/src/openvswitch/lib/conntrack.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2015-2019 Nicira, Inc. |
3 | | * |
4 | | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | | * you may not use this file except in compliance with the License. |
6 | | * You may obtain a copy of the License at: |
7 | | * |
8 | | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | | * |
10 | | * Unless required by applicable law or agreed to in writing, software |
11 | | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | | * See the License for the specific language governing permissions and |
14 | | * limitations under the License. |
15 | | */ |
16 | | |
17 | | #include <config.h> |
18 | | #include <ctype.h> |
19 | | #include <errno.h> |
20 | | #include <sys/types.h> |
21 | | #include <netinet/in.h> |
22 | | #include <netinet/icmp6.h> |
23 | | #include <string.h> |
24 | | |
25 | | #include "conntrack.h" |
26 | | #include "conntrack-private.h" |
27 | | #include "conntrack-tp.h" |
28 | | #include "coverage.h" |
29 | | #include "crc32c.h" |
30 | | #include "csum.h" |
31 | | #include "ct-dpif.h" |
32 | | #include "dp-packet.h" |
33 | | #include "flow.h" |
34 | | #include "netdev.h" |
35 | | #include "odp-netlink.h" |
36 | | #include "odp-util.h" |
37 | | #include "openvswitch/hmap.h" |
38 | | #include "openvswitch/types.h" |
39 | | #include "openvswitch/vlog.h" |
40 | | #include "ovs-rcu.h" |
41 | | #include "ovs-thread.h" |
42 | | #include "openvswitch/poll-loop.h" |
43 | | #include "random.h" |
44 | | #include "rculist.h" |
45 | | #include "timeval.h" |
46 | | #include "unaligned.h" |
47 | | |
48 | | VLOG_DEFINE_THIS_MODULE(conntrack); |
49 | | |
50 | | COVERAGE_DEFINE(conntrack_full); |
51 | | COVERAGE_DEFINE(conntrack_l3csum_checked); |
52 | | COVERAGE_DEFINE(conntrack_l3csum_err); |
53 | | COVERAGE_DEFINE(conntrack_l4csum_checked); |
54 | | COVERAGE_DEFINE(conntrack_l4csum_err); |
55 | | COVERAGE_DEFINE(conntrack_lookup_natted_miss); |
56 | | COVERAGE_DEFINE(conntrack_zone_full); |
57 | | |
58 | | struct conn_lookup_ctx { |
59 | | struct conn_key key; |
60 | | struct conn *conn; |
61 | | uint32_t hash; |
62 | | bool reply; |
63 | | bool icmp_related; |
64 | | }; |
65 | | |
66 | | enum ftp_ctl_pkt { |
67 | | /* Control packets with address and/or port specifiers. */ |
68 | | CT_FTP_CTL_INTEREST, |
69 | | /* Control packets without address and/or port specifiers. */ |
70 | | CT_FTP_CTL_OTHER, |
71 | | CT_FTP_CTL_INVALID, |
72 | | }; |
73 | | |
74 | | enum ct_alg_mode { |
75 | | CT_FTP_MODE_ACTIVE, |
76 | | CT_FTP_MODE_PASSIVE, |
77 | | CT_TFTP_MODE, |
78 | | }; |
79 | | |
80 | | enum ct_alg_ctl_type { |
81 | | CT_ALG_CTL_NONE, |
82 | | CT_ALG_CTL_FTP, |
83 | | CT_ALG_CTL_TFTP, |
84 | | /* SIP is not enabled through Openflow and presently only used as |
85 | | * an example of an alg that allows a wildcard src ip. */ |
86 | | CT_ALG_CTL_SIP, |
87 | | }; |
88 | | |
89 | | struct zone_limit { |
90 | | struct cmap_node node; |
91 | | struct conntrack_zone_limit czl; |
92 | | }; |
93 | | |
94 | | static bool conn_key_extract(struct conntrack *, struct dp_packet *, |
95 | | ovs_be16 dl_type, struct conn_lookup_ctx *, |
96 | | uint16_t zone); |
97 | | static uint32_t conn_key_hash(const struct conn_key *, uint32_t basis); |
98 | | static void conn_key_reverse(struct conn_key *); |
99 | | static bool valid_new(struct dp_packet *pkt, struct conn_key *); |
100 | | static struct conn *new_conn(struct conntrack *ct, struct dp_packet *pkt, |
101 | | struct conn_key *, long long now, |
102 | | uint32_t tp_id); |
103 | | static void delete_conn__(struct conn *); |
104 | | static void delete_conn(struct conn *); |
105 | | static enum ct_update_res conn_update(struct conntrack *ct, struct conn *conn, |
106 | | struct dp_packet *pkt, |
107 | | struct conn_lookup_ctx *ctx, |
108 | | long long now); |
109 | | static long long int conn_expiration(const struct conn *); |
110 | | static bool conn_expired(const struct conn *, long long now); |
111 | | static void conn_expire_push_front(struct conntrack *ct, struct conn *conn); |
112 | | static void set_mark(struct dp_packet *, struct conn *, |
113 | | uint32_t val, uint32_t mask); |
114 | | static void set_label(struct dp_packet *, struct conn *, |
115 | | const struct ovs_key_ct_labels *val, |
116 | | const struct ovs_key_ct_labels *mask); |
117 | | static void *clean_thread_main(void *f_); |
118 | | |
119 | | static bool |
120 | | nat_get_unique_tuple(struct conntrack *ct, struct conn *conn, |
121 | | const struct nat_action_info_t *nat_info); |
122 | | |
123 | | static uint8_t |
124 | | reverse_icmp_type(uint8_t type); |
125 | | static uint8_t |
126 | | reverse_icmp6_type(uint8_t type); |
127 | | static inline bool |
128 | | extract_l3_ipv4(struct dp_packet *pkt, struct conn_key *key, const void *data, |
129 | | size_t size, const char **new_data); |
130 | | static inline bool |
131 | | extract_l3_ipv6(struct conn_key *key, const void *data, size_t size, |
132 | | const char **new_data); |
133 | | static struct alg_exp_node * |
134 | | expectation_lookup(struct hmap *alg_expectations, const struct conn_key *key, |
135 | | uint32_t basis, bool src_ip_wc); |
136 | | |
137 | | static int |
138 | | repl_ftp_v4_addr(struct dp_packet *pkt, ovs_be32 v4_addr_rep, |
139 | | char *ftp_data_v4_start, |
140 | | size_t addr_offset_from_ftp_data_start, size_t addr_size); |
141 | | |
142 | | static enum ftp_ctl_pkt |
143 | | process_ftp_ctl_v4(struct conntrack *ct, |
144 | | struct dp_packet *pkt, |
145 | | const struct conn *conn_for_expectation, |
146 | | ovs_be32 *v4_addr_rep, |
147 | | char **ftp_data_v4_start, |
148 | | size_t *addr_offset_from_ftp_data_start, |
149 | | size_t *addr_size); |
150 | | |
151 | | static enum ftp_ctl_pkt |
152 | | detect_ftp_ctl_type(const struct conn_lookup_ctx *ctx, |
153 | | struct dp_packet *pkt); |
154 | | |
155 | | static void |
156 | | expectation_clean(struct conntrack *ct, const struct conn_key *parent_key); |
157 | | |
158 | | static struct ct_l4_proto *l4_protos[UINT8_MAX + 1]; |
159 | | |
160 | | static void |
161 | | handle_ftp_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx, |
162 | | struct dp_packet *pkt, struct conn *ec, long long now, |
163 | | enum ftp_ctl_pkt ftp_ctl, bool nat); |
164 | | |
165 | | static void |
166 | | handle_tftp_ctl(struct conntrack *ct, |
167 | | const struct conn_lookup_ctx *ctx OVS_UNUSED, |
168 | | struct dp_packet *pkt, struct conn *conn_for_expectation, |
169 | | long long now OVS_UNUSED, enum ftp_ctl_pkt ftp_ctl OVS_UNUSED, |
170 | | bool nat OVS_UNUSED); |
171 | | |
172 | | typedef void (*alg_helper)(struct conntrack *ct, |
173 | | const struct conn_lookup_ctx *ctx, |
174 | | struct dp_packet *pkt, |
175 | | struct conn *conn_for_expectation, |
176 | | long long now, enum ftp_ctl_pkt ftp_ctl, |
177 | | bool nat); |
178 | | |
179 | | static alg_helper alg_helpers[] = { |
180 | | [CT_ALG_CTL_NONE] = NULL, |
181 | | [CT_ALG_CTL_FTP] = handle_ftp_ctl, |
182 | | [CT_ALG_CTL_TFTP] = handle_tftp_ctl, |
183 | | }; |
184 | | |
185 | | /* The maximum TCP or UDP port number. */ |
186 | 0 | #define CT_MAX_L4_PORT 65535 |
187 | | /* String buffer used for parsing FTP string messages. |
188 | | * This is sized about twice what is needed to leave some |
189 | | * margin of error. */ |
190 | | #define LARGEST_FTP_MSG_OF_INTEREST 128 |
191 | | /* FTP port string used in active mode. */ |
192 | 0 | #define FTP_PORT_CMD "PORT" |
193 | | /* FTP pasv string used in passive mode. */ |
194 | 0 | #define FTP_PASV_REPLY_CODE "227" |
195 | | /* Maximum decimal digits for port in FTP command. |
196 | | * The port is represented as two 3 digit numbers with the |
197 | | * high part a multiple of 256. */ |
198 | 0 | #define MAX_FTP_PORT_DGTS 3 |
199 | | |
200 | | /* FTP extension EPRT string used for active mode. */ |
201 | 0 | #define FTP_EPRT_CMD "EPRT" |
202 | | /* FTP extension EPSV string used for passive mode. */ |
203 | 0 | #define FTP_EPSV_REPLY "EXTENDED PASSIVE" |
204 | | /* Maximum decimal digits for port in FTP extended command. */ |
205 | 0 | #define MAX_EXT_FTP_PORT_DGTS 5 |
206 | | /* FTP extended command code for IPv6. */ |
207 | 0 | #define FTP_AF_V6 '2' |
208 | | /* Used to indicate a wildcard L4 source port number for ALGs. |
209 | | * This is used for port numbers that we cannot predict in |
210 | | * expectations. */ |
211 | 0 | #define ALG_WC_SRC_PORT 0 |
212 | | |
213 | | /* If the total number of connections goes above this value, no new connections |
214 | | * are accepted. */ |
215 | | #define DEFAULT_N_CONN_LIMIT 3000000 |
216 | | |
217 | | /* Does a member by member comparison of two conn_keys; this |
218 | | * function must be kept in sync with struct conn_key; returns 0 |
219 | | * if the keys are equal or 1 if the keys are not equal. */ |
220 | | static int |
221 | | conn_key_cmp(const struct conn_key *key1, const struct conn_key *key2) |
222 | 0 | { |
223 | 0 | if (!memcmp(&key1->src.addr, &key2->src.addr, sizeof key1->src.addr) && |
224 | 0 | !memcmp(&key1->dst.addr, &key2->dst.addr, sizeof key1->dst.addr) && |
225 | 0 | (key1->src.icmp_id == key2->src.icmp_id) && |
226 | 0 | (key1->src.icmp_type == key2->src.icmp_type) && |
227 | 0 | (key1->src.icmp_code == key2->src.icmp_code) && |
228 | 0 | (key1->dst.icmp_id == key2->dst.icmp_id) && |
229 | 0 | (key1->dst.icmp_type == key2->dst.icmp_type) && |
230 | 0 | (key1->dst.icmp_code == key2->dst.icmp_code) && |
231 | 0 | (key1->dl_type == key2->dl_type) && |
232 | 0 | (key1->zone == key2->zone) && |
233 | 0 | (key1->nw_proto == key2->nw_proto)) { |
234 | |
|
235 | 0 | return 0; |
236 | 0 | } |
237 | 0 | return 1; |
238 | 0 | } |
239 | | |
240 | | /* Initializes the connection tracker 'ct'. The caller is responsible for |
241 | | * calling 'conntrack_destroy()', when the instance is not needed anymore */ |
242 | | struct conntrack * |
243 | | conntrack_init(void) |
244 | 0 | { |
245 | 0 | static struct ovsthread_once setup_l4_once = OVSTHREAD_ONCE_INITIALIZER; |
246 | 0 | struct conntrack *ct = xzalloc(sizeof *ct); |
247 | | |
248 | | /* This value can be used during init (e.g. timeout_policy_init()), |
249 | | * set it first to ensure it is available. |
250 | | */ |
251 | 0 | ct->hash_basis = random_uint32(); |
252 | |
|
253 | 0 | ovs_rwlock_init(&ct->resources_lock); |
254 | 0 | ovs_rwlock_wrlock(&ct->resources_lock); |
255 | 0 | hmap_init(&ct->alg_expectations); |
256 | 0 | hindex_init(&ct->alg_expectation_refs); |
257 | 0 | ovs_rwlock_unlock(&ct->resources_lock); |
258 | |
|
259 | 0 | ovs_mutex_init_adaptive(&ct->ct_lock); |
260 | 0 | ovs_mutex_lock(&ct->ct_lock); |
261 | 0 | for (unsigned i = 0; i < ARRAY_SIZE(ct->conns); i++) { |
262 | 0 | cmap_init(&ct->conns[i]); |
263 | 0 | } |
264 | 0 | for (unsigned i = 0; i < ARRAY_SIZE(ct->exp_lists); i++) { |
265 | 0 | rculist_init(&ct->exp_lists[i]); |
266 | 0 | } |
267 | 0 | cmap_init(&ct->zone_limits); |
268 | 0 | ct->zone_limit_seq = 0; |
269 | 0 | timeout_policy_init(ct); |
270 | 0 | ovs_mutex_unlock(&ct->ct_lock); |
271 | |
|
272 | 0 | atomic_count_init(&ct->n_conn, 0); |
273 | 0 | atomic_init(&ct->n_conn_limit, DEFAULT_N_CONN_LIMIT); |
274 | 0 | atomic_init(&ct->tcp_seq_chk, true); |
275 | 0 | atomic_init(&ct->sweep_ms, 20000); |
276 | 0 | atomic_init(&ct->default_zone_limit, 0); |
277 | 0 | latch_init(&ct->clean_thread_exit); |
278 | 0 | ct->clean_thread = ovs_thread_create("ct_clean", clean_thread_main, ct); |
279 | 0 | ct->ipf = ipf_init(); |
280 | | |
281 | | /* Initialize the l4 protocols. */ |
282 | 0 | if (ovsthread_once_start(&setup_l4_once)) { |
283 | 0 | for (int i = 0; i < ARRAY_SIZE(l4_protos); i++) { |
284 | 0 | l4_protos[i] = &ct_proto_other; |
285 | 0 | } |
286 | | /* IPPROTO_UDP uses ct_proto_other, so no need to initialize it. */ |
287 | 0 | l4_protos[IPPROTO_TCP] = &ct_proto_tcp; |
288 | 0 | l4_protos[IPPROTO_ICMP] = &ct_proto_icmp4; |
289 | 0 | l4_protos[IPPROTO_ICMPV6] = &ct_proto_icmp6; |
290 | |
|
291 | 0 | ovsthread_once_done(&setup_l4_once); |
292 | 0 | } |
293 | 0 | return ct; |
294 | 0 | } |
295 | | |
296 | | static uint32_t |
297 | | zone_key_hash(int32_t zone, uint32_t basis) |
298 | 0 | { |
299 | 0 | size_t hash = hash_int((OVS_FORCE uint32_t) zone, basis); |
300 | 0 | return hash; |
301 | 0 | } |
302 | | |
303 | | static int64_t |
304 | | zone_limit_get_limit__(struct conntrack_zone_limit *czl) |
305 | 0 | { |
306 | 0 | int64_t limit; |
307 | 0 | atomic_read_relaxed(&czl->limit, &limit); |
308 | |
|
309 | 0 | return limit; |
310 | 0 | } |
311 | | |
312 | | static int64_t |
313 | | zone_limit_get_limit(struct conntrack *ct, struct conntrack_zone_limit *czl) |
314 | 0 | { |
315 | 0 | int64_t limit = zone_limit_get_limit__(czl); |
316 | |
|
317 | 0 | if (limit == ZONE_LIMIT_CONN_DEFAULT) { |
318 | 0 | atomic_read_relaxed(&ct->default_zone_limit, &limit); |
319 | 0 | limit = limit ? limit : -1; |
320 | 0 | } |
321 | |
|
322 | 0 | return limit; |
323 | 0 | } |
324 | | |
325 | | static struct zone_limit * |
326 | | zone_limit_lookup_protected(struct conntrack *ct, int32_t zone) |
327 | | OVS_REQUIRES(ct->ct_lock) |
328 | 0 | { |
329 | 0 | uint32_t hash = zone_key_hash(zone, ct->hash_basis); |
330 | 0 | struct zone_limit *zl; |
331 | 0 | CMAP_FOR_EACH_WITH_HASH_PROTECTED (zl, node, hash, &ct->zone_limits) { |
332 | 0 | if (zl->czl.zone == zone) { |
333 | 0 | return zl; |
334 | 0 | } |
335 | 0 | } |
336 | 0 | return NULL; |
337 | 0 | } |
338 | | |
339 | | static struct zone_limit * |
340 | | zone_limit_lookup(struct conntrack *ct, int32_t zone) |
341 | 0 | { |
342 | 0 | uint32_t hash = zone_key_hash(zone, ct->hash_basis); |
343 | 0 | struct zone_limit *zl; |
344 | 0 | CMAP_FOR_EACH_WITH_HASH (zl, node, hash, &ct->zone_limits) { |
345 | 0 | if (zl->czl.zone == zone) { |
346 | 0 | return zl; |
347 | 0 | } |
348 | 0 | } |
349 | 0 | return NULL; |
350 | 0 | } |
351 | | |
352 | | static struct zone_limit * |
353 | | zone_limit_create__(struct conntrack *ct, int32_t zone, int64_t limit) |
354 | | OVS_REQUIRES(ct->ct_lock) |
355 | 0 | { |
356 | 0 | struct zone_limit *zl = NULL; |
357 | |
|
358 | 0 | if (zone > DEFAULT_ZONE && zone <= MAX_ZONE) { |
359 | 0 | zl = xmalloc(sizeof *zl); |
360 | 0 | atomic_init(&zl->czl.limit, limit); |
361 | 0 | atomic_count_init(&zl->czl.count, 0); |
362 | 0 | zl->czl.zone = zone; |
363 | 0 | zl->czl.zone_limit_seq = ct->zone_limit_seq++; |
364 | 0 | uint32_t hash = zone_key_hash(zone, ct->hash_basis); |
365 | 0 | cmap_insert(&ct->zone_limits, &zl->node, hash); |
366 | 0 | } |
367 | |
|
368 | 0 | return zl; |
369 | 0 | } |
370 | | |
371 | | static struct zone_limit * |
372 | | zone_limit_create(struct conntrack *ct, int32_t zone, int64_t limit) |
373 | | OVS_REQUIRES(ct->ct_lock) |
374 | 0 | { |
375 | 0 | struct zone_limit *zl = zone_limit_lookup_protected(ct, zone); |
376 | |
|
377 | 0 | if (zl) { |
378 | 0 | return zl; |
379 | 0 | } |
380 | | |
381 | 0 | return zone_limit_create__(ct, zone, limit); |
382 | 0 | } |
383 | | |
384 | | /* Lazily creates a new entry in the zone_limits cmap if default limit |
385 | | * is set and there's no entry for the zone. */ |
386 | | static struct zone_limit * |
387 | | zone_limit_lookup_or_default(struct conntrack *ct, int32_t zone) |
388 | | OVS_REQUIRES(ct->ct_lock) |
389 | 0 | { |
390 | 0 | struct zone_limit *zl = zone_limit_lookup_protected(ct, zone); |
391 | |
|
392 | 0 | if (!zl) { |
393 | 0 | uint32_t limit; |
394 | 0 | atomic_read_relaxed(&ct->default_zone_limit, &limit); |
395 | |
|
396 | 0 | if (limit) { |
397 | 0 | zl = zone_limit_create__(ct, zone, ZONE_LIMIT_CONN_DEFAULT); |
398 | 0 | } |
399 | 0 | } |
400 | |
|
401 | 0 | return zl; |
402 | 0 | } |
403 | | |
404 | | struct conntrack_zone_info |
405 | | zone_limit_get(struct conntrack *ct, int32_t zone) |
406 | 0 | { |
407 | 0 | struct conntrack_zone_info czl = { |
408 | 0 | .zone = DEFAULT_ZONE, |
409 | 0 | .limit = 0, |
410 | 0 | .count = 0, |
411 | 0 | }; |
412 | 0 | struct zone_limit *zl = zone_limit_lookup(ct, zone); |
413 | 0 | if (zl) { |
414 | 0 | int64_t czl_limit = zone_limit_get_limit__(&zl->czl); |
415 | 0 | if (czl_limit > ZONE_LIMIT_CONN_DEFAULT) { |
416 | 0 | czl.zone = zl->czl.zone; |
417 | 0 | czl.limit = czl_limit; |
418 | 0 | } else { |
419 | 0 | atomic_read_relaxed(&ct->default_zone_limit, &czl.limit); |
420 | 0 | } |
421 | |
|
422 | 0 | czl.count = atomic_count_get(&zl->czl.count); |
423 | 0 | } else { |
424 | 0 | atomic_read_relaxed(&ct->default_zone_limit, &czl.limit); |
425 | 0 | } |
426 | |
|
427 | 0 | return czl; |
428 | 0 | } |
429 | | |
430 | | static void |
431 | | zone_limit_clean__(struct conntrack *ct, struct zone_limit *zl) |
432 | | OVS_REQUIRES(ct->ct_lock) |
433 | 0 | { |
434 | 0 | uint32_t hash = zone_key_hash(zl->czl.zone, ct->hash_basis); |
435 | 0 | cmap_remove(&ct->zone_limits, &zl->node, hash); |
436 | 0 | ovsrcu_postpone(free, zl); |
437 | 0 | } |
438 | | |
439 | | static void |
440 | | zone_limit_clean(struct conntrack *ct, struct zone_limit *zl) |
441 | | OVS_REQUIRES(ct->ct_lock) |
442 | 0 | { |
443 | 0 | uint32_t limit; |
444 | |
|
445 | 0 | atomic_read_relaxed(&ct->default_zone_limit, &limit); |
446 | | /* Do not remove the entry if the default limit is enabled, but |
447 | | * simply move the limit to default. */ |
448 | 0 | if (limit) { |
449 | 0 | atomic_store_relaxed(&zl->czl.limit, ZONE_LIMIT_CONN_DEFAULT); |
450 | 0 | } else { |
451 | 0 | zone_limit_clean__(ct, zl); |
452 | 0 | } |
453 | 0 | } |
454 | | |
455 | | static void |
456 | | zone_limit_clean_default(struct conntrack *ct) |
457 | | OVS_REQUIRES(ct->ct_lock) |
458 | 0 | { |
459 | 0 | struct zone_limit *zl; |
460 | 0 | int64_t czl_limit; |
461 | |
|
462 | 0 | atomic_store_relaxed(&ct->default_zone_limit, 0); |
463 | |
|
464 | 0 | CMAP_FOR_EACH (zl, node, &ct->zone_limits) { |
465 | 0 | atomic_read_relaxed(&zl->czl.limit, &czl_limit); |
466 | 0 | if (zone_limit_get_limit__(&zl->czl) == ZONE_LIMIT_CONN_DEFAULT) { |
467 | 0 | zone_limit_clean__(ct, zl); |
468 | 0 | } |
469 | 0 | } |
470 | 0 | } |
471 | | |
472 | | static bool |
473 | | zone_limit_delete__(struct conntrack *ct, int32_t zone) |
474 | | OVS_REQUIRES(ct->ct_lock) |
475 | 0 | { |
476 | 0 | struct zone_limit *zl = NULL; |
477 | |
|
478 | 0 | if (zone == DEFAULT_ZONE) { |
479 | 0 | zone_limit_clean_default(ct); |
480 | 0 | } else { |
481 | 0 | zl = zone_limit_lookup_protected(ct, zone); |
482 | 0 | if (zl) { |
483 | 0 | zone_limit_clean(ct, zl); |
484 | 0 | } |
485 | 0 | } |
486 | |
|
487 | 0 | return zl != NULL; |
488 | 0 | } |
489 | | |
490 | | int |
491 | | zone_limit_delete(struct conntrack *ct, int32_t zone) |
492 | 0 | { |
493 | 0 | bool deleted; |
494 | |
|
495 | 0 | ovs_mutex_lock(&ct->ct_lock); |
496 | 0 | deleted = zone_limit_delete__(ct, zone); |
497 | 0 | ovs_mutex_unlock(&ct->ct_lock); |
498 | |
|
499 | 0 | if (zone != DEFAULT_ZONE) { |
500 | 0 | VLOG_INFO(deleted |
501 | 0 | ? "Deleted zone limit for zone %d" |
502 | 0 | : "Attempted delete of non-existent zone limit: zone %d", |
503 | 0 | zone); |
504 | 0 | } |
505 | |
|
506 | 0 | return 0; |
507 | 0 | } |
508 | | |
509 | | static void |
510 | | zone_limit_update_default(struct conntrack *ct, int32_t zone, uint32_t limit) |
511 | 0 | { |
512 | | /* limit zero means delete default. */ |
513 | 0 | if (limit == 0) { |
514 | 0 | ovs_mutex_lock(&ct->ct_lock); |
515 | 0 | zone_limit_delete__(ct, zone); |
516 | 0 | ovs_mutex_unlock(&ct->ct_lock); |
517 | 0 | } else { |
518 | 0 | atomic_store_relaxed(&ct->default_zone_limit, limit); |
519 | 0 | } |
520 | 0 | } |
521 | | |
522 | | int |
523 | | zone_limit_update(struct conntrack *ct, int32_t zone, uint32_t limit) |
524 | 0 | { |
525 | 0 | struct zone_limit *zl; |
526 | 0 | int err = 0; |
527 | |
|
528 | 0 | if (zone == DEFAULT_ZONE) { |
529 | 0 | zone_limit_update_default(ct, zone, limit); |
530 | 0 | VLOG_INFO("Set default zone limit to %u", limit); |
531 | 0 | return err; |
532 | 0 | } |
533 | | |
534 | 0 | zl = zone_limit_lookup(ct, zone); |
535 | 0 | if (zl) { |
536 | 0 | atomic_store_relaxed(&zl->czl.limit, limit); |
537 | 0 | VLOG_INFO("Changed zone limit of %u for zone %d", limit, zone); |
538 | 0 | } else { |
539 | 0 | ovs_mutex_lock(&ct->ct_lock); |
540 | 0 | err = zone_limit_create(ct, zone, limit) == NULL; |
541 | 0 | ovs_mutex_unlock(&ct->ct_lock); |
542 | 0 | if (!err) { |
543 | 0 | VLOG_INFO("Created zone limit of %u for zone %d", limit, zone); |
544 | 0 | } else { |
545 | 0 | VLOG_WARN("Request to create zone limit for invalid zone %d", |
546 | 0 | zone); |
547 | 0 | } |
548 | 0 | } |
549 | |
|
550 | 0 | return err; |
551 | 0 | } |
552 | | |
553 | | static void |
554 | | conn_clean__(struct conntrack *ct, struct conn *conn) |
555 | | OVS_REQUIRES(ct->ct_lock) |
556 | 0 | { |
557 | 0 | uint32_t hash; |
558 | |
|
559 | 0 | if (conn->alg) { |
560 | 0 | expectation_clean(ct, &conn->key_node[CT_DIR_FWD].key); |
561 | 0 | } |
562 | |
|
563 | 0 | hash = conn_key_hash(&conn->key_node[CT_DIR_FWD].key, ct->hash_basis); |
564 | 0 | cmap_remove(&ct->conns[conn->key_node[CT_DIR_FWD].key.zone], |
565 | 0 | &conn->key_node[CT_DIR_FWD].cm_node, hash); |
566 | |
|
567 | 0 | if (conn->nat_action) { |
568 | 0 | hash = conn_key_hash(&conn->key_node[CT_DIR_REV].key, |
569 | 0 | ct->hash_basis); |
570 | 0 | cmap_remove(&ct->conns[conn->key_node[CT_DIR_REV].key.zone], |
571 | 0 | &conn->key_node[CT_DIR_REV].cm_node, hash); |
572 | 0 | } |
573 | |
|
574 | 0 | rculist_remove(&conn->node); |
575 | 0 | } |
576 | | |
577 | | /* Also removes the associated nat 'conn' from the lookup |
578 | | datastructures. */ |
579 | | static void |
580 | | conn_clean(struct conntrack *ct, struct conn *conn) |
581 | | OVS_EXCLUDED(conn->lock, ct->ct_lock) |
582 | 0 | { |
583 | 0 | if (atomic_flag_test_and_set(&conn->reclaimed)) { |
584 | 0 | return; |
585 | 0 | } |
586 | | |
587 | 0 | ovs_mutex_lock(&ct->ct_lock); |
588 | 0 | conn_clean__(ct, conn); |
589 | 0 | ovs_mutex_unlock(&ct->ct_lock); |
590 | |
|
591 | 0 | struct zone_limit *zl = zone_limit_lookup(ct, conn->admit_zone); |
592 | 0 | if (zl && zl->czl.zone_limit_seq == conn->zone_limit_seq) { |
593 | 0 | atomic_count_dec(&zl->czl.count); |
594 | 0 | } |
595 | |
|
596 | 0 | ovsrcu_postpone(delete_conn, conn); |
597 | 0 | atomic_count_dec(&ct->n_conn); |
598 | 0 | } |
599 | | |
600 | | static void |
601 | | conn_force_expire(struct conn *conn) |
602 | 0 | { |
603 | 0 | atomic_store_relaxed(&conn->expiration, 0); |
604 | 0 | } |
605 | | |
606 | | /* Destroys the connection tracker 'ct' and frees all the allocated memory. |
607 | | * The caller of this function must already have shut down packet input |
608 | | * and PMD threads (which would have been quiesced). */ |
609 | | void |
610 | | conntrack_destroy(struct conntrack *ct) |
611 | 0 | { |
612 | 0 | struct conn *conn; |
613 | |
|
614 | 0 | latch_set(&ct->clean_thread_exit); |
615 | 0 | pthread_join(ct->clean_thread, NULL); |
616 | 0 | latch_destroy(&ct->clean_thread_exit); |
617 | |
|
618 | 0 | for (unsigned i = 0; i < N_EXP_LISTS; i++) { |
619 | 0 | RCULIST_FOR_EACH (conn, node, &ct->exp_lists[i]) { |
620 | 0 | conn_clean(ct, conn); |
621 | 0 | } |
622 | 0 | } |
623 | |
|
624 | 0 | struct zone_limit *zl; |
625 | 0 | CMAP_FOR_EACH (zl, node, &ct->zone_limits) { |
626 | 0 | uint32_t hash = zone_key_hash(zl->czl.zone, ct->hash_basis); |
627 | |
|
628 | 0 | cmap_remove(&ct->zone_limits, &zl->node, hash); |
629 | 0 | ovsrcu_postpone(free, zl); |
630 | 0 | } |
631 | |
|
632 | 0 | struct timeout_policy *tp; |
633 | 0 | CMAP_FOR_EACH (tp, node, &ct->timeout_policies) { |
634 | 0 | uint32_t hash = hash_int(tp->policy.id, ct->hash_basis); |
635 | |
|
636 | 0 | cmap_remove(&ct->timeout_policies, &tp->node, hash); |
637 | 0 | ovsrcu_postpone(free, tp); |
638 | 0 | } |
639 | |
|
640 | 0 | ovs_mutex_lock(&ct->ct_lock); |
641 | |
|
642 | 0 | for (unsigned i = 0; i < ARRAY_SIZE(ct->conns); i++) { |
643 | 0 | cmap_destroy(&ct->conns[i]); |
644 | 0 | } |
645 | 0 | cmap_destroy(&ct->zone_limits); |
646 | 0 | cmap_destroy(&ct->timeout_policies); |
647 | |
|
648 | 0 | ovs_mutex_unlock(&ct->ct_lock); |
649 | 0 | ovs_mutex_destroy(&ct->ct_lock); |
650 | |
|
651 | 0 | ovs_rwlock_wrlock(&ct->resources_lock); |
652 | 0 | struct alg_exp_node *alg_exp_node; |
653 | 0 | HMAP_FOR_EACH_POP (alg_exp_node, node, &ct->alg_expectations) { |
654 | 0 | free(alg_exp_node); |
655 | 0 | } |
656 | 0 | hmap_destroy(&ct->alg_expectations); |
657 | 0 | hindex_destroy(&ct->alg_expectation_refs); |
658 | 0 | ovs_rwlock_unlock(&ct->resources_lock); |
659 | 0 | ovs_rwlock_destroy(&ct->resources_lock); |
660 | |
|
661 | 0 | ipf_destroy(ct->ipf); |
662 | 0 | free(ct); |
663 | 0 | } |
664 | | |
665 | | |
666 | | static bool |
667 | | conn_key_lookup(struct conntrack *ct, const struct conn_key *key, |
668 | | uint32_t hash, long long now, struct conn **conn_out, |
669 | | bool *reply) |
670 | 0 | { |
671 | 0 | struct conn_key_node *keyn; |
672 | 0 | struct conn *conn = NULL; |
673 | 0 | bool found = false; |
674 | |
|
675 | 0 | CMAP_FOR_EACH_WITH_HASH (keyn, cm_node, hash, &ct->conns[key->zone]) { |
676 | 0 | if (keyn->dir == CT_DIR_FWD) { |
677 | 0 | conn = CONTAINER_OF(keyn, struct conn, key_node[CT_DIR_FWD]); |
678 | 0 | } else { |
679 | 0 | conn = CONTAINER_OF(keyn, struct conn, key_node[CT_DIR_REV]); |
680 | 0 | } |
681 | |
|
682 | 0 | if (conn_expired(conn, now)) { |
683 | 0 | continue; |
684 | 0 | } |
685 | | |
686 | 0 | for (int i = CT_DIR_FWD; i < CT_DIRS; i++) { |
687 | 0 | if (!conn_key_cmp(&conn->key_node[i].key, key)) { |
688 | 0 | found = true; |
689 | 0 | if (reply) { |
690 | 0 | *reply = (i == CT_DIR_REV); |
691 | 0 | } |
692 | 0 | goto out_found; |
693 | 0 | } |
694 | 0 | } |
695 | 0 | } |
696 | | |
697 | 0 | out_found: |
698 | 0 | if (found && conn_out) { |
699 | 0 | *conn_out = conn; |
700 | 0 | } else if (conn_out) { |
701 | 0 | *conn_out = NULL; |
702 | 0 | } |
703 | |
|
704 | 0 | return found; |
705 | 0 | } |
706 | | |
707 | | static bool |
708 | | conn_lookup(struct conntrack *ct, const struct conn_key *key, |
709 | | long long now, struct conn **conn_out, bool *reply) |
710 | 0 | { |
711 | 0 | uint32_t hash = conn_key_hash(key, ct->hash_basis); |
712 | 0 | return conn_key_lookup(ct, key, hash, now, conn_out, reply); |
713 | 0 | } |
714 | | |
715 | | static void |
716 | | write_ct_md(struct dp_packet *pkt, uint16_t zone, const struct conn *conn, |
717 | | const struct conn_key *key, const struct alg_exp_node *alg_exp) |
718 | 0 | { |
719 | 0 | pkt->md.ct_state |= CS_TRACKED; |
720 | 0 | pkt->md.ct_zone = zone; |
721 | |
|
722 | 0 | if (conn) { |
723 | 0 | ovs_mutex_lock(&conn->lock); |
724 | 0 | pkt->md.ct_mark = conn->mark; |
725 | 0 | pkt->md.ct_label = conn->label; |
726 | 0 | ovs_mutex_unlock(&conn->lock); |
727 | 0 | } else { |
728 | 0 | pkt->md.ct_mark = 0; |
729 | 0 | pkt->md.ct_label = OVS_U128_ZERO; |
730 | 0 | } |
731 | | |
732 | | /* Use the original direction tuple if we have it. */ |
733 | 0 | if (conn) { |
734 | 0 | if (conn->alg_related) { |
735 | 0 | key = &conn->parent_key; |
736 | 0 | } else { |
737 | 0 | key = &conn->key_node[CT_DIR_FWD].key; |
738 | 0 | } |
739 | 0 | } else if (alg_exp) { |
740 | 0 | pkt->md.ct_mark = alg_exp->parent_mark; |
741 | 0 | pkt->md.ct_label = alg_exp->parent_label; |
742 | 0 | key = &alg_exp->parent_key; |
743 | 0 | } |
744 | |
|
745 | 0 | pkt->md.ct_orig_tuple_ipv6 = false; |
746 | |
|
747 | 0 | if (key) { |
748 | 0 | if (key->dl_type == htons(ETH_TYPE_IP)) { |
749 | 0 | pkt->md.ct_orig_tuple.ipv4 = (struct ovs_key_ct_tuple_ipv4) { |
750 | 0 | key->src.addr.ipv4, |
751 | 0 | key->dst.addr.ipv4, |
752 | 0 | key->nw_proto != IPPROTO_ICMP |
753 | 0 | ? key->src.port : htons(key->src.icmp_type), |
754 | 0 | key->nw_proto != IPPROTO_ICMP |
755 | 0 | ? key->dst.port : htons(key->src.icmp_code), |
756 | 0 | key->nw_proto, |
757 | 0 | }; |
758 | 0 | } else { |
759 | 0 | pkt->md.ct_orig_tuple_ipv6 = true; |
760 | 0 | pkt->md.ct_orig_tuple.ipv6 = (struct ovs_key_ct_tuple_ipv6) { |
761 | 0 | key->src.addr.ipv6, |
762 | 0 | key->dst.addr.ipv6, |
763 | 0 | key->nw_proto != IPPROTO_ICMPV6 |
764 | 0 | ? key->src.port : htons(key->src.icmp_type), |
765 | 0 | key->nw_proto != IPPROTO_ICMPV6 |
766 | 0 | ? key->dst.port : htons(key->src.icmp_code), |
767 | 0 | key->nw_proto, |
768 | 0 | }; |
769 | 0 | } |
770 | 0 | } else { |
771 | 0 | memset(&pkt->md.ct_orig_tuple, 0, sizeof pkt->md.ct_orig_tuple); |
772 | 0 | } |
773 | 0 | } |
774 | | |
775 | | static uint8_t |
776 | | get_ip_proto(const struct dp_packet *pkt) |
777 | 0 | { |
778 | 0 | uint8_t ip_proto; |
779 | 0 | struct eth_header *l2 = dp_packet_eth(pkt); |
780 | 0 | if (l2->eth_type == htons(ETH_TYPE_IPV6)) { |
781 | 0 | struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt); |
782 | 0 | ip_proto = nh6->ip6_ctlun.ip6_un1.ip6_un1_nxt; |
783 | 0 | } else { |
784 | 0 | struct ip_header *l3_hdr = dp_packet_l3(pkt); |
785 | 0 | ip_proto = l3_hdr->ip_proto; |
786 | 0 | } |
787 | |
|
788 | 0 | return ip_proto; |
789 | 0 | } |
790 | | |
791 | | static bool |
792 | | is_ftp_ctl(const enum ct_alg_ctl_type ct_alg_ctl) |
793 | 0 | { |
794 | 0 | return ct_alg_ctl == CT_ALG_CTL_FTP; |
795 | 0 | } |
796 | | |
797 | | static enum ct_alg_ctl_type |
798 | | get_alg_ctl_type(const struct dp_packet *pkt, const char *helper) |
799 | 0 | { |
800 | | /* CT_IPPORT_FTP/TFTP is used because IPPORT_FTP/TFTP in not defined |
801 | | * in OSX, at least in in.h. Since these values will never change, remove |
802 | | * the external dependency. */ |
803 | 0 | enum { CT_IPPORT_FTP = 21 }; |
804 | 0 | enum { CT_IPPORT_TFTP = 69 }; |
805 | 0 | uint8_t ip_proto = get_ip_proto(pkt); |
806 | 0 | struct udp_header *uh = dp_packet_l4(pkt); |
807 | 0 | struct tcp_header *th = dp_packet_l4(pkt); |
808 | 0 | ovs_be16 ftp_port = htons(CT_IPPORT_FTP); |
809 | 0 | ovs_be16 tftp_port = htons(CT_IPPORT_TFTP); |
810 | |
|
811 | 0 | if (helper) { |
812 | 0 | if ((ip_proto == IPPROTO_TCP) && |
813 | 0 | !strncmp(helper, "ftp", strlen("ftp"))) { |
814 | 0 | return CT_ALG_CTL_FTP; |
815 | 0 | } |
816 | 0 | if ((ip_proto == IPPROTO_UDP) && |
817 | 0 | !strncmp(helper, "tftp", strlen("tftp"))) { |
818 | 0 | return CT_ALG_CTL_TFTP; |
819 | 0 | } |
820 | 0 | } |
821 | | |
822 | 0 | if (ip_proto == IPPROTO_UDP && uh->udp_dst == tftp_port) { |
823 | 0 | return CT_ALG_CTL_TFTP; |
824 | 0 | } else if (ip_proto == IPPROTO_TCP && |
825 | 0 | (th->tcp_src == ftp_port || th->tcp_dst == ftp_port)) { |
826 | 0 | return CT_ALG_CTL_FTP; |
827 | 0 | } |
828 | 0 | return CT_ALG_CTL_NONE; |
829 | 0 | } |
830 | | |
831 | | static bool |
832 | | alg_src_ip_wc(enum ct_alg_ctl_type alg_ctl_type) |
833 | 0 | { |
834 | 0 | if (alg_ctl_type == CT_ALG_CTL_SIP) { |
835 | 0 | return true; |
836 | 0 | } |
837 | 0 | return false; |
838 | 0 | } |
839 | | |
840 | | static void |
841 | | handle_alg_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx, |
842 | | struct dp_packet *pkt, enum ct_alg_ctl_type ct_alg_ctl, |
843 | | struct conn *conn, long long now, bool nat) |
844 | 0 | { |
845 | | /* ALG control packet handling with expectation creation. */ |
846 | 0 | if (OVS_UNLIKELY(alg_helpers[ct_alg_ctl] && conn && conn->alg)) { |
847 | 0 | ovs_mutex_lock(&conn->lock); |
848 | 0 | alg_helpers[ct_alg_ctl](ct, ctx, pkt, conn, now, CT_FTP_CTL_INTEREST, |
849 | 0 | nat); |
850 | 0 | ovs_mutex_unlock(&conn->lock); |
851 | 0 | } |
852 | 0 | } |
853 | | |
854 | | static void |
855 | | pat_packet(struct dp_packet *pkt, const struct conn_key *key) |
856 | 0 | { |
857 | 0 | if (key->nw_proto == IPPROTO_TCP) { |
858 | 0 | packet_set_tcp_port(pkt, key->dst.port, key->src.port); |
859 | 0 | } else if (key->nw_proto == IPPROTO_UDP) { |
860 | 0 | packet_set_udp_port(pkt, key->dst.port, key->src.port); |
861 | 0 | } else if (key->nw_proto == IPPROTO_SCTP) { |
862 | 0 | packet_set_sctp_port(pkt, key->dst.port, key->src.port); |
863 | 0 | } |
864 | 0 | } |
865 | | |
866 | | static uint16_t |
867 | | nat_action_reverse(uint16_t nat_action) |
868 | 0 | { |
869 | 0 | if (nat_action & NAT_ACTION_SRC) { |
870 | 0 | nat_action ^= NAT_ACTION_SRC; |
871 | 0 | nat_action |= NAT_ACTION_DST; |
872 | 0 | } else if (nat_action & NAT_ACTION_DST) { |
873 | 0 | nat_action ^= NAT_ACTION_DST; |
874 | 0 | nat_action |= NAT_ACTION_SRC; |
875 | 0 | } |
876 | 0 | return nat_action; |
877 | 0 | } |
878 | | |
879 | | static void |
880 | | nat_packet_ipv4(struct dp_packet *pkt, const struct conn_key *key, |
881 | | uint16_t nat_action) |
882 | 0 | { |
883 | 0 | struct ip_header *nh = dp_packet_l3(pkt); |
884 | |
|
885 | 0 | if (nat_action & NAT_ACTION_SRC) { |
886 | 0 | packet_set_ipv4_addr(pkt, &nh->ip_src, key->dst.addr.ipv4); |
887 | 0 | } else if (nat_action & NAT_ACTION_DST) { |
888 | 0 | packet_set_ipv4_addr(pkt, &nh->ip_dst, key->src.addr.ipv4); |
889 | 0 | } |
890 | 0 | } |
891 | | |
892 | | static void |
893 | | nat_packet_ipv6(struct dp_packet *pkt, const struct conn_key *key, |
894 | | uint16_t nat_action) |
895 | 0 | { |
896 | 0 | struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt); |
897 | |
|
898 | 0 | if (nat_action & NAT_ACTION_SRC) { |
899 | 0 | packet_set_ipv6_addr(pkt, key->nw_proto, nh6->ip6_src.be32, |
900 | 0 | &key->dst.addr.ipv6, true); |
901 | 0 | } else if (nat_action & NAT_ACTION_DST) { |
902 | 0 | packet_set_ipv6_addr(pkt, key->nw_proto, nh6->ip6_dst.be32, |
903 | 0 | &key->src.addr.ipv6, true); |
904 | 0 | } |
905 | 0 | } |
906 | | |
907 | | static void |
908 | | nat_inner_packet(struct dp_packet *pkt, struct conn_key *key, |
909 | | uint16_t nat_action) |
910 | 0 | { |
911 | 0 | char *tail = dp_packet_tail(pkt); |
912 | 0 | uint16_t pad = dp_packet_l2_pad_size(pkt); |
913 | 0 | struct conn_key inner_key; |
914 | 0 | const char *inner_l4 = NULL; |
915 | 0 | uint16_t orig_l3_ofs = pkt->l3_ofs; |
916 | 0 | uint16_t orig_l4_ofs = pkt->l4_ofs; |
917 | 0 | uint32_t orig_offloads = pkt->offloads; |
918 | |
|
919 | 0 | void *l3 = dp_packet_l3(pkt); |
920 | 0 | void *l4 = dp_packet_l4(pkt); |
921 | 0 | void *inner_l3; |
922 | | /* These calls are already verified to succeed during the code path from |
923 | | * 'conn_key_extract()' which calls |
924 | | * 'extract_l4_icmp()'/'extract_l4_icmp6()'. */ |
925 | 0 | if (key->dl_type == htons(ETH_TYPE_IP)) { |
926 | 0 | inner_l3 = (char *) l4 + sizeof(struct icmp_header); |
927 | 0 | extract_l3_ipv4(NULL, &inner_key, inner_l3, |
928 | 0 | tail - ((char *) inner_l3) - pad, &inner_l4); |
929 | 0 | } else { |
930 | 0 | inner_l3 = (char *) l4 + sizeof(struct icmp6_data_header); |
931 | 0 | extract_l3_ipv6(&inner_key, inner_l3, tail - ((char *) inner_l3) - pad, |
932 | 0 | &inner_l4); |
933 | 0 | } |
934 | 0 | pkt->l3_ofs += (char *) inner_l3 - (char *) l3; |
935 | 0 | pkt->l4_ofs += inner_l4 - (char *) l4; |
936 | | /* Drop any offloads to force below helpers to calculate checksums |
937 | | * if needed. */ |
938 | 0 | dp_packet_ip_checksum_set_unknown(pkt); |
939 | 0 | dp_packet_l4_checksum_set_unknown(pkt); |
940 | | |
941 | | /* Reverse the key for inner packet. */ |
942 | 0 | struct conn_key rev_key = *key; |
943 | 0 | conn_key_reverse(&rev_key); |
944 | |
|
945 | 0 | pat_packet(pkt, &rev_key); |
946 | |
|
947 | 0 | if (key->dl_type == htons(ETH_TYPE_IP)) { |
948 | 0 | nat_packet_ipv4(pkt, &rev_key, nat_action); |
949 | |
|
950 | 0 | struct icmp_header *icmp = (struct icmp_header *) l4; |
951 | 0 | icmp->icmp_csum = 0; |
952 | 0 | icmp->icmp_csum = csum(icmp, tail - (char *) icmp - pad); |
953 | 0 | } else { |
954 | 0 | nat_packet_ipv6(pkt, &rev_key, nat_action); |
955 | |
|
956 | 0 | struct icmp6_data_header *icmp6 = (struct icmp6_data_header *) l4; |
957 | 0 | icmp6->icmp6_base.icmp6_cksum = 0; |
958 | 0 | icmp6->icmp6_base.icmp6_cksum = |
959 | 0 | packet_csum_upperlayer6(l3, icmp6, IPPROTO_ICMPV6, |
960 | 0 | tail - (char *) icmp6 - pad); |
961 | 0 | } |
962 | |
|
963 | 0 | pkt->l3_ofs = orig_l3_ofs; |
964 | 0 | pkt->l4_ofs = orig_l4_ofs; |
965 | 0 | pkt->offloads = orig_offloads; |
966 | 0 | } |
967 | | |
968 | | static void |
969 | | nat_packet(struct dp_packet *pkt, struct conn *conn, bool reply, bool related) |
970 | 0 | { |
971 | 0 | enum key_dir dir = reply ? CT_DIR_FWD : CT_DIR_REV; |
972 | 0 | struct conn_key *key = &conn->key_node[dir].key; |
973 | 0 | uint16_t nat_action = reply ? nat_action_reverse(conn->nat_action) |
974 | 0 | : conn->nat_action; |
975 | | |
976 | | /* Update ct_state. */ |
977 | 0 | if (nat_action & NAT_ACTION_SRC) { |
978 | 0 | pkt->md.ct_state |= CS_SRC_NAT; |
979 | 0 | } else if (nat_action & NAT_ACTION_DST) { |
980 | 0 | pkt->md.ct_state |= CS_DST_NAT; |
981 | 0 | } |
982 | | |
983 | | /* Reverse the key for outer header. */ |
984 | 0 | if (key->dl_type == htons(ETH_TYPE_IP)) { |
985 | 0 | nat_packet_ipv4(pkt, key, nat_action); |
986 | 0 | } else { |
987 | 0 | nat_packet_ipv6(pkt, key, nat_action); |
988 | 0 | } |
989 | |
|
990 | 0 | if (nat_action & NAT_ACTION_SRC || nat_action & NAT_ACTION_DST) { |
991 | 0 | if (OVS_UNLIKELY(related)) { |
992 | 0 | nat_action = nat_action_reverse(nat_action); |
993 | 0 | nat_inner_packet(pkt, key, nat_action); |
994 | 0 | } else { |
995 | 0 | pat_packet(pkt, key); |
996 | 0 | } |
997 | 0 | } |
998 | 0 | } |
999 | | |
1000 | | static void |
1001 | | conn_seq_skew_set(struct conntrack *ct, const struct conn *conn_in, |
1002 | | long long now, int seq_skew, bool seq_skew_dir) |
1003 | 0 | { |
1004 | 0 | struct conn *conn; |
1005 | |
|
1006 | 0 | conn_lookup(ct, &conn_in->key_node[CT_DIR_FWD].key, now, &conn, NULL); |
1007 | 0 | if (conn && seq_skew) { |
1008 | 0 | conn->seq_skew = seq_skew; |
1009 | 0 | conn->seq_skew_dir = seq_skew_dir; |
1010 | 0 | } |
1011 | 0 | } |
1012 | | |
1013 | | static bool |
1014 | | ct_verify_helper(const char *helper, enum ct_alg_ctl_type ct_alg_ctl) |
1015 | 0 | { |
1016 | 0 | if (ct_alg_ctl == CT_ALG_CTL_NONE) { |
1017 | 0 | return true; |
1018 | 0 | } else if (helper) { |
1019 | 0 | if ((ct_alg_ctl == CT_ALG_CTL_FTP) && |
1020 | 0 | !strncmp(helper, "ftp", strlen("ftp"))) { |
1021 | 0 | return true; |
1022 | 0 | } else if ((ct_alg_ctl == CT_ALG_CTL_TFTP) && |
1023 | 0 | !strncmp(helper, "tftp", strlen("tftp"))) { |
1024 | 0 | return true; |
1025 | 0 | } else { |
1026 | 0 | return false; |
1027 | 0 | } |
1028 | 0 | } else { |
1029 | 0 | return false; |
1030 | 0 | } |
1031 | 0 | } |
1032 | | |
1033 | | static struct conn * |
1034 | | conn_not_found(struct conntrack *ct, struct dp_packet *pkt, |
1035 | | struct conn_lookup_ctx *ctx, bool commit, long long now, |
1036 | | const struct nat_action_info_t *nat_action_info, |
1037 | | const char *helper, const struct alg_exp_node *alg_exp, |
1038 | | enum ct_alg_ctl_type ct_alg_ctl, uint32_t tp_id) |
1039 | | OVS_REQUIRES(ct->ct_lock) |
1040 | 0 | { |
1041 | 0 | struct conn *nc = NULL; |
1042 | |
|
1043 | 0 | if (!valid_new(pkt, &ctx->key)) { |
1044 | 0 | pkt->md.ct_state = CS_INVALID; |
1045 | 0 | return nc; |
1046 | 0 | } |
1047 | | |
1048 | 0 | pkt->md.ct_state = CS_NEW; |
1049 | |
|
1050 | 0 | if (alg_exp) { |
1051 | 0 | pkt->md.ct_state |= CS_RELATED; |
1052 | 0 | } |
1053 | |
|
1054 | 0 | if (commit) { |
1055 | 0 | int64_t czl_limit; |
1056 | 0 | struct conn_key_node *fwd_key_node, *rev_key_node; |
1057 | 0 | struct zone_limit *zl = zone_limit_lookup_or_default(ct, |
1058 | 0 | ctx->key.zone); |
1059 | 0 | if (zl) { |
1060 | 0 | czl_limit = zone_limit_get_limit(ct, &zl->czl); |
1061 | 0 | if (czl_limit >= 0 && |
1062 | 0 | atomic_count_get(&zl->czl.count) >= czl_limit) { |
1063 | 0 | COVERAGE_INC(conntrack_zone_full); |
1064 | 0 | return nc; |
1065 | 0 | } |
1066 | 0 | } |
1067 | | |
1068 | 0 | unsigned int n_conn_limit; |
1069 | 0 | atomic_read_relaxed(&ct->n_conn_limit, &n_conn_limit); |
1070 | 0 | if (atomic_count_get(&ct->n_conn) >= n_conn_limit) { |
1071 | 0 | COVERAGE_INC(conntrack_full); |
1072 | 0 | return nc; |
1073 | 0 | } |
1074 | | |
1075 | 0 | nc = new_conn(ct, pkt, &ctx->key, now, tp_id); |
1076 | 0 | fwd_key_node = &nc->key_node[CT_DIR_FWD]; |
1077 | 0 | rev_key_node = &nc->key_node[CT_DIR_REV]; |
1078 | 0 | memcpy(&fwd_key_node->key, &ctx->key, sizeof fwd_key_node->key); |
1079 | 0 | memcpy(&rev_key_node->key, &fwd_key_node->key, |
1080 | 0 | sizeof rev_key_node->key); |
1081 | 0 | conn_key_reverse(&rev_key_node->key); |
1082 | |
|
1083 | 0 | if (ct_verify_helper(helper, ct_alg_ctl)) { |
1084 | 0 | nc->alg = nullable_xstrdup(helper); |
1085 | 0 | } |
1086 | |
|
1087 | 0 | if (alg_exp) { |
1088 | 0 | nc->alg_related = true; |
1089 | 0 | nc->mark = alg_exp->parent_mark; |
1090 | 0 | nc->label = alg_exp->parent_label; |
1091 | 0 | nc->parent_key = alg_exp->parent_key; |
1092 | 0 | } |
1093 | |
|
1094 | 0 | ovs_mutex_init_adaptive(&nc->lock); |
1095 | 0 | atomic_flag_clear(&nc->reclaimed); |
1096 | 0 | fwd_key_node->dir = CT_DIR_FWD; |
1097 | 0 | rev_key_node->dir = CT_DIR_REV; |
1098 | |
|
1099 | 0 | if (zl) { |
1100 | 0 | nc->admit_zone = zl->czl.zone; |
1101 | 0 | nc->zone_limit_seq = zl->czl.zone_limit_seq; |
1102 | 0 | } else { |
1103 | 0 | nc->admit_zone = INVALID_ZONE; |
1104 | 0 | } |
1105 | |
|
1106 | 0 | if (nat_action_info) { |
1107 | 0 | nc->nat_action = nat_action_info->nat_action; |
1108 | |
|
1109 | 0 | if (alg_exp) { |
1110 | 0 | if (alg_exp->nat_rpl_dst) { |
1111 | 0 | rev_key_node->key.dst.addr = alg_exp->alg_nat_repl_addr; |
1112 | 0 | nc->nat_action = NAT_ACTION_SRC; |
1113 | 0 | } else { |
1114 | 0 | rev_key_node->key.src.addr = alg_exp->alg_nat_repl_addr; |
1115 | 0 | nc->nat_action = NAT_ACTION_DST; |
1116 | 0 | } |
1117 | 0 | } else { |
1118 | 0 | bool nat_res = nat_get_unique_tuple(ct, nc, nat_action_info); |
1119 | 0 | if (!nat_res) { |
1120 | 0 | goto nat_res_exhaustion; |
1121 | 0 | } |
1122 | 0 | } |
1123 | | |
1124 | 0 | nat_packet(pkt, nc, false, ctx->icmp_related); |
1125 | 0 | uint32_t rev_hash = conn_key_hash(&rev_key_node->key, |
1126 | 0 | ct->hash_basis); |
1127 | 0 | cmap_insert(&ct->conns[ctx->key.zone], |
1128 | 0 | &rev_key_node->cm_node, rev_hash); |
1129 | 0 | } |
1130 | | |
1131 | 0 | cmap_insert(&ct->conns[ctx->key.zone], |
1132 | 0 | &fwd_key_node->cm_node, ctx->hash); |
1133 | 0 | conn_expire_push_front(ct, nc); |
1134 | 0 | atomic_count_inc(&ct->n_conn); |
1135 | |
|
1136 | 0 | if (zl) { |
1137 | 0 | atomic_count_inc(&zl->czl.count); |
1138 | 0 | } |
1139 | |
|
1140 | 0 | ctx->conn = nc; /* For completeness. */ |
1141 | 0 | } |
1142 | | |
1143 | 0 | return nc; |
1144 | | |
1145 | | /* This would be a user error or a DOS attack. A user error is prevented |
1146 | | * by allocating enough combinations of NAT addresses when combined with |
1147 | | * ephemeral ports. A DOS attack should be protected against with |
1148 | | * firewall rules or a separate firewall. Also using zone partitioning |
1149 | | * can limit DoS impact. */ |
1150 | 0 | nat_res_exhaustion: |
1151 | 0 | delete_conn__(nc); |
1152 | 0 | static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5); |
1153 | 0 | VLOG_WARN_RL(&rl, "Unable to NAT due to tuple space exhaustion - " |
1154 | 0 | "if DoS attack, use firewalling and/or zone partitioning."); |
1155 | 0 | return NULL; |
1156 | 0 | } |
1157 | | |
1158 | | static bool |
1159 | | conn_update_state(struct conntrack *ct, struct dp_packet *pkt, |
1160 | | struct conn_lookup_ctx *ctx, struct conn *conn, |
1161 | | long long now) |
1162 | 0 | { |
1163 | 0 | bool create_new_conn = false; |
1164 | |
|
1165 | 0 | if (ctx->icmp_related) { |
1166 | 0 | pkt->md.ct_state |= CS_RELATED; |
1167 | 0 | if (ctx->reply) { |
1168 | 0 | pkt->md.ct_state |= CS_REPLY_DIR; |
1169 | 0 | } |
1170 | 0 | } else { |
1171 | 0 | if (conn->alg_related) { |
1172 | 0 | pkt->md.ct_state |= CS_RELATED; |
1173 | 0 | } |
1174 | |
|
1175 | 0 | enum ct_update_res res = conn_update(ct, conn, pkt, ctx, now); |
1176 | |
|
1177 | 0 | switch (res) { |
1178 | 0 | case CT_UPDATE_VALID: |
1179 | 0 | pkt->md.ct_state |= CS_ESTABLISHED; |
1180 | 0 | pkt->md.ct_state &= ~CS_NEW; |
1181 | 0 | if (ctx->reply) { |
1182 | 0 | pkt->md.ct_state |= CS_REPLY_DIR; |
1183 | 0 | } |
1184 | 0 | break; |
1185 | 0 | case CT_UPDATE_INVALID: |
1186 | 0 | pkt->md.ct_state = CS_INVALID; |
1187 | 0 | break; |
1188 | 0 | case CT_UPDATE_NEW: |
1189 | 0 | if (conn_lookup(ct, &conn->key_node[CT_DIR_FWD].key, |
1190 | 0 | now, NULL, NULL)) { |
1191 | 0 | conn_force_expire(conn); |
1192 | 0 | } |
1193 | 0 | create_new_conn = true; |
1194 | 0 | break; |
1195 | 0 | case CT_UPDATE_VALID_NEW: |
1196 | 0 | pkt->md.ct_state |= CS_NEW; |
1197 | 0 | break; |
1198 | 0 | default: |
1199 | 0 | OVS_NOT_REACHED(); |
1200 | 0 | } |
1201 | 0 | } |
1202 | 0 | return create_new_conn; |
1203 | 0 | } |
1204 | | |
1205 | | static void |
1206 | | handle_nat(struct dp_packet *pkt, struct conn *conn, |
1207 | | uint16_t zone, bool reply, bool related) |
1208 | 0 | { |
1209 | 0 | if (conn->nat_action && |
1210 | 0 | (!(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) || |
1211 | 0 | (pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT) && |
1212 | 0 | zone != pkt->md.ct_zone))) { |
1213 | |
|
1214 | 0 | if (pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) { |
1215 | 0 | pkt->md.ct_state &= ~(CS_SRC_NAT | CS_DST_NAT); |
1216 | 0 | } |
1217 | |
|
1218 | 0 | nat_packet(pkt, conn, reply, related); |
1219 | 0 | } |
1220 | 0 | } |
1221 | | |
1222 | | static bool |
1223 | | check_orig_tuple(struct conntrack *ct, struct dp_packet *pkt, |
1224 | | struct conn_lookup_ctx *ctx_in, long long now, |
1225 | | struct conn **conn, |
1226 | | const struct nat_action_info_t *nat_action_info) |
1227 | 0 | { |
1228 | 0 | if (!(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) || |
1229 | 0 | (ctx_in->key.dl_type == htons(ETH_TYPE_IP) && |
1230 | 0 | !pkt->md.ct_orig_tuple.ipv4.ipv4_proto) || |
1231 | 0 | (ctx_in->key.dl_type == htons(ETH_TYPE_IPV6) && |
1232 | 0 | !pkt->md.ct_orig_tuple.ipv6.ipv6_proto) || |
1233 | 0 | nat_action_info) { |
1234 | 0 | return false; |
1235 | 0 | } |
1236 | | |
1237 | 0 | struct conn_key key; |
1238 | 0 | memset(&key, 0 , sizeof key); |
1239 | |
|
1240 | 0 | if (ctx_in->key.dl_type == htons(ETH_TYPE_IP)) { |
1241 | 0 | key.src.addr.ipv4 = pkt->md.ct_orig_tuple.ipv4.ipv4_src; |
1242 | 0 | key.dst.addr.ipv4 = pkt->md.ct_orig_tuple.ipv4.ipv4_dst; |
1243 | |
|
1244 | 0 | if (ctx_in->key.nw_proto == IPPROTO_ICMP) { |
1245 | 0 | key.src.icmp_id = ctx_in->key.src.icmp_id; |
1246 | 0 | key.dst.icmp_id = ctx_in->key.dst.icmp_id; |
1247 | 0 | uint16_t src_port = ntohs(pkt->md.ct_orig_tuple.ipv4.src_port); |
1248 | 0 | key.src.icmp_type = (uint8_t) src_port; |
1249 | 0 | key.dst.icmp_type = reverse_icmp_type(key.src.icmp_type); |
1250 | 0 | } else { |
1251 | 0 | key.src.port = pkt->md.ct_orig_tuple.ipv4.src_port; |
1252 | 0 | key.dst.port = pkt->md.ct_orig_tuple.ipv4.dst_port; |
1253 | 0 | } |
1254 | 0 | key.nw_proto = pkt->md.ct_orig_tuple.ipv4.ipv4_proto; |
1255 | 0 | } else { |
1256 | 0 | key.src.addr.ipv6 = pkt->md.ct_orig_tuple.ipv6.ipv6_src; |
1257 | 0 | key.dst.addr.ipv6 = pkt->md.ct_orig_tuple.ipv6.ipv6_dst; |
1258 | |
|
1259 | 0 | if (ctx_in->key.nw_proto == IPPROTO_ICMPV6) { |
1260 | 0 | key.src.icmp_id = ctx_in->key.src.icmp_id; |
1261 | 0 | key.dst.icmp_id = ctx_in->key.dst.icmp_id; |
1262 | 0 | uint16_t src_port = ntohs(pkt->md.ct_orig_tuple.ipv6.src_port); |
1263 | 0 | key.src.icmp_type = (uint8_t) src_port; |
1264 | 0 | key.dst.icmp_type = reverse_icmp6_type(key.src.icmp_type); |
1265 | 0 | } else { |
1266 | 0 | key.src.port = pkt->md.ct_orig_tuple.ipv6.src_port; |
1267 | 0 | key.dst.port = pkt->md.ct_orig_tuple.ipv6.dst_port; |
1268 | 0 | } |
1269 | 0 | key.nw_proto = pkt->md.ct_orig_tuple.ipv6.ipv6_proto; |
1270 | 0 | } |
1271 | |
|
1272 | 0 | key.dl_type = ctx_in->key.dl_type; |
1273 | 0 | key.zone = pkt->md.ct_zone; |
1274 | 0 | conn_lookup(ct, &key, now, conn, NULL); |
1275 | 0 | return *conn ? true : false; |
1276 | 0 | } |
1277 | | |
1278 | | static bool |
1279 | | conn_update_state_alg(struct conntrack *ct, struct dp_packet *pkt, |
1280 | | struct conn_lookup_ctx *ctx, struct conn *conn, |
1281 | | const struct nat_action_info_t *nat_action_info, |
1282 | | enum ct_alg_ctl_type ct_alg_ctl, long long now, |
1283 | | bool *create_new_conn) |
1284 | 0 | { |
1285 | 0 | if (is_ftp_ctl(ct_alg_ctl)) { |
1286 | | /* Keep sequence tracking in sync with the source of the |
1287 | | * sequence skew. */ |
1288 | 0 | ovs_mutex_lock(&conn->lock); |
1289 | 0 | if (ctx->reply != conn->seq_skew_dir) { |
1290 | 0 | handle_ftp_ctl(ct, ctx, pkt, conn, now, CT_FTP_CTL_OTHER, |
1291 | 0 | !!nat_action_info); |
1292 | | /* conn_update_state locks for unrelated fields, so unlock. */ |
1293 | 0 | ovs_mutex_unlock(&conn->lock); |
1294 | 0 | *create_new_conn = conn_update_state(ct, pkt, ctx, conn, now); |
1295 | 0 | } else { |
1296 | | /* conn_update_state locks for unrelated fields, so unlock. */ |
1297 | 0 | ovs_mutex_unlock(&conn->lock); |
1298 | 0 | *create_new_conn = conn_update_state(ct, pkt, ctx, conn, now); |
1299 | 0 | ovs_mutex_lock(&conn->lock); |
1300 | 0 | if (*create_new_conn == false) { |
1301 | 0 | handle_ftp_ctl(ct, ctx, pkt, conn, now, CT_FTP_CTL_OTHER, |
1302 | 0 | !!nat_action_info); |
1303 | 0 | } |
1304 | 0 | ovs_mutex_unlock(&conn->lock); |
1305 | 0 | } |
1306 | 0 | return true; |
1307 | 0 | } |
1308 | 0 | return false; |
1309 | 0 | } |
1310 | | |
1311 | | static void |
1312 | | set_cached_conn(const struct nat_action_info_t *nat_action_info, |
1313 | | const struct conn_lookup_ctx *ctx, struct conn *conn, |
1314 | | struct dp_packet *pkt) |
1315 | 0 | { |
1316 | 0 | if (OVS_LIKELY(!nat_action_info)) { |
1317 | 0 | pkt->md.conn = conn; |
1318 | 0 | pkt->md.reply = ctx->reply; |
1319 | 0 | pkt->md.icmp_related = ctx->icmp_related; |
1320 | 0 | } else { |
1321 | 0 | pkt->md.conn = NULL; |
1322 | 0 | } |
1323 | 0 | } |
1324 | | |
1325 | | static void |
1326 | | process_one_fast(uint16_t zone, const uint32_t *setmark, |
1327 | | const struct ovs_key_ct_labels *setlabel, |
1328 | | const struct nat_action_info_t *nat_action_info, |
1329 | | struct conn *conn, struct dp_packet *pkt) |
1330 | 0 | { |
1331 | 0 | if (nat_action_info) { |
1332 | 0 | handle_nat(pkt, conn, zone, pkt->md.reply, pkt->md.icmp_related); |
1333 | 0 | pkt->md.conn = NULL; |
1334 | 0 | } |
1335 | |
|
1336 | 0 | pkt->md.ct_zone = zone; |
1337 | 0 | ovs_mutex_lock(&conn->lock); |
1338 | 0 | pkt->md.ct_mark = conn->mark; |
1339 | 0 | pkt->md.ct_label = conn->label; |
1340 | 0 | ovs_mutex_unlock(&conn->lock); |
1341 | |
|
1342 | 0 | if (setmark) { |
1343 | 0 | set_mark(pkt, conn, setmark[0], setmark[1]); |
1344 | 0 | } |
1345 | |
|
1346 | 0 | if (setlabel) { |
1347 | 0 | set_label(pkt, conn, &setlabel[0], &setlabel[1]); |
1348 | 0 | } |
1349 | 0 | } |
1350 | | |
1351 | | static void |
1352 | | initial_conn_lookup(struct conntrack *ct, struct conn_lookup_ctx *ctx, |
1353 | | long long now, bool natted) |
1354 | 0 | { |
1355 | 0 | if (natted) { |
1356 | | /* If the packet has been already natted (e.g. a previous |
1357 | | * action took place), retrieve it performing a lookup of its |
1358 | | * reverse key. */ |
1359 | 0 | conn_key_reverse(&ctx->key); |
1360 | 0 | } |
1361 | |
|
1362 | 0 | conn_key_lookup(ct, &ctx->key, ctx->hash, now, &ctx->conn, &ctx->reply); |
1363 | |
|
1364 | 0 | if (natted) { |
1365 | 0 | if (OVS_LIKELY(ctx->conn)) { |
1366 | 0 | enum key_dir dir; |
1367 | 0 | ctx->reply = !ctx->reply; |
1368 | 0 | dir = ctx->reply ? CT_DIR_REV : CT_DIR_FWD; |
1369 | 0 | ctx->key = ctx->conn->key_node[dir].key; |
1370 | 0 | ctx->hash = conn_key_hash(&ctx->key, ct->hash_basis); |
1371 | 0 | } else { |
1372 | | /* A lookup failure does not necessarily imply that an |
1373 | | * error occurred, it may simply indicate that a conn got |
1374 | | * removed during the recirculation. */ |
1375 | 0 | COVERAGE_INC(conntrack_lookup_natted_miss); |
1376 | 0 | conn_key_reverse(&ctx->key); |
1377 | 0 | } |
1378 | 0 | } |
1379 | 0 | } |
1380 | | |
1381 | | static void |
1382 | | process_one(struct conntrack *ct, struct dp_packet *pkt, |
1383 | | struct conn_lookup_ctx *ctx, uint16_t zone, |
1384 | | bool force, bool commit, long long now, const uint32_t *setmark, |
1385 | | const struct ovs_key_ct_labels *setlabel, |
1386 | | const struct nat_action_info_t *nat_action_info, |
1387 | | const char *helper, uint32_t tp_id) |
1388 | 0 | { |
1389 | | /* Reset ct_state whenever entering a new zone. */ |
1390 | 0 | if (pkt->md.ct_state && pkt->md.ct_zone != zone) { |
1391 | 0 | pkt->md.ct_state = 0; |
1392 | 0 | } |
1393 | |
|
1394 | 0 | bool create_new_conn = false; |
1395 | 0 | initial_conn_lookup(ct, ctx, now, !!(pkt->md.ct_state & |
1396 | 0 | (CS_SRC_NAT | CS_DST_NAT))); |
1397 | 0 | struct conn *conn = ctx->conn; |
1398 | | |
1399 | | /* Delete found entry if in wrong direction. 'force' implies commit. */ |
1400 | 0 | if (OVS_UNLIKELY(force && ctx->reply && conn)) { |
1401 | 0 | if (conn_lookup(ct, &conn->key_node[CT_DIR_FWD].key, |
1402 | 0 | now, NULL, NULL)) { |
1403 | 0 | conn_force_expire(conn); |
1404 | 0 | } |
1405 | 0 | conn = NULL; |
1406 | 0 | } |
1407 | |
|
1408 | 0 | if (conn && helper == NULL) { |
1409 | 0 | helper = conn->alg; |
1410 | 0 | } |
1411 | |
|
1412 | 0 | enum ct_alg_ctl_type ct_alg_ctl = get_alg_ctl_type(pkt, helper); |
1413 | |
|
1414 | 0 | if (OVS_LIKELY(conn)) { |
1415 | 0 | if (OVS_LIKELY(!conn_update_state_alg(ct, pkt, ctx, conn, |
1416 | 0 | nat_action_info, |
1417 | 0 | ct_alg_ctl, now, |
1418 | 0 | &create_new_conn))) { |
1419 | 0 | create_new_conn = conn_update_state(ct, pkt, ctx, conn, now); |
1420 | 0 | } |
1421 | 0 | if (nat_action_info && !create_new_conn) { |
1422 | 0 | handle_nat(pkt, conn, zone, ctx->reply, ctx->icmp_related); |
1423 | 0 | } |
1424 | |
|
1425 | 0 | } else if (check_orig_tuple(ct, pkt, ctx, now, &conn, nat_action_info)) { |
1426 | 0 | create_new_conn = conn_update_state(ct, pkt, ctx, conn, now); |
1427 | 0 | } else { |
1428 | 0 | if (ctx->icmp_related) { |
1429 | | /* An icmp related conn should always be found; no new |
1430 | | connection is created based on an icmp related packet. */ |
1431 | 0 | pkt->md.ct_state = CS_INVALID; |
1432 | 0 | } else { |
1433 | 0 | create_new_conn = true; |
1434 | 0 | } |
1435 | 0 | } |
1436 | |
|
1437 | 0 | const struct alg_exp_node *alg_exp = NULL; |
1438 | 0 | struct alg_exp_node alg_exp_entry; |
1439 | |
|
1440 | 0 | if (OVS_UNLIKELY(create_new_conn)) { |
1441 | |
|
1442 | 0 | ovs_rwlock_rdlock(&ct->resources_lock); |
1443 | 0 | alg_exp = expectation_lookup(&ct->alg_expectations, &ctx->key, |
1444 | 0 | ct->hash_basis, |
1445 | 0 | alg_src_ip_wc(ct_alg_ctl)); |
1446 | 0 | if (alg_exp) { |
1447 | 0 | memcpy(&alg_exp_entry, alg_exp, sizeof alg_exp_entry); |
1448 | 0 | alg_exp = &alg_exp_entry; |
1449 | 0 | } |
1450 | 0 | ovs_rwlock_unlock(&ct->resources_lock); |
1451 | |
|
1452 | 0 | ovs_mutex_lock(&ct->ct_lock); |
1453 | 0 | if (!conn_lookup(ct, &ctx->key, now, NULL, NULL)) { |
1454 | 0 | conn = conn_not_found(ct, pkt, ctx, commit, now, nat_action_info, |
1455 | 0 | helper, alg_exp, ct_alg_ctl, tp_id); |
1456 | 0 | } |
1457 | 0 | ovs_mutex_unlock(&ct->ct_lock); |
1458 | 0 | } |
1459 | |
|
1460 | 0 | write_ct_md(pkt, zone, conn, &ctx->key, alg_exp); |
1461 | |
|
1462 | 0 | if (conn && setmark) { |
1463 | 0 | set_mark(pkt, conn, setmark[0], setmark[1]); |
1464 | 0 | } |
1465 | |
|
1466 | 0 | if (conn && setlabel) { |
1467 | 0 | set_label(pkt, conn, &setlabel[0], &setlabel[1]); |
1468 | 0 | } |
1469 | |
|
1470 | 0 | handle_alg_ctl(ct, ctx, pkt, ct_alg_ctl, conn, now, !!nat_action_info); |
1471 | |
|
1472 | 0 | set_cached_conn(nat_action_info, ctx, conn, pkt); |
1473 | 0 | } |
1474 | | |
1475 | | /* Sends the packets in '*pkt_batch' through the connection tracker 'ct'. All |
1476 | | * the packets must have the same 'dl_type' (IPv4 or IPv6) and should have |
1477 | | * the l3 and and l4 offset properly set. Performs fragment reassembly with |
1478 | | * the help of ipf_preprocess_conntrack(). |
1479 | | * |
1480 | | * If 'commit' is true, the packets are allowed to create new entries in the |
1481 | | * connection tables. 'setmark', if not NULL, should point to a two |
1482 | | * elements array containing a value and a mask to set the connection mark. |
1483 | | * 'setlabel' behaves similarly for the connection label.*/ |
1484 | | int |
1485 | | conntrack_execute(struct conntrack *ct, struct dp_packet_batch *pkt_batch, |
1486 | | ovs_be16 dl_type, bool force, bool commit, uint16_t zone, |
1487 | | const uint32_t *setmark, |
1488 | | const struct ovs_key_ct_labels *setlabel, |
1489 | | const char *helper, |
1490 | | const struct nat_action_info_t *nat_action_info, |
1491 | | long long now, uint32_t tp_id) |
1492 | 0 | { |
1493 | 0 | odp_port_t in_port = ODPP_LOCAL; |
1494 | 0 | struct conn_lookup_ctx ctx; |
1495 | 0 | struct dp_packet *packet; |
1496 | |
|
1497 | 0 | DP_PACKET_BATCH_FOR_EACH (i, packet, pkt_batch) { |
1498 | | /* The ipf preprocess function may consume all packets from this batch, |
1499 | | * save an in_port. */ |
1500 | 0 | in_port = packet->md.in_port.odp_port; |
1501 | 0 | break; |
1502 | 0 | } |
1503 | |
|
1504 | 0 | ipf_preprocess_conntrack(ct->ipf, pkt_batch, now, dl_type, zone, |
1505 | 0 | ct->hash_basis); |
1506 | | |
1507 | |
|
1508 | 0 | DP_PACKET_BATCH_FOR_EACH (i, packet, pkt_batch) { |
1509 | 0 | struct conn *conn = packet->md.conn; |
1510 | |
|
1511 | 0 | if (helper == NULL && conn != NULL) { |
1512 | 0 | helper = conn->alg; |
1513 | 0 | } |
1514 | |
|
1515 | 0 | if (OVS_UNLIKELY(packet->md.ct_state == CS_INVALID)) { |
1516 | 0 | write_ct_md(packet, zone, NULL, NULL, NULL); |
1517 | 0 | } else if (conn && |
1518 | 0 | conn->key_node[CT_DIR_FWD].key.zone == zone && !force && |
1519 | 0 | !get_alg_ctl_type(packet, helper)) { |
1520 | 0 | process_one_fast(zone, setmark, setlabel, nat_action_info, |
1521 | 0 | conn, packet); |
1522 | 0 | } else if (OVS_UNLIKELY(!conn_key_extract(ct, packet, dl_type, &ctx, |
1523 | 0 | zone))) { |
1524 | 0 | packet->md.ct_state = CS_INVALID; |
1525 | 0 | write_ct_md(packet, zone, NULL, NULL, NULL); |
1526 | 0 | } else { |
1527 | 0 | process_one(ct, packet, &ctx, zone, force, commit, now, setmark, |
1528 | 0 | setlabel, nat_action_info, helper, tp_id); |
1529 | 0 | } |
1530 | 0 | } |
1531 | |
|
1532 | 0 | ipf_postprocess_conntrack(ct->ipf, pkt_batch, now, dl_type, zone, in_port); |
1533 | |
|
1534 | 0 | return 0; |
1535 | 0 | } |
1536 | | |
1537 | | void |
1538 | | conntrack_clear(struct dp_packet *packet) |
1539 | 0 | { |
1540 | | /* According to pkt_metadata_init(), ct_state == 0 is enough to make all of |
1541 | | * the conntrack fields invalid. */ |
1542 | 0 | packet->md.ct_state = 0; |
1543 | 0 | pkt_metadata_init_conn(&packet->md); |
1544 | 0 | } |
1545 | | |
1546 | | static void |
1547 | | set_mark(struct dp_packet *pkt, struct conn *conn, uint32_t val, uint32_t mask) |
1548 | 0 | { |
1549 | 0 | ovs_mutex_lock(&conn->lock); |
1550 | 0 | if (conn->alg_related) { |
1551 | 0 | pkt->md.ct_mark = conn->mark; |
1552 | 0 | } else { |
1553 | 0 | pkt->md.ct_mark = val | (pkt->md.ct_mark & ~(mask)); |
1554 | 0 | conn->mark = pkt->md.ct_mark; |
1555 | 0 | } |
1556 | 0 | ovs_mutex_unlock(&conn->lock); |
1557 | 0 | } |
1558 | | |
1559 | | static void |
1560 | | set_label(struct dp_packet *pkt, struct conn *conn, |
1561 | | const struct ovs_key_ct_labels *val, |
1562 | | const struct ovs_key_ct_labels *mask) |
1563 | 0 | { |
1564 | 0 | ovs_mutex_lock(&conn->lock); |
1565 | 0 | if (conn->alg_related) { |
1566 | 0 | pkt->md.ct_label = conn->label; |
1567 | 0 | } else { |
1568 | 0 | ovs_u128 v, m; |
1569 | |
|
1570 | 0 | memcpy(&v, val, sizeof v); |
1571 | 0 | memcpy(&m, mask, sizeof m); |
1572 | |
|
1573 | 0 | pkt->md.ct_label.u64.lo = v.u64.lo |
1574 | 0 | | (pkt->md.ct_label.u64.lo & ~(m.u64.lo)); |
1575 | 0 | pkt->md.ct_label.u64.hi = v.u64.hi |
1576 | 0 | | (pkt->md.ct_label.u64.hi & ~(m.u64.hi)); |
1577 | 0 | conn->label = pkt->md.ct_label; |
1578 | 0 | } |
1579 | 0 | ovs_mutex_unlock(&conn->lock); |
1580 | 0 | } |
1581 | | |
1582 | | |
1583 | | int |
1584 | | conntrack_set_sweep_interval(struct conntrack *ct, uint32_t ms) |
1585 | 0 | { |
1586 | 0 | atomic_store_relaxed(&ct->sweep_ms, ms); |
1587 | 0 | return 0; |
1588 | 0 | } |
1589 | | |
1590 | | uint32_t |
1591 | | conntrack_get_sweep_interval(struct conntrack *ct) |
1592 | 0 | { |
1593 | 0 | uint32_t ms; |
1594 | 0 | atomic_read_relaxed(&ct->sweep_ms, &ms); |
1595 | 0 | return ms; |
1596 | 0 | } |
1597 | | |
1598 | | static size_t |
1599 | | ct_sweep(struct conntrack *ct, struct rculist *list, long long now, |
1600 | | size_t *cleaned_count) |
1601 | | OVS_NO_THREAD_SAFETY_ANALYSIS |
1602 | 0 | { |
1603 | 0 | struct conn *conn; |
1604 | 0 | size_t cleaned = 0; |
1605 | 0 | size_t count = 0; |
1606 | |
|
1607 | 0 | RCULIST_FOR_EACH (conn, node, list) { |
1608 | 0 | if (conn_expired(conn, now)) { |
1609 | 0 | conn_clean(ct, conn); |
1610 | 0 | cleaned++; |
1611 | 0 | } |
1612 | |
|
1613 | 0 | count++; |
1614 | 0 | } |
1615 | |
|
1616 | 0 | if (cleaned_count) { |
1617 | 0 | *cleaned_count = cleaned; |
1618 | 0 | } |
1619 | |
|
1620 | 0 | return count; |
1621 | 0 | } |
1622 | | |
1623 | | /* Cleans up old connection entries from 'ct'. Returns the time |
1624 | | * when the next wake will happen. The return value might be zero, |
1625 | | * meaning that an internal limit has been reached. */ |
1626 | | static long long |
1627 | | conntrack_clean(struct conntrack *ct, long long now) |
1628 | 0 | { |
1629 | 0 | long long next_wakeup = now + conntrack_get_sweep_interval(ct); |
1630 | 0 | unsigned int n_conn_limit, i; |
1631 | 0 | size_t clean_end, count = 0; |
1632 | 0 | size_t total_cleaned = 0; |
1633 | |
|
1634 | 0 | atomic_read_relaxed(&ct->n_conn_limit, &n_conn_limit); |
1635 | 0 | clean_end = n_conn_limit / 64; |
1636 | |
|
1637 | 0 | for (i = ct->next_sweep; i < N_EXP_LISTS; i++) { |
1638 | 0 | size_t cleaned; |
1639 | |
|
1640 | 0 | if (count > clean_end) { |
1641 | 0 | next_wakeup = 0; |
1642 | 0 | break; |
1643 | 0 | } |
1644 | | |
1645 | 0 | count += ct_sweep(ct, &ct->exp_lists[i], now, &cleaned); |
1646 | 0 | total_cleaned += cleaned; |
1647 | 0 | } |
1648 | |
|
1649 | 0 | ct->next_sweep = (i < N_EXP_LISTS) ? i : 0; |
1650 | |
|
1651 | 0 | VLOG_DBG("conntrack cleaned %"PRIuSIZE" entries out of %"PRIuSIZE |
1652 | 0 | " entries in %lld msec", total_cleaned, count, |
1653 | 0 | time_msec() - now); |
1654 | |
|
1655 | 0 | return next_wakeup; |
1656 | 0 | } |
1657 | | |
1658 | | /* Cleanup: |
1659 | | * |
1660 | | * We must call conntrack_clean() periodically. conntrack_clean() return |
1661 | | * value gives an hint on when the next cleanup must be done. */ |
1662 | | #define CT_CLEAN_MIN_INTERVAL_MS 200 |
1663 | | |
1664 | | static void * |
1665 | | clean_thread_main(void *f_) |
1666 | | OVS_NO_THREAD_SAFETY_ANALYSIS |
1667 | 0 | { |
1668 | 0 | struct conntrack *ct = f_; |
1669 | |
|
1670 | 0 | while (!latch_is_set(&ct->clean_thread_exit)) { |
1671 | 0 | long long next_wake; |
1672 | 0 | long long now = time_msec(); |
1673 | 0 | next_wake = conntrack_clean(ct, now); |
1674 | |
|
1675 | 0 | if (next_wake < now) { |
1676 | 0 | poll_timer_wait_until(now + CT_CLEAN_MIN_INTERVAL_MS); |
1677 | 0 | } else { |
1678 | 0 | poll_timer_wait_until(next_wake); |
1679 | 0 | } |
1680 | 0 | latch_wait(&ct->clean_thread_exit); |
1681 | 0 | poll_block(); |
1682 | 0 | } |
1683 | |
|
1684 | 0 | return NULL; |
1685 | 0 | } |
1686 | | |
1687 | | /* 'Data' is a pointer to the beginning of the L3 header and 'new_data' is |
1688 | | * used to store a pointer to the first byte after the L3 header. 'Size' is |
1689 | | * the size of the packet beyond the data pointer. */ |
1690 | | static inline bool |
1691 | | extract_l3_ipv4(struct dp_packet *pkt, struct conn_key *key, const void *data, |
1692 | | size_t size, const char **new_data) |
1693 | 0 | { |
1694 | 0 | if (OVS_UNLIKELY(size < IP_HEADER_LEN)) { |
1695 | 0 | return false; |
1696 | 0 | } |
1697 | | |
1698 | 0 | const struct ip_header *ip = data; |
1699 | 0 | size_t ip_len = IP_IHL(ip->ip_ihl_ver) * 4; |
1700 | |
|
1701 | 0 | if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) { |
1702 | 0 | return false; |
1703 | 0 | } |
1704 | | |
1705 | 0 | if (OVS_UNLIKELY(size < ip_len)) { |
1706 | 0 | return false; |
1707 | 0 | } |
1708 | | |
1709 | 0 | if (IP_IS_LATER_FRAG(ip->ip_frag_off)) { |
1710 | 0 | return false; |
1711 | 0 | } |
1712 | | |
1713 | 0 | if (pkt && dp_packet_ip_checksum_unknown(pkt)) { |
1714 | 0 | COVERAGE_INC(conntrack_l3csum_checked); |
1715 | 0 | if (csum(data, ip_len)) { |
1716 | 0 | COVERAGE_INC(conntrack_l3csum_err); |
1717 | 0 | dp_packet_ip_checksum_set_bad(pkt); |
1718 | 0 | return false; |
1719 | 0 | } |
1720 | 0 | dp_packet_ip_checksum_set_good(pkt); |
1721 | 0 | } |
1722 | | |
1723 | 0 | if (new_data) { |
1724 | 0 | *new_data = (char *) data + ip_len; |
1725 | 0 | } |
1726 | |
|
1727 | 0 | key->src.addr.ipv4 = get_16aligned_be32(&ip->ip_src); |
1728 | 0 | key->dst.addr.ipv4 = get_16aligned_be32(&ip->ip_dst); |
1729 | 0 | key->nw_proto = ip->ip_proto; |
1730 | |
|
1731 | 0 | return true; |
1732 | 0 | } |
1733 | | |
1734 | | /* 'Data' is a pointer to the beginning of the L3 header and 'new_data' is |
1735 | | * used to store a pointer to the first byte after the L3 header. 'Size' is |
1736 | | * the size of the packet beyond the data pointer. */ |
1737 | | static inline bool |
1738 | | extract_l3_ipv6(struct conn_key *key, const void *data, size_t size, |
1739 | | const char **new_data) |
1740 | 0 | { |
1741 | 0 | const struct ovs_16aligned_ip6_hdr *ip6 = data; |
1742 | |
|
1743 | 0 | if (OVS_UNLIKELY(size < sizeof *ip6)) { |
1744 | 0 | return false; |
1745 | 0 | } |
1746 | | |
1747 | 0 | data = ip6 + 1; |
1748 | 0 | size -= sizeof *ip6; |
1749 | 0 | uint8_t nw_proto = ip6->ip6_nxt; |
1750 | 0 | uint8_t nw_frag = 0; |
1751 | |
|
1752 | 0 | if (!parse_ipv6_ext_hdrs(&data, &size, &nw_proto, &nw_frag, |
1753 | 0 | NULL, NULL)) { |
1754 | 0 | return false; |
1755 | 0 | } |
1756 | | |
1757 | 0 | if (nw_frag) { |
1758 | 0 | return false; |
1759 | 0 | } |
1760 | | |
1761 | 0 | if (new_data) { |
1762 | 0 | *new_data = data; |
1763 | 0 | } |
1764 | |
|
1765 | 0 | memcpy(&key->src.addr.ipv6, &ip6->ip6_src, sizeof key->src.addr); |
1766 | 0 | memcpy(&key->dst.addr.ipv6, &ip6->ip6_dst, sizeof key->dst.addr); |
1767 | 0 | key->nw_proto = nw_proto; |
1768 | |
|
1769 | 0 | return true; |
1770 | 0 | } |
1771 | | |
1772 | | static inline bool |
1773 | | checksum_valid(const struct conn_key *key, const void *data, size_t size, |
1774 | | const void *l3) |
1775 | 0 | { |
1776 | 0 | bool valid; |
1777 | |
|
1778 | 0 | if (key->dl_type == htons(ETH_TYPE_IP)) { |
1779 | 0 | uint32_t csum = packet_csum_pseudoheader(l3); |
1780 | 0 | valid = (csum_finish(csum_continue(csum, data, size)) == 0); |
1781 | 0 | } else if (key->dl_type == htons(ETH_TYPE_IPV6)) { |
1782 | 0 | valid = (packet_csum_upperlayer6(l3, data, key->nw_proto, size) == 0); |
1783 | 0 | } else { |
1784 | 0 | valid = false; |
1785 | 0 | } |
1786 | |
|
1787 | 0 | COVERAGE_INC(conntrack_l4csum_checked); |
1788 | 0 | if (!valid) { |
1789 | 0 | COVERAGE_INC(conntrack_l4csum_err); |
1790 | 0 | } |
1791 | |
|
1792 | 0 | return valid; |
1793 | 0 | } |
1794 | | |
1795 | | static inline bool |
1796 | | sctp_checksum_valid(const void *data, size_t size) |
1797 | 0 | { |
1798 | 0 | struct sctp_header *sctp = (struct sctp_header *) data; |
1799 | 0 | ovs_be32 rcvd_csum, csum; |
1800 | |
|
1801 | 0 | rcvd_csum = get_16aligned_be32(&sctp->sctp_csum); |
1802 | 0 | put_16aligned_be32(&sctp->sctp_csum, 0); |
1803 | 0 | csum = crc32c(data, size); |
1804 | 0 | put_16aligned_be32(&sctp->sctp_csum, rcvd_csum); |
1805 | |
|
1806 | 0 | COVERAGE_INC(conntrack_l4csum_checked); |
1807 | 0 | if (rcvd_csum != csum) { |
1808 | 0 | COVERAGE_INC(conntrack_l4csum_err); |
1809 | 0 | return false; |
1810 | 0 | } |
1811 | | |
1812 | 0 | return true; |
1813 | 0 | } |
1814 | | |
1815 | | static inline bool |
1816 | | check_l4_tcp(struct dp_packet *pkt, const struct conn_key *key, |
1817 | | const void *data, size_t size, const void *l3) |
1818 | 0 | { |
1819 | 0 | const struct tcp_header *tcp = data; |
1820 | 0 | if (size < sizeof *tcp) { |
1821 | 0 | return false; |
1822 | 0 | } |
1823 | | |
1824 | 0 | size_t tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4; |
1825 | 0 | if (OVS_UNLIKELY(tcp_len < TCP_HEADER_LEN || tcp_len > size)) { |
1826 | 0 | return false; |
1827 | 0 | } |
1828 | | |
1829 | 0 | if (pkt && dp_packet_l4_checksum_unknown(pkt)) { |
1830 | 0 | if (!checksum_valid(key, data, size, l3)) { |
1831 | 0 | dp_packet_l4_checksum_set_bad(pkt); |
1832 | 0 | return false; |
1833 | 0 | } |
1834 | 0 | dp_packet_l4_checksum_set_good(pkt); |
1835 | 0 | dp_packet_l4_proto_set_tcp(pkt); |
1836 | 0 | } |
1837 | 0 | return true; |
1838 | 0 | } |
1839 | | |
1840 | | static inline bool |
1841 | | check_l4_udp(struct dp_packet *pkt, const struct conn_key *key, |
1842 | | const void *data, size_t size, const void *l3) |
1843 | 0 | { |
1844 | 0 | const struct udp_header *udp = data; |
1845 | 0 | if (size < sizeof *udp) { |
1846 | 0 | return false; |
1847 | 0 | } |
1848 | | |
1849 | 0 | size_t udp_len = ntohs(udp->udp_len); |
1850 | 0 | if (OVS_UNLIKELY(udp_len < UDP_HEADER_LEN || udp_len > size)) { |
1851 | 0 | return false; |
1852 | 0 | } |
1853 | | |
1854 | | /* Validation must be skipped if checksum is 0 on IPv4 packets */ |
1855 | 0 | if (!(udp->udp_csum == 0 && key->dl_type == htons(ETH_TYPE_IP)) |
1856 | 0 | && (pkt && dp_packet_l4_checksum_unknown(pkt))) { |
1857 | 0 | if (!checksum_valid(key, data, size, l3)) { |
1858 | 0 | dp_packet_l4_checksum_set_bad(pkt); |
1859 | 0 | return false; |
1860 | 0 | } |
1861 | 0 | dp_packet_l4_checksum_set_good(pkt); |
1862 | 0 | dp_packet_l4_proto_set_udp(pkt); |
1863 | 0 | } |
1864 | 0 | return true; |
1865 | 0 | } |
1866 | | |
1867 | | static inline bool |
1868 | | sctp_check_len(const struct sctp_header *sh, size_t size) |
1869 | 0 | { |
1870 | 0 | const struct sctp_chunk_header *sch; |
1871 | 0 | size_t next; |
1872 | |
|
1873 | 0 | if (size < SCTP_HEADER_LEN) { |
1874 | 0 | return false; |
1875 | 0 | } |
1876 | | |
1877 | | /* rfc4960: Chunks (including Type, Length, and Value fields) are padded |
1878 | | * out by the sender with all zero bytes to be a multiple of 4 bytes long. |
1879 | | */ |
1880 | 0 | for (next = sizeof(struct sctp_header), |
1881 | 0 | sch = SCTP_NEXT_CHUNK(sh, next); |
1882 | 0 | next < size; |
1883 | 0 | next += ROUND_UP(ntohs(sch->length), 4), |
1884 | 0 | sch = SCTP_NEXT_CHUNK(sh, next)) { |
1885 | | /* rfc4960: This value represents the size of the chunk in bytes, |
1886 | | * including the Chunk Type, Chunk Flags, Chunk Length, and Chunk Value |
1887 | | * fields. |
1888 | | * Therefore, if the Chunk Value field is zero-length, the Length |
1889 | | * field will be set to 4. */ |
1890 | 0 | if (ntohs(sch->length) < sizeof *sch) { |
1891 | 0 | return false; |
1892 | 0 | } |
1893 | 0 | } |
1894 | | |
1895 | 0 | return (next == size); |
1896 | 0 | } |
1897 | | |
1898 | | static inline bool |
1899 | | check_l4_sctp(struct dp_packet *pkt, const void *data, size_t size) |
1900 | 0 | { |
1901 | 0 | if (OVS_UNLIKELY(!sctp_check_len(data, size))) { |
1902 | 0 | return false; |
1903 | 0 | } |
1904 | | |
1905 | 0 | if (pkt && dp_packet_l4_checksum_unknown(pkt)) { |
1906 | 0 | if (!sctp_checksum_valid(data, size)) { |
1907 | 0 | dp_packet_l4_checksum_set_bad(pkt); |
1908 | 0 | return false; |
1909 | 0 | } |
1910 | 0 | dp_packet_l4_checksum_set_good(pkt); |
1911 | 0 | dp_packet_l4_proto_set_sctp(pkt); |
1912 | 0 | } |
1913 | 0 | return true; |
1914 | 0 | } |
1915 | | |
1916 | | static inline bool |
1917 | | check_l4_icmp(struct dp_packet *pkt, const void *data, size_t size) |
1918 | 0 | { |
1919 | 0 | if (pkt) { |
1920 | 0 | COVERAGE_INC(conntrack_l4csum_checked); |
1921 | 0 | if (csum(data, size)) { |
1922 | 0 | COVERAGE_INC(conntrack_l4csum_err); |
1923 | 0 | return false; |
1924 | 0 | } |
1925 | 0 | } |
1926 | | |
1927 | 0 | return true; |
1928 | 0 | } |
1929 | | |
1930 | | static inline bool |
1931 | | check_l4_icmp6(struct dp_packet *pkt, const struct conn_key *key, |
1932 | | const void *data, size_t size, const void *l3) |
1933 | 0 | { |
1934 | 0 | return pkt ? checksum_valid(key, data, size, l3) : true; |
1935 | 0 | } |
1936 | | |
1937 | | static inline bool |
1938 | | extract_l4_tcp(struct conn_key *key, const void *data, size_t size, |
1939 | | size_t *chk_len) |
1940 | 0 | { |
1941 | 0 | if (OVS_UNLIKELY(size < (chk_len ? *chk_len : TCP_HEADER_LEN))) { |
1942 | 0 | return false; |
1943 | 0 | } |
1944 | | |
1945 | 0 | const struct tcp_header *tcp = data; |
1946 | 0 | key->src.port = tcp->tcp_src; |
1947 | 0 | key->dst.port = tcp->tcp_dst; |
1948 | | |
1949 | | /* Port 0 is invalid */ |
1950 | 0 | return key->src.port && key->dst.port; |
1951 | 0 | } |
1952 | | |
1953 | | static inline bool |
1954 | | extract_l4_udp(struct conn_key *key, const void *data, size_t size, |
1955 | | size_t *chk_len) |
1956 | 0 | { |
1957 | 0 | if (OVS_UNLIKELY(size < (chk_len ? *chk_len : UDP_HEADER_LEN))) { |
1958 | 0 | return false; |
1959 | 0 | } |
1960 | | |
1961 | 0 | const struct udp_header *udp = data; |
1962 | 0 | key->src.port = udp->udp_src; |
1963 | 0 | key->dst.port = udp->udp_dst; |
1964 | | |
1965 | | /* Port 0 is invalid */ |
1966 | 0 | return key->src.port && key->dst.port; |
1967 | 0 | } |
1968 | | |
1969 | | static inline bool |
1970 | | extract_l4_sctp(struct conn_key *key, const void *data, size_t size, |
1971 | | size_t *chk_len) |
1972 | 0 | { |
1973 | 0 | if (OVS_UNLIKELY(size < (chk_len ? *chk_len : SCTP_HEADER_LEN))) { |
1974 | 0 | return false; |
1975 | 0 | } |
1976 | | |
1977 | 0 | const struct sctp_header *sctp = data; |
1978 | 0 | key->src.port = sctp->sctp_src; |
1979 | 0 | key->dst.port = sctp->sctp_dst; |
1980 | |
|
1981 | 0 | return key->src.port && key->dst.port; |
1982 | 0 | } |
1983 | | |
1984 | | static inline bool extract_l4(struct dp_packet *pkt, struct conn_key *key, |
1985 | | const void *data, size_t size, bool *related, |
1986 | | const void *l3, size_t *chk_len); |
1987 | | |
1988 | | static uint8_t |
1989 | | reverse_icmp_type(uint8_t type) |
1990 | 0 | { |
1991 | 0 | switch (type) { |
1992 | 0 | case ICMP4_ECHO_REQUEST: |
1993 | 0 | return ICMP4_ECHO_REPLY; |
1994 | 0 | case ICMP4_ECHO_REPLY: |
1995 | 0 | return ICMP4_ECHO_REQUEST; |
1996 | | |
1997 | 0 | case ICMP4_TIMESTAMP: |
1998 | 0 | return ICMP4_TIMESTAMPREPLY; |
1999 | 0 | case ICMP4_TIMESTAMPREPLY: |
2000 | 0 | return ICMP4_TIMESTAMP; |
2001 | | |
2002 | 0 | case ICMP4_INFOREQUEST: |
2003 | 0 | return ICMP4_INFOREPLY; |
2004 | 0 | case ICMP4_INFOREPLY: |
2005 | 0 | return ICMP4_INFOREQUEST; |
2006 | 0 | default: |
2007 | 0 | OVS_NOT_REACHED(); |
2008 | 0 | } |
2009 | 0 | } |
2010 | | |
2011 | | /* If 'related' is not NULL and the function is processing an ICMP |
2012 | | * error packet, extract the l3 and l4 fields from the nested header |
2013 | | * instead and set *related to true. If 'related' is NULL we're |
2014 | | * already processing a nested header and no such recursion is |
2015 | | * possible */ |
2016 | | static inline int |
2017 | | extract_l4_icmp(struct conn_key *key, const void *data, size_t size, |
2018 | | bool *related, size_t *chk_len) |
2019 | 0 | { |
2020 | 0 | if (OVS_UNLIKELY(size < (chk_len ? *chk_len : ICMP_HEADER_LEN))) { |
2021 | 0 | return false; |
2022 | 0 | } |
2023 | | |
2024 | 0 | const struct icmp_header *icmp = data; |
2025 | |
|
2026 | 0 | switch (icmp->icmp_type) { |
2027 | 0 | case ICMP4_ECHO_REQUEST: |
2028 | 0 | case ICMP4_ECHO_REPLY: |
2029 | 0 | case ICMP4_TIMESTAMP: |
2030 | 0 | case ICMP4_TIMESTAMPREPLY: |
2031 | 0 | case ICMP4_INFOREQUEST: |
2032 | 0 | case ICMP4_INFOREPLY: |
2033 | 0 | if (icmp->icmp_code != 0) { |
2034 | 0 | return false; |
2035 | 0 | } |
2036 | | /* Separate ICMP connection: identified using id */ |
2037 | 0 | key->src.icmp_id = key->dst.icmp_id = icmp->icmp_fields.echo.id; |
2038 | 0 | key->src.icmp_type = icmp->icmp_type; |
2039 | 0 | key->dst.icmp_type = reverse_icmp_type(icmp->icmp_type); |
2040 | 0 | break; |
2041 | 0 | case ICMP4_DST_UNREACH: |
2042 | 0 | case ICMP4_TIME_EXCEEDED: |
2043 | 0 | case ICMP4_PARAM_PROB: |
2044 | 0 | case ICMP4_SOURCEQUENCH: |
2045 | 0 | case ICMP4_REDIRECT: { |
2046 | | /* ICMP packet part of another connection. We should |
2047 | | * extract the key from embedded packet header */ |
2048 | 0 | struct conn_key inner_key; |
2049 | 0 | const char *l3 = (const char *) (icmp + 1); |
2050 | 0 | const char *tail = (const char *) data + size; |
2051 | 0 | const char *l4; |
2052 | |
|
2053 | 0 | if (!related) { |
2054 | 0 | return false; |
2055 | 0 | } |
2056 | | |
2057 | 0 | memset(&inner_key, 0, sizeof inner_key); |
2058 | 0 | inner_key.dl_type = htons(ETH_TYPE_IP); |
2059 | 0 | bool ok = extract_l3_ipv4(NULL, &inner_key, l3, tail - l3, &l4); |
2060 | 0 | if (!ok) { |
2061 | 0 | return false; |
2062 | 0 | } |
2063 | | |
2064 | 0 | if (inner_key.src.addr.ipv4 != key->dst.addr.ipv4) { |
2065 | 0 | return false; |
2066 | 0 | } |
2067 | | |
2068 | 0 | key->src = inner_key.src; |
2069 | 0 | key->dst = inner_key.dst; |
2070 | 0 | key->nw_proto = inner_key.nw_proto; |
2071 | 0 | size_t check_len = ICMP_ERROR_DATA_L4_LEN; |
2072 | |
|
2073 | 0 | ok = extract_l4(NULL, key, l4, tail - l4, NULL, l3, &check_len); |
2074 | 0 | if (ok) { |
2075 | 0 | conn_key_reverse(key); |
2076 | 0 | *related = true; |
2077 | 0 | } |
2078 | 0 | return ok; |
2079 | 0 | } |
2080 | 0 | default: |
2081 | 0 | return false; |
2082 | 0 | } |
2083 | | |
2084 | 0 | return true; |
2085 | 0 | } |
2086 | | |
2087 | | static uint8_t |
2088 | | reverse_icmp6_type(uint8_t type) |
2089 | 0 | { |
2090 | 0 | switch (type) { |
2091 | 0 | case ICMP6_ECHO_REQUEST: |
2092 | 0 | return ICMP6_ECHO_REPLY; |
2093 | 0 | case ICMP6_ECHO_REPLY: |
2094 | 0 | return ICMP6_ECHO_REQUEST; |
2095 | 0 | default: |
2096 | 0 | OVS_NOT_REACHED(); |
2097 | 0 | } |
2098 | 0 | } |
2099 | | |
2100 | | /* If 'related' is not NULL and the function is processing an ICMP |
2101 | | * error packet, extract the l3 and l4 fields from the nested header |
2102 | | * instead and set *related to true. If 'related' is NULL we're |
2103 | | * already processing a nested header and no such recursion is |
2104 | | * possible */ |
2105 | | static inline bool |
2106 | | extract_l4_icmp6(struct conn_key *key, const void *data, size_t size, |
2107 | | bool *related) |
2108 | 0 | { |
2109 | 0 | const struct icmp6_header *icmp6 = data; |
2110 | | |
2111 | | /* All the messages that we support need at least 4 bytes after |
2112 | | * the header */ |
2113 | 0 | if (size < sizeof *icmp6 + 4) { |
2114 | 0 | return false; |
2115 | 0 | } |
2116 | | |
2117 | 0 | switch (icmp6->icmp6_type) { |
2118 | 0 | case ICMP6_ECHO_REQUEST: |
2119 | 0 | case ICMP6_ECHO_REPLY: |
2120 | 0 | if (icmp6->icmp6_code != 0) { |
2121 | 0 | return false; |
2122 | 0 | } |
2123 | | /* Separate ICMP connection: identified using id */ |
2124 | 0 | key->src.icmp_id = key->dst.icmp_id = *(ovs_be16 *) (icmp6 + 1); |
2125 | 0 | key->src.icmp_type = icmp6->icmp6_type; |
2126 | 0 | key->dst.icmp_type = reverse_icmp6_type(icmp6->icmp6_type); |
2127 | 0 | break; |
2128 | 0 | case ICMP6_DST_UNREACH: |
2129 | 0 | case ICMP6_PACKET_TOO_BIG: |
2130 | 0 | case ICMP6_TIME_EXCEEDED: |
2131 | 0 | case ICMP6_PARAM_PROB: { |
2132 | | /* ICMP packet part of another connection. We should |
2133 | | * extract the key from embedded packet header */ |
2134 | 0 | struct conn_key inner_key; |
2135 | 0 | const char *l3 = (const char *) icmp6 + 8; |
2136 | 0 | const char *tail = (const char *) data + size; |
2137 | 0 | const char *l4 = NULL; |
2138 | |
|
2139 | 0 | if (!related) { |
2140 | 0 | return false; |
2141 | 0 | } |
2142 | | |
2143 | 0 | memset(&inner_key, 0, sizeof inner_key); |
2144 | 0 | inner_key.dl_type = htons(ETH_TYPE_IPV6); |
2145 | 0 | bool ok = extract_l3_ipv6(&inner_key, l3, tail - l3, &l4); |
2146 | 0 | if (!ok) { |
2147 | 0 | return false; |
2148 | 0 | } |
2149 | | |
2150 | | /* pf doesn't do this, but it seems a good idea */ |
2151 | 0 | if (!ipv6_addr_equals(&inner_key.src.addr.ipv6, |
2152 | 0 | &key->dst.addr.ipv6)) { |
2153 | 0 | return false; |
2154 | 0 | } |
2155 | | |
2156 | 0 | key->src = inner_key.src; |
2157 | 0 | key->dst = inner_key.dst; |
2158 | 0 | key->nw_proto = inner_key.nw_proto; |
2159 | |
|
2160 | 0 | ok = extract_l4(NULL, key, l4, tail - l4, NULL, l3, NULL); |
2161 | 0 | if (ok) { |
2162 | 0 | conn_key_reverse(key); |
2163 | 0 | *related = true; |
2164 | 0 | } |
2165 | 0 | return ok; |
2166 | 0 | } |
2167 | 0 | default: |
2168 | 0 | return false; |
2169 | 0 | } |
2170 | | |
2171 | 0 | return true; |
2172 | 0 | } |
2173 | | |
2174 | | /* Extract l4 fields into 'key', which must already contain valid l3 |
2175 | | * members. |
2176 | | * |
2177 | | * If 'related' is not NULL and an ICMP error packet is being |
2178 | | * processed, the function will extract the key from the packet nested |
2179 | | * in the ICMP payload and set '*related' to true. |
2180 | | * |
2181 | | * 'size' here is the layer 4 size, which can be a nested size if parsing |
2182 | | * an ICMP or ICMP6 header. |
2183 | | * |
2184 | | * If 'related' is NULL, it means that we're already parsing a header nested |
2185 | | * in an ICMP error. In this case, we skip the checksum and some length |
2186 | | * validations. */ |
2187 | | static inline bool |
2188 | | extract_l4(struct dp_packet *pkt, struct conn_key *key, const void *data, |
2189 | | size_t size, bool *related, const void *l3, size_t *chk_len) |
2190 | 0 | { |
2191 | 0 | if (key->nw_proto == IPPROTO_TCP) { |
2192 | 0 | return (!related || check_l4_tcp(pkt, key, data, size, l3)) |
2193 | 0 | && extract_l4_tcp(key, data, size, chk_len); |
2194 | 0 | } else if (key->nw_proto == IPPROTO_UDP) { |
2195 | 0 | return (!related || check_l4_udp(pkt, key, data, size, l3)) |
2196 | 0 | && extract_l4_udp(key, data, size, chk_len); |
2197 | 0 | } else if (key->nw_proto == IPPROTO_SCTP) { |
2198 | 0 | return (!related || check_l4_sctp(pkt, data, size)) |
2199 | 0 | && extract_l4_sctp(key, data, size, chk_len); |
2200 | 0 | } else if (key->dl_type == htons(ETH_TYPE_IP) |
2201 | 0 | && key->nw_proto == IPPROTO_ICMP) { |
2202 | 0 | return (!related || check_l4_icmp(pkt, data, size)) |
2203 | 0 | && extract_l4_icmp(key, data, size, related, chk_len); |
2204 | 0 | } else if (key->dl_type == htons(ETH_TYPE_IPV6) |
2205 | 0 | && key->nw_proto == IPPROTO_ICMPV6) { |
2206 | 0 | return (!related || check_l4_icmp6(pkt, key, data, size, l3)) |
2207 | 0 | && extract_l4_icmp6(key, data, size, related); |
2208 | 0 | } |
2209 | | |
2210 | | /* For all other protocols we do not have L4 keys, so keep them zero. */ |
2211 | 0 | return true; |
2212 | 0 | } |
2213 | | |
2214 | | static bool |
2215 | | conn_key_extract(struct conntrack *ct, struct dp_packet *pkt, ovs_be16 dl_type, |
2216 | | struct conn_lookup_ctx *ctx, uint16_t zone) |
2217 | 0 | { |
2218 | 0 | const struct eth_header *l2 = dp_packet_eth(pkt); |
2219 | 0 | const struct ip_header *l3 = dp_packet_l3(pkt); |
2220 | 0 | const char *l4 = dp_packet_l4(pkt); |
2221 | |
|
2222 | 0 | memset(ctx, 0, sizeof *ctx); |
2223 | |
|
2224 | 0 | if (!l2 || !l3 || !l4) { |
2225 | 0 | return false; |
2226 | 0 | } |
2227 | | |
2228 | 0 | ctx->key.zone = zone; |
2229 | | |
2230 | | /* XXX In this function we parse the packet (again, it has already |
2231 | | * gone through miniflow_extract()) for two reasons: |
2232 | | * |
2233 | | * 1) To extract the l3 addresses and l4 ports. |
2234 | | * We already have the l3 and l4 headers' pointers. Extracting |
2235 | | * the l3 addresses and the l4 ports is really cheap, since they |
2236 | | * can be found at fixed locations. |
2237 | | * 2) To extract the l4 type. |
2238 | | * Extracting the l4 types, for IPv6 can be quite expensive, because |
2239 | | * it's not at a fixed location. |
2240 | | * |
2241 | | * Here's a way to avoid (2) with the help of the datapath. |
2242 | | * The datapath doesn't keep the packet's extracted flow[1], so |
2243 | | * using that is not an option. We could use the packet's matching |
2244 | | * megaflow, but we have to make sure that the l4 type (nw_proto) |
2245 | | * is unwildcarded. This means either: |
2246 | | * |
2247 | | * a) dpif-netdev unwildcards the l4 type when a new flow is installed |
2248 | | * if the actions contains ct(). |
2249 | | * |
2250 | | * b) ofproto-dpif-xlate unwildcards the l4 type when translating a ct() |
2251 | | * action. This is already done in different actions, but it's |
2252 | | * unnecessary for the kernel. |
2253 | | * |
2254 | | * --- |
2255 | | * [1] The reasons for this are that keeping the flow increases |
2256 | | * (slightly) the cache footprint and increases computation |
2257 | | * time as we move the packet around. Most importantly, the flow |
2258 | | * should be updated by the actions and this can be slow, as |
2259 | | * we use a sparse representation (miniflow). |
2260 | | * |
2261 | | */ |
2262 | 0 | bool ok; |
2263 | 0 | ctx->key.dl_type = dl_type; |
2264 | |
|
2265 | 0 | if (ctx->key.dl_type == htons(ETH_TYPE_IP)) { |
2266 | 0 | if (dp_packet_ip_checksum_bad(pkt)) { |
2267 | 0 | ok = false; |
2268 | 0 | COVERAGE_INC(conntrack_l3csum_err); |
2269 | 0 | } else { |
2270 | | /* Validate the checksum only when hwol is not supported and the |
2271 | | * packet's checksum status is not known. */ |
2272 | 0 | ok = extract_l3_ipv4(pkt, &ctx->key, l3, dp_packet_l3_size(pkt), |
2273 | 0 | NULL); |
2274 | 0 | } |
2275 | 0 | } else if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) { |
2276 | 0 | ok = extract_l3_ipv6(&ctx->key, l3, dp_packet_l3_size(pkt), NULL); |
2277 | 0 | } else { |
2278 | 0 | ok = false; |
2279 | 0 | } |
2280 | |
|
2281 | 0 | if (ok) { |
2282 | 0 | if (!dp_packet_l4_checksum_bad(pkt)) { |
2283 | | /* Validate the checksum only when hwol is not supported. */ |
2284 | 0 | if (extract_l4(pkt, &ctx->key, l4, dp_packet_l4_size(pkt), |
2285 | 0 | &ctx->icmp_related, l3, NULL)) { |
2286 | 0 | ctx->hash = conn_key_hash(&ctx->key, ct->hash_basis); |
2287 | 0 | return true; |
2288 | 0 | } |
2289 | 0 | } else { |
2290 | 0 | COVERAGE_INC(conntrack_l4csum_err); |
2291 | 0 | } |
2292 | 0 | } |
2293 | | |
2294 | 0 | return false; |
2295 | 0 | } |
2296 | | |
2297 | | static uint32_t |
2298 | | ct_addr_hash_add(uint32_t hash, const union ct_addr *addr) |
2299 | 0 | { |
2300 | 0 | BUILD_ASSERT_DECL(sizeof *addr % 4 == 0); |
2301 | 0 | return hash_add_bytes32(hash, (const uint32_t *) addr, sizeof *addr); |
2302 | 0 | } |
2303 | | |
2304 | | static uint32_t |
2305 | | ct_endpoint_hash_add(uint32_t hash, const struct ct_endpoint *ep) |
2306 | 0 | { |
2307 | 0 | BUILD_ASSERT_DECL(sizeof *ep % 4 == 0); |
2308 | 0 | return hash_add_bytes32(hash, (const uint32_t *) ep, sizeof *ep); |
2309 | 0 | } |
2310 | | |
2311 | | /* Symmetric */ |
2312 | | static uint32_t |
2313 | | conn_key_hash(const struct conn_key *key, uint32_t basis) |
2314 | 0 | { |
2315 | 0 | uint32_t hsrc, hdst, hash; |
2316 | 0 | hsrc = hdst = basis; |
2317 | 0 | hsrc = ct_endpoint_hash_add(hsrc, &key->src); |
2318 | 0 | hdst = ct_endpoint_hash_add(hdst, &key->dst); |
2319 | | |
2320 | | /* Even if source and destination are swapped the hash will be the same. */ |
2321 | 0 | hash = hsrc ^ hdst; |
2322 | | |
2323 | | /* Hash the rest of the key(L3 and L4 types and zone). */ |
2324 | 0 | return hash_words((uint32_t *) (&key->dst + 1), |
2325 | 0 | (uint32_t *) (key + 1) - (uint32_t *) (&key->dst + 1), |
2326 | 0 | hash); |
2327 | 0 | } |
2328 | | |
2329 | | static void |
2330 | | conn_key_reverse(struct conn_key *key) |
2331 | 0 | { |
2332 | 0 | struct ct_endpoint tmp = key->src; |
2333 | 0 | key->src = key->dst; |
2334 | 0 | key->dst = tmp; |
2335 | 0 | } |
2336 | | |
2337 | | static uint32_t |
2338 | | nat_ipv6_addrs_delta(const struct in6_addr *ipv6_min, |
2339 | | const struct in6_addr *ipv6_max) |
2340 | 0 | { |
2341 | 0 | const uint8_t *ipv6_min_hi = &ipv6_min->s6_addr[0]; |
2342 | 0 | const uint8_t *ipv6_min_lo = &ipv6_min->s6_addr[0] + sizeof(uint64_t); |
2343 | 0 | const uint8_t *ipv6_max_hi = &ipv6_max->s6_addr[0]; |
2344 | 0 | const uint8_t *ipv6_max_lo = &ipv6_max->s6_addr[0] + sizeof(uint64_t); |
2345 | |
|
2346 | 0 | ovs_be64 addr6_64_min_hi; |
2347 | 0 | ovs_be64 addr6_64_min_lo; |
2348 | 0 | memcpy(&addr6_64_min_hi, ipv6_min_hi, sizeof addr6_64_min_hi); |
2349 | 0 | memcpy(&addr6_64_min_lo, ipv6_min_lo, sizeof addr6_64_min_lo); |
2350 | |
|
2351 | 0 | ovs_be64 addr6_64_max_hi; |
2352 | 0 | ovs_be64 addr6_64_max_lo; |
2353 | 0 | memcpy(&addr6_64_max_hi, ipv6_max_hi, sizeof addr6_64_max_hi); |
2354 | 0 | memcpy(&addr6_64_max_lo, ipv6_max_lo, sizeof addr6_64_max_lo); |
2355 | |
|
2356 | 0 | uint64_t diff; |
2357 | |
|
2358 | 0 | if (addr6_64_min_hi == addr6_64_max_hi && |
2359 | 0 | ntohll(addr6_64_min_lo) <= ntohll(addr6_64_max_lo)) { |
2360 | 0 | diff = ntohll(addr6_64_max_lo) - ntohll(addr6_64_min_lo); |
2361 | 0 | } else if (ntohll(addr6_64_min_hi) + 1 == ntohll(addr6_64_max_hi) && |
2362 | 0 | ntohll(addr6_64_min_lo) > ntohll(addr6_64_max_lo)) { |
2363 | 0 | diff = UINT64_MAX - (ntohll(addr6_64_min_lo) - |
2364 | 0 | ntohll(addr6_64_max_lo) - 1); |
2365 | 0 | } else { |
2366 | | /* Limit address delta supported to 32 bits or 4 billion approximately. |
2367 | | * Possibly, this should be visible to the user through a datapath |
2368 | | * support check, however the practical impact is probably nil. */ |
2369 | 0 | diff = 0xfffffffe; |
2370 | 0 | } |
2371 | |
|
2372 | 0 | if (diff > 0xfffffffe) { |
2373 | 0 | diff = 0xfffffffe; |
2374 | 0 | } |
2375 | 0 | return diff; |
2376 | 0 | } |
2377 | | |
2378 | | /* This function must be used in tandem with nat_ipv6_addrs_delta(), which |
2379 | | * restricts the input parameters. */ |
2380 | | static void |
2381 | | nat_ipv6_addr_increment(struct in6_addr *ipv6, uint32_t increment) |
2382 | 0 | { |
2383 | 0 | uint8_t *ipv6_hi = &ipv6->s6_addr[0]; |
2384 | 0 | uint8_t *ipv6_lo = &ipv6->s6_addr[0] + sizeof(ovs_be64); |
2385 | 0 | ovs_be64 addr6_64_hi; |
2386 | 0 | ovs_be64 addr6_64_lo; |
2387 | 0 | memcpy(&addr6_64_hi, ipv6_hi, sizeof addr6_64_hi); |
2388 | 0 | memcpy(&addr6_64_lo, ipv6_lo, sizeof addr6_64_lo); |
2389 | |
|
2390 | 0 | if (UINT64_MAX - increment >= ntohll(addr6_64_lo)) { |
2391 | 0 | addr6_64_lo = htonll(increment + ntohll(addr6_64_lo)); |
2392 | 0 | } else if (addr6_64_hi != OVS_BE64_MAX) { |
2393 | 0 | addr6_64_hi = htonll(1 + ntohll(addr6_64_hi)); |
2394 | 0 | addr6_64_lo = htonll(increment - (UINT64_MAX - |
2395 | 0 | ntohll(addr6_64_lo) + 1)); |
2396 | 0 | } else { |
2397 | 0 | OVS_NOT_REACHED(); |
2398 | 0 | } |
2399 | | |
2400 | 0 | memcpy(ipv6_hi, &addr6_64_hi, sizeof addr6_64_hi); |
2401 | 0 | memcpy(ipv6_lo, &addr6_64_lo, sizeof addr6_64_lo); |
2402 | 0 | } |
2403 | | |
2404 | | static uint32_t |
2405 | | nat_range_hash(const struct conn_key *key, uint32_t basis, |
2406 | | const struct nat_action_info_t *nat_info) |
2407 | 0 | { |
2408 | 0 | uint32_t hash = basis; |
2409 | |
|
2410 | 0 | if (!basis) { |
2411 | 0 | hash = ct_addr_hash_add(hash, &key->src.addr); |
2412 | 0 | } else { |
2413 | 0 | hash = ct_endpoint_hash_add(hash, &key->src); |
2414 | 0 | hash = ct_endpoint_hash_add(hash, &key->dst); |
2415 | 0 | } |
2416 | |
|
2417 | 0 | hash = ct_addr_hash_add(hash, &nat_info->min_addr); |
2418 | 0 | hash = ct_addr_hash_add(hash, &nat_info->max_addr); |
2419 | 0 | hash = hash_add(hash, |
2420 | 0 | ((uint32_t) nat_info->max_port << 16) |
2421 | 0 | | nat_info->min_port); |
2422 | 0 | hash = hash_add(hash, (OVS_FORCE uint32_t) key->dl_type); |
2423 | 0 | hash = hash_add(hash, key->nw_proto); |
2424 | 0 | hash = hash_add(hash, key->zone); |
2425 | | /* The purpose of the second parameter is to distinguish hashes of data of |
2426 | | * different length; our data always has the same length so there is no |
2427 | | * value in counting. */ |
2428 | 0 | return hash_finish(hash, 0); |
2429 | 0 | } |
2430 | | |
2431 | | /* Ports are stored in host byte order for convenience. */ |
2432 | | static void |
2433 | | set_sport_range(const struct nat_action_info_t *ni, const struct conn_key *k, |
2434 | | uint32_t off, uint16_t *curr, uint16_t *min, |
2435 | | uint16_t *max) |
2436 | 0 | { |
2437 | 0 | if (((ni->nat_action & NAT_ACTION_SNAT_ALL) == NAT_ACTION_SRC) || |
2438 | 0 | ((ni->nat_action & NAT_ACTION_DST))) { |
2439 | 0 | *curr = ntohs(k->src.port); |
2440 | 0 | if (*curr < 512) { |
2441 | 0 | *min = 1; |
2442 | 0 | *max = 511; |
2443 | 0 | } else if (*curr < 1024) { |
2444 | 0 | *min = 600; |
2445 | 0 | *max = 1023; |
2446 | 0 | } else { |
2447 | 0 | *min = MIN_NAT_EPHEMERAL_PORT; |
2448 | 0 | *max = MAX_NAT_EPHEMERAL_PORT; |
2449 | 0 | } |
2450 | 0 | } else { |
2451 | 0 | *min = ni->min_port; |
2452 | 0 | *max = ni->max_port; |
2453 | 0 | *curr = *min + (off % ((*max - *min) + 1)); |
2454 | 0 | } |
2455 | 0 | } |
2456 | | |
2457 | | static void |
2458 | | set_dport_range(const struct nat_action_info_t *ni, const struct conn_key *k, |
2459 | | uint32_t off, uint16_t *curr, uint16_t *min, |
2460 | | uint16_t *max) |
2461 | 0 | { |
2462 | 0 | if (ni->nat_action & NAT_ACTION_DST_PORT) { |
2463 | 0 | *min = ni->min_port; |
2464 | 0 | *max = ni->max_port; |
2465 | 0 | *curr = *min + (off % ((*max - *min) + 1)); |
2466 | 0 | } else { |
2467 | 0 | *curr = ntohs(k->dst.port); |
2468 | 0 | *min = *max = *curr; |
2469 | 0 | } |
2470 | 0 | } |
2471 | | |
2472 | | /* Gets an in range address based on the hash. |
2473 | | * Addresses are kept in network order. */ |
2474 | | static void |
2475 | | get_addr_in_range(union ct_addr *min, union ct_addr *max, |
2476 | | union ct_addr *curr, uint32_t hash, bool ipv4) |
2477 | 0 | { |
2478 | 0 | uint32_t offt, range; |
2479 | |
|
2480 | 0 | if (ipv4) { |
2481 | 0 | range = (ntohl(max->ipv4) - ntohl(min->ipv4)) + 1; |
2482 | 0 | offt = hash % range; |
2483 | 0 | curr->ipv4 = htonl(ntohl(min->ipv4) + offt); |
2484 | 0 | } else { |
2485 | 0 | range = nat_ipv6_addrs_delta(&min->ipv6, &max->ipv6) + 1; |
2486 | | /* Range must be within 32 bits for full hash coverage. A 64 or |
2487 | | * 128 bit hash is unnecessary and hence not used here. Most code |
2488 | | * is kept common with V4; nat_ipv6_addrs_delta() will do the |
2489 | | * enforcement via max_ct_addr. */ |
2490 | 0 | offt = hash % range; |
2491 | 0 | curr->ipv6 = min->ipv6; |
2492 | 0 | nat_ipv6_addr_increment(&curr->ipv6, offt); |
2493 | 0 | } |
2494 | 0 | } |
2495 | | |
2496 | | static void |
2497 | | find_addr(const struct conn_key *key, union ct_addr *min, |
2498 | | union ct_addr *max, union ct_addr *curr, |
2499 | | uint32_t hash, bool ipv4, |
2500 | | const struct nat_action_info_t *nat_info) |
2501 | 0 | { |
2502 | 0 | union ct_addr zero_ip; |
2503 | |
|
2504 | 0 | memset(&zero_ip, 0, sizeof zero_ip); |
2505 | | |
2506 | | /* All-zero case. */ |
2507 | 0 | if (!memcmp(min, &zero_ip, sizeof *min)) { |
2508 | 0 | if (nat_info->nat_action & NAT_ACTION_SRC) { |
2509 | 0 | *curr = key->src.addr; |
2510 | 0 | } else if (nat_info->nat_action & NAT_ACTION_DST) { |
2511 | 0 | *curr = key->dst.addr; |
2512 | 0 | } |
2513 | 0 | } else { |
2514 | 0 | get_addr_in_range(min, max, curr, hash, ipv4); |
2515 | 0 | } |
2516 | 0 | } |
2517 | | |
2518 | | static void |
2519 | | store_addr_to_key(union ct_addr *addr, struct conn_key *key, |
2520 | | uint16_t action) |
2521 | 0 | { |
2522 | 0 | if (action & NAT_ACTION_SRC) { |
2523 | 0 | key->dst.addr = *addr; |
2524 | 0 | } else { |
2525 | 0 | key->src.addr = *addr; |
2526 | 0 | } |
2527 | 0 | } |
2528 | | |
2529 | | static bool |
2530 | | nat_get_unique_l4(struct conntrack *ct, struct conn_key *rev_key, |
2531 | | ovs_be16 *port, uint16_t curr, uint16_t min, |
2532 | | uint16_t max) |
2533 | 0 | { |
2534 | 0 | static const unsigned int max_attempts = 128; |
2535 | 0 | uint16_t range = max - min + 1; |
2536 | 0 | unsigned int attempts; |
2537 | 0 | uint16_t orig = curr; |
2538 | 0 | unsigned int i = 0; |
2539 | |
|
2540 | 0 | attempts = range; |
2541 | 0 | if (attempts > max_attempts) { |
2542 | 0 | attempts = max_attempts; |
2543 | 0 | } |
2544 | |
|
2545 | 0 | another_round: |
2546 | 0 | i = 0; |
2547 | 0 | FOR_EACH_PORT_IN_RANGE (curr, min, max) { |
2548 | 0 | if (i++ >= attempts) { |
2549 | 0 | break; |
2550 | 0 | } |
2551 | | |
2552 | 0 | *port = htons(curr); |
2553 | 0 | if (!conn_lookup(ct, rev_key, time_msec(), NULL, NULL)) { |
2554 | 0 | return true; |
2555 | 0 | } |
2556 | 0 | } |
2557 | | |
2558 | 0 | if (attempts < range && attempts >= 16) { |
2559 | 0 | attempts /= 2; |
2560 | 0 | curr = min + (random_uint32() % range); |
2561 | 0 | goto another_round; |
2562 | 0 | } |
2563 | | |
2564 | 0 | *port = htons(orig); |
2565 | |
|
2566 | 0 | return false; |
2567 | 0 | } |
2568 | | |
2569 | | /* This function tries to get a unique tuple. |
2570 | | * Every iteration checks that the reverse tuple doesn't |
2571 | | * collide with any existing one. |
2572 | | * |
2573 | | * In case of SNAT: |
2574 | | * - Pick a src IP address in the range. |
2575 | | * - Try to find a source port in range (if any). |
2576 | | * - If no port range exists, use the whole |
2577 | | * ephemeral range (after testing the port |
2578 | | * used by the sender), otherwise use the |
2579 | | * specified range. |
2580 | | * |
2581 | | * In case of DNAT: |
2582 | | * - Pick a dst IP address in the range. |
2583 | | * - For each dport in range (if any) tries to find |
2584 | | * an unique tuple. |
2585 | | * - Eventually, if the previous attempt fails, |
2586 | | * tries to find a source port in the ephemeral |
2587 | | * range (after testing the port used by the sender). |
2588 | | * |
2589 | | * If none can be found, return exhaustion to the caller. */ |
2590 | | static bool |
2591 | | nat_get_unique_tuple(struct conntrack *ct, struct conn *conn, |
2592 | | const struct nat_action_info_t *nat_info) |
2593 | 0 | { |
2594 | 0 | struct conn_key *fwd_key = &conn->key_node[CT_DIR_FWD].key; |
2595 | 0 | struct conn_key *rev_key = &conn->key_node[CT_DIR_REV].key; |
2596 | 0 | bool pat_proto = fwd_key->nw_proto == IPPROTO_TCP || |
2597 | 0 | fwd_key->nw_proto == IPPROTO_UDP || |
2598 | 0 | fwd_key->nw_proto == IPPROTO_SCTP; |
2599 | 0 | uint16_t min_dport, max_dport, curr_dport; |
2600 | 0 | uint16_t min_sport, max_sport, curr_sport; |
2601 | 0 | union ct_addr min_addr, max_addr, addr; |
2602 | 0 | uint32_t hash, port_off, basis; |
2603 | |
|
2604 | 0 | memset(&min_addr, 0, sizeof min_addr); |
2605 | 0 | memset(&max_addr, 0, sizeof max_addr); |
2606 | 0 | memset(&addr, 0, sizeof addr); |
2607 | |
|
2608 | 0 | basis = (nat_info->nat_flags & NAT_PERSISTENT) ? 0 : ct->hash_basis; |
2609 | 0 | hash = nat_range_hash(fwd_key, basis, nat_info); |
2610 | |
|
2611 | 0 | if (nat_info->nat_flags & NAT_RANGE_RANDOM) { |
2612 | 0 | port_off = random_uint32(); |
2613 | 0 | } else if (basis) { |
2614 | 0 | port_off = hash; |
2615 | 0 | } else { |
2616 | 0 | port_off = nat_range_hash(fwd_key, ct->hash_basis, nat_info); |
2617 | 0 | } |
2618 | |
|
2619 | 0 | min_addr = nat_info->min_addr; |
2620 | 0 | max_addr = nat_info->max_addr; |
2621 | |
|
2622 | 0 | find_addr(fwd_key, &min_addr, &max_addr, &addr, hash, |
2623 | 0 | (fwd_key->dl_type == htons(ETH_TYPE_IP)), nat_info); |
2624 | |
|
2625 | 0 | set_sport_range(nat_info, fwd_key, port_off, &curr_sport, |
2626 | 0 | &min_sport, &max_sport); |
2627 | 0 | set_dport_range(nat_info, fwd_key, port_off, &curr_dport, |
2628 | 0 | &min_dport, &max_dport); |
2629 | |
|
2630 | 0 | if (pat_proto) { |
2631 | 0 | rev_key->src.port = htons(curr_dport); |
2632 | 0 | rev_key->dst.port = htons(curr_sport); |
2633 | 0 | } |
2634 | |
|
2635 | 0 | store_addr_to_key(&addr, rev_key, nat_info->nat_action); |
2636 | |
|
2637 | 0 | if (!pat_proto) { |
2638 | 0 | return !conn_lookup(ct, rev_key, time_msec(), NULL, NULL); |
2639 | 0 | } |
2640 | | |
2641 | 0 | bool found = false; |
2642 | 0 | if (nat_info->nat_action & NAT_ACTION_DST_PORT) { |
2643 | 0 | found = nat_get_unique_l4(ct, rev_key, &rev_key->src.port, |
2644 | 0 | curr_dport, min_dport, max_dport); |
2645 | 0 | } |
2646 | |
|
2647 | 0 | if (!found) { |
2648 | 0 | found = nat_get_unique_l4(ct, rev_key, &rev_key->dst.port, |
2649 | 0 | curr_sport, min_sport, max_sport); |
2650 | 0 | } |
2651 | |
|
2652 | 0 | if (found) { |
2653 | 0 | return true; |
2654 | 0 | } |
2655 | | |
2656 | 0 | return false; |
2657 | 0 | } |
2658 | | |
2659 | | static enum ct_update_res |
2660 | | conn_update(struct conntrack *ct, struct conn *conn, struct dp_packet *pkt, |
2661 | | struct conn_lookup_ctx *ctx, long long now) |
2662 | 0 | { |
2663 | 0 | ovs_mutex_lock(&conn->lock); |
2664 | 0 | uint8_t nw_proto = conn->key_node[CT_DIR_FWD].key.nw_proto; |
2665 | 0 | enum ct_update_res update_res = |
2666 | 0 | l4_protos[nw_proto]->conn_update(ct, conn, pkt, ctx->reply, now); |
2667 | 0 | ovs_mutex_unlock(&conn->lock); |
2668 | 0 | return update_res; |
2669 | 0 | } |
2670 | | |
2671 | | static void |
2672 | | conn_expire_push_front(struct conntrack *ct, struct conn *conn) |
2673 | | OVS_REQUIRES(ct->ct_lock) |
2674 | 0 | { |
2675 | 0 | unsigned int curr = ct->next_list; |
2676 | |
|
2677 | 0 | ct->next_list = (ct->next_list + 1) % N_EXP_LISTS; |
2678 | 0 | rculist_push_front(&ct->exp_lists[curr], &conn->node); |
2679 | 0 | } |
2680 | | |
2681 | | static long long int |
2682 | | conn_expiration(const struct conn *conn) |
2683 | 0 | { |
2684 | 0 | long long int expiration; |
2685 | |
|
2686 | 0 | atomic_read_relaxed(&CONST_CAST(struct conn *, conn)->expiration, |
2687 | 0 | &expiration); |
2688 | 0 | return expiration; |
2689 | 0 | } |
2690 | | |
2691 | | static bool |
2692 | | conn_expired(const struct conn *conn, long long now) |
2693 | 0 | { |
2694 | 0 | return now >= conn_expiration(conn); |
2695 | 0 | } |
2696 | | |
2697 | | static bool |
2698 | | valid_new(struct dp_packet *pkt, struct conn_key *key) |
2699 | 0 | { |
2700 | 0 | return l4_protos[key->nw_proto]->valid_new(pkt); |
2701 | 0 | } |
2702 | | |
2703 | | static struct conn * |
2704 | | new_conn(struct conntrack *ct, struct dp_packet *pkt, struct conn_key *key, |
2705 | | long long now, uint32_t tp_id) |
2706 | 0 | { |
2707 | 0 | return l4_protos[key->nw_proto]->new_conn(ct, pkt, now, tp_id); |
2708 | 0 | } |
2709 | | |
2710 | | static void |
2711 | | delete_conn__(struct conn *conn) |
2712 | 0 | { |
2713 | 0 | free(conn->alg); |
2714 | 0 | free(conn); |
2715 | 0 | } |
2716 | | |
2717 | | static void |
2718 | | delete_conn(struct conn *conn) |
2719 | 0 | { |
2720 | 0 | ovs_mutex_destroy(&conn->lock); |
2721 | 0 | delete_conn__(conn); |
2722 | 0 | } |
2723 | | |
2724 | | |
2725 | | /* Convert a conntrack address 'a' into an IP address 'b' based on 'dl_type'. |
2726 | | * |
2727 | | * Note that 'dl_type' should be either "ETH_TYPE_IP" or "ETH_TYPE_IPv6" |
2728 | | * in network-byte order. */ |
2729 | | static void |
2730 | | ct_endpoint_to_ct_dpif_inet_addr(const union ct_addr *a, |
2731 | | union ct_dpif_inet_addr *b, |
2732 | | ovs_be16 dl_type) |
2733 | 0 | { |
2734 | 0 | if (dl_type == htons(ETH_TYPE_IP)) { |
2735 | 0 | b->ip = a->ipv4; |
2736 | 0 | } else if (dl_type == htons(ETH_TYPE_IPV6)){ |
2737 | 0 | b->in6 = a->ipv6; |
2738 | 0 | } |
2739 | 0 | } |
2740 | | |
2741 | | /* Convert an IP address 'a' into a conntrack address 'b' based on 'dl_type'. |
2742 | | * |
2743 | | * Note that 'dl_type' should be either "ETH_TYPE_IP" or "ETH_TYPE_IPv6" |
2744 | | * in network-byte order. */ |
2745 | | static void |
2746 | | ct_dpif_inet_addr_to_ct_endpoint(const union ct_dpif_inet_addr *a, |
2747 | | union ct_addr *b, ovs_be16 dl_type) |
2748 | 0 | { |
2749 | 0 | if (dl_type == htons(ETH_TYPE_IP)) { |
2750 | 0 | b->ipv4 = a->ip; |
2751 | 0 | } else if (dl_type == htons(ETH_TYPE_IPV6)){ |
2752 | 0 | b->ipv6 = a->in6; |
2753 | 0 | } |
2754 | 0 | } |
2755 | | |
2756 | | static void |
2757 | | conn_key_to_tuple(const struct conn_key *key, struct ct_dpif_tuple *tuple) |
2758 | 0 | { |
2759 | 0 | if (key->dl_type == htons(ETH_TYPE_IP)) { |
2760 | 0 | tuple->l3_type = AF_INET; |
2761 | 0 | } else if (key->dl_type == htons(ETH_TYPE_IPV6)) { |
2762 | 0 | tuple->l3_type = AF_INET6; |
2763 | 0 | } |
2764 | 0 | tuple->ip_proto = key->nw_proto; |
2765 | 0 | ct_endpoint_to_ct_dpif_inet_addr(&key->src.addr, &tuple->src, |
2766 | 0 | key->dl_type); |
2767 | 0 | ct_endpoint_to_ct_dpif_inet_addr(&key->dst.addr, &tuple->dst, |
2768 | 0 | key->dl_type); |
2769 | |
|
2770 | 0 | if (key->nw_proto == IPPROTO_ICMP || key->nw_proto == IPPROTO_ICMPV6) { |
2771 | 0 | tuple->icmp_id = key->src.icmp_id; |
2772 | 0 | tuple->icmp_type = key->src.icmp_type; |
2773 | 0 | tuple->icmp_code = key->src.icmp_code; |
2774 | 0 | } else { |
2775 | 0 | tuple->src_port = key->src.port; |
2776 | 0 | tuple->dst_port = key->dst.port; |
2777 | 0 | } |
2778 | 0 | } |
2779 | | |
2780 | | static void |
2781 | | tuple_to_conn_key(const struct ct_dpif_tuple *tuple, uint16_t zone, |
2782 | | struct conn_key *key) |
2783 | 0 | { |
2784 | 0 | if (tuple->l3_type == AF_INET) { |
2785 | 0 | key->dl_type = htons(ETH_TYPE_IP); |
2786 | 0 | } else if (tuple->l3_type == AF_INET6) { |
2787 | 0 | key->dl_type = htons(ETH_TYPE_IPV6); |
2788 | 0 | } |
2789 | 0 | key->nw_proto = tuple->ip_proto; |
2790 | 0 | ct_dpif_inet_addr_to_ct_endpoint(&tuple->src, &key->src.addr, |
2791 | 0 | key->dl_type); |
2792 | 0 | ct_dpif_inet_addr_to_ct_endpoint(&tuple->dst, &key->dst.addr, |
2793 | 0 | key->dl_type); |
2794 | |
|
2795 | 0 | if (tuple->ip_proto == IPPROTO_ICMP || tuple->ip_proto == IPPROTO_ICMPV6) { |
2796 | 0 | key->src.icmp_id = tuple->icmp_id; |
2797 | 0 | key->src.icmp_type = tuple->icmp_type; |
2798 | 0 | key->src.icmp_code = tuple->icmp_code; |
2799 | 0 | key->dst.icmp_id = tuple->icmp_id; |
2800 | 0 | key->dst.icmp_type = (tuple->ip_proto == IPPROTO_ICMP) |
2801 | 0 | ? reverse_icmp_type(tuple->icmp_type) |
2802 | 0 | : reverse_icmp6_type(tuple->icmp_type); |
2803 | 0 | key->dst.icmp_code = tuple->icmp_code; |
2804 | 0 | } else { |
2805 | 0 | key->src.port = tuple->src_port; |
2806 | 0 | key->dst.port = tuple->dst_port; |
2807 | 0 | } |
2808 | 0 | key->zone = zone; |
2809 | 0 | } |
2810 | | |
2811 | | static void |
2812 | | conn_to_ct_dpif_entry(const struct conn *conn, struct ct_dpif_entry *entry, |
2813 | | long long now) |
2814 | 0 | { |
2815 | 0 | const struct conn_key *rev_key = &conn->key_node[CT_DIR_REV].key; |
2816 | 0 | const struct conn_key *key = &conn->key_node[CT_DIR_FWD].key; |
2817 | |
|
2818 | 0 | memset(entry, 0, sizeof *entry); |
2819 | 0 | conn_key_to_tuple(key, &entry->tuple_orig); |
2820 | 0 | conn_key_to_tuple(rev_key, &entry->tuple_reply); |
2821 | |
|
2822 | 0 | if (conn->alg_related) { |
2823 | 0 | conn_key_to_tuple(&conn->parent_key, &entry->tuple_parent); |
2824 | 0 | } |
2825 | |
|
2826 | 0 | entry->zone = key->zone; |
2827 | |
|
2828 | 0 | ovs_mutex_lock(&conn->lock); |
2829 | 0 | entry->mark = conn->mark; |
2830 | 0 | memcpy(&entry->labels, &conn->label, sizeof entry->labels); |
2831 | |
|
2832 | 0 | long long expiration = conn_expiration(conn) - now; |
2833 | |
|
2834 | 0 | struct ct_l4_proto *class = l4_protos[key->nw_proto]; |
2835 | 0 | if (class->conn_get_protoinfo) { |
2836 | 0 | class->conn_get_protoinfo(conn, &entry->protoinfo); |
2837 | 0 | } |
2838 | 0 | ovs_mutex_unlock(&conn->lock); |
2839 | |
|
2840 | 0 | entry->timeout = (expiration > 0) ? expiration / 1000 : 0; |
2841 | |
|
2842 | 0 | if (conn->alg) { |
2843 | | /* Caller is responsible for freeing. */ |
2844 | 0 | entry->helper.name = xstrdup(conn->alg); |
2845 | 0 | } |
2846 | 0 | } |
2847 | | |
2848 | | struct ipf * |
2849 | | conntrack_ipf_ctx(struct conntrack *ct) |
2850 | 0 | { |
2851 | 0 | return ct->ipf; |
2852 | 0 | } |
2853 | | |
2854 | | int |
2855 | | conntrack_dump_start(struct conntrack *ct, struct conntrack_dump *dump, |
2856 | | const uint16_t *pzone, int *ptot_bkts) |
2857 | 0 | { |
2858 | 0 | memset(dump, 0, sizeof(*dump)); |
2859 | |
|
2860 | 0 | if (pzone) { |
2861 | 0 | dump->zone = *pzone; |
2862 | 0 | dump->filter_zone = true; |
2863 | 0 | dump->current_zone = dump->zone; |
2864 | 0 | } |
2865 | |
|
2866 | 0 | dump->ct = ct; |
2867 | 0 | *ptot_bkts = 1; /* Need to clean up the callers. */ |
2868 | 0 | dump->cursor = cmap_cursor_start(&dump->ct->conns[dump->current_zone]); |
2869 | 0 | return 0; |
2870 | 0 | } |
2871 | | |
2872 | | int |
2873 | | conntrack_dump_next(struct conntrack_dump *dump, struct ct_dpif_entry *entry) |
2874 | 0 | { |
2875 | 0 | long long now = time_msec(); |
2876 | |
|
2877 | 0 | struct conn_key_node *keyn; |
2878 | 0 | struct conn *conn; |
2879 | |
|
2880 | 0 | while (true) { |
2881 | 0 | CMAP_CURSOR_FOR_EACH_CONTINUE (keyn, cm_node, &dump->cursor) { |
2882 | 0 | if (keyn->dir != CT_DIR_FWD) { |
2883 | 0 | continue; |
2884 | 0 | } |
2885 | | |
2886 | 0 | conn = CONTAINER_OF(keyn, struct conn, key_node[CT_DIR_FWD]); |
2887 | 0 | if (conn_expired(conn, now)) { |
2888 | 0 | continue; |
2889 | 0 | } |
2890 | | |
2891 | 0 | conn_to_ct_dpif_entry(conn, entry, now); |
2892 | 0 | return 0; |
2893 | 0 | } |
2894 | | |
2895 | 0 | if (dump->filter_zone || dump->current_zone == UINT16_MAX) { |
2896 | 0 | break; |
2897 | 0 | } |
2898 | 0 | dump->current_zone++; |
2899 | 0 | dump->cursor = cmap_cursor_start(&dump->ct->conns[dump->current_zone]); |
2900 | 0 | } |
2901 | | |
2902 | 0 | return EOF; |
2903 | 0 | } |
2904 | | |
2905 | | int |
2906 | | conntrack_dump_done(struct conntrack_dump *dump OVS_UNUSED) |
2907 | 0 | { |
2908 | 0 | return 0; |
2909 | 0 | } |
2910 | | |
2911 | | static void |
2912 | | exp_node_to_ct_dpif_exp(const struct alg_exp_node *exp, |
2913 | | struct ct_dpif_exp *entry) |
2914 | 0 | { |
2915 | 0 | memset(entry, 0, sizeof *entry); |
2916 | |
|
2917 | 0 | conn_key_to_tuple(&exp->key, &entry->tuple_orig); |
2918 | 0 | conn_key_to_tuple(&exp->parent_key, &entry->tuple_parent); |
2919 | 0 | entry->zone = exp->key.zone; |
2920 | 0 | entry->mark = exp->parent_mark; |
2921 | 0 | memcpy(&entry->labels, &exp->parent_label, sizeof entry->labels); |
2922 | 0 | entry->protoinfo.proto = exp->key.nw_proto; |
2923 | 0 | } |
2924 | | |
2925 | | int |
2926 | | conntrack_exp_dump_start(struct conntrack *ct, struct conntrack_dump *dump, |
2927 | | const uint16_t *pzone) |
2928 | 0 | { |
2929 | 0 | memset(dump, 0, sizeof(*dump)); |
2930 | |
|
2931 | 0 | if (pzone) { |
2932 | 0 | dump->zone = *pzone; |
2933 | 0 | dump->filter_zone = true; |
2934 | 0 | } |
2935 | |
|
2936 | 0 | dump->ct = ct; |
2937 | |
|
2938 | 0 | return 0; |
2939 | 0 | } |
2940 | | |
2941 | | int |
2942 | | conntrack_exp_dump_next(struct conntrack_dump *dump, struct ct_dpif_exp *entry) |
2943 | 0 | { |
2944 | 0 | struct conntrack *ct = dump->ct; |
2945 | 0 | struct alg_exp_node *enode; |
2946 | 0 | int ret = EOF; |
2947 | |
|
2948 | 0 | ovs_rwlock_rdlock(&ct->resources_lock); |
2949 | |
|
2950 | 0 | for (;;) { |
2951 | 0 | struct hmap_node *node = hmap_at_position(&ct->alg_expectations, |
2952 | 0 | &dump->hmap_pos); |
2953 | 0 | if (!node) { |
2954 | 0 | break; |
2955 | 0 | } |
2956 | | |
2957 | 0 | enode = CONTAINER_OF(node, struct alg_exp_node, node); |
2958 | |
|
2959 | 0 | if (!dump->filter_zone || enode->key.zone == dump->zone) { |
2960 | 0 | ret = 0; |
2961 | 0 | exp_node_to_ct_dpif_exp(enode, entry); |
2962 | 0 | break; |
2963 | 0 | } |
2964 | 0 | } |
2965 | |
|
2966 | 0 | ovs_rwlock_unlock(&ct->resources_lock); |
2967 | |
|
2968 | 0 | return ret; |
2969 | 0 | } |
2970 | | |
2971 | | int |
2972 | | conntrack_exp_dump_done(struct conntrack_dump *dump OVS_UNUSED) |
2973 | 0 | { |
2974 | 0 | return 0; |
2975 | 0 | } |
2976 | | |
2977 | | static int |
2978 | | conntrack_flush_zone(struct conntrack *ct, const uint16_t zone) |
2979 | 0 | { |
2980 | 0 | struct conn_key_node *keyn; |
2981 | 0 | struct conn *conn; |
2982 | |
|
2983 | 0 | CMAP_FOR_EACH (keyn, cm_node, &ct->conns[zone]) { |
2984 | 0 | if (keyn->dir != CT_DIR_FWD) { |
2985 | 0 | continue; |
2986 | 0 | } |
2987 | 0 | conn = CONTAINER_OF(keyn, struct conn, key_node[CT_DIR_FWD]); |
2988 | 0 | conn_clean(ct, conn); |
2989 | 0 | } |
2990 | |
|
2991 | 0 | return 0; |
2992 | 0 | } |
2993 | | |
2994 | | int |
2995 | | conntrack_flush(struct conntrack *ct, const uint16_t *zone) |
2996 | 0 | { |
2997 | 0 | if (zone) { |
2998 | 0 | return conntrack_flush_zone(ct, *zone); |
2999 | 0 | } |
3000 | | |
3001 | 0 | for (unsigned i = 0; i < ARRAY_SIZE(ct->conns); i++) { |
3002 | 0 | conntrack_flush_zone(ct, i); |
3003 | 0 | } |
3004 | |
|
3005 | 0 | return 0; |
3006 | 0 | } |
3007 | | |
3008 | | int |
3009 | | conntrack_flush_tuple(struct conntrack *ct, const struct ct_dpif_tuple *tuple, |
3010 | | uint16_t zone) |
3011 | 0 | { |
3012 | 0 | struct conn_key key; |
3013 | 0 | struct conn *conn; |
3014 | 0 | int error = 0; |
3015 | |
|
3016 | 0 | memset(&key, 0, sizeof(key)); |
3017 | 0 | tuple_to_conn_key(tuple, zone, &key); |
3018 | 0 | conn_lookup(ct, &key, time_msec(), &conn, NULL); |
3019 | |
|
3020 | 0 | if (conn) { |
3021 | 0 | conn_clean(ct, conn); |
3022 | 0 | } else { |
3023 | 0 | VLOG_WARN("Tuple not found"); |
3024 | 0 | error = ENOENT; |
3025 | 0 | } |
3026 | |
|
3027 | 0 | return error; |
3028 | 0 | } |
3029 | | |
3030 | | int |
3031 | | conntrack_set_maxconns(struct conntrack *ct, uint32_t maxconns) |
3032 | 0 | { |
3033 | 0 | atomic_store_relaxed(&ct->n_conn_limit, maxconns); |
3034 | 0 | return 0; |
3035 | 0 | } |
3036 | | |
3037 | | int |
3038 | | conntrack_get_maxconns(struct conntrack *ct, uint32_t *maxconns) |
3039 | 0 | { |
3040 | 0 | atomic_read_relaxed(&ct->n_conn_limit, maxconns); |
3041 | 0 | return 0; |
3042 | 0 | } |
3043 | | |
3044 | | int |
3045 | | conntrack_get_nconns(struct conntrack *ct, uint32_t *nconns) |
3046 | 0 | { |
3047 | 0 | *nconns = atomic_count_get(&ct->n_conn); |
3048 | 0 | return 0; |
3049 | 0 | } |
3050 | | |
3051 | | int |
3052 | | conntrack_set_tcp_seq_chk(struct conntrack *ct, bool enabled) |
3053 | 0 | { |
3054 | 0 | atomic_store_relaxed(&ct->tcp_seq_chk, enabled); |
3055 | 0 | return 0; |
3056 | 0 | } |
3057 | | |
3058 | | bool |
3059 | | conntrack_get_tcp_seq_chk(struct conntrack *ct) |
3060 | 0 | { |
3061 | 0 | bool enabled; |
3062 | 0 | atomic_read_relaxed(&ct->tcp_seq_chk, &enabled); |
3063 | 0 | return enabled; |
3064 | 0 | } |
3065 | | |
3066 | | /* This function must be called with the ct->resources read lock taken. */ |
3067 | | static struct alg_exp_node * |
3068 | | expectation_lookup(struct hmap *alg_expectations, const struct conn_key *key, |
3069 | | uint32_t basis, bool src_ip_wc) |
3070 | 0 | { |
3071 | 0 | struct conn_key check_key; |
3072 | 0 | memcpy(&check_key, key, sizeof check_key); |
3073 | 0 | check_key.src.port = ALG_WC_SRC_PORT; |
3074 | |
|
3075 | 0 | if (src_ip_wc) { |
3076 | 0 | memset(&check_key.src.addr, 0, sizeof check_key.src.addr); |
3077 | 0 | } |
3078 | |
|
3079 | 0 | struct alg_exp_node *alg_exp_node; |
3080 | |
|
3081 | 0 | HMAP_FOR_EACH_WITH_HASH (alg_exp_node, node, |
3082 | 0 | conn_key_hash(&check_key, basis), |
3083 | 0 | alg_expectations) { |
3084 | 0 | if (!conn_key_cmp(&alg_exp_node->key, &check_key)) { |
3085 | 0 | return alg_exp_node; |
3086 | 0 | } |
3087 | 0 | } |
3088 | 0 | return NULL; |
3089 | 0 | } |
3090 | | |
3091 | | /* This function must be called with the ct->resources write lock taken. */ |
3092 | | static void |
3093 | | expectation_remove(struct hmap *alg_expectations, |
3094 | | const struct conn_key *key, uint32_t basis) |
3095 | 0 | { |
3096 | 0 | struct alg_exp_node *alg_exp_node; |
3097 | |
|
3098 | 0 | HMAP_FOR_EACH_WITH_HASH (alg_exp_node, node, conn_key_hash(key, basis), |
3099 | 0 | alg_expectations) { |
3100 | 0 | if (!conn_key_cmp(&alg_exp_node->key, key)) { |
3101 | 0 | hmap_remove(alg_expectations, &alg_exp_node->node); |
3102 | 0 | break; |
3103 | 0 | } |
3104 | 0 | } |
3105 | 0 | } |
3106 | | |
3107 | | /* This function must be called with the ct->resources read lock taken. */ |
3108 | | static struct alg_exp_node * |
3109 | | expectation_ref_lookup_unique(const struct hindex *alg_expectation_refs, |
3110 | | const struct conn_key *parent_key, |
3111 | | const struct conn_key *alg_exp_key, |
3112 | | uint32_t basis) |
3113 | 0 | { |
3114 | 0 | struct alg_exp_node *alg_exp_node; |
3115 | |
|
3116 | 0 | HINDEX_FOR_EACH_WITH_HASH (alg_exp_node, node_ref, |
3117 | 0 | conn_key_hash(parent_key, basis), |
3118 | 0 | alg_expectation_refs) { |
3119 | 0 | if (!conn_key_cmp(&alg_exp_node->parent_key, parent_key) && |
3120 | 0 | !conn_key_cmp(&alg_exp_node->key, alg_exp_key)) { |
3121 | 0 | return alg_exp_node; |
3122 | 0 | } |
3123 | 0 | } |
3124 | 0 | return NULL; |
3125 | 0 | } |
3126 | | |
3127 | | /* This function must be called with the ct->resources write lock taken. */ |
3128 | | static void |
3129 | | expectation_ref_create(struct hindex *alg_expectation_refs, |
3130 | | struct alg_exp_node *alg_exp_node, |
3131 | | uint32_t basis) |
3132 | 0 | { |
3133 | 0 | if (!expectation_ref_lookup_unique(alg_expectation_refs, |
3134 | 0 | &alg_exp_node->parent_key, |
3135 | 0 | &alg_exp_node->key, basis)) { |
3136 | 0 | hindex_insert(alg_expectation_refs, &alg_exp_node->node_ref, |
3137 | 0 | conn_key_hash(&alg_exp_node->parent_key, basis)); |
3138 | 0 | } |
3139 | 0 | } |
3140 | | |
3141 | | static void |
3142 | | expectation_clean(struct conntrack *ct, const struct conn_key *parent_key) |
3143 | 0 | { |
3144 | 0 | ovs_rwlock_wrlock(&ct->resources_lock); |
3145 | |
|
3146 | 0 | struct alg_exp_node *node; |
3147 | 0 | HINDEX_FOR_EACH_WITH_HASH_SAFE (node, node_ref, |
3148 | 0 | conn_key_hash(parent_key, ct->hash_basis), |
3149 | 0 | &ct->alg_expectation_refs) { |
3150 | 0 | if (!conn_key_cmp(&node->parent_key, parent_key)) { |
3151 | 0 | expectation_remove(&ct->alg_expectations, &node->key, |
3152 | 0 | ct->hash_basis); |
3153 | 0 | hindex_remove(&ct->alg_expectation_refs, &node->node_ref); |
3154 | 0 | free(node); |
3155 | 0 | } |
3156 | 0 | } |
3157 | |
|
3158 | 0 | ovs_rwlock_unlock(&ct->resources_lock); |
3159 | 0 | } |
3160 | | |
3161 | | static void |
3162 | | expectation_create(struct conntrack *ct, ovs_be16 dst_port, |
3163 | | const struct conn *parent_conn, bool reply, bool src_ip_wc, |
3164 | | bool skip_nat) |
3165 | 0 | { |
3166 | 0 | const struct conn_key *pconn_key, *pconn_rev_key; |
3167 | 0 | union ct_addr src_addr; |
3168 | 0 | union ct_addr dst_addr; |
3169 | 0 | union ct_addr alg_nat_repl_addr; |
3170 | 0 | struct alg_exp_node *alg_exp_node = xzalloc(sizeof *alg_exp_node); |
3171 | |
|
3172 | 0 | pconn_key = &parent_conn->key_node[CT_DIR_FWD].key; |
3173 | 0 | pconn_rev_key = &parent_conn->key_node[CT_DIR_REV].key; |
3174 | |
|
3175 | 0 | if (reply) { |
3176 | 0 | src_addr = pconn_key->src.addr; |
3177 | 0 | dst_addr = pconn_key->dst.addr; |
3178 | 0 | alg_exp_node->nat_rpl_dst = true; |
3179 | 0 | if (skip_nat) { |
3180 | 0 | alg_nat_repl_addr = dst_addr; |
3181 | 0 | } else if (parent_conn->nat_action & NAT_ACTION_DST) { |
3182 | 0 | alg_nat_repl_addr = pconn_rev_key->src.addr; |
3183 | 0 | alg_exp_node->nat_rpl_dst = false; |
3184 | 0 | } else { |
3185 | 0 | alg_nat_repl_addr = pconn_rev_key->dst.addr; |
3186 | 0 | } |
3187 | 0 | } else { |
3188 | 0 | src_addr = pconn_rev_key->src.addr; |
3189 | 0 | dst_addr = pconn_rev_key->dst.addr; |
3190 | 0 | alg_exp_node->nat_rpl_dst = false; |
3191 | 0 | if (skip_nat) { |
3192 | 0 | alg_nat_repl_addr = src_addr; |
3193 | 0 | } else if (parent_conn->nat_action & NAT_ACTION_DST) { |
3194 | 0 | alg_nat_repl_addr = pconn_key->dst.addr; |
3195 | 0 | alg_exp_node->nat_rpl_dst = true; |
3196 | 0 | } else { |
3197 | 0 | alg_nat_repl_addr = pconn_key->src.addr; |
3198 | 0 | } |
3199 | 0 | } |
3200 | 0 | if (src_ip_wc) { |
3201 | 0 | memset(&src_addr, 0, sizeof src_addr); |
3202 | 0 | } |
3203 | |
|
3204 | 0 | alg_exp_node->key.dl_type = pconn_key->dl_type; |
3205 | 0 | alg_exp_node->key.nw_proto = pconn_key->nw_proto; |
3206 | 0 | alg_exp_node->key.zone = pconn_key->zone; |
3207 | 0 | alg_exp_node->key.src.addr = src_addr; |
3208 | 0 | alg_exp_node->key.dst.addr = dst_addr; |
3209 | 0 | alg_exp_node->key.src.port = ALG_WC_SRC_PORT; |
3210 | 0 | alg_exp_node->key.dst.port = dst_port; |
3211 | 0 | alg_exp_node->parent_mark = parent_conn->mark; |
3212 | 0 | alg_exp_node->parent_label = parent_conn->label; |
3213 | 0 | memcpy(&alg_exp_node->parent_key, pconn_key, |
3214 | 0 | sizeof alg_exp_node->parent_key); |
3215 | | /* Take the write lock here because it is almost 100% |
3216 | | * likely that the lookup will fail and |
3217 | | * expectation_create() will be called below. */ |
3218 | 0 | ovs_rwlock_wrlock(&ct->resources_lock); |
3219 | 0 | struct alg_exp_node *alg_exp = expectation_lookup( |
3220 | 0 | &ct->alg_expectations, &alg_exp_node->key, ct->hash_basis, src_ip_wc); |
3221 | 0 | if (alg_exp) { |
3222 | 0 | free(alg_exp_node); |
3223 | 0 | ovs_rwlock_unlock(&ct->resources_lock); |
3224 | 0 | return; |
3225 | 0 | } |
3226 | | |
3227 | 0 | alg_exp_node->alg_nat_repl_addr = alg_nat_repl_addr; |
3228 | 0 | hmap_insert(&ct->alg_expectations, &alg_exp_node->node, |
3229 | 0 | conn_key_hash(&alg_exp_node->key, ct->hash_basis)); |
3230 | 0 | expectation_ref_create(&ct->alg_expectation_refs, alg_exp_node, |
3231 | 0 | ct->hash_basis); |
3232 | 0 | ovs_rwlock_unlock(&ct->resources_lock); |
3233 | 0 | } |
3234 | | |
3235 | | static void |
3236 | | replace_substring(char *substr, uint8_t substr_size, |
3237 | | uint8_t total_size, char *rep_str, |
3238 | | uint8_t rep_str_size) |
3239 | 0 | { |
3240 | 0 | memmove(substr + rep_str_size, substr + substr_size, |
3241 | 0 | total_size - substr_size); |
3242 | 0 | memcpy(substr, rep_str, rep_str_size); |
3243 | 0 | } |
3244 | | |
3245 | | static void |
3246 | | repl_bytes(char *str, char c1, char c2) |
3247 | 0 | { |
3248 | 0 | while (*str) { |
3249 | 0 | if (*str == c1) { |
3250 | 0 | *str = c2; |
3251 | 0 | } |
3252 | 0 | str++; |
3253 | 0 | } |
3254 | 0 | } |
3255 | | |
3256 | | static void |
3257 | | modify_packet(struct dp_packet *pkt, char *pkt_str, size_t size, |
3258 | | char *repl_str, size_t repl_size, |
3259 | | uint32_t orig_used_size) |
3260 | 0 | { |
3261 | 0 | replace_substring(pkt_str, size, |
3262 | 0 | (const char *) dp_packet_tail(pkt) - pkt_str, |
3263 | 0 | repl_str, repl_size); |
3264 | 0 | dp_packet_set_size(pkt, orig_used_size + (int) repl_size - (int) size); |
3265 | 0 | } |
3266 | | |
3267 | | /* Replace IPV4 address in FTP message with NATed address. */ |
3268 | | static int |
3269 | | repl_ftp_v4_addr(struct dp_packet *pkt, ovs_be32 v4_addr_rep, |
3270 | | char *ftp_data_start, |
3271 | | size_t addr_offset_from_ftp_data_start, |
3272 | | size_t addr_size OVS_UNUSED) |
3273 | 0 | { |
3274 | 0 | enum { MAX_FTP_V4_NAT_DELTA = 8 }; |
3275 | | |
3276 | | /* Do conservative check for pathological MTU usage. */ |
3277 | 0 | uint32_t orig_used_size = dp_packet_size(pkt); |
3278 | 0 | if (orig_used_size + MAX_FTP_V4_NAT_DELTA > |
3279 | 0 | dp_packet_get_allocated(pkt)) { |
3280 | |
|
3281 | 0 | static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5); |
3282 | 0 | VLOG_WARN_RL(&rl, "Unsupported effective MTU %u used with FTP V4", |
3283 | 0 | dp_packet_get_allocated(pkt)); |
3284 | 0 | return 0; |
3285 | 0 | } |
3286 | | |
3287 | 0 | char v4_addr_str[INET_ADDRSTRLEN] = {0}; |
3288 | 0 | ovs_assert(inet_ntop(AF_INET, &v4_addr_rep, v4_addr_str, |
3289 | 0 | sizeof v4_addr_str)); |
3290 | 0 | repl_bytes(v4_addr_str, '.', ','); |
3291 | 0 | modify_packet(pkt, ftp_data_start + addr_offset_from_ftp_data_start, |
3292 | 0 | addr_size, v4_addr_str, strlen(v4_addr_str), |
3293 | 0 | orig_used_size); |
3294 | 0 | return (int) strlen(v4_addr_str) - (int) addr_size; |
3295 | 0 | } |
3296 | | |
3297 | | static char * |
3298 | | skip_non_digits(char *str) |
3299 | 0 | { |
3300 | 0 | while (!isdigit(*str) && *str != 0) { |
3301 | 0 | str++; |
3302 | 0 | } |
3303 | 0 | return str; |
3304 | 0 | } |
3305 | | |
3306 | | static char * |
3307 | | terminate_number_str(char *str, uint8_t max_digits) |
3308 | 0 | { |
3309 | 0 | uint8_t digits_found = 0; |
3310 | 0 | while (isdigit(*str) && digits_found <= max_digits) { |
3311 | 0 | str++; |
3312 | 0 | digits_found++; |
3313 | 0 | } |
3314 | |
|
3315 | 0 | *str = 0; |
3316 | 0 | return str; |
3317 | 0 | } |
3318 | | |
3319 | | |
3320 | | static void |
3321 | | get_ftp_ctl_msg(struct dp_packet *pkt, char *ftp_msg) |
3322 | 0 | { |
3323 | 0 | struct tcp_header *th = dp_packet_l4(pkt); |
3324 | 0 | char *tcp_hdr = (char *) th; |
3325 | 0 | uint32_t tcp_payload_len = dp_packet_get_tcp_payload_length(pkt); |
3326 | 0 | size_t tcp_payload_of_interest = MIN(tcp_payload_len, |
3327 | 0 | LARGEST_FTP_MSG_OF_INTEREST); |
3328 | 0 | size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4; |
3329 | |
|
3330 | 0 | ovs_strlcpy(ftp_msg, tcp_hdr + tcp_hdr_len, |
3331 | 0 | tcp_payload_of_interest); |
3332 | 0 | } |
3333 | | |
3334 | | static enum ftp_ctl_pkt |
3335 | | detect_ftp_ctl_type(const struct conn_lookup_ctx *ctx, |
3336 | | struct dp_packet *pkt) |
3337 | 0 | { |
3338 | 0 | char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0}; |
3339 | 0 | get_ftp_ctl_msg(pkt, ftp_msg); |
3340 | |
|
3341 | 0 | if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) { |
3342 | 0 | if (strncasecmp(ftp_msg, FTP_EPRT_CMD, strlen(FTP_EPRT_CMD)) && |
3343 | 0 | !strcasestr(ftp_msg, FTP_EPSV_REPLY)) { |
3344 | 0 | return CT_FTP_CTL_OTHER; |
3345 | 0 | } |
3346 | 0 | } else { |
3347 | 0 | if (strncasecmp(ftp_msg, FTP_PORT_CMD, strlen(FTP_PORT_CMD)) && |
3348 | 0 | strncasecmp(ftp_msg, FTP_PASV_REPLY_CODE, |
3349 | 0 | strlen(FTP_PASV_REPLY_CODE))) { |
3350 | 0 | return CT_FTP_CTL_OTHER; |
3351 | 0 | } |
3352 | 0 | } |
3353 | | |
3354 | 0 | return CT_FTP_CTL_INTEREST; |
3355 | 0 | } |
3356 | | |
3357 | | static enum ftp_ctl_pkt |
3358 | | process_ftp_ctl_v4(struct conntrack *ct, |
3359 | | struct dp_packet *pkt, |
3360 | | const struct conn *conn_for_expectation, |
3361 | | ovs_be32 *v4_addr_rep, |
3362 | | char **ftp_data_v4_start, |
3363 | | size_t *addr_offset_from_ftp_data_start, |
3364 | | size_t *addr_size) |
3365 | 0 | { |
3366 | 0 | struct tcp_header *th = dp_packet_l4(pkt); |
3367 | 0 | size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4; |
3368 | 0 | char *tcp_hdr = (char *) th; |
3369 | 0 | *ftp_data_v4_start = tcp_hdr + tcp_hdr_len; |
3370 | 0 | char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0}; |
3371 | 0 | get_ftp_ctl_msg(pkt, ftp_msg); |
3372 | 0 | char *ftp = ftp_msg; |
3373 | 0 | enum ct_alg_mode mode; |
3374 | |
|
3375 | 0 | if (!strncasecmp(ftp, FTP_PORT_CMD, strlen(FTP_PORT_CMD))) { |
3376 | 0 | ftp = ftp_msg + strlen(FTP_PORT_CMD); |
3377 | 0 | mode = CT_FTP_MODE_ACTIVE; |
3378 | 0 | } else { |
3379 | 0 | ftp = ftp_msg + strlen(FTP_PASV_REPLY_CODE); |
3380 | 0 | mode = CT_FTP_MODE_PASSIVE; |
3381 | 0 | } |
3382 | | |
3383 | | /* Find first space. */ |
3384 | 0 | ftp = strchr(ftp, ' '); |
3385 | 0 | if (!ftp) { |
3386 | 0 | return CT_FTP_CTL_INVALID; |
3387 | 0 | } |
3388 | | |
3389 | | /* Find the first digit, after space. */ |
3390 | 0 | ftp = skip_non_digits(ftp); |
3391 | 0 | if (*ftp == 0) { |
3392 | 0 | return CT_FTP_CTL_INVALID; |
3393 | 0 | } |
3394 | | |
3395 | 0 | char *ip_addr_start = ftp; |
3396 | 0 | *addr_offset_from_ftp_data_start = ip_addr_start - ftp_msg; |
3397 | |
|
3398 | 0 | uint8_t comma_count = 0; |
3399 | 0 | while (comma_count < 4 && *ftp) { |
3400 | 0 | if (*ftp == ',') { |
3401 | 0 | comma_count++; |
3402 | 0 | if (comma_count == 4) { |
3403 | 0 | *ftp = 0; |
3404 | 0 | } else { |
3405 | 0 | *ftp = '.'; |
3406 | 0 | } |
3407 | 0 | } |
3408 | 0 | ftp++; |
3409 | 0 | } |
3410 | 0 | if (comma_count != 4) { |
3411 | 0 | return CT_FTP_CTL_INVALID; |
3412 | 0 | } |
3413 | | |
3414 | 0 | struct in_addr ip_addr; |
3415 | 0 | int rc2 = inet_pton(AF_INET, ip_addr_start, &ip_addr); |
3416 | 0 | if (rc2 != 1) { |
3417 | 0 | return CT_FTP_CTL_INVALID; |
3418 | 0 | } |
3419 | | |
3420 | 0 | *addr_size = ftp - ip_addr_start - 1; |
3421 | 0 | char *save_ftp = ftp; |
3422 | 0 | ftp = terminate_number_str(ftp, MAX_FTP_PORT_DGTS); |
3423 | 0 | if (!ftp) { |
3424 | 0 | return CT_FTP_CTL_INVALID; |
3425 | 0 | } |
3426 | 0 | int value; |
3427 | 0 | if (!str_to_int(save_ftp, 10, &value)) { |
3428 | 0 | return CT_FTP_CTL_INVALID; |
3429 | 0 | } |
3430 | | |
3431 | | /* This is derived from the L4 port maximum is 65535. */ |
3432 | 0 | if (value > 255) { |
3433 | 0 | return CT_FTP_CTL_INVALID; |
3434 | 0 | } |
3435 | | |
3436 | 0 | uint16_t port_hs = value; |
3437 | 0 | port_hs <<= 8; |
3438 | | |
3439 | | /* Skip over comma. */ |
3440 | 0 | ftp++; |
3441 | 0 | save_ftp = ftp; |
3442 | 0 | bool digit_found = false; |
3443 | 0 | while (isdigit(*ftp)) { |
3444 | 0 | ftp++; |
3445 | 0 | digit_found = true; |
3446 | 0 | } |
3447 | 0 | if (!digit_found) { |
3448 | 0 | return CT_FTP_CTL_INVALID; |
3449 | 0 | } |
3450 | 0 | *ftp = 0; |
3451 | 0 | if (!str_to_int(save_ftp, 10, &value)) { |
3452 | 0 | return CT_FTP_CTL_INVALID; |
3453 | 0 | } |
3454 | | |
3455 | 0 | if (value > 255) { |
3456 | 0 | return CT_FTP_CTL_INVALID; |
3457 | 0 | } |
3458 | | |
3459 | 0 | port_hs |= value; |
3460 | 0 | ovs_be16 port = htons(port_hs); |
3461 | 0 | ovs_be32 conn_ipv4_addr; |
3462 | |
|
3463 | 0 | switch (mode) { |
3464 | 0 | case CT_FTP_MODE_ACTIVE: |
3465 | 0 | *v4_addr_rep = |
3466 | 0 | conn_for_expectation->key_node[CT_DIR_REV].key.dst.addr.ipv4; |
3467 | 0 | conn_ipv4_addr = |
3468 | 0 | conn_for_expectation->key_node[CT_DIR_FWD].key.src.addr.ipv4; |
3469 | 0 | break; |
3470 | 0 | case CT_FTP_MODE_PASSIVE: |
3471 | 0 | *v4_addr_rep = |
3472 | 0 | conn_for_expectation->key_node[CT_DIR_FWD].key.dst.addr.ipv4; |
3473 | 0 | conn_ipv4_addr = |
3474 | 0 | conn_for_expectation->key_node[CT_DIR_REV].key.src.addr.ipv4; |
3475 | 0 | break; |
3476 | 0 | case CT_TFTP_MODE: |
3477 | 0 | default: |
3478 | 0 | OVS_NOT_REACHED(); |
3479 | 0 | } |
3480 | | |
3481 | 0 | ovs_be32 ftp_ipv4_addr; |
3482 | 0 | ftp_ipv4_addr = ip_addr.s_addr; |
3483 | | /* Although most servers will block this exploit, there may be some |
3484 | | * less well managed. */ |
3485 | 0 | if (ftp_ipv4_addr != conn_ipv4_addr && ftp_ipv4_addr != *v4_addr_rep) { |
3486 | 0 | return CT_FTP_CTL_INVALID; |
3487 | 0 | } |
3488 | | |
3489 | 0 | expectation_create(ct, port, conn_for_expectation, |
3490 | 0 | !!(pkt->md.ct_state & CS_REPLY_DIR), false, false); |
3491 | 0 | return CT_FTP_CTL_INTEREST; |
3492 | 0 | } |
3493 | | |
3494 | | static char * |
3495 | | skip_ipv6_digits(char *str) |
3496 | 0 | { |
3497 | 0 | while (isxdigit(*str) || *str == ':' || *str == '.') { |
3498 | 0 | str++; |
3499 | 0 | } |
3500 | 0 | return str; |
3501 | 0 | } |
3502 | | |
3503 | | static enum ftp_ctl_pkt |
3504 | | process_ftp_ctl_v6(struct conntrack *ct, |
3505 | | struct dp_packet *pkt, |
3506 | | const struct conn *conn_for_exp, |
3507 | | union ct_addr *v6_addr_rep, char **ftp_data_start, |
3508 | | size_t *addr_offset_from_ftp_data_start, |
3509 | | size_t *addr_size, enum ct_alg_mode *mode) |
3510 | 0 | { |
3511 | 0 | struct tcp_header *th = dp_packet_l4(pkt); |
3512 | 0 | size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4; |
3513 | 0 | char *tcp_hdr = (char *) th; |
3514 | 0 | char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0}; |
3515 | 0 | get_ftp_ctl_msg(pkt, ftp_msg); |
3516 | 0 | *ftp_data_start = tcp_hdr + tcp_hdr_len; |
3517 | 0 | char *ftp = ftp_msg; |
3518 | 0 | struct in6_addr ip6_addr; |
3519 | |
|
3520 | 0 | if (!strncasecmp(ftp, FTP_EPRT_CMD, strlen(FTP_EPRT_CMD))) { |
3521 | 0 | ftp = ftp_msg + strlen(FTP_EPRT_CMD); |
3522 | 0 | ftp = skip_non_digits(ftp); |
3523 | 0 | if (*ftp != FTP_AF_V6 || isdigit(ftp[1])) { |
3524 | 0 | return CT_FTP_CTL_INVALID; |
3525 | 0 | } |
3526 | | /* Jump over delimiter. */ |
3527 | 0 | ftp += 2; |
3528 | |
|
3529 | 0 | memset(&ip6_addr, 0, sizeof ip6_addr); |
3530 | 0 | char *ip_addr_start = ftp; |
3531 | 0 | *addr_offset_from_ftp_data_start = ip_addr_start - ftp_msg; |
3532 | 0 | ftp = skip_ipv6_digits(ftp); |
3533 | 0 | *ftp = 0; |
3534 | 0 | *addr_size = ftp - ip_addr_start; |
3535 | 0 | int rc2 = inet_pton(AF_INET6, ip_addr_start, &ip6_addr); |
3536 | 0 | if (rc2 != 1) { |
3537 | 0 | return CT_FTP_CTL_INVALID; |
3538 | 0 | } |
3539 | 0 | ftp++; |
3540 | 0 | *mode = CT_FTP_MODE_ACTIVE; |
3541 | 0 | } else { |
3542 | 0 | ftp = ftp_msg + strcspn(ftp_msg, "("); |
3543 | 0 | ftp = skip_non_digits(ftp); |
3544 | 0 | if (!isdigit(*ftp)) { |
3545 | 0 | return CT_FTP_CTL_INVALID; |
3546 | 0 | } |
3547 | | |
3548 | | /* Not used for passive mode. */ |
3549 | 0 | *addr_offset_from_ftp_data_start = 0; |
3550 | 0 | *addr_size = 0; |
3551 | |
|
3552 | 0 | *mode = CT_FTP_MODE_PASSIVE; |
3553 | 0 | } |
3554 | | |
3555 | 0 | char *save_ftp = ftp; |
3556 | 0 | ftp = terminate_number_str(ftp, MAX_EXT_FTP_PORT_DGTS); |
3557 | 0 | if (!ftp) { |
3558 | 0 | return CT_FTP_CTL_INVALID; |
3559 | 0 | } |
3560 | | |
3561 | 0 | int value; |
3562 | 0 | if (!str_to_int(save_ftp, 10, &value)) { |
3563 | 0 | return CT_FTP_CTL_INVALID; |
3564 | 0 | } |
3565 | 0 | if (value > CT_MAX_L4_PORT) { |
3566 | 0 | return CT_FTP_CTL_INVALID; |
3567 | 0 | } |
3568 | | |
3569 | 0 | uint16_t port_hs = value; |
3570 | 0 | ovs_be16 port = htons(port_hs); |
3571 | |
|
3572 | 0 | switch (*mode) { |
3573 | 0 | case CT_FTP_MODE_ACTIVE: |
3574 | 0 | *v6_addr_rep = conn_for_exp->key_node[CT_DIR_REV].key.dst.addr; |
3575 | | /* Although most servers will block this exploit, there may be some |
3576 | | * less well managed. */ |
3577 | 0 | if (memcmp(&ip6_addr, &v6_addr_rep->ipv6, sizeof ip6_addr) && |
3578 | 0 | memcmp(&ip6_addr, |
3579 | 0 | &conn_for_exp->key_node[CT_DIR_FWD].key.src.addr.ipv6, |
3580 | 0 | sizeof ip6_addr)) { |
3581 | 0 | return CT_FTP_CTL_INVALID; |
3582 | 0 | } |
3583 | 0 | break; |
3584 | 0 | case CT_FTP_MODE_PASSIVE: |
3585 | 0 | *v6_addr_rep = conn_for_exp->key_node[CT_DIR_FWD].key.dst.addr; |
3586 | 0 | break; |
3587 | 0 | case CT_TFTP_MODE: |
3588 | 0 | default: |
3589 | 0 | OVS_NOT_REACHED(); |
3590 | 0 | } |
3591 | | |
3592 | 0 | expectation_create(ct, port, conn_for_exp, |
3593 | 0 | !!(pkt->md.ct_state & CS_REPLY_DIR), false, false); |
3594 | 0 | return CT_FTP_CTL_INTEREST; |
3595 | 0 | } |
3596 | | |
3597 | | static int |
3598 | | repl_ftp_v6_addr(struct dp_packet *pkt, union ct_addr v6_addr_rep, |
3599 | | char *ftp_data_start, |
3600 | | size_t addr_offset_from_ftp_data_start, |
3601 | | size_t addr_size, enum ct_alg_mode mode) |
3602 | 0 | { |
3603 | | /* This is slightly bigger than really possible. */ |
3604 | 0 | enum { MAX_FTP_V6_NAT_DELTA = 45 }; |
3605 | |
|
3606 | 0 | if (mode == CT_FTP_MODE_PASSIVE) { |
3607 | 0 | return 0; |
3608 | 0 | } |
3609 | | |
3610 | | /* Do conservative check for pathological MTU usage. */ |
3611 | 0 | uint32_t orig_used_size = dp_packet_size(pkt); |
3612 | 0 | if (orig_used_size + MAX_FTP_V6_NAT_DELTA > |
3613 | 0 | dp_packet_get_allocated(pkt)) { |
3614 | |
|
3615 | 0 | static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5); |
3616 | 0 | VLOG_WARN_RL(&rl, "Unsupported effective MTU %u used with FTP V6", |
3617 | 0 | dp_packet_get_allocated(pkt)); |
3618 | 0 | return 0; |
3619 | 0 | } |
3620 | | |
3621 | 0 | char v6_addr_str[INET6_ADDRSTRLEN] = {0}; |
3622 | 0 | ovs_assert(inet_ntop(AF_INET6, &v6_addr_rep.ipv6, v6_addr_str, |
3623 | 0 | sizeof v6_addr_str)); |
3624 | 0 | modify_packet(pkt, ftp_data_start + addr_offset_from_ftp_data_start, |
3625 | 0 | addr_size, v6_addr_str, strlen(v6_addr_str), |
3626 | 0 | orig_used_size); |
3627 | 0 | return (int) strlen(v6_addr_str) - (int) addr_size; |
3628 | 0 | } |
3629 | | |
3630 | | /* Increment/decrement a TCP sequence number. */ |
3631 | | static void |
3632 | | adj_seqnum(ovs_16aligned_be32 *val, int32_t inc) |
3633 | 0 | { |
3634 | 0 | put_16aligned_be32(val, htonl(ntohl(get_16aligned_be32(val)) + inc)); |
3635 | 0 | } |
3636 | | |
3637 | | static void |
3638 | | handle_ftp_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx, |
3639 | | struct dp_packet *pkt, struct conn *ec, long long now, |
3640 | | enum ftp_ctl_pkt ftp_ctl, bool nat) |
3641 | 0 | { |
3642 | 0 | struct ip_header *l3_hdr = dp_packet_l3(pkt); |
3643 | 0 | ovs_be32 v4_addr_rep = 0; |
3644 | 0 | union ct_addr v6_addr_rep; |
3645 | 0 | size_t addr_offset_from_ftp_data_start = 0; |
3646 | 0 | size_t addr_size = 0; |
3647 | 0 | char *ftp_data_start; |
3648 | 0 | enum ct_alg_mode mode = CT_FTP_MODE_ACTIVE; |
3649 | |
|
3650 | 0 | if (detect_ftp_ctl_type(ctx, pkt) != ftp_ctl) { |
3651 | 0 | return; |
3652 | 0 | } |
3653 | | |
3654 | 0 | struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt); |
3655 | 0 | int64_t seq_skew = 0; |
3656 | |
|
3657 | 0 | if (ftp_ctl == CT_FTP_CTL_INTEREST) { |
3658 | 0 | enum ftp_ctl_pkt rc; |
3659 | 0 | if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) { |
3660 | 0 | rc = process_ftp_ctl_v6(ct, pkt, ec, |
3661 | 0 | &v6_addr_rep, &ftp_data_start, |
3662 | 0 | &addr_offset_from_ftp_data_start, |
3663 | 0 | &addr_size, &mode); |
3664 | 0 | } else { |
3665 | 0 | rc = process_ftp_ctl_v4(ct, pkt, ec, |
3666 | 0 | &v4_addr_rep, &ftp_data_start, |
3667 | 0 | &addr_offset_from_ftp_data_start, |
3668 | 0 | &addr_size); |
3669 | 0 | } |
3670 | 0 | if (rc == CT_FTP_CTL_INVALID) { |
3671 | 0 | static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5); |
3672 | 0 | VLOG_WARN_RL(&rl, "Invalid FTP control packet format"); |
3673 | 0 | pkt->md.ct_state |= CS_TRACKED | CS_INVALID; |
3674 | 0 | return; |
3675 | 0 | } else if (rc == CT_FTP_CTL_INTEREST) { |
3676 | 0 | uint16_t ip_len; |
3677 | |
|
3678 | 0 | if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) { |
3679 | 0 | if (nat) { |
3680 | 0 | seq_skew = repl_ftp_v6_addr(pkt, v6_addr_rep, |
3681 | 0 | ftp_data_start, |
3682 | 0 | addr_offset_from_ftp_data_start, |
3683 | 0 | addr_size, mode); |
3684 | 0 | } |
3685 | |
|
3686 | 0 | if (seq_skew) { |
3687 | 0 | ip_len = ntohs(nh6->ip6_ctlun.ip6_un1.ip6_un1_plen) + |
3688 | 0 | seq_skew; |
3689 | 0 | nh6->ip6_ctlun.ip6_un1.ip6_un1_plen = htons(ip_len); |
3690 | 0 | } |
3691 | 0 | } else { |
3692 | 0 | if (nat) { |
3693 | 0 | seq_skew = repl_ftp_v4_addr(pkt, v4_addr_rep, |
3694 | 0 | ftp_data_start, |
3695 | 0 | addr_offset_from_ftp_data_start, |
3696 | 0 | addr_size); |
3697 | 0 | } |
3698 | 0 | if (seq_skew) { |
3699 | 0 | ip_len = ntohs(l3_hdr->ip_tot_len) + seq_skew; |
3700 | 0 | if (dp_packet_ip_checksum_valid(pkt)) { |
3701 | 0 | dp_packet_ip_checksum_set_partial(pkt); |
3702 | 0 | } else { |
3703 | 0 | l3_hdr->ip_csum = recalc_csum16(l3_hdr->ip_csum, |
3704 | 0 | l3_hdr->ip_tot_len, |
3705 | 0 | htons(ip_len)); |
3706 | 0 | } |
3707 | 0 | l3_hdr->ip_tot_len = htons(ip_len); |
3708 | 0 | } |
3709 | 0 | } |
3710 | 0 | } else { |
3711 | 0 | OVS_NOT_REACHED(); |
3712 | 0 | } |
3713 | 0 | } |
3714 | | |
3715 | 0 | struct tcp_header *th = dp_packet_l4(pkt); |
3716 | |
|
3717 | 0 | if (nat && ec->seq_skew != 0) { |
3718 | 0 | ctx->reply != ec->seq_skew_dir ? |
3719 | 0 | adj_seqnum(&th->tcp_ack, -ec->seq_skew) : |
3720 | 0 | adj_seqnum(&th->tcp_seq, ec->seq_skew); |
3721 | 0 | } |
3722 | |
|
3723 | 0 | if (dp_packet_l4_checksum_valid(pkt)) { |
3724 | 0 | dp_packet_l4_checksum_set_partial(pkt); |
3725 | 0 | } else { |
3726 | 0 | th->tcp_csum = 0; |
3727 | 0 | if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) { |
3728 | 0 | th->tcp_csum = packet_csum_upperlayer6(nh6, th, ctx->key.nw_proto, |
3729 | 0 | dp_packet_l4_size(pkt)); |
3730 | 0 | } else { |
3731 | 0 | uint32_t tcp_csum = packet_csum_pseudoheader(l3_hdr); |
3732 | 0 | th->tcp_csum = csum_finish( |
3733 | 0 | csum_continue(tcp_csum, th, dp_packet_l4_size(pkt))); |
3734 | 0 | } |
3735 | 0 | } |
3736 | |
|
3737 | 0 | if (seq_skew) { |
3738 | 0 | conn_seq_skew_set(ct, ec, now, seq_skew + ec->seq_skew, |
3739 | 0 | ctx->reply); |
3740 | 0 | } |
3741 | 0 | } |
3742 | | |
3743 | | static void |
3744 | | handle_tftp_ctl(struct conntrack *ct, |
3745 | | const struct conn_lookup_ctx *ctx OVS_UNUSED, |
3746 | | struct dp_packet *pkt, struct conn *conn_for_expectation, |
3747 | | long long now OVS_UNUSED, enum ftp_ctl_pkt ftp_ctl OVS_UNUSED, |
3748 | | bool nat OVS_UNUSED) |
3749 | 0 | { |
3750 | 0 | expectation_create(ct, |
3751 | 0 | conn_for_expectation->key_node[CT_DIR_FWD].key.src.port, |
3752 | 0 | conn_for_expectation, |
3753 | 0 | !!(pkt->md.ct_state & CS_REPLY_DIR), false, false); |
3754 | 0 | } |