Coverage Report

Created: 2024-03-26 07:23

/src/opus/celt/mathops.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2002-2008 Jean-Marc Valin
2
   Copyright (c) 2007-2008 CSIRO
3
   Copyright (c) 2007-2009 Xiph.Org Foundation
4
   Written by Jean-Marc Valin */
5
/**
6
   @file mathops.h
7
   @brief Various math functions
8
*/
9
/*
10
   Redistribution and use in source and binary forms, with or without
11
   modification, are permitted provided that the following conditions
12
   are met:
13
14
   - Redistributions of source code must retain the above copyright
15
   notice, this list of conditions and the following disclaimer.
16
17
   - Redistributions in binary form must reproduce the above copyright
18
   notice, this list of conditions and the following disclaimer in the
19
   documentation and/or other materials provided with the distribution.
20
21
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
25
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
*/
33
34
#ifdef HAVE_CONFIG_H
35
#include "config.h"
36
#endif
37
38
#include "mathops.h"
39
40
/*Compute floor(sqrt(_val)) with exact arithmetic.
41
  _val must be greater than 0.
42
  This has been tested on all possible 32-bit inputs greater than 0.*/
43
0
unsigned isqrt32(opus_uint32 _val){
44
0
  unsigned b;
45
0
  unsigned g;
46
0
  int      bshift;
47
  /*Uses the second method from
48
     http://www.azillionmonkeys.com/qed/sqroot.html
49
    The main idea is to search for the largest binary digit b such that
50
     (g+b)*(g+b) <= _val, and add it to the solution g.*/
51
0
  g=0;
52
0
  bshift=(EC_ILOG(_val)-1)>>1;
53
0
  b=1U<<bshift;
54
0
  do{
55
0
    opus_uint32 t;
56
0
    t=(((opus_uint32)g<<1)+b)<<bshift;
57
0
    if(t<=_val){
58
0
      g+=b;
59
0
      _val-=t;
60
0
    }
61
0
    b>>=1;
62
0
    bshift--;
63
0
  }
64
0
  while(bshift>=0);
65
0
  return g;
66
0
}
67
68
#ifdef FIXED_POINT
69
70
opus_val32 frac_div32(opus_val32 a, opus_val32 b)
71
5.30M
{
72
5.30M
   opus_val16 rcp;
73
5.30M
   opus_val32 result, rem;
74
5.30M
   int shift = celt_ilog2(b)-29;
75
5.30M
   a = VSHR32(a,shift);
76
5.30M
   b = VSHR32(b,shift);
77
   /* 16-bit reciprocal */
78
5.30M
   rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
79
5.30M
   result = MULT16_32_Q15(rcp, a);
80
5.30M
   rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
81
5.30M
   result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
82
5.30M
   if (result >= 536870912)       /*  2^29 */
83
156
      return 2147483647;          /*  2^31 - 1 */
84
5.30M
   else if (result <= -536870912) /* -2^29 */
85
0
      return -2147483647;         /* -2^31 */
86
5.30M
   else
87
5.30M
      return SHL32(result, 2);
88
5.30M
}
89
90
/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
91
opus_val16 celt_rsqrt_norm(opus_val32 x)
92
290M
{
93
290M
   opus_val16 n;
94
290M
   opus_val16 r;
95
290M
   opus_val16 r2;
96
290M
   opus_val16 y;
97
   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
98
290M
   n = x-32768;
99
   /* Get a rough initial guess for the root.
100
      The optimal minimax quadratic approximation (using relative error) is
101
       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
102
      Coefficients here, and the final result r, are Q14.*/
103
290M
   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
104
   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
105
      We can compute the result from n and r using Q15 multiplies with some
106
       adjustment, carefully done to avoid overflow.
107
      Range of y is [-1564,1594]. */
108
290M
   r2 = MULT16_16_Q15(r, r);
109
290M
   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
110
   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
111
      This yields the Q14 reciprocal square root of the Q16 x, with a maximum
112
       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
113
       peak absolute error of 2.26591/16384. */
114
290M
   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
115
290M
              SUB16(MULT16_16_Q15(y, 12288), 16384))));
116
290M
}
117
118
/** Sqrt approximation (QX input, QX/2 output) */
119
opus_val32 celt_sqrt(opus_val32 x)
120
1.05G
{
121
1.05G
   int k;
122
1.05G
   opus_val16 n;
123
1.05G
   opus_val32 rt;
124
1.05G
   static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664};
125
1.05G
   if (x==0)
126
137M
      return 0;
127
913M
   else if (x>=1073741824)
128
69.6k
      return 32767;
129
913M
   k = (celt_ilog2(x)>>1)-7;
130
913M
   x = VSHR32(x, 2*k);
131
913M
   n = x-32768;
132
913M
   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
133
913M
              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
134
913M
   rt = VSHR32(rt,7-k);
135
913M
   return rt;
136
1.05G
}
137
138
#define L1 32767
139
#define L2 -7651
140
#define L3 8277
141
#define L4 -626
142
143
static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x)
144
29.7M
{
145
29.7M
   opus_val16 x2;
146
147
29.7M
   x2 = MULT16_16_P15(x,x);
148
29.7M
   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
149
29.7M
                                                                                ))))))));
150
29.7M
}
151
152
#undef L1
153
#undef L2
154
#undef L3
155
#undef L4
156
157
opus_val16 celt_cos_norm(opus_val32 x)
158
29.7M
{
159
29.7M
   x = x&0x0001ffff;
160
29.7M
   if (x>SHL32(EXTEND32(1), 16))
161
0
      x = SUB32(SHL32(EXTEND32(1), 17),x);
162
29.7M
   if (x&0x00007fff)
163
29.7M
   {
164
29.7M
      if (x<SHL32(EXTEND32(1), 15))
165
29.7M
      {
166
29.7M
         return _celt_cos_pi_2(EXTRACT16(x));
167
29.7M
      } else {
168
0
         return NEG16(_celt_cos_pi_2(EXTRACT16(65536-x)));
169
0
      }
170
29.7M
   } else {
171
0
      if (x&0x0000ffff)
172
0
         return 0;
173
0
      else if (x&0x0001ffff)
174
0
         return -32767;
175
0
      else
176
0
         return 32767;
177
0
   }
178
29.7M
}
179
180
/** Reciprocal approximation (Q15 input, Q16 output) */
181
opus_val32 celt_rcp(opus_val32 x)
182
1.29G
{
183
1.29G
   int i;
184
1.29G
   opus_val16 n;
185
1.29G
   opus_val16 r;
186
1.29G
   celt_sig_assert(x>0);
187
1.29G
   i = celt_ilog2(x);
188
   /* n is Q15 with range [0,1). */
189
1.29G
   n = VSHR32(x,i-15)-32768;
190
   /* Start with a linear approximation:
191
      r = 1.8823529411764706-0.9411764705882353*n.
192
      The coefficients and the result are Q14 in the range [15420,30840].*/
193
1.29G
   r = ADD16(30840, MULT16_16_Q15(-15420, n));
194
   /* Perform two Newton iterations:
195
      r -= r*((r*n)-1.Q15)
196
         = r*((r*n)+(r-1.Q15)). */
197
1.29G
   r = SUB16(r, MULT16_16_Q15(r,
198
1.29G
             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
199
   /* We subtract an extra 1 in the second iteration to avoid overflow; it also
200
       neatly compensates for truncation error in the rest of the process. */
201
1.29G
   r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
202
1.29G
             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
203
   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
204
       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
205
       error of 1.24665/32768. */
206
1.29G
   return VSHR32(EXTEND32(r),i-16);
207
1.29G
}
208
209
#endif