        return xasprintf("%s: invalid IP address", s);
745
0
    }
746
0
    return NULL;
747
0
}
748
749
/* This function is similar to ip_parse_masked_len(), but doesn't return the
750
 * number of scanned characters and expects 's' to end after the ip/(optional)
751
 * mask.
752
 *
753
 * Returns NULL if successful, otherwise an error message that the caller must
754
 * free(). */
755
char * OVS_WARN_UNUSED_RESULT
756
ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask)
757
0
{
758
0
    int n = 0;
759
760
0
    char *error = ip_parse_masked_len(s, &n, ip, mask);
761
0
    if (!error && s[n]) {
762
0
        return xasprintf("%s: invalid IP address", s);
763
0
    }
764
0
    return error;
765
0
}
766
767
/* Similar to ip_parse_masked_len(), but the mask, if present, must be a CIDR
768
 * mask and is returned as a prefix len in '*plen'. */
769
char * OVS_WARN_UNUSED_RESULT
770
ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip, unsigned int *plen)
771
0
{
772
0
    ovs_be32 mask;
773
0
    char *error;
774
775
0
    error = ip_parse_masked_len(s, n, ip, &mask);
776
0
    if (error) {
777
0
        return error;
778
0
    }
779
780
0
    if (!ip_is_cidr(mask)) {
781
0
        return xasprintf("%s: CIDR network required", s);
782
0
    }
783
0
    *plen = ip_count_cidr_bits(mask);
784
0
    return NULL;
785
0
}
786
787
/* Similar to ip_parse_cidr_len(), but doesn't return the number of scanned
788
 * characters and expects 's' to be NULL terminated at the end of the
789
 * ip/(optional) cidr. */
790
char * OVS_WARN_UNUSED_RESULT
791
ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen)
792
0
{
793
0
    int n = 0;
794
795
0
    char *error = ip_parse_cidr_len(s, &n, ip, plen);
796
0
    if (!error && s[n]) {
797
0
        return xasprintf("%s: invalid IP address", s);
798
0
    }
799
0
    return error;
800
0
}
801
802
/* Parses string 's', which must be an IPv6 address.  Stores the IPv6 address
803
 * into '*ip'.  Returns true if successful, otherwise false. */
804
bool
805
ipv6_parse(const char *s, struct in6_addr *ip)
806
0
{
807
0
    return inet_pton(AF_INET6, s, ip) == 1;
808
0
}
809
810
/* Parses string 's', which must be an IPv6 address with an optional netmask or
811
 * CIDR prefix length.  Stores the IPv6 address into '*ip' and the netmask into
812
 * '*mask' (if 's' does not contain a netmask, all-one-bits is assumed), and
813
 * number of scanned characters into '*n'.
814
 *
815
 * Returns NULL if successful, otherwise an error message that the caller must
816
 * free(). */
817
char * OVS_WARN_UNUSED_RESULT
818
ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ip,
819
                      struct in6_addr *mask)
820
0
{
821
0
    char ipv6_s[IPV6_SCAN_LEN + 1];
822
0
    int prefix;
823
824
0
    if (ovs_scan_len(s, n, " "IPV6_SCAN_FMT, ipv6_s)
825
0
        && ipv6_parse(ipv6_s, ip)) {
826
0
        if (ovs_scan_len(s, n, "/%d", &prefix)) {
827
0
            if (prefix < 0 || prefix > 128) {
828
0
                return xasprintf("%s: IPv6 network prefix bits not between 0 "
829
0
                                 "and 128, inclusive", s);
830
0
            }
831
0
            *mask = ipv6_create_mask(prefix);
832
0
        } else if (ovs_scan_len(s, n, "/"IPV6_SCAN_FMT, ipv6_s)) {
833
0
             if (!ipv6_parse(ipv6_s, mask)) {
834
0
                 return xasprintf("%s: Invalid IPv6 mask", s);
835
0
             }
836
            /* OK. */
837
0
        } else {
838
            /* OK. No mask. */
839
0
            *mask = in6addr_exact;
840
0
        }
841
0
        return NULL;
842
0
    }
843
0
    return xasprintf("%s: invalid IPv6 address", s);
844
0
}
845
846
/* This function is similar to ipv6_parse_masked_len(), but doesn't return the
847
 * number of scanned characters and expects 's' to end following the
848
 * ipv6/(optional) mask. */
849
char * OVS_WARN_UNUSED_RESULT
850
ipv6_parse_masked(const char *s, struct in6_addr *ip, struct in6_addr *mask)
851
0
{
852
0
    int n = 0;
853
854
0
    char *error = ipv6_parse_masked_len(s, &n, ip, mask);
855
0
    if (!error && s[n]) {
856
0
        return xasprintf("%s: invalid IPv6 address", s);
857
0
    }
858
0
    return error;
859
0
}
860
861
/* Similar to ipv6_parse_masked_len(), but the mask, if present, must be a CIDR
862
 * mask and is returned as a prefix length in '*plen'. */
863
char * OVS_WARN_UNUSED_RESULT
864
ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip,
865
                    unsigned int *plen)
866
0
{
867
0
    struct in6_addr mask;
868
0
    char *error;
869
870
0
    error = ipv6_parse_masked_len(s, n, ip, &mask);
871
0
    if (error) {
872
0
        return error;
873
0
    }
874
875
0
    if (!ipv6_is_cidr(&mask)) {
876
0
        return xasprintf("%s: IPv6 CIDR network required", s);
877
0
    }
878
0
    *plen = ipv6_count_cidr_bits(&mask);
879
0
    return NULL;
880
0
}
881
882
/* Similar to ipv6_parse_cidr_len(), but doesn't return the number of scanned
883
 * characters and expects 's' to end after the ipv6/(optional) cidr. */
884
char * OVS_WARN_UNUSED_RESULT
885
ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen)
886
0
{
887
0
    int n = 0;
888
889
0
    char *error = ipv6_parse_cidr_len(s, &n, ip, plen);
890
0
    if (!error && s[n]) {
891
0
        return xasprintf("%s: invalid IPv6 address", s);
892
0
    }
893
0
    return error;
894
0
}
895
896
/* Stores the string representation of the IPv6 address 'addr' into the
897
 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
898
 * bytes long. */
899
void
900
ipv6_format_addr(const struct in6_addr *addr, struct ds *s)
901
5.35k
{
902
5.35k
    char *dst;
903
904
5.35k
    ds_reserve(s, s->length + INET6_ADDRSTRLEN);
905
906
5.35k
    dst = s->string + s->length;
907
5.35k
    inet_ntop(AF_INET6, addr, dst, INET6_ADDRSTRLEN);
908
5.35k
    s->length += strlen(dst);
909
5.35k
}
910
911
/* Same as print_ipv6_addr, but optionally encloses the address in square
912
 * brackets. */
913
void
914
ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *s,
915
                         bool bracket)
916
5.35k
{
917
5.35k
    if (bracket) {
918
1.63k
        ds_put_char(s, '[');
919
1.63k
    }
920
5.35k
    ipv6_format_addr(addr, s);
921
5.35k
    if (bracket) {
922
1.63k
        ds_put_char(s, ']');
923
1.63k
    }
924
5.35k
}
925
926
void
927
ipv6_format_mapped(const struct in6_addr *addr, struct ds *s)
928
0
{
929
0
    if (IN6_IS_ADDR_V4MAPPED(addr)) {
930
0
        ds_put_format(s, IP_FMT, addr->s6_addr[12], addr->s6_addr[13],
931
0
                                 addr->s6_addr[14], addr->s6_addr[15]);
932
0
    } else {
933
0
        ipv6_format_addr(addr, s);
934
0
    }
935
0
}
936
937
void
938
ipv6_format_masked(const struct in6_addr *addr, const struct in6_addr *mask,
939
                   struct ds *s)
940
0
{
941
0
    ipv6_format_addr(addr, s);
942
0
    if (mask && !ipv6_mask_is_exact(mask)) {
943
0
        if (ipv6_is_cidr(mask)) {
944
0
            int cidr_bits = ipv6_count_cidr_bits(mask);
945
0
            ds_put_format(s, "/%d", cidr_bits);
946
0
        } else {
947
0
            ds_put_char(s, '/');
948
0
            ipv6_format_addr(mask, s);
949
0
        }
950
0
    }
951
0
}
952
953
/* Stores the string representation of the IPv6 address 'addr' into the
954
 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
955
 * bytes long. If addr is IPv4-mapped, store an IPv4 dotted-decimal string. */
956
const char *
957
ipv6_string_mapped(char *addr_str, const struct in6_addr *addr)
958
0
{
959
0
    ovs_be32 ip;
960
0
    ip = in6_addr_get_mapped_ipv4(addr);
961
0
    if (ip) {
962
0
        return inet_ntop(AF_INET, &ip, addr_str, INET6_ADDRSTRLEN);
963
0
    } else {
964
0
        return inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
965
0
    }
966
0
}
967
968
#ifdef s6_addr32
969
0
#define s6_addrX s6_addr32
970
0
#define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 4; VAR++)
971
#else
972
#define s6_addrX s6_addr
973
#define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 16; VAR++)
974
#endif
975
976
struct in6_addr
977
ipv6_addr_bitand(const struct in6_addr *a, const struct in6_addr *b)
978
0
{
979
0
   struct in6_addr dst;
980
0
   IPV6_FOR_EACH (i) {
981
0
       dst.s6_addrX[i] = a->s6_addrX[i] & b->s6_addrX[i];
982
0
   }
983
0
   return dst;
984
0
}
985
986
struct in6_addr
987
ipv6_addr_bitxor(const struct in6_addr *a, const struct in6_addr *b)
988
0
{
989
0
   struct in6_addr dst;
990
0
   IPV6_FOR_EACH (i) {
991
0
       dst.s6_addrX[i] = a->s6_addrX[i] ^ b->s6_addrX[i];
992
0
   }
993
0
   return dst;
994
0
}
995
996
bool
997
ipv6_is_zero(const struct in6_addr *a)
998
0
{
999
0
   IPV6_FOR_EACH (i) {
1000
0
       if (a->s6_addrX[i]) {
1001
0
           return false;
1002
0
       }
1003
0
   }
1004
0
   return true;
1005
0
}
1006
1007
/* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
1008
 * low-order 0-bits. */
1009
struct in6_addr
1010
ipv6_create_mask(int mask)
1011
0
{
1012
0
    struct in6_addr netmask;
1013
0
    uint8_t *netmaskp = &netmask.s6_addr[0];
1014
1015
0
    memset(&netmask, 0, sizeof netmask);
1016
0
    while (mask > 8) {
1017
0
        *netmaskp = 0xff;
1018
0
        netmaskp++;
1019
0
        mask -= 8;
1020
0
    }
1021
1022
0
    if (mask) {
1023
0
        *netmaskp = 0xff << (8 - mask);
1024
0
    }
1025
1026
0
    return netmask;
1027
0
}
1028
1029
/* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
1030
 * address that it specifies, that is, the number of 1-bits in 'netmask'.
1031
 * 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
1032
 *
1033
 * If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
1034
 * will still be in the valid range but isn't otherwise meaningful. */
1035
int
1036
ipv6_count_cidr_bits(const struct in6_addr *netmask)
1037
0
{
1038
0
    int i;
1039
0
    int count = 0;
1040
0
    const uint8_t *netmaskp = &netmask->s6_addr[0];
1041
1042
0
    for (i=0; i<16; i++) {
1043
0
        if (netmaskp[i] == 0xff) {
1044
0
            count += 8;
1045
0
        } else {
1046
0
            uint8_t nm;
1047
1048
0
            for(nm = netmaskp[i]; nm; nm <<= 1) {
1049
0
                count++;
1050
0
            }
1051
0
            break;
1052
0
        }
1053
1054
0
    }
1055
1056
0
    return count;
1057
0
}
1058
1059
/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
1060
 * high-order 1-bits and 128-N low-order 0-bits. */
1061
bool
1062
ipv6_is_cidr(const struct in6_addr *netmask)
1063
0
{
1064
0
    const uint8_t *netmaskp = &netmask->s6_addr[0];
1065
0
    int i;
1066
1067
0
    for (i=0; i<16; i++) {
1068
0
        if (netmaskp[i] != 0xff) {
1069
0
            uint8_t x = ~netmaskp[i];
1070
0
            if (x & (x + 1)) {
1071
0
                return false;
1072
0
            }
1073
0
            while (++i < 16) {
1074
0
                if (netmaskp[i]) {
1075
0
                    return false;
1076
0
                }
1077
0
            }
1078
0
        }
1079
0
    }
1080
1081
0
    return true;
1082
0
}
1083
1084
/* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
1085
 * 'eth_src' and 'eth_type' parameters.  A payload of 'size' bytes is allocated
1086
 * in 'b' and returned.  This payload may be populated with appropriate
1087
 * information by the caller.  Sets 'b''s 'frame' pointer and 'l3' offset to
1088
 * the Ethernet header and payload respectively.  Aligns b->l3 on a 32-bit
1089
 * boundary.
1090
 *
1091
 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
1092
 * desired. */
1093
void *
1094
eth_compose(struct dp_packet *b, const struct eth_addr eth_dst,
1095
            const struct eth_addr eth_src, uint16_t eth_type,
1096
            size_t size)
1097
0
{
1098
0
    void *data;
1099
0
    struct eth_header *eth;
1100
1101
1102
0
    dp_packet_clear(b);
1103
1104
    /* The magic 2 here ensures that the L3 header (when it is added later)
1105
     * will be 32-bit aligned. */
1106
0
    dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
1107
0
    dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
1108
0
    eth = dp_packet_put_uninit(b, ETH_HEADER_LEN);
1109
0
    data = dp_packet_put_zeros(b, size);
1110
1111
0
    eth->eth_dst = eth_dst;
1112
0
    eth->eth_src = eth_src;
1113
0
    eth->eth_type = htons(eth_type);
1114
1115
0
    b->packet_type = htonl(PT_ETH);
1116
0
    dp_packet_set_l3(b, data);
1117
1118
0
    return data;
1119
0
}
1120
1121
void
1122
packet_set_ipv4_addr(struct dp_packet *packet,
1123
                     ovs_16aligned_be32 *addr, ovs_be32 new_addr)
1124
0
{
1125
0
    struct ip_header *nh = dp_packet_l3(packet);
1126
0
    ovs_be32 old_addr = get_16aligned_be32(addr);
1127
0
    size_t l4_size = dp_packet_l4_size(packet);
1128
1129
0
    pkt_metadata_init_conn(&packet->md);
1130
1131
0
    if (nh->ip_proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
1132
0
        if (dp_packet_l4_checksum_valid(packet)) {
1133
0
            dp_packet_l4_checksum_set_partial(packet);
1134
0
        } else {
1135
0
            struct tcp_header *th = dp_packet_l4(packet);
1136
0
            th->tcp_csum = recalc_csum32(th->tcp_csum, old_addr, new_addr);
1137
0
        }
1138
0
    } else if (nh->ip_proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN ) {
1139
0
        if (dp_packet_l4_checksum_valid(packet)) {
1140
0
            dp_packet_l4_checksum_set_partial(packet);
1141
0
        } else {
1142
0
            struct udp_header *uh = dp_packet_l4(packet);
1143
0
            if (uh->udp_csum) {
1144
0
                uh->udp_csum = recalc_csum32(uh->udp_csum, old_addr, new_addr);
1145
0
                if (!uh->udp_csum) {
1146
0
                    uh->udp_csum = htons(0xffff);
1147
0
                }
1148
0
            }
1149
0
        }
1150
0
    }
1151
1152
0
    if (dp_packet_ip_checksum_valid(packet)) {
1153
0
        dp_packet_ip_checksum_set_partial(packet);
1154
0
    } else {
1155
0
        nh->ip_csum = recalc_csum32(nh->ip_csum, old_addr, new_addr);
1156
0
    }
1157
0
    put_16aligned_be32(addr, new_addr);
1158
0
}
1159
1160
/* Returns true, if packet contains at least one routing header where
1161
 * segements_left > 0.
1162
 *
1163
 * This function assumes that L3 and L4 offsets are set in the packet. */
1164
bool
1165
packet_rh_present(struct dp_packet *packet, uint8_t *nexthdr, bool *first_frag)
1166
0
{
1167
0
    const struct ovs_16aligned_ip6_hdr *nh;
1168
0
    size_t len;
1169
0
    size_t remaining;
1170
0
    uint8_t *data = dp_packet_l3(packet);
1171
1172
0
    remaining = packet->l4_ofs - packet->l3_ofs;
1173
0
    if (remaining < sizeof *nh) {
1174
0
        return false;
1175
0
    }
1176
0
    nh = ALIGNED_CAST(struct ovs_16aligned_ip6_hdr *, data);
1177
0
    data += sizeof *nh;
1178
0
    remaining -= sizeof *nh;
1179
0
    *nexthdr = nh->ip6_nxt;
1180
1181
0
    while (1) {
1182
0
        if ((*nexthdr != IPPROTO_HOPOPTS)
1183
0
                && (*nexthdr != IPPROTO_ROUTING)
1184
0
                && (*nexthdr != IPPROTO_DSTOPTS)
1185
0
                && (*nexthdr != IPPROTO_AH)
1186
0
                && (*nexthdr != IPPROTO_FRAGMENT)) {
1187
            /* It's either a terminal header (e.g., TCP, UDP) or one we
1188
             * don't understand.  In either case, we're done with the
1189
             * packet, so use it to fill in 'nw_proto'. */
1190
0
            break;
1191
0
        }
1192
1193
        /* We only verify that at least 8 bytes of the next header are
1194
         * available, but many of these headers are longer.  Ensure that
1195
         * accesses within the extension header are within those first 8
1196
         * bytes. All extension headers are required to be at least 8
1197
         * bytes. */
1198
0
        if (remaining < 8) {
1199
0
            return false;
1200
0
        }
1201
1202
0
        if (*nexthdr == IPPROTO_AH) {
1203
            /* A standard AH definition isn't available, but the fields
1204
             * we care about are in the same location as the generic
1205
             * option header--only the header length is calculated
1206
             * differently. */
1207
0
            const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
1208
1209
0
            *nexthdr = ext_hdr->ip6e_nxt;
1210
0
            len = (ext_hdr->ip6e_len + 2) * 4;
1211
0
        } else if (*nexthdr == IPPROTO_FRAGMENT) {
1212
0
            const struct ovs_16aligned_ip6_frag *frag_hdr
1213
0
                = ALIGNED_CAST(struct ovs_16aligned_ip6_frag *, data);
1214
1215
0
            *first_frag = !(frag_hdr->ip6f_offlg & IP6F_OFF_MASK) &&
1216
0
                           (frag_hdr->ip6f_offlg & IP6F_MORE_FRAG);
1217
0
            *nexthdr = frag_hdr->ip6f_nxt;
1218
0
            len = sizeof *frag_hdr;
1219
0
        } else if (*nexthdr == IPPROTO_ROUTING) {
1220
0
            const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
1221
1222
0
            if (rh->ip6r_segleft > 0) {
1223
0
                return true;
1224
0
            }
1225
1226
0
            *nexthdr = rh->ip6r_nxt;
1227
0
            len = (rh->ip6r_len + 1) * 8;
1228
0
        } else {
1229
0
            const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
1230
1231
0
            *nexthdr = ext_hdr->ip6e_nxt;
1232
0
            len = (ext_hdr->ip6e_len + 1) * 8;
1233
0
        }
1234
1235
0
        if (remaining < len) {
1236
0
            return false;
1237
0
        }
1238
0
        remaining -= len;
1239
0
        data += len;
1240
0
    }
1241
1242
0
    return false;
1243
0
}
1244
1245
static void
1246
packet_update_csum128(struct dp_packet *packet, uint8_t proto,
1247
                      ovs_16aligned_be32 addr[4],
1248
                      const struct in6_addr *new_addr)
1249
0
{
1250
0
    size_t l4_size = dp_packet_l4_size(packet);
1251
1252
0
    if (proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
1253
0
        if (dp_packet_l4_checksum_valid(packet)) {
1254
0
            dp_packet_l4_checksum_set_partial(packet);
1255
0
        } else {
1256
0
            struct tcp_header *th = dp_packet_l4(packet);
1257
1258
0
            th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
1259
0
        }
1260
0
    } else if (proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN) {
1261
0
        if (dp_packet_l4_checksum_valid(packet)) {
1262
0
            dp_packet_l4_checksum_set_partial(packet);
1263
0
        } else {
1264
0
            struct udp_header *uh = dp_packet_l4(packet);
1265
1266
0
            if (uh->udp_csum) {
1267
0
                uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
1268
0
                if (!uh->udp_csum) {
1269
0
                    uh->udp_csum = htons(0xffff);
1270
0
                }
1271
0
            }
1272
0
        }
1273
0
    } else if (proto == IPPROTO_ICMPV6 &&
1274
0
               l4_size >= sizeof(struct icmp6_header)) {
1275
0
        struct icmp6_header *icmp = dp_packet_l4(packet);
1276
1277
0
        icmp->icmp6_cksum = recalc_csum128(icmp->icmp6_cksum, addr, new_addr);
1278
0
    }
1279
0
}
1280
1281
void
1282
packet_set_ipv6_addr(struct dp_packet *packet, uint8_t proto,
1283
                     ovs_16aligned_be32 addr[4],
1284
                     const struct in6_addr *new_addr,
1285
                     bool recalculate_csum)
1286
0
{
1287
0
    if (recalculate_csum) {
1288
0
        packet_update_csum128(packet, proto, addr, new_addr);
1289
0
    }
1290
0
    memcpy(addr, new_addr, sizeof(ovs_be32[4]));
1291
0
    pkt_metadata_init_conn(&packet->md);
1292
0
}
1293
1294
void
1295
packet_set_ipv6_flow_label(ovs_16aligned_be32 *flow_label, ovs_be32 flow_key)
1296
0
{
1297
0
    ovs_be32 old_label = get_16aligned_be32(flow_label);
1298
0
    ovs_be32 new_label = (old_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
1299
0
    put_16aligned_be32(flow_label, new_label);
1300
0
}
1301
1302
void
1303
packet_set_ipv6_tc(ovs_16aligned_be32 *flow_label, uint8_t tc)
1304
0
{
1305
0
    ovs_be32 old_label = get_16aligned_be32(flow_label);
1306
0
    ovs_be32 new_label = (old_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
1307
0
    put_16aligned_be32(flow_label, new_label);
1308
0
}
1309
1310
/* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
1311
 * 'dst', 'tos', and 'ttl'.  Updates 'packet''s L4 checksums as appropriate.
1312
 * 'packet' must contain a valid IPv4 packet with correctly populated l[347]
1313
 * markers. */
1314
void
1315
packet_set_ipv4(struct dp_packet *packet, ovs_be32 src, ovs_be32 dst,
1316
                uint8_t tos, uint8_t ttl)
1317
0
{
1318
0
    struct ip_header *nh = dp_packet_l3(packet);
1319
1320
0
    if (get_16aligned_be32(&nh->ip_src) != src) {
1321
0
        packet_set_ipv4_addr(packet, &nh->ip_src, src);
1322
0
    }
1323
1324
0
    if (get_16aligned_be32(&nh->ip_dst) != dst) {
1325
0
        packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
1326
0
    }
1327
1328
0
    if (nh->ip_tos != tos) {
1329
0
        uint8_t *field = &nh->ip_tos;
1330
1331
0
        if (dp_packet_ip_checksum_valid(packet)) {
1332
0
            dp_packet_ip_checksum_set_partial(packet);
1333
0
        } else {
1334
0
            nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
1335
0
                                        htons((uint16_t) tos));
1336
0
        }
1337
1338
0
        *field = tos;
1339
0
    }
1340
1341
0
    if (nh->ip_ttl != ttl) {
1342
0
        uint8_t *field = &nh->ip_ttl;
1343
1344
0
        if (dp_packet_ip_checksum_valid(packet)) {
1345
0
            dp_packet_ip_checksum_set_partial(packet);
1346
0
        } else {
1347
0
            nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
1348
0
                                        htons(ttl << 8));
1349
0
        }
1350
1351
0
        *field = ttl;
1352
0
    }
1353
0
}
1354
1355
/* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
1356
 * 'dst', 'traffic class', and 'next hop'.  Updates 'packet''s L4 checksums as
1357
 * appropriate. 'packet' must contain a valid IPv6 packet with correctly
1358
 * populated l[34] offsets. */
1359
void
1360
packet_set_ipv6(struct dp_packet *packet, const struct in6_addr *src,
1361
                const struct in6_addr *dst, uint8_t key_tc, ovs_be32 key_fl,
1362
                uint8_t key_hl)
1363
0
{
1364
0
    struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(packet);
1365
0
    bool recalc_csum = true;
1366
0
    uint8_t proto = 0;
1367
0
    bool rh_present;
1368
1369
0
    rh_present = packet_rh_present(packet, &proto, &recalc_csum);
1370
1371
0
    if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
1372
0
        packet_set_ipv6_addr(packet, proto, nh->ip6_src.be32,
1373
0
                             src, recalc_csum);
1374
0
    }
1375
1376
0
    if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
1377
0
        packet_set_ipv6_addr(packet, proto, nh->ip6_dst.be32, dst,
1378
0
                             !rh_present && recalc_csum);
1379
0
    }
1380
1381
0
    packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
1382
0
    packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
1383
0
    nh->ip6_hlim = key_hl;
1384
0
}
1385
1386
static void
1387
packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
1388
0
{
1389
0
    if (*port != new_port) {
1390
0
        if (csum) {
1391
0
            *csum = recalc_csum16(*csum, *port, new_port);
1392
0
        }
1393
0
        *port = new_port;
1394
0
    }
1395
0
}
1396
1397
/* Sets the TCP source and destination port ('src' and 'dst' respectively) of
1398
 * the TCP header contained in 'packet'.  'packet' must be a valid TCP packet
1399
 * with its l4 offset properly populated. */
1400
void
1401
packet_set_tcp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
1402
0
{
1403
0
    struct tcp_header *th = dp_packet_l4(packet);
1404
0
    ovs_be16 *csum = NULL;
1405
1406
0
    if (dp_packet_l4_checksum_valid(packet)) {
1407
0
        dp_packet_l4_checksum_set_partial(packet);
1408
0
    } else {
1409
0
        csum = &th->tcp_csum;
1410
0
    }
1411
1412
0
    packet_set_port(&th->tcp_src, src, csum);
1413
0
    packet_set_port(&th->tcp_dst, dst, csum);
1414
0
    pkt_metadata_init_conn(&packet->md);
1415
0
}
1416
1417
/* Sets the UDP source and destination port ('src' and 'dst' respectively) of
1418
 * the UDP header contained in 'packet'.  'packet' must be a valid UDP packet
1419
 * with its l4 offset properly populated. */
1420
void
1421
packet_set_udp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
1422
0
{
1423
0
    struct udp_header *uh = dp_packet_l4(packet);
1424
1425
0
    if (dp_packet_l4_checksum_valid(packet)) {
1426
0
        dp_packet_l4_checksum_set_partial(packet);
1427
0
        packet_set_port(&uh->udp_src, src, NULL);
1428
0
        packet_set_port(&uh->udp_dst, dst, NULL);
1429
0
    } else {
1430
0
        ovs_be16 *csum = uh->udp_csum ? &uh->udp_csum : NULL;
1431
1432
0
        packet_set_port(&uh->udp_src, src, csum);
1433
0
        packet_set_port(&uh->udp_dst, dst, csum);
1434
1435
0
        if (csum && !uh->udp_csum) {
1436
0
            uh->udp_csum = htons(0xffff);
1437
0
        }
1438
0
    }
1439
1440
0
    pkt_metadata_init_conn(&packet->md);
1441
0
}
1442
1443
/* Sets the SCTP source and destination port ('src' and 'dst' respectively) of
1444
 * the SCTP header contained in 'packet'.  'packet' must be a valid SCTP packet
1445
 * with its l4 offset properly populated. */
1446
void
1447
packet_set_sctp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
1448
0
{
1449
0
    struct sctp_header *sh = dp_packet_l4(packet);
1450
1451
0
    if (dp_packet_l4_checksum_valid(packet)) {
1452
0
        dp_packet_l4_checksum_set_partial(packet);
1453
0
        sh->sctp_src = src;
1454
0
        sh->sctp_dst = dst;
1455
0
    } else {
1456
0
        ovs_be32 old_csum, old_correct_csum, new_csum;
1457
0
        uint16_t tp_len = dp_packet_l4_size(packet);
1458
1459
0
        old_csum = get_16aligned_be32(&sh->sctp_csum);
1460
0
        put_16aligned_be32(&sh->sctp_csum, 0);
1461
0
        old_correct_csum = crc32c((void *) sh, tp_len);
1462
1463
0
        sh->sctp_src = src;
1464
0
        sh->sctp_dst = dst;
1465
1466
0
        new_csum = crc32c((void *) sh, tp_len);
1467
0
        put_16aligned_be32(&sh->sctp_csum, old_csum ^ old_correct_csum
1468
0
                           ^ new_csum);
1469
0
    }
1470
1471
0
    pkt_metadata_init_conn(&packet->md);
1472
0
}
1473
1474
/* Sets the ICMP type and code of the ICMP header contained in 'packet'.
1475
 * 'packet' must be a valid ICMP packet with its l4 offset properly
1476
 * populated. */
1477
void
1478
packet_set_icmp(struct dp_packet *packet, uint8_t type, uint8_t code)
1479
0
{
1480
0
    struct icmp_header *ih = dp_packet_l4(packet);
1481
0
    ovs_be16 orig_tc = htons(ih->icmp_type << 8 | ih->icmp_code);
1482
0
    ovs_be16 new_tc = htons(type << 8 | code);
1483
1484
0
    if (orig_tc != new_tc) {
1485
0
        ih->icmp_type = type;
1486
0
        ih->icmp_code = code;
1487
1488
0
        ih->icmp_csum = recalc_csum16(ih->icmp_csum, orig_tc, new_tc);
1489
0
    }
1490
0
    pkt_metadata_init_conn(&packet->md);
1491
0
}
1492
1493
/* Sets the IGMP type to IGMP_HOST_MEMBERSHIP_QUERY and populates the
1494
 * v3 query header fields in 'packet'. 'packet' must be a valid IGMPv3
1495
 * query packet with its l4 offset properly populated.
1496
 */
1497
void
1498
packet_set_igmp3_query(struct dp_packet *packet, uint8_t max_resp,
1499
                       ovs_be32 group, bool srs, uint8_t qrv, uint8_t qqic)
1500
0
{
1501
0
    struct igmpv3_query_header *igh = dp_packet_l4(packet);
1502
0
    ovs_be16 orig_type_max_resp =
1503
0
        htons(igh->type << 8 | igh->max_resp);
1504
0
    ovs_be16 new_type_max_resp =
1505
0
        htons(IGMP_HOST_MEMBERSHIP_QUERY << 8 | max_resp);
1506
1507
0
    if (orig_type_max_resp != new_type_max_resp) {
1508
0
        igh->type = IGMP_HOST_MEMBERSHIP_QUERY;
1509
0
        igh->max_resp = max_resp;
1510
0
        igh->csum = recalc_csum16(igh->csum, orig_type_max_resp,
1511
0
                                  new_type_max_resp);
1512
0
    }
1513
1514
0
    ovs_be32 old_group = get_16aligned_be32(&igh->group);
1515
1516
0
    if (old_group != group) {
1517
0
        put_16aligned_be32(&igh->group, group);
1518
0
        igh->csum = recalc_csum32(igh->csum, old_group, group);
1519
0
    }
1520
1521
    /* See RFC 3376 4.1.6. */
1522
0
    if (qrv > 7) {
1523
0
        qrv = 0;
1524
0
    }
1525
1526
0
    ovs_be16 orig_srs_qrv_qqic = htons(igh->srs_qrv << 8 | igh->qqic);
1527
0
    ovs_be16 new_srs_qrv_qqic = htons(srs << 11 | qrv << 8 | qqic);
1528
1529
0
    if (orig_srs_qrv_qqic != new_srs_qrv_qqic) {
1530
0
        igh->srs_qrv = (srs << 3 | qrv);
1531
0
        igh->qqic = qqic;
1532
0
        igh->csum = recalc_csum16(igh->csum, orig_srs_qrv_qqic,
1533
0
                                  new_srs_qrv_qqic);
1534
0
    }
1535
0
}
1536
1537
void
1538
packet_set_nd_ext(struct dp_packet *packet, const ovs_16aligned_be32 rso_flags,
1539
                  const uint8_t opt_type)
1540
0
{
1541
0
    struct ovs_nd_msg *ns;
1542
0
    struct ovs_nd_lla_opt *opt;
1543
0
    int bytes_remain = dp_packet_l4_size(packet);
1544
0
    struct ovs_16aligned_ip6_hdr * nh = dp_packet_l3(packet);
1545
0
    uint32_t pseudo_hdr_csum = 0;
1546
1547
0
    if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
1548
0
        return;
1549
0
    }
1550
1551
0
    if (nh) {
1552
0
        pseudo_hdr_csum = packet_csum_pseudoheader6(nh);
1553
0
    }
1554
1555
0
    ns = dp_packet_l4(packet);
1556
0
    opt = &ns->options[0];
1557
1558
    /* set RSO flags and option type */
1559
0
    ns->rso_flags = rso_flags;
1560
0
    opt->type = opt_type;
1561
1562
    /* recalculate checksum */
1563
0
    ovs_be16 *csum_value = &(ns->icmph.icmp6_cksum);
1564
0
    *csum_value = 0;
1565
0
    *csum_value = csum_finish(csum_continue(pseudo_hdr_csum,
1566
0
                              &(ns->icmph), bytes_remain));
1567
1568
0
}
1569
1570
void
1571
packet_set_nd(struct dp_packet *packet, const struct in6_addr *target,
1572
              const struct eth_addr sll, const struct eth_addr tll)
1573
0
{
1574
0
    struct ovs_nd_msg *ns;
1575
0
    struct ovs_nd_lla_opt *opt;
1576
0
    int bytes_remain = dp_packet_l4_size(packet);
1577
1578
0
    if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
1579
0
        return;
1580
0
    }
1581
1582
0
    ns = dp_packet_l4(packet);
1583
0
    opt = &ns->options[0];
1584
0
    bytes_remain -= sizeof(*ns);
1585
1586
0
    if (memcmp(&ns->target, target, sizeof(ovs_be32[4]))) {
1587
0
        packet_set_ipv6_addr(packet, IPPROTO_ICMPV6, ns->target.be32, target,
1588
0
                             true);
1589
0
    }
1590
1591
0
    while (bytes_remain >= ND_LLA_OPT_LEN && opt->len != 0) {
1592
0
        if (opt->type == ND_OPT_SOURCE_LINKADDR && opt->len == 1) {
1593
0
            if (!eth_addr_equals(opt->mac, sll)) {
1594
0
                ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
1595
1596
0
                *csum = recalc_csum48(*csum, opt->mac, sll);
1597
0
                opt->mac = sll;
1598
0
            }
1599
1600
            /* A packet can only contain one SLL or TLL option */
1601
0
            break;
1602
0
        } else if (opt->type == ND_OPT_TARGET_LINKADDR && opt->len == 1) {
1603
0
            if (!eth_addr_equals(opt->mac, tll)) {
1604
0
                ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
1605
1606
0
                *csum = recalc_csum48(*csum, opt->mac, tll);
1607
0
                opt->mac = tll;
1608
0
            }
1609
1610
            /* A packet can only contain one SLL or TLL option */
1611
0
            break;
1612
0
        }
1613
1614
0
        opt += opt->len;
1615
0
        bytes_remain -= opt->len * ND_LLA_OPT_LEN;
1616
0
    }
1617
0
}
1618
1619
const char *
1620
packet_tcp_flag_to_string(uint32_t flag)
1621
601k
{
1622
601k
    switch (flag) {
1623
45.5k
    case TCP_FIN:
1624
45.5k
        return "fin";
1625
54.7k
    case TCP_SYN:
1626
54.7k
        return "syn";
1627
40.0k
    case TCP_RST:
1628
40.0k
        return "rst";
1629
36.8k
    case TCP_PSH:
1630
36.8k
        return "psh";
1631
36.6k
    case TCP_ACK:
1632
36.6k
        return "ack";
1633
36.3k
    case TCP_URG:
1634
36.3k
        return "urg";
1635
36.5k
    case TCP_ECE:
1636
36.5k
        return "ece";
1637
35.7k
    case TCP_CWR:
1638
35.7k
        return "cwr";
1639
35.6k
    case TCP_NS:
1640
35.6k
        return "ns";
1641
34.7k
    case 0x200:
1642
34.7k
        return "[200]";
1643
34.5k
    case 0x400:
1644
34.5k
        return "[400]";
1645
34.7k
    case 0x800:
1646
34.7k
        return "[800]";
1647
139k
    default:
1648
139k
        return NULL;
1649
601k
    }
1650
601k
}
1651
1652
/* Appends a string representation of the TCP flags value 'tcp_flags'
1653
 * (e.g. from struct flow.tcp_flags or obtained via TCP_FLAGS) to 's', in the
1654
 * format used by tcpdump. */
1655
void
1656
packet_format_tcp_flags(struct ds *s, uint16_t tcp_flags)
1657
0
{
1658
0
    if (!tcp_flags) {
1659
0
        ds_put_cstr(s, "none");
1660
0
        return;
1661
0
    }
1662
1663
0
    if (tcp_flags & TCP_SYN) {
1664
0
        ds_put_char(s, 'S');
1665
0
    }
1666
0
    if (tcp_flags & TCP_FIN) {
1667
0
        ds_put_char(s, 'F');
1668
0
    }
1669
0
    if (tcp_flags & TCP_PSH) {
1670
0
        ds_put_char(s, 'P');
1671
0
    }
1672
0
    if (tcp_flags & TCP_RST) {
1673
0
        ds_put_char(s, 'R');
1674
0
    }
1675
0
    if (tcp_flags & TCP_URG) {
1676
0
        ds_put_char(s, 'U');
1677
0
    }
1678
0
    if (tcp_flags & TCP_ACK) {
1679
0
        ds_put_char(s, '.');
1680
0
    }
1681
0
    if (tcp_flags & TCP_ECE) {
1682
0
        ds_put_cstr(s, "E");
1683
0
    }
1684
0
    if (tcp_flags & TCP_CWR) {
1685
0
        ds_put_cstr(s, "C");
1686
0
    }
1687
0
    if (tcp_flags & TCP_NS) {
1688
0
        ds_put_cstr(s, "N");
1689
0
    }
1690
0
    if (tcp_flags & 0x200) {
1691
0
        ds_put_cstr(s, "[200]");
1692
0
    }
1693
0
    if (tcp_flags & 0x400) {
1694
0
        ds_put_cstr(s, "[400]");
1695
0
    }
1696
0
    if (tcp_flags & 0x800) {
1697
0
        ds_put_cstr(s, "[800]");
1698
0
    }
1699
0
}
1700
1701
0
#define ARP_PACKET_SIZE  (2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + \
1702
0
                          ARP_ETH_HEADER_LEN)
1703
1704
/* Clears 'b' and replaces its contents by an ARP frame with the specified
1705
 * 'arp_op', 'arp_sha', 'arp_tha', 'arp_spa', and 'arp_tpa'.  The outer
1706
 * Ethernet frame is initialized with Ethernet source 'arp_sha' and destination
1707
 * 'arp_tha', except that destination ff:ff:ff:ff:ff:ff is used instead if
1708
 * 'broadcast' is true.  Points the L3 header to the ARP header. */
1709
void
1710
compose_arp(struct dp_packet *b, uint16_t arp_op,
1711
            const struct eth_addr arp_sha, const struct eth_addr arp_tha,
1712
            bool broadcast, ovs_be32 arp_spa, ovs_be32 arp_tpa)
1713
0
{
1714
0
    compose_arp__(b);
1715
1716
0
    struct eth_header *eth = dp_packet_eth(b);
1717
0
    eth->eth_dst = broadcast ? eth_addr_broadcast : arp_tha;
1718
0
    eth->eth_src = arp_sha;
1719
1720
0
    struct arp_eth_header *arp = dp_packet_l3(b);
1721
0
    arp->ar_op = htons(arp_op);
1722
0
    arp->ar_sha = arp_sha;
1723
0
    arp->ar_tha = arp_tha;
1724
0
    put_16aligned_be32(&arp->ar_spa, arp_spa);
1725
0
    put_16aligned_be32(&arp->ar_tpa, arp_tpa);
1726
0
}
1727
1728
/* Clears 'b' and replaces its contents by an ARP frame.  Sets the fields in
1729
 * the Ethernet and ARP headers that are fixed for ARP frames to those fixed
1730
 * values, and zeroes the other fields.  Points the L3 header to the ARP
1731
 * header. */
1732
void
1733
compose_arp__(struct dp_packet *b)
1734
0
{
1735
0
    dp_packet_clear(b);
1736
0
    dp_packet_prealloc_tailroom(b, ARP_PACKET_SIZE);
1737
0
    dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
1738
1739
0
    struct eth_header *eth = dp_packet_put_zeros(b, sizeof *eth);
1740
0
    eth->eth_type = htons(ETH_TYPE_ARP);
1741
1742
0
    struct arp_eth_header *arp = dp_packet_put_zeros(b, sizeof *arp);
1743
0
    arp->ar_hrd = htons(ARP_HRD_ETHERNET);
1744
0
    arp->ar_pro = htons(ARP_PRO_IP);
1745
0
    arp->ar_hln = sizeof arp->ar_sha;
1746
0
    arp->ar_pln = sizeof arp->ar_spa;
1747
1748
0
    dp_packet_set_l3(b, arp);
1749
1750
0
    b->packet_type = htonl(PT_ETH);
1751
0
}
1752
1753
/* This function expects packet with ethernet header with correct
1754
 * l3 pointer set. */
1755
void *
1756
compose_ipv6(struct dp_packet *packet, uint8_t proto,
1757
             const struct in6_addr *src, const struct in6_addr *dst,
1758
             uint8_t key_tc, ovs_be32 key_fl, uint8_t key_hl, int size)
1759
0
{
1760
0
    struct ovs_16aligned_ip6_hdr *nh;
1761
0
    void *data;
1762
1763
0
    nh = dp_packet_l3(packet);
1764
0
    nh->ip6_vfc = 0x60;
1765
0
    nh->ip6_nxt = proto;
1766
0
    nh->ip6_plen = htons(size);
1767
0
    data = dp_packet_put_zeros(packet, size);
1768
0
    dp_packet_set_l4(packet, data);
1769
0
    packet_set_ipv6(packet, src, dst, key_tc, key_fl, key_hl);
1770
0
    return data;
1771
0
}
1772
1773
/* Compose an IPv6 Neighbor Discovery Neighbor Solicitation message. */
1774
void
1775
compose_nd_ns(struct dp_packet *b, const struct eth_addr eth_src,
1776
              const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst)
1777
0
{
1778
0
    struct in6_addr sn_addr;
1779
0
    struct eth_addr eth_dst;
1780
0
    struct ovs_nd_msg *ns;
1781
0
    struct ovs_nd_lla_opt *lla_opt;
1782
0
    uint32_t icmp_csum;
1783
1784
0
    in6_addr_solicited_node(&sn_addr, ipv6_dst);
1785
0
    ipv6_multicast_to_ethernet(&eth_dst, &sn_addr);
1786
1787
0
    eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
1788
0
    ns = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, &sn_addr,
1789
0
                      0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);
1790
1791
0
    ns->icmph.icmp6_type = ND_NEIGHBOR_SOLICIT;
1792
0
    ns->icmph.icmp6_code = 0;
1793
0
    put_16aligned_be32(&ns->rso_flags, htonl(0));
1794
1795
0
    lla_opt = &ns->options[0];
1796
0
    lla_opt->type = ND_OPT_SOURCE_LINKADDR;
1797
0
    lla_opt->len = 1;
1798
1799
0
    packet_set_nd(b, ipv6_dst, eth_src, eth_addr_zero);
1800
1801
0
    ns->icmph.icmp6_cksum = 0;
1802
0
    icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
1803
0
    ns->icmph.icmp6_cksum = csum_finish(
1804
0
        csum_continue(icmp_csum, ns, ND_MSG_LEN + ND_LLA_OPT_LEN));
1805
0
}
1806
1807
/* Compose an IPv6 Neighbor Discovery Neighbor Advertisement message. */
1808
void
1809
compose_nd_na(struct dp_packet *b,
1810
              const struct eth_addr eth_src, const struct eth_addr eth_dst,
1811
              const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
1812
              ovs_be32 rso_flags)
1813
0
{
1814
0
    struct ovs_nd_msg *na;
1815
0
    struct ovs_nd_lla_opt *lla_opt;
1816
0
    uint32_t icmp_csum;
1817
1818
0
    eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
1819
0
    na = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst,
1820
0
                      0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);
1821
1822
0
    na->icmph.icmp6_type = ND_NEIGHBOR_ADVERT;
1823
0
    na->icmph.icmp6_code = 0;
1824
0
    put_16aligned_be32(&na->rso_flags, rso_flags);
1825
1826
0
    lla_opt = &na->options[0];
1827
0
    lla_opt->type = ND_OPT_TARGET_LINKADDR;
1828
0
    lla_opt->len = 1;
1829
1830
0
    packet_set_nd(b, ipv6_src, eth_addr_zero, eth_src);
1831
1832
0
    na->icmph.icmp6_cksum = 0;
1833
0
    icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
1834
0
    na->icmph.icmp6_cksum = csum_finish(csum_continue(
1835
0
        icmp_csum, na, ND_MSG_LEN + ND_LLA_OPT_LEN));
1836
0
}
1837
1838
/* Compose an IPv6 Neighbor Discovery Router Advertisement message with
1839
 * Source Link-layer Address Option and MTU Option.
1840
 * Caller can call packet_put_ra_prefix_opt to append Prefix Information
1841
 * Options to composed messags in 'b'. */
1842
void
1843
compose_nd_ra(struct dp_packet *b,
1844
              const struct eth_addr eth_src, const struct eth_addr eth_dst,
1845
              const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
1846
              uint8_t cur_hop_limit, uint8_t mo_flags,
1847
              ovs_be16 router_lt, ovs_be32 reachable_time,
1848
              ovs_be32 retrans_timer, uint32_t mtu)
1849
0
{
1850
    /* Don't compose Router Advertisement packet with MTU Option if mtu
1851
     * value is 0. */
1852
0
    bool with_mtu = mtu != 0;
1853
0
    size_t mtu_opt_len = with_mtu ? ND_MTU_OPT_LEN : 0;
1854
1855
0
    eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
1856
1857
0
    struct ovs_ra_msg *ra = compose_ipv6(
1858
0
        b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst, 0, 0, 255,
1859
0
        RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len);
1860
0
    ra->icmph.icmp6_type = ND_ROUTER_ADVERT;
1861
0
    ra->icmph.icmp6_code = 0;
1862
0
    ra->cur_hop_limit = cur_hop_limit;
1863
0
    ra->mo_flags = mo_flags;
1864
0
    ra->router_lifetime = router_lt;
1865
0
    ra->reachable_time = reachable_time;
1866
0
    ra->retrans_timer = retrans_timer;
1867
1868
0
    struct ovs_nd_lla_opt *lla_opt = ra->options;
1869
0
    lla_opt->type = ND_OPT_SOURCE_LINKADDR;
1870
0
    lla_opt->len = 1;
1871
0
    lla_opt->mac = eth_src;
1872
1873
0
    if (with_mtu) {
1874
        /* ovs_nd_mtu_opt has the same size with ovs_nd_lla_opt. */
1875
0
        struct ovs_nd_mtu_opt *mtu_opt
1876
0
            = (struct ovs_nd_mtu_opt *)(lla_opt + 1);
1877
0
        mtu_opt->type = ND_OPT_MTU;
1878
0
        mtu_opt->len = 1;
1879
0
        mtu_opt->reserved = 0;
1880
0
        put_16aligned_be32(&mtu_opt->mtu, htonl(mtu));
1881
0
    }
1882
1883
0
    ra->icmph.icmp6_cksum = 0;
1884
0
    uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
1885
0
    ra->icmph.icmp6_cksum = csum_finish(csum_continue(
1886
0
        icmp_csum, ra, RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len));
1887
0
}
1888
1889
/* Append an IPv6 Neighbor Discovery Prefix Information option to a
1890
 * Router Advertisement message. */
1891
void
1892
packet_put_ra_prefix_opt(struct dp_packet *b,
1893
                         uint8_t plen, uint8_t la_flags,
1894
                         ovs_be32 valid_lifetime, ovs_be32 preferred_lifetime,
1895
                         const ovs_be128 prefix)
1896
0
{
1897
0
    size_t prev_l4_size = dp_packet_l4_size(b);
1898
0
    struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(b);
1899
0
    nh->ip6_plen = htons(prev_l4_size + ND_PREFIX_OPT_LEN);
1900
1901
0
    struct ovs_nd_prefix_opt *prefix_opt =
1902
0
        dp_packet_put_uninit(b, sizeof *prefix_opt);
1903
0
    prefix_opt->type = ND_OPT_PREFIX_INFORMATION;
1904
0
    prefix_opt->len = 4;
1905
0
    prefix_opt->prefix_len = plen;
1906
0
    prefix_opt->la_flags = la_flags;
1907
0
    put_16aligned_be32(&prefix_opt->valid_lifetime, valid_lifetime);
1908
0
    put_16aligned_be32(&prefix_opt->preferred_lifetime, preferred_lifetime);
1909
0
    put_16aligned_be32(&prefix_opt->reserved, 0);
1910
0
    memcpy(prefix_opt->prefix.be32, prefix.be32, sizeof(ovs_be32[4]));
1911
1912
0
    struct ovs_ra_msg *ra = dp_packet_l4(b);
1913
0
    ra->icmph.icmp6_cksum = 0;
1914
0
    uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
1915
0
    ra->icmph.icmp6_cksum = csum_finish(csum_continue(
1916
0
        icmp_csum, ra, prev_l4_size + ND_PREFIX_OPT_LEN));
1917
0
}
1918
1919
uint32_t
1920
packet_csum_pseudoheader(const struct ip_header *ip)
1921
0
{
1922
0
    uint32_t partial = 0;
1923
1924
0
    partial = csum_add32(partial, get_16aligned_be32(&ip->ip_src));
1925
0
    partial = csum_add32(partial, get_16aligned_be32(&ip->ip_dst));
1926
0
    partial = csum_add16(partial, htons(ip->ip_proto));
1927
0
    partial = csum_add16(partial, htons(ntohs(ip->ip_tot_len) -
1928
0
                                        IP_IHL(ip->ip_ihl_ver) * 4));
1929
1930
0
    return partial;
1931
0
}
1932
1933
#ifndef __CHECKER__
1934
uint32_t
1935
packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *ip6)
1936
0
{
1937
0
    uint32_t partial = 0;
1938
1939
0
    partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
1940
0
    partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
1941
0
    partial = csum_add16(partial, htons(ip6->ip6_nxt));
1942
0
    partial = csum_add16(partial, ip6->ip6_plen);
1943
1944
0
    return partial;
1945
0
}
1946
1947
/* Calculate the IPv6 upper layer checksum according to RFC2460. We pass the
1948
   ip6_nxt and ip6_plen values, so it will also work if extension headers
1949
   are present. */
1950
ovs_be16
1951
packet_csum_upperlayer6(const struct ovs_16aligned_ip6_hdr *ip6,
1952
                        const void *data, uint8_t l4_protocol,
1953
                        uint16_t l4_size)
1954
0
{
1955
0
    uint32_t partial = 0;
1956
1957
0
    partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
1958
0
    partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
1959
0
    partial = csum_add16(partial, htons(l4_protocol));
1960
0
    partial = csum_add16(partial, htons(l4_size));
1961
1962
0
    partial = csum_continue(partial, data, l4_size);
1963
1964
0
    return csum_finish(partial);
1965
0
}
1966
#endif
1967
1968
void
1969
IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6)
1970
0
{
1971
0
    if (is_ipv6) {
1972
0
        ovs_16aligned_be32 *ip6 = dp_packet_l3(pkt);
1973
1974
0
        put_16aligned_be32(ip6, get_16aligned_be32(ip6) |
1975
0
                                htonl(IP_ECN_CE << 20));
1976
0
    } else {
1977
0
        struct ip_header *nh = dp_packet_l3(pkt);
1978
0
        uint8_t tos = nh->ip_tos;
1979
1980
0
        tos |= IP_ECN_CE;
1981
0
        if (nh->ip_tos != tos) {
1982
0
            if (dp_packet_ip_checksum_valid(pkt)) {
1983
0
                dp_packet_ip_checksum_set_partial(pkt);
1984
0
            } else {
1985
0
                nh->ip_csum = recalc_csum16(nh->ip_csum, htons(nh->ip_tos),
1986
0
                                            htons((uint16_t) tos));
1987
0
            }
1988
1989
0
            nh->ip_tos = tos;
1990
0
        }
1991
0
    }
1992
0
}
1993
1994
/* Set TCP checksum field in packet 'p' with complete checksum.
1995
 * The packet must have the L3 and L4 offsets. */
1996
void
1997
packet_tcp_complete_csum(struct dp_packet *p, bool inner)
1998
0
{
1999
0
    struct tcp_header *tcp;
2000
0
    size_t tcp_sz;
2001
0
    void *ip_hdr;
2002
2003
0
    if (inner) {
2004
0
        tcp = dp_packet_inner_l4(p);
2005
0
        ip_hdr = dp_packet_inner_l3(p);
2006
0
        tcp_sz = dp_packet_inner_l4_size(p);
2007
0
    } else {
2008
0
        tcp = dp_packet_l4(p);
2009
0
        ip_hdr = dp_packet_l3(p);
2010
0
        tcp_sz = dp_packet_l4_size(p);
2011
0
    }
2012
2013
0
    ovs_assert(tcp);
2014
0
    ovs_assert(ip_hdr);
2015
2016
0
    tcp->tcp_csum = 0;
2017
0
    if (IP_VER(((const struct ip_header *) ip_hdr)->ip_ihl_ver) == 4) {
2018
0
        struct ip_header *ip = ip_hdr;
2019
2020
0
        tcp->tcp_csum = csum_finish(csum_continue(packet_csum_pseudoheader(ip),
2021
0
                                                  tcp, tcp_sz));
2022
0
    } else {
2023
0
        struct ovs_16aligned_ip6_hdr *ip6 = ip_hdr;
2024
2025
0
        tcp->tcp_csum = packet_csum_upperlayer6(ip6, tcp, ip6->ip6_nxt,
2026
0
                                                tcp_sz);
2027
0
    }
2028
2029
0
    if (inner) {
2030
0
        dp_packet_inner_l4_checksum_set_good(p);
2031
0
    } else {
2032
0
        dp_packet_l4_checksum_set_good(p);
2033
0
    }
2034
0
}
2035
2036
/* Set UDP checksum field in packet 'p' with complete checksum.
2037
 * The packet must have the L3 and L4 offsets. */
2038
void
2039
packet_udp_complete_csum(struct dp_packet *p, bool inner)
2040
0
{
2041
0
    struct udp_header *udp;
2042
0
    size_t udp_sz;
2043
0
    void *ip_hdr;
2044
2045
0
    if (inner) {
2046
0
        udp = dp_packet_inner_l4(p);
2047
0
        ip_hdr = dp_packet_inner_l3(p);
2048
0
        udp_sz = dp_packet_inner_l4_size(p);
2049
0
    } else {
2050
0
        udp = dp_packet_l4(p);
2051
0
        ip_hdr = dp_packet_l3(p);
2052
0
        udp_sz = dp_packet_l4_size(p);
2053
0
    }
2054
2055
0
    ovs_assert(udp);
2056
0
    ovs_assert(ip_hdr);
2057
2058
    /* Skip csum calculation if the udp_csum is zero. */
2059
0
    if (!udp->udp_csum) {
2060
0
        goto out;
2061
0
    }
2062
2063
0
    udp->udp_csum = 0;
2064
0
    if (IP_VER(((const struct ip_header *) ip_hdr)->ip_ihl_ver) == 4) {
2065
0
        struct ip_header *ip = ip_hdr;
2066
2067
0
        udp->udp_csum = csum_finish(csum_continue(packet_csum_pseudoheader(ip),
2068
0
                                                  udp, udp_sz));
2069
0
    } else {
2070
0
        struct ovs_16aligned_ip6_hdr *ip6 = ip_hdr;
2071
2072
0
        udp->udp_csum = packet_csum_upperlayer6(ip6, udp, ip6->ip6_nxt,
2073
0
                                                udp_sz);
2074
0
    }
2075
2076
0
    if (!udp->udp_csum) {
2077
0
        udp->udp_csum = htons(0xffff);
2078
0
    }
2079
2080
0
out:
2081
0
    if (inner) {
2082
0
        dp_packet_inner_l4_checksum_set_good(p);
2083
0
    } else {
2084
0
        dp_packet_l4_checksum_set_good(p);
2085
0
    }
2086
0
}
2087
2088
/* Set SCTP checksum field in packet 'p' with complete checksum.
2089
 * The packet must have the L3 and L4 offsets. */
2090
void
2091
packet_sctp_complete_csum(struct dp_packet *p, bool inner)
2092
0
{
2093
0
    struct sctp_header *sh;
2094
0
    uint16_t tp_len;
2095
0
    ovs_be32 csum;
2096
2097
0
    if (inner) {
2098
0
        sh = dp_packet_inner_l4(p);
2099
0
        tp_len = dp_packet_inner_l4_size(p);
2100
0
    } else {
2101
0
        sh = dp_packet_l4(p);
2102
0
        tp_len = dp_packet_l4_size(p);
2103
0
    }
2104
2105
0
    ovs_assert(sh);
2106
2107
0
    put_16aligned_be32(&sh->sctp_csum, 0);
2108
0
    csum = crc32c((void *) sh, tp_len);
2109
0
    put_16aligned_be32(&sh->sctp_csum, csum);
2110
2111
0
    if (inner) {
2112
0
        dp_packet_inner_l4_checksum_set_good(p);
2113
0
    } else {
2114
0
        dp_packet_l4_checksum_set_good(p);
2115
0
    }
2116
0
}