Coverage Report

Created: 2025-07-12 06:22

/src/opus/celt/celt.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2007-2008 CSIRO
2
   Copyright (c) 2007-2010 Xiph.Org Foundation
3
   Copyright (c) 2008 Gregory Maxwell
4
   Written by Jean-Marc Valin and Gregory Maxwell */
5
/*
6
   Redistribution and use in source and binary forms, with or without
7
   modification, are permitted provided that the following conditions
8
   are met:
9
10
   - Redistributions of source code must retain the above copyright
11
   notice, this list of conditions and the following disclaimer.
12
13
   - Redistributions in binary form must reproduce the above copyright
14
   notice, this list of conditions and the following disclaimer in the
15
   documentation and/or other materials provided with the distribution.
16
17
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
21
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
25
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
*/
29
30
#ifdef HAVE_CONFIG_H
31
#include "config.h"
32
#endif
33
34
#define CELT_C
35
36
#include "os_support.h"
37
#include "mdct.h"
38
#include <math.h>
39
#include "celt.h"
40
#include "pitch.h"
41
#include "bands.h"
42
#include "modes.h"
43
#include "entcode.h"
44
#include "quant_bands.h"
45
#include "rate.h"
46
#include "stack_alloc.h"
47
#include "mathops.h"
48
#include "float_cast.h"
49
#include <stdarg.h>
50
#include "celt_lpc.h"
51
#include "vq.h"
52
53
#ifndef PACKAGE_VERSION
54
#define PACKAGE_VERSION "unknown"
55
#endif
56
57
#if defined(MIPSr1_ASM)
58
#include "mips/celt_mipsr1.h"
59
#endif
60
61
62
int resampling_factor(opus_int32 rate)
63
0
{
64
0
   int ret;
65
0
   switch (rate)
66
0
   {
67
#ifdef ENABLE_QEXT
68
   case 96000:
69
#endif
70
0
   case 48000:
71
0
      ret = 1;
72
0
      break;
73
0
   case 24000:
74
0
      ret = 2;
75
0
      break;
76
0
   case 16000:
77
0
      ret = 3;
78
0
      break;
79
0
   case 12000:
80
0
      ret = 4;
81
0
      break;
82
0
   case 8000:
83
0
      ret = 6;
84
0
      break;
85
0
   default:
86
0
#ifndef CUSTOM_MODES
87
0
      celt_assert(0);
88
0
#endif
89
0
      ret = 0;
90
0
      break;
91
0
   }
92
0
   return ret;
93
0
}
94
95
96
#if !defined(OVERRIDE_COMB_FILTER_CONST) || defined(NON_STATIC_COMB_FILTER_CONST_C)
97
/* This version should be faster on ARM */
98
#ifdef OPUS_ARM_ASM
99
#ifndef NON_STATIC_COMB_FILTER_CONST_C
100
static
101
#endif
102
void comb_filter_const_c(opus_val32 *y, opus_val32 *x, int T, int N,
103
      celt_coef g10, celt_coef g11, celt_coef g12)
104
{
105
   opus_val32 x0, x1, x2, x3, x4;
106
   int i;
107
   x4 = SHL32(x[-T-2], 1);
108
   x3 = SHL32(x[-T-1], 1);
109
   x2 = SHL32(x[-T], 1);
110
   x1 = SHL32(x[-T+1], 1);
111
   for (i=0;i<N-4;i+=5)
112
   {
113
      opus_val32 t;
114
      x0=SHL32(x[i-T+2],1);
115
      t = MAC_COEF_32_ARM(x[i], g10, x2);
116
      t = MAC_COEF_32_ARM(t, g11, ADD32(x1,x3));
117
      t = MAC_COEF_32_ARM(t, g12, ADD32(x0,x4));
118
      t = SATURATE(t, SIG_SAT);
119
      y[i] = t;
120
      x4=SHL32(x[i-T+3],1);
121
      t = MAC_COEF_32_ARM(x[i+1], g10, x1);
122
      t = MAC_COEF_32_ARM(t, g11, ADD32(x0,x2));
123
      t = MAC_COEF_32_ARM(t, g12, ADD32(x4,x3));
124
      t = SATURATE(t, SIG_SAT);
125
      y[i+1] = t;
126
      x3=SHL32(x[i-T+4],1);
127
      t = MAC_COEF_32_ARM(x[i+2], g10, x0);
128
      t = MAC_COEF_32_ARM(t, g11, ADD32(x4,x1));
129
      t = MAC_COEF_32_ARM(t, g12, ADD32(x3,x2));
130
      t = SATURATE(t, SIG_SAT);
131
      y[i+2] = t;
132
      x2=SHL32(x[i-T+5],1);
133
      t = MAC_COEF_32_ARM(x[i+3], g10, x4);
134
      t = MAC_COEF_32_ARM(t, g11, ADD32(x3,x0));
135
      t = MAC_COEF_32_ARM(t, g12, ADD32(x2,x1));
136
      t = SATURATE(t, SIG_SAT);
137
      y[i+3] = t;
138
      x1=SHL32(x[i-T+6],1);
139
      t = MAC_COEF_32_ARM(x[i+4], g10, x3);
140
      t = MAC_COEF_32_ARM(t, g11, ADD32(x2,x4));
141
      t = MAC_COEF_32_ARM(t, g12, ADD32(x1,x0));
142
      t = SATURATE(t, SIG_SAT);
143
      y[i+4] = t;
144
   }
145
#ifdef CUSTOM_MODES
146
   for (;i<N;i++)
147
   {
148
      opus_val32 t;
149
      x0=SHL32(x[i-T+2],1);
150
      t = MAC_COEF_32_ARM(x[i], g10, x2);
151
      t = MAC_COEF_32_ARM(t, g11, ADD32(x1,x3));
152
      t = MAC_COEF_32_ARM(t, g12, ADD32(x0,x4));
153
      t = SATURATE(t, SIG_SAT);
154
      y[i] = t;
155
      x4=x3;
156
      x3=x2;
157
      x2=x1;
158
      x1=x0;
159
   }
160
#endif
161
}
162
#else
163
#ifndef NON_STATIC_COMB_FILTER_CONST_C
164
static
165
#endif
166
void comb_filter_const_c(opus_val32 *y, opus_val32 *x, int T, int N,
167
      celt_coef g10, celt_coef g11, celt_coef g12)
168
0
{
169
0
   opus_val32 x0, x1, x2, x3, x4;
170
0
   int i;
171
0
   x4 = x[-T-2];
172
0
   x3 = x[-T-1];
173
0
   x2 = x[-T];
174
0
   x1 = x[-T+1];
175
0
   for (i=0;i<N;i++)
176
0
   {
177
0
      x0=x[i-T+2];
178
0
      y[i] = x[i]
179
0
               + MULT_COEF_32(g10,x2)
180
0
               + MULT_COEF_32(g11,ADD32(x1,x3))
181
0
               + MULT_COEF_32(g12,ADD32(x0,x4));
182
0
#ifdef FIXED_POINT
183
      /* A bit of bias seems to help here. */
184
0
      y[i] = SUB32(y[i], 1);
185
0
#endif
186
0
      y[i] = SATURATE(y[i], SIG_SAT);
187
0
      x4=x3;
188
0
      x3=x2;
189
0
      x2=x1;
190
0
      x1=x0;
191
0
   }
192
193
0
}
194
#endif
195
#endif
196
197
#ifndef OVERRIDE_comb_filter
198
void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
199
      opus_val16 g0, opus_val16 g1, int tapset0, int tapset1,
200
      const celt_coef *window, int overlap, int arch)
201
0
{
202
0
   int i;
203
   /* printf ("%d %d %f %f\n", T0, T1, g0, g1); */
204
0
   celt_coef g00, g01, g02, g10, g11, g12;
205
0
   opus_val32 x0, x1, x2, x3, x4;
206
0
   static const opus_val16 gains[3][3] = {
207
0
         {QCONST16(0.3066406250f, 15), QCONST16(0.2170410156f, 15), QCONST16(0.1296386719f, 15)},
208
0
         {QCONST16(0.4638671875f, 15), QCONST16(0.2680664062f, 15), QCONST16(0.f, 15)},
209
0
         {QCONST16(0.7998046875f, 15), QCONST16(0.1000976562f, 15), QCONST16(0.f, 15)}};
210
#ifdef ENABLE_QEXT
211
   if (overlap==240) {
212
      opus_val32 mem_buf[COMBFILTER_MAXPERIOD+960];
213
      opus_val32 buf[COMBFILTER_MAXPERIOD+960];
214
      celt_coef new_window[120];
215
      int s;
216
      int N2;
217
      int overlap2;
218
      N2 = N/2;
219
      overlap2=overlap/2;
220
      /* At 96 kHz, we double the period and the spacing between taps, which is equivalent
221
         to creating a mirror image of the filter around 24 kHz. It also means we can process
222
         the even and odd samples completely independently. */
223
      for (s=0;s<2;s++) {
224
         opus_val32 *yptr;
225
         for (i=0;i<overlap2;i++) new_window[i] = window[2*i+s];
226
         for (i=0;i<COMBFILTER_MAXPERIOD+N2;i++) mem_buf[i] = x[2*i+s-2*COMBFILTER_MAXPERIOD];
227
         if (x==y) {
228
            yptr = mem_buf+COMBFILTER_MAXPERIOD;
229
         } else {
230
            for (i=0;i<N2;i++) buf[i] = y[2*i+s];
231
            yptr = buf;
232
         }
233
         comb_filter(yptr, mem_buf+COMBFILTER_MAXPERIOD, T0, T1, N2, g0, g1, tapset0, tapset1, new_window, overlap2, arch);
234
         for (i=0;i<N2;i++) y[2*i+s] = yptr[i];
235
      }
236
      return;
237
   }
238
#endif
239
0
   if (g0==0 && g1==0)
240
0
   {
241
      /* OPT: Happens to work without the OPUS_MOVE(), but only because the current encoder already copies x to y */
242
0
      if (x!=y)
243
0
         OPUS_MOVE(y, x, N);
244
0
      return;
245
0
   }
246
   /* When the gain is zero, T0 and/or T1 is set to zero. We need
247
      to have then be at least 2 to avoid processing garbage data. */
248
0
   T0 = IMAX(T0, COMBFILTER_MINPERIOD);
249
0
   T1 = IMAX(T1, COMBFILTER_MINPERIOD);
250
0
   g00 = MULT_COEF_TAPS(g0, gains[tapset0][0]);
251
0
   g01 = MULT_COEF_TAPS(g0, gains[tapset0][1]);
252
0
   g02 = MULT_COEF_TAPS(g0, gains[tapset0][2]);
253
0
   g10 = MULT_COEF_TAPS(g1, gains[tapset1][0]);
254
0
   g11 = MULT_COEF_TAPS(g1, gains[tapset1][1]);
255
0
   g12 = MULT_COEF_TAPS(g1, gains[tapset1][2]);
256
0
   x1 = x[-T1+1];
257
0
   x2 = x[-T1  ];
258
0
   x3 = x[-T1-1];
259
0
   x4 = x[-T1-2];
260
   /* If the filter didn't change, we don't need the overlap */
261
0
   if (g0==g1 && T0==T1 && tapset0==tapset1)
262
0
      overlap=0;
263
0
   for (i=0;i<overlap;i++)
264
0
   {
265
0
      celt_coef f;
266
0
      x0=x[i-T1+2];
267
0
      f = MULT_COEF(window[i],window[i]);
268
0
      y[i] = x[i]
269
0
               + MULT_COEF_32(MULT_COEF((COEF_ONE-f),g00),x[i-T0])
270
0
               + MULT_COEF_32(MULT_COEF((COEF_ONE-f),g01),ADD32(x[i-T0+1],x[i-T0-1]))
271
0
               + MULT_COEF_32(MULT_COEF((COEF_ONE-f),g02),ADD32(x[i-T0+2],x[i-T0-2]))
272
0
               + MULT_COEF_32(MULT_COEF(f,g10),x2)
273
0
               + MULT_COEF_32(MULT_COEF(f,g11),ADD32(x1,x3))
274
0
               + MULT_COEF_32(MULT_COEF(f,g12),ADD32(x0,x4));
275
0
#ifdef FIXED_POINT
276
      /* A bit of bias seems to help here. */
277
0
      y[i] = SUB32(y[i], 3);
278
0
#endif
279
0
      y[i] = SATURATE(y[i], SIG_SAT);
280
0
      x4=x3;
281
0
      x3=x2;
282
0
      x2=x1;
283
0
      x1=x0;
284
285
0
   }
286
0
   if (g1==0)
287
0
   {
288
      /* OPT: Happens to work without the OPUS_MOVE(), but only because the current encoder already copies x to y */
289
0
      if (x!=y)
290
0
         OPUS_MOVE(y+overlap, x+overlap, N-overlap);
291
0
      return;
292
0
   }
293
294
   /* Compute the part with the constant filter. */
295
0
   comb_filter_const(y+i, x+i, T1, N-i, g10, g11, g12, arch);
296
0
}
297
#endif /* OVERRIDE_comb_filter */
298
299
/* TF change table. Positive values mean better frequency resolution (longer
300
   effective window), whereas negative values mean better time resolution
301
   (shorter effective window). The second index is computed as:
302
   4*isTransient + 2*tf_select + per_band_flag */
303
const signed char tf_select_table[4][8] = {
304
    /*isTransient=0     isTransient=1 */
305
      {0, -1, 0, -1,    0,-1, 0,-1}, /* 2.5 ms */
306
      {0, -1, 0, -2,    1, 0, 1,-1}, /* 5 ms */
307
      {0, -2, 0, -3,    2, 0, 1,-1}, /* 10 ms */
308
      {0, -2, 0, -3,    3, 0, 1,-1}, /* 20 ms */
309
};
310
311
312
void init_caps(const CELTMode *m,int *cap,int LM,int C)
313
0
{
314
0
   int i;
315
0
   for (i=0;i<m->nbEBands;i++)
316
0
   {
317
0
      int N;
318
0
      N=(m->eBands[i+1]-m->eBands[i])<<LM;
319
0
      cap[i] = (m->cache.caps[m->nbEBands*(2*LM+C-1)+i]+64)*C*N>>2;
320
0
   }
321
0
}
322
323
324
325
const char *opus_strerror(int error)
326
0
{
327
0
   static const char * const error_strings[8] = {
328
0
      "success",
329
0
      "invalid argument",
330
0
      "buffer too small",
331
0
      "internal error",
332
0
      "corrupted stream",
333
0
      "request not implemented",
334
0
      "invalid state",
335
0
      "memory allocation failed"
336
0
   };
337
0
   if (error > 0 || error < -7)
338
0
      return "unknown error";
339
0
   else
340
0
      return error_strings[-error];
341
0
}
342
343
const char *opus_get_version_string(void)
344
0
{
345
0
    return "libopus " PACKAGE_VERSION
346
    /* Applications may rely on the presence of this substring in the version
347
       string to determine if they have a fixed-point or floating-point build
348
       at runtime. */
349
0
#ifdef FIXED_POINT
350
0
          "-fixed"
351
0
#endif
352
#ifdef FUZZING
353
          "-fuzzing"
354
#endif
355
0
          ;
356
0
}