Coverage Report

Created: 2025-07-01 07:04

/src/opus/celt/mathops.h
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2002-2008 Jean-Marc Valin
2
   Copyright (c) 2007-2008 CSIRO
3
   Copyright (c) 2007-2009 Xiph.Org Foundation
4
   Copyright (c) 2024 Arm Limited
5
   Written by Jean-Marc Valin, and Yunho Huh */
6
/**
7
   @file mathops.h
8
   @brief Various math functions
9
*/
10
/*
11
   Redistribution and use in source and binary forms, with or without
12
   modification, are permitted provided that the following conditions
13
   are met:
14
15
   - Redistributions of source code must retain the above copyright
16
   notice, this list of conditions and the following disclaimer.
17
18
   - Redistributions in binary form must reproduce the above copyright
19
   notice, this list of conditions and the following disclaimer in the
20
   documentation and/or other materials provided with the distribution.
21
22
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
26
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
27
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
28
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
29
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
*/
34
35
#ifndef MATHOPS_H
36
#define MATHOPS_H
37
38
#include "arch.h"
39
#include "entcode.h"
40
#include "os_support.h"
41
42
43
#if defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
44
#include "arm/mathops_arm.h"
45
#endif
46
47
0
#define PI 3.1415926535897931
48
49
/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
50
0
#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
51
52
unsigned isqrt32(opus_uint32 _val);
53
54
/* CELT doesn't need it for fixed-point, by analysis.c does. */
55
#if !defined(FIXED_POINT) || defined(ANALYSIS_C)
56
0
#define cA 0.43157974f
57
0
#define cB 0.67848403f
58
0
#define cC 0.08595542f
59
0
#define cE ((float)PI/2)
60
0
static OPUS_INLINE float fast_atan2f(float y, float x) {
61
0
   float x2, y2;
62
0
   x2 = x*x;
63
0
   y2 = y*y;
64
   /* For very small values, we don't care about the answer, so
65
      we can just return 0. */
66
0
   if (x2 + y2 < 1e-18f)
67
0
   {
68
0
      return 0;
69
0
   }
70
0
   if(x2<y2){
71
0
      float den = (y2 + cB*x2) * (y2 + cC*x2);
72
0
      return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE);
73
0
   }else{
74
0
      float den = (x2 + cB*y2) * (x2 + cC*y2);
75
0
      return  x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
76
0
   }
77
0
}
Unexecuted instantiation: opus_encoder.c:fast_atan2f
Unexecuted instantiation: analysis.c:fast_atan2f
Unexecuted instantiation: celt.c:fast_atan2f
Unexecuted instantiation: celt_encoder.c:fast_atan2f
Unexecuted instantiation: kiss_fft.c:fast_atan2f
Unexecuted instantiation: mdct.c:fast_atan2f
Unexecuted instantiation: modes.c:fast_atan2f
Unexecuted instantiation: pitch.c:fast_atan2f
Unexecuted instantiation: celt_lpc.c:fast_atan2f
Unexecuted instantiation: quant_bands.c:fast_atan2f
Unexecuted instantiation: rate.c:fast_atan2f
Unexecuted instantiation: pitch_sse.c:fast_atan2f
Unexecuted instantiation: opus.c:fast_atan2f
Unexecuted instantiation: opus_decoder.c:fast_atan2f
Unexecuted instantiation: bands.c:fast_atan2f
Unexecuted instantiation: celt_decoder.c:fast_atan2f
Unexecuted instantiation: laplace.c:fast_atan2f
Unexecuted instantiation: mathops.c:fast_atan2f
Unexecuted instantiation: vq.c:fast_atan2f
Unexecuted instantiation: vq_sse2.c:fast_atan2f
Unexecuted instantiation: cwrs.c:fast_atan2f
78
#undef cA
79
#undef cB
80
#undef cC
81
#undef cE
82
#endif
83
84
85
#ifndef OVERRIDE_CELT_MAXABS16
86
static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
87
0
{
88
0
   int i;
89
0
   opus_val16 maxval = 0;
90
0
   opus_val16 minval = 0;
91
0
   for (i=0;i<len;i++)
92
0
   {
93
0
      maxval = MAX16(maxval, x[i]);
94
0
      minval = MIN16(minval, x[i]);
95
0
   }
96
0
   return MAX32(EXTEND32(maxval),-EXTEND32(minval));
97
0
}
Unexecuted instantiation: opus_encoder.c:celt_maxabs16
Unexecuted instantiation: analysis.c:celt_maxabs16
Unexecuted instantiation: celt.c:celt_maxabs16
Unexecuted instantiation: celt_encoder.c:celt_maxabs16
Unexecuted instantiation: kiss_fft.c:celt_maxabs16
Unexecuted instantiation: mdct.c:celt_maxabs16
Unexecuted instantiation: modes.c:celt_maxabs16
Unexecuted instantiation: pitch.c:celt_maxabs16
Unexecuted instantiation: celt_lpc.c:celt_maxabs16
Unexecuted instantiation: quant_bands.c:celt_maxabs16
Unexecuted instantiation: rate.c:celt_maxabs16
Unexecuted instantiation: pitch_sse.c:celt_maxabs16
Unexecuted instantiation: opus.c:celt_maxabs16
Unexecuted instantiation: opus_decoder.c:celt_maxabs16
Unexecuted instantiation: bands.c:celt_maxabs16
Unexecuted instantiation: celt_decoder.c:celt_maxabs16
Unexecuted instantiation: laplace.c:celt_maxabs16
Unexecuted instantiation: mathops.c:celt_maxabs16
Unexecuted instantiation: vq.c:celt_maxabs16
Unexecuted instantiation: vq_sse2.c:celt_maxabs16
Unexecuted instantiation: cwrs.c:celt_maxabs16
98
#endif
99
100
#ifdef ENABLE_RES24
101
static OPUS_INLINE opus_res celt_maxabs_res(const opus_res *x, int len)
102
{
103
   int i;
104
   opus_res maxval = 0;
105
   opus_res minval = 0;
106
   for (i=0;i<len;i++)
107
   {
108
      maxval = MAX32(maxval, x[i]);
109
      minval = MIN32(minval, x[i]);
110
   }
111
   /* opus_res should never reach such amplitude, so we should be safe. */
112
   celt_sig_assert(minval != -2147483648);
113
   return MAX32(maxval,-minval);
114
}
115
#else
116
0
#define celt_maxabs_res celt_maxabs16
117
#endif
118
119
120
#ifndef OVERRIDE_CELT_MAXABS32
121
#ifdef FIXED_POINT
122
static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
123
{
124
   int i;
125
   opus_val32 maxval = 0;
126
   opus_val32 minval = 0;
127
   for (i=0;i<len;i++)
128
   {
129
      maxval = MAX32(maxval, x[i]);
130
      minval = MIN32(minval, x[i]);
131
   }
132
   return MAX32(maxval, -minval);
133
}
134
#else
135
#define celt_maxabs32(x,len) celt_maxabs16(x,len)
136
#endif
137
#endif
138
139
#ifndef FIXED_POINT
140
/* Calculates the arctangent of x using a Remez approximation of order 15,
141
 * incorporating only odd-powered terms. */
142
static OPUS_INLINE float celt_atan_norm(float x)
143
0
{
144
0
   #define ATAN2_2_OVER_PI 0.636619772367581f
145
0
   float x_sq = x * x;
146
147
   /* Polynomial coefficients approximated in the [0, 1] range.
148
    * Lolremez command: lolremez --degree 6 --range "0:1"
149
    *                   "(atan(sqrt(x))-sqrt(x))/(x*sqrt(x))" "1/(sqrt(x)*x)"
150
    * Please note that ATAN2_COEFF_A01 is fixed to 1.0f. */
151
0
   #define ATAN2_COEFF_A03 -3.3331659436225891113281250000e-01f
152
0
   #define ATAN2_COEFF_A05 1.99627041816711425781250000000e-01f
153
0
   #define ATAN2_COEFF_A07 -1.3976582884788513183593750000e-01f
154
0
   #define ATAN2_COEFF_A09 9.79423448443412780761718750000e-02f
155
0
   #define ATAN2_COEFF_A11 -5.7773590087890625000000000000e-02f
156
0
   #define ATAN2_COEFF_A13 2.30401363223791122436523437500e-02f
157
0
   #define ATAN2_COEFF_A15 -4.3554059229791164398193359375e-03f
158
0
   return ATAN2_2_OVER_PI * (x + x * x_sq * (ATAN2_COEFF_A03
159
0
                + x_sq * (ATAN2_COEFF_A05
160
0
                + x_sq * (ATAN2_COEFF_A07
161
0
                + x_sq * (ATAN2_COEFF_A09
162
0
                + x_sq * (ATAN2_COEFF_A11
163
0
                + x_sq * (ATAN2_COEFF_A13
164
0
                + x_sq * (ATAN2_COEFF_A15))))))));
165
0
}
Unexecuted instantiation: opus_encoder.c:celt_atan_norm
Unexecuted instantiation: analysis.c:celt_atan_norm
Unexecuted instantiation: celt.c:celt_atan_norm
Unexecuted instantiation: celt_encoder.c:celt_atan_norm
Unexecuted instantiation: kiss_fft.c:celt_atan_norm
Unexecuted instantiation: mdct.c:celt_atan_norm
Unexecuted instantiation: modes.c:celt_atan_norm
Unexecuted instantiation: pitch.c:celt_atan_norm
Unexecuted instantiation: celt_lpc.c:celt_atan_norm
Unexecuted instantiation: quant_bands.c:celt_atan_norm
Unexecuted instantiation: rate.c:celt_atan_norm
Unexecuted instantiation: pitch_sse.c:celt_atan_norm
Unexecuted instantiation: opus.c:celt_atan_norm
Unexecuted instantiation: opus_decoder.c:celt_atan_norm
Unexecuted instantiation: bands.c:celt_atan_norm
Unexecuted instantiation: celt_decoder.c:celt_atan_norm
Unexecuted instantiation: laplace.c:celt_atan_norm
Unexecuted instantiation: mathops.c:celt_atan_norm
Unexecuted instantiation: vq.c:celt_atan_norm
Unexecuted instantiation: vq_sse2.c:celt_atan_norm
Unexecuted instantiation: cwrs.c:celt_atan_norm
166
167
/* Calculates the arctangent of y/x, returning an approximate value in radians.
168
 * Please refer to the linked wiki page (https://en.wikipedia.org/wiki/Atan2)
169
 * to learn how atan2 results are computed. */
170
static OPUS_INLINE float celt_atan2p_norm(float y, float x)
171
0
{
172
0
   celt_sig_assert(x>=0 && y>=0);
173
174
   /* For very small values, we don't care about the answer. */
175
0
   if ((x*x + y*y) < 1e-18f)
176
0
   {
177
0
      return 0;
178
0
   }
179
180
0
   if (y < x)
181
0
   {
182
0
      return celt_atan_norm(y / x);
183
0
   } else {
184
0
      return 1.f - celt_atan_norm(x / y);
185
0
   }
186
0
}
Unexecuted instantiation: opus_encoder.c:celt_atan2p_norm
Unexecuted instantiation: analysis.c:celt_atan2p_norm
Unexecuted instantiation: celt.c:celt_atan2p_norm
Unexecuted instantiation: celt_encoder.c:celt_atan2p_norm
Unexecuted instantiation: kiss_fft.c:celt_atan2p_norm
Unexecuted instantiation: mdct.c:celt_atan2p_norm
Unexecuted instantiation: modes.c:celt_atan2p_norm
Unexecuted instantiation: pitch.c:celt_atan2p_norm
Unexecuted instantiation: celt_lpc.c:celt_atan2p_norm
Unexecuted instantiation: quant_bands.c:celt_atan2p_norm
Unexecuted instantiation: rate.c:celt_atan2p_norm
Unexecuted instantiation: pitch_sse.c:celt_atan2p_norm
Unexecuted instantiation: opus.c:celt_atan2p_norm
Unexecuted instantiation: opus_decoder.c:celt_atan2p_norm
Unexecuted instantiation: bands.c:celt_atan2p_norm
Unexecuted instantiation: celt_decoder.c:celt_atan2p_norm
Unexecuted instantiation: laplace.c:celt_atan2p_norm
Unexecuted instantiation: mathops.c:celt_atan2p_norm
Unexecuted instantiation: vq.c:celt_atan2p_norm
Unexecuted instantiation: vq_sse2.c:celt_atan2p_norm
Unexecuted instantiation: cwrs.c:celt_atan2p_norm
187
#endif
188
189
#if !defined(FIXED_POINT) || defined(ENABLE_QEXT)
190
/* Computes estimated cosine values for (PI/2 * x) using only terms with even
191
 * exponents. */
192
static OPUS_INLINE float celt_cos_norm2(float x)
193
0
{
194
0
   float x_norm_sq;
195
0
   int output_sign;
196
0
   /* Restrict x to [-1, 3]. */
197
0
   x -= 4*floor(.25*(x+1));
198
0
   /* Negative sign for [1, 3]. */
199
0
   output_sign = 1 - 2*(x>1);
200
0
   /* Restrict to [-1, 1]. */
201
0
   x -= 2*(x>1);
202
0
203
0
   /* The cosine function, cos(x), has a Taylor series representation consisting
204
0
    * exclusively of even-powered polynomial terms. */
205
0
   x_norm_sq = x * x;
206
0
207
0
   /* Polynomial coefficients approximated in the [0, 1] range using only terms
208
0
    * with even exponents.
209
0
    * Lolremez command: lolremez --degree 4 --range 0:1 "cos(sqrt(x)*pi*0.5)" */
210
0
   #define COS_COEFF_A0 9.999999403953552246093750000000e-01f
211
0
   #define COS_COEFF_A2 -1.233698248863220214843750000000000f
212
0
   #define COS_COEFF_A4 2.536507546901702880859375000000e-01f
213
0
   #define COS_COEFF_A6 -2.08106283098459243774414062500e-02f
214
0
   #define COS_COEFF_A8 8.581906440667808055877685546875e-04f
215
0
   return output_sign * (COS_COEFF_A0 + x_norm_sq * (COS_COEFF_A2 +
216
0
                               x_norm_sq * (COS_COEFF_A4 +
217
0
                               x_norm_sq * (COS_COEFF_A6 +
218
0
                               x_norm_sq * (COS_COEFF_A8)))));
219
0
}
Unexecuted instantiation: opus_encoder.c:celt_cos_norm2
Unexecuted instantiation: analysis.c:celt_cos_norm2
Unexecuted instantiation: celt.c:celt_cos_norm2
Unexecuted instantiation: celt_encoder.c:celt_cos_norm2
Unexecuted instantiation: kiss_fft.c:celt_cos_norm2
Unexecuted instantiation: mdct.c:celt_cos_norm2
Unexecuted instantiation: modes.c:celt_cos_norm2
Unexecuted instantiation: pitch.c:celt_cos_norm2
Unexecuted instantiation: celt_lpc.c:celt_cos_norm2
Unexecuted instantiation: quant_bands.c:celt_cos_norm2
Unexecuted instantiation: rate.c:celt_cos_norm2
Unexecuted instantiation: pitch_sse.c:celt_cos_norm2
Unexecuted instantiation: opus.c:celt_cos_norm2
Unexecuted instantiation: opus_decoder.c:celt_cos_norm2
Unexecuted instantiation: bands.c:celt_cos_norm2
Unexecuted instantiation: celt_decoder.c:celt_cos_norm2
Unexecuted instantiation: laplace.c:celt_cos_norm2
Unexecuted instantiation: mathops.c:celt_cos_norm2
Unexecuted instantiation: vq.c:celt_cos_norm2
Unexecuted instantiation: vq_sse2.c:celt_cos_norm2
Unexecuted instantiation: cwrs.c:celt_cos_norm2
220
221
#endif
222
223
#ifndef FIXED_POINT
224
225
0
#define celt_sqrt(x) ((float)sqrt(x))
226
0
#define celt_sqrt32(x) ((float)sqrt(x))
227
0
#define celt_rsqrt(x) (1.f/celt_sqrt(x))
228
#define celt_rsqrt_norm(x) (celt_rsqrt(x))
229
0
#define celt_rsqrt_norm32(x) (celt_rsqrt(x))
230
0
#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
231
0
#define celt_rcp(x) (1.f/(x))
232
0
#define celt_div(a,b) ((a)/(b))
233
0
#define frac_div32(a,b) ((float)(a)/(b))
234
0
#define frac_div32_q29(a,b) frac_div32(a,b)
235
236
#ifdef FLOAT_APPROX
237
/* Calculates the base-2 logarithm (log2(x)) of a number. It is designed for
238
 * systems using radix-2 floating-point representation, with the exponent
239
 * located at bits 23 to 30 and an offset of 127. Note that special cases like
240
 * denormalized numbers, positive/negative infinity, and NaN are not handled.
241
 * log2(x) = log2(x^exponent * mantissa)
242
 *         = exponent + log2(mantissa) */
243
244
/* Log2 x normalization single precision coefficients calculated by
245
 * 1 / (1 + 0.125 * index).
246
 * Coefficients in Double Precision
247
 * double log2_x_norm_coeff[8] = {
248
 *    1.0000000000000000000, 8.888888888888888e-01,
249
 *    8.000000000000000e-01, 7.272727272727273e-01,
250
 *    6.666666666666666e-01, 6.153846153846154e-01,
251
 *    5.714285714285714e-01, 5.333333333333333e-01} */
252
static const float log2_x_norm_coeff[8] = {
253
   1.000000000000000000000000000f, 8.88888895511627197265625e-01f,
254
   8.00000000000000000000000e-01f, 7.27272748947143554687500e-01f,
255
   6.66666686534881591796875e-01f, 6.15384638309478759765625e-01f,
256
   5.71428596973419189453125e-01f, 5.33333361148834228515625e-01f};
257
258
/* Log2 y normalization single precision coefficients calculated by
259
 * log2(1 + 0.125 * index).
260
 * Coefficients in Double Precision
261
 * double log2_y_norm_coeff[8] = {
262
 *    0.0000000000000000000, 1.699250014423124e-01,
263
 *    3.219280948873623e-01, 4.594316186372973e-01,
264
 *    5.849625007211562e-01, 7.004397181410922e-01,
265
 *    8.073549220576041e-01, 9.068905956085185e-01}; */
266
static const float log2_y_norm_coeff[8] = {
267
   0.0000000000000000000000000000f, 1.699250042438507080078125e-01f,
268
   3.219280838966369628906250e-01f, 4.594316184520721435546875e-01f,
269
   5.849624872207641601562500e-01f, 7.004396915435791015625000e-01f,
270
   8.073549270629882812500000e-01f, 9.068905711174011230468750e-01f};
271
272
static OPUS_INLINE float celt_log2(float x)
273
0
{
274
0
   opus_int32 integer;
275
0
   opus_int32 range_idx;
276
0
   union {
277
0
      float f;
278
0
      opus_uint32 i;
279
0
   } in;
280
0
   in.f = x;
281
0
   integer = (opus_int32)(in.i>>23)-127;
282
0
   in.i = (opus_int32)in.i - (opus_int32)((opus_uint32)integer<<23);
283
284
   /* Normalize the mantissa range from [1, 2] to [1,1.125], and then shift x
285
    * by 1.0625 to [-0.0625, 0.0625]. */
286
0
   range_idx = (in.i >> 20) & 0x7;
287
0
   in.f = in.f * log2_x_norm_coeff[range_idx] - 1.0625f;
288
289
   /* Polynomial coefficients approximated in the [1, 1.125] range.
290
    * Lolremez command: lolremez --degree 4 --range -0.0625:0.0625
291
    *                   "log(x+1.0625)/log(2)"
292
    * Coefficients in Double Precision
293
    * A0: 8.7462840624502679e-2    A1: 1.3578296070972002
294
    * A2: -6.3897703690210047e-1   A3: 4.0197125617419959e-1
295
    * A4: -2.8415445877832832e-1 */
296
0
   #define LOG2_COEFF_A0 8.74628424644470214843750000e-02f
297
0
   #define LOG2_COEFF_A1 1.357829570770263671875000000000f
298
0
   #define LOG2_COEFF_A2 -6.3897705078125000000000000e-01f
299
0
   #define LOG2_COEFF_A3 4.01971250772476196289062500e-01f
300
0
   #define LOG2_COEFF_A4 -2.8415444493293762207031250e-01f
301
0
   in.f = LOG2_COEFF_A0 + in.f * (LOG2_COEFF_A1
302
0
               + in.f * (LOG2_COEFF_A2
303
0
               + in.f * (LOG2_COEFF_A3
304
0
               + in.f * (LOG2_COEFF_A4))));
305
0
   return integer + in.f + log2_y_norm_coeff[range_idx];
306
0
}
Unexecuted instantiation: opus_encoder.c:celt_log2
Unexecuted instantiation: analysis.c:celt_log2
Unexecuted instantiation: celt.c:celt_log2
Unexecuted instantiation: celt_encoder.c:celt_log2
Unexecuted instantiation: kiss_fft.c:celt_log2
Unexecuted instantiation: mdct.c:celt_log2
Unexecuted instantiation: modes.c:celt_log2
Unexecuted instantiation: pitch.c:celt_log2
Unexecuted instantiation: celt_lpc.c:celt_log2
Unexecuted instantiation: quant_bands.c:celt_log2
Unexecuted instantiation: rate.c:celt_log2
Unexecuted instantiation: pitch_sse.c:celt_log2
Unexecuted instantiation: opus.c:celt_log2
Unexecuted instantiation: opus_decoder.c:celt_log2
Unexecuted instantiation: bands.c:celt_log2
Unexecuted instantiation: celt_decoder.c:celt_log2
Unexecuted instantiation: laplace.c:celt_log2
Unexecuted instantiation: mathops.c:celt_log2
Unexecuted instantiation: vq.c:celt_log2
Unexecuted instantiation: vq_sse2.c:celt_log2
Unexecuted instantiation: cwrs.c:celt_log2
307
308
/* Calculates an approximation of 2^x. The approximation was achieved by
309
 * employing a base-2 exponential function and utilizing a Remez approximation
310
 * of order 5, ensuring a controlled relative error.
311
 * exp2(x) = exp2(integer + fraction)
312
 *         = exp2(integer) * exp2(fraction) */
313
static OPUS_INLINE float celt_exp2(float x)
314
0
{
315
0
   opus_int32 integer;
316
0
   float frac;
317
0
   union {
318
0
      float f;
319
0
      opus_uint32 i;
320
0
   } res;
321
0
   integer = (int)floor(x);
322
0
   if (integer < -50)
323
0
      return 0;
324
0
   frac = x-integer;
325
326
   /* Polynomial coefficients approximated in the [0, 1] range.
327
    * Lolremez command: lolremez --degree 5 --range 0:1
328
    *                   "exp(x*0.693147180559945)" "exp(x*0.693147180559945)"
329
    * NOTE: log(2) ~ 0.693147180559945 */
330
0
   #define EXP2_COEFF_A0 9.999999403953552246093750000000e-01f
331
0
   #define EXP2_COEFF_A1 6.931530833244323730468750000000e-01f
332
0
   #define EXP2_COEFF_A2 2.401536107063293457031250000000e-01f
333
0
   #define EXP2_COEFF_A3 5.582631751894950866699218750000e-02f
334
0
   #define EXP2_COEFF_A4 8.989339694380760192871093750000e-03f
335
0
   #define EXP2_COEFF_A5 1.877576694823801517486572265625e-03f
336
0
   res.f = EXP2_COEFF_A0 + frac * (EXP2_COEFF_A1
337
0
               + frac * (EXP2_COEFF_A2
338
0
               + frac * (EXP2_COEFF_A3
339
0
               + frac * (EXP2_COEFF_A4
340
0
               + frac * (EXP2_COEFF_A5)))));
341
0
   res.i = (opus_uint32)((opus_int32)res.i + (opus_int32)((opus_uint32)integer<<23)) & 0x7fffffff;
342
0
   return res.f;
343
0
}
Unexecuted instantiation: opus_encoder.c:celt_exp2
Unexecuted instantiation: analysis.c:celt_exp2
Unexecuted instantiation: celt.c:celt_exp2
Unexecuted instantiation: celt_encoder.c:celt_exp2
Unexecuted instantiation: kiss_fft.c:celt_exp2
Unexecuted instantiation: mdct.c:celt_exp2
Unexecuted instantiation: modes.c:celt_exp2
Unexecuted instantiation: pitch.c:celt_exp2
Unexecuted instantiation: celt_lpc.c:celt_exp2
Unexecuted instantiation: quant_bands.c:celt_exp2
Unexecuted instantiation: rate.c:celt_exp2
Unexecuted instantiation: pitch_sse.c:celt_exp2
Unexecuted instantiation: opus.c:celt_exp2
Unexecuted instantiation: opus_decoder.c:celt_exp2
Unexecuted instantiation: bands.c:celt_exp2
Unexecuted instantiation: celt_decoder.c:celt_exp2
Unexecuted instantiation: laplace.c:celt_exp2
Unexecuted instantiation: mathops.c:celt_exp2
Unexecuted instantiation: vq.c:celt_exp2
Unexecuted instantiation: vq_sse2.c:celt_exp2
Unexecuted instantiation: cwrs.c:celt_exp2
344
345
#else
346
#define celt_log2(x) ((float)(1.442695040888963387*log(x)))
347
#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
348
#endif
349
350
0
#define celt_exp2_db celt_exp2
351
0
#define celt_log2_db celt_log2
352
353
#endif
354
355
#ifdef FIXED_POINT
356
357
#include "os_support.h"
358
359
#ifndef OVERRIDE_CELT_ILOG2
360
/** Integer log in base2. Undefined for zero and negative numbers */
361
static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
362
{
363
   celt_sig_assert(x>0);
364
   return EC_ILOG(x)-1;
365
}
366
#endif
367
368
369
/** Integer log in base2. Defined for zero, but not for negative numbers */
370
static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
371
{
372
   return x <= 0 ? 0 : celt_ilog2(x);
373
}
374
375
opus_val16 celt_rsqrt_norm(opus_val32 x);
376
377
opus_val32 celt_rsqrt_norm32(opus_val32 x);
378
379
opus_val32 celt_sqrt(opus_val32 x);
380
381
opus_val32 celt_sqrt32(opus_val32 x);
382
383
opus_val16 celt_cos_norm(opus_val32 x);
384
385
opus_val32 celt_cos_norm32(opus_val32 x);
386
387
/** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */
388
static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
389
{
390
   int i;
391
   opus_val16 n, frac;
392
   /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
393
       0.15530808010959576, -0.08556153059057618 */
394
   static const opus_val16 C[5] = {-6801+(1<<(13-10)), 15746, -5217, 2545, -1401};
395
   if (x==0)
396
      return -32767;
397
   i = celt_ilog2(x);
398
   n = VSHR32(x,i-15)-32768-16384;
399
   frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
400
   return SHL32(i-13,10)+SHR32(frac,14-10);
401
}
402
403
/*
404
 K0 = 1
405
 K1 = log(2)
406
 K2 = 3-4*log(2)
407
 K3 = 3*log(2) - 2
408
*/
409
#define D0 16383
410
#define D1 22804
411
#define D2 14819
412
#define D3 10204
413
414
static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
415
{
416
   opus_val16 frac;
417
   frac = SHL16(x, 4);
418
   return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
419
}
420
421
#undef D0
422
#undef D1
423
#undef D2
424
#undef D3
425
426
/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
427
static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
428
{
429
   int integer;
430
   opus_val16 frac;
431
   integer = SHR16(x,10);
432
   if (integer>14)
433
      return 0x7f000000;
434
   else if (integer < -15)
435
      return 0;
436
   frac = celt_exp2_frac(x-SHL16(integer,10));
437
   return VSHR32(EXTEND32(frac), -integer-2);
438
}
439
440
#ifdef ENABLE_QEXT
441
442
/* Calculates the base-2 logarithm of a Q14 input value. The result is returned
443
 * in Q(DB_SHIFT). If the input value is 0, the function will output -32.0f. */
444
static OPUS_INLINE opus_val32 celt_log2_db(opus_val32 x) {
445
   /* Q30 */
446
   static const opus_val32 log2_x_norm_coeff[8] = {
447
      1073741824, 954437184, 858993472, 780903168,
448
      715827904,  660764224, 613566784, 572662336};
449
   /* Q24 */
450
   static const opus_val32 log2_y_norm_coeff[8] = {
451
      0,       2850868,  5401057,  7707983,
452
      9814042, 11751428, 13545168, 15215099};
453
   static const opus_val32 LOG2_COEFF_A0 = 1467383;     /* Q24 */
454
   static const opus_val32 LOG2_COEFF_A1 = 182244800;   /* Q27 */
455
   static const opus_val32 LOG2_COEFF_A2 = -21440512;   /* Q25 */
456
   static const opus_val32 LOG2_COEFF_A3 = 107903336;   /* Q28 */
457
   static const opus_val32 LOG2_COEFF_A4 = -610217024;  /* Q31 */
458
459
   opus_int32 integer, norm_coeff_idx, tmp;
460
   opus_val32 mantissa;
461
   if (x==0) {
462
      return -536870912; /* -32.0f */
463
   }
464
   integer =  SUB32(celt_ilog2(x), 14);  /* Q0 */
465
   mantissa = VSHR32(x, integer + 14 - 29);  /* Q29 */
466
   norm_coeff_idx = SHR32(mantissa, 29 - 3) & 0x7;
467
   /* mantissa is in Q28 (29 + Q_NORM_CONST - 31 where Q_NORM_CONST is Q30)
468
    * 285212672 (Q28) is 1.0625f. */
469
   mantissa = SUB32(MULT32_32_Q31(mantissa, log2_x_norm_coeff[norm_coeff_idx]),
470
                    285212672);
471
472
   /* q_a3(Q28): q_mantissa + q_a4 - 31
473
    * q_a2(Q25): q_mantissa + q_a3 - 31
474
    * q_a1(Q27): q_mantissa + q_a2 - 31 + 5
475
    * q_a0(Q24): q_mantissa + q_a1 - 31
476
    * where  q_mantissa is Q28 */
477
   /* Split evaluation in steps to avoid exploding macro expansion. */
478
   tmp = MULT32_32_Q31(mantissa, LOG2_COEFF_A4);
479
   tmp = MULT32_32_Q31(mantissa, ADD32(LOG2_COEFF_A3, tmp));
480
   tmp = SHL32(MULT32_32_Q31(mantissa, ADD32(LOG2_COEFF_A2, tmp)), 5 /* SHL32 for LOG2_COEFF_A1 */);
481
   tmp = MULT32_32_Q31(mantissa, ADD32(LOG2_COEFF_A1, tmp));
482
   return ADD32(log2_y_norm_coeff[norm_coeff_idx],
483
          ADD32(SHL32(integer, DB_SHIFT),
484
          ADD32(LOG2_COEFF_A0, tmp)));
485
}
486
487
/* Calculates exp2 for Q28 within a specific range (0 to 1.0) using fixed-point
488
 * arithmetic. The input number must be adjusted for Q DB_SHIFT. */
489
static OPUS_INLINE opus_val32 celt_exp2_db_frac(opus_val32 x)
490
{
491
   /* Approximation constants. */
492
   static const opus_int32 EXP2_COEFF_A0 = 268435440;   /* Q28 */
493
   static const opus_int32 EXP2_COEFF_A1 = 744267456;   /* Q30 */
494
   static const opus_int32 EXP2_COEFF_A2 = 1031451904;  /* Q32 */
495
   static const opus_int32 EXP2_COEFF_A3 = 959088832;   /* Q34 */
496
   static const opus_int32 EXP2_COEFF_A4 = 617742720;   /* Q36 */
497
   static const opus_int32 EXP2_COEFF_A5 = 516104352;   /* Q38 */
498
   opus_int32 tmp;
499
   /* Converts input value from Q24 to Q29. */
500
   opus_val32 x_q29 = SHL32(x, 29 - 24);
501
   /* Split evaluation in steps to avoid exploding macro expansion. */
502
   tmp = ADD32(EXP2_COEFF_A4, MULT32_32_Q31(x_q29, EXP2_COEFF_A5));
503
   tmp = ADD32(EXP2_COEFF_A3, MULT32_32_Q31(x_q29, tmp));
504
   tmp = ADD32(EXP2_COEFF_A2, MULT32_32_Q31(x_q29, tmp));
505
   tmp = ADD32(EXP2_COEFF_A1, MULT32_32_Q31(x_q29, tmp));
506
   return ADD32(EXP2_COEFF_A0, MULT32_32_Q31(x_q29, tmp));
507
}
508
509
/* Calculates exp2 for Q16 using fixed-point arithmetic. The input number must
510
 * be adjusted for Q DB_SHIFT. */
511
static OPUS_INLINE opus_val32 celt_exp2_db(opus_val32 x)
512
{
513
   int integer;
514
   opus_val32 frac;
515
   integer = SHR32(x,DB_SHIFT);
516
   if (integer>14)
517
      return 0x7f000000;
518
   else if (integer <= -17)
519
      return 0;
520
   frac = celt_exp2_db_frac(x-SHL32(integer, DB_SHIFT));  /* Q28 */
521
   return VSHR32(frac, -integer + 28 - 16);  /* Q16 */
522
}
523
#else
524
525
#define celt_log2_db(x) SHL32(EXTEND32(celt_log2(x)), DB_SHIFT-10)
526
#define celt_exp2_db_frac(x) SHL32(celt_exp2_frac(PSHR32(x, DB_SHIFT-10)), 14)
527
#define celt_exp2_db(x) celt_exp2(PSHR32(x, DB_SHIFT-10))
528
529
#endif
530
531
532
opus_val32 celt_rcp(opus_val32 x);
533
opus_val32 celt_rcp_norm32(opus_val32 x);
534
535
#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
536
537
opus_val32 frac_div32_q29(opus_val32 a, opus_val32 b);
538
opus_val32 frac_div32(opus_val32 a, opus_val32 b);
539
540
/* Computes atan(x) multiplied by 2/PI. The input value (x) should be within the
541
 * range of -1 to 1 and represented in Q30 format. The function will return the
542
 * result in Q30 format. */
543
static OPUS_INLINE opus_val32 celt_atan_norm(opus_val32 x)
544
{
545
   /* Approximation constants. */
546
   static const opus_int32 ATAN_2_OVER_PI = 1367130551;   /* Q31 */
547
   static const opus_int32 ATAN_COEFF_A03 = -715791936;   /* Q31 */
548
   static const opus_int32 ATAN_COEFF_A05 = 857391616;    /* Q32 */
549
   static const opus_int32 ATAN_COEFF_A07 = -1200579328;  /* Q33 */
550
   static const opus_int32 ATAN_COEFF_A09 = 1682636672;   /* Q34 */
551
   static const opus_int32 ATAN_COEFF_A11 = -1985085440;  /* Q35 */
552
   static const opus_int32 ATAN_COEFF_A13 = 1583306112;   /* Q36 */
553
   static const opus_int32 ATAN_COEFF_A15 = -598602432;   /* Q37 */
554
   opus_int32 x_sq_q30;
555
   opus_int32 x_q31;
556
   opus_int32 tmp;
557
   /* The expected x is in the range of [-1.0f, 1.0f] */
558
   celt_sig_assert((x <= 1073741824) && (x >= -1073741824));
559
560
   /* If x = 1.0f, returns 0.5f */
561
   if (x == 1073741824)
562
   {
563
      return 536870912; /* 0.5f (Q30) */
564
   }
565
   /* If x = 1.0f, returns 0.5f */
566
   if (x == -1073741824)
567
   {
568
      return -536870912; /* -0.5f (Q30) */
569
   }
570
   x_q31 = SHL32(x, 1);
571
   x_sq_q30 = MULT32_32_Q31(x_q31, x);
572
   /* Split evaluation in steps to avoid exploding macro expansion. */
573
   tmp = MULT32_32_Q31(x_sq_q30, ATAN_COEFF_A15);
574
   tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A13, tmp));
575
   tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A11, tmp));
576
   tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A09, tmp));
577
   tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A07, tmp));
578
   tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A05, tmp));
579
   tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A03, tmp));
580
   tmp = ADD32(x, MULT32_32_Q31(x_q31, tmp));
581
   return MULT32_32_Q31(ATAN_2_OVER_PI, tmp);
582
}
583
584
/* Calculates the arctangent of y/x, multiplies the result by 2/pi, and returns
585
 * the value in Q30 format. Both input values (x and y) must be within the range
586
 * of 0 to 1 and represented in Q30 format. Inputs must be zero or greater, and
587
 * at least one input must be non-zero. */
588
static OPUS_INLINE opus_val32 celt_atan2p_norm(opus_val32 y, opus_val32 x)
589
{
590
   celt_sig_assert(x>=0 && y>=0);
591
   if (y==0 && x==0) {
592
      return 0;
593
   } else if (y < x) {
594
      return celt_atan_norm(SHR32(frac_div32(y, x), 1));
595
   } else {
596
      celt_sig_assert(y > 0);
597
      return 1073741824 /* 1.0f Q30 */ -
598
             celt_atan_norm(SHR32(frac_div32(x, y), 1));
599
   }
600
}
601
602
#define M1 32767
603
#define M2 -21
604
#define M3 -11943
605
#define M4 4936
606
607
/* Atan approximation using a 4th order polynomial. Input is in Q15 format
608
   and normalized by pi/4. Output is in Q15 format */
609
static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
610
{
611
   return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
612
}
613
614
#undef M1
615
#undef M2
616
#undef M3
617
#undef M4
618
619
/* atan2() approximation valid for positive input values */
620
static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
621
{
622
   if (x==0 && y==0) {
623
      return 0;
624
   } else if (y < x)
625
   {
626
      opus_val32 arg;
627
      arg = celt_div(SHL32(EXTEND32(y),15),x);
628
      if (arg >= 32767)
629
         arg = 32767;
630
      return SHR16(celt_atan01(EXTRACT16(arg)),1);
631
   } else {
632
      opus_val32 arg;
633
      arg = celt_div(SHL32(EXTEND32(x),15),y);
634
      if (arg >= 32767)
635
         arg = 32767;
636
      return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
637
   }
638
}
639
640
#endif /* FIXED_POINT */
641
642
#ifndef DISABLE_FLOAT_API
643
644
void celt_float2int16_c(const float * OPUS_RESTRICT in, short * OPUS_RESTRICT out, int cnt);
645
646
#ifndef OVERRIDE_FLOAT2INT16
647
0
#define celt_float2int16(in, out, cnt, arch) ((void)(arch), celt_float2int16_c(in, out, cnt))
648
#endif
649
650
int opus_limit2_checkwithin1_c(float *samples, int cnt);
651
652
#ifndef OVERRIDE_LIMIT2_CHECKWITHIN1
653
0
#define opus_limit2_checkwithin1(samples, cnt, arch) ((void)(arch), opus_limit2_checkwithin1_c(samples, cnt))
654
#endif
655
656
#endif /* DISABLE_FLOAT_API */
657
658
#endif /* MATHOPS_H */