Coverage Report

Created: 2025-07-18 06:17

/src/opus/celt/mathops.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2002-2008 Jean-Marc Valin
2
   Copyright (c) 2007-2008 CSIRO
3
   Copyright (c) 2007-2009 Xiph.Org Foundation
4
   Copyright (c) 2024 Arm Limited
5
   Written by Jean-Marc Valin */
6
/**
7
   @file mathops.h
8
   @brief Various math functions
9
*/
10
/*
11
   Redistribution and use in source and binary forms, with or without
12
   modification, are permitted provided that the following conditions
13
   are met:
14
15
   - Redistributions of source code must retain the above copyright
16
   notice, this list of conditions and the following disclaimer.
17
18
   - Redistributions in binary form must reproduce the above copyright
19
   notice, this list of conditions and the following disclaimer in the
20
   documentation and/or other materials provided with the distribution.
21
22
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
26
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
27
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
28
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
29
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
*/
34
35
#ifdef HAVE_CONFIG_H
36
#include "config.h"
37
#endif
38
39
#include "float_cast.h"
40
#include "mathops.h"
41
42
/*Compute floor(sqrt(_val)) with exact arithmetic.
43
  _val must be greater than 0.
44
  This has been tested on all possible 32-bit inputs greater than 0.*/
45
0
unsigned isqrt32(opus_uint32 _val){
46
0
  unsigned b;
47
0
  unsigned g;
48
0
  int      bshift;
49
  /*Uses the second method from
50
     http://www.azillionmonkeys.com/qed/sqroot.html
51
    The main idea is to search for the largest binary digit b such that
52
     (g+b)*(g+b) <= _val, and add it to the solution g.*/
53
0
  g=0;
54
0
  bshift=(EC_ILOG(_val)-1)>>1;
55
0
  b=1U<<bshift;
56
0
  do{
57
0
    opus_uint32 t;
58
0
    t=(((opus_uint32)g<<1)+b)<<bshift;
59
0
    if(t<=_val){
60
0
      g+=b;
61
0
      _val-=t;
62
0
    }
63
0
    b>>=1;
64
0
    bshift--;
65
0
  }
66
0
  while(bshift>=0);
67
0
  return g;
68
0
}
69
70
#ifdef FIXED_POINT
71
72
opus_val32 frac_div32_q29(opus_val32 a, opus_val32 b)
73
0
{
74
0
   opus_val16 rcp;
75
0
   opus_val32 result, rem;
76
0
   int shift = celt_ilog2(b)-29;
77
0
   a = VSHR32(a,shift);
78
0
   b = VSHR32(b,shift);
79
   /* 16-bit reciprocal */
80
0
   rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
81
0
   result = MULT16_32_Q15(rcp, a);
82
0
   rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
83
0
   result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
84
0
   return result;
85
0
}
86
87
0
opus_val32 frac_div32(opus_val32 a, opus_val32 b) {
88
0
   opus_val32 result = frac_div32_q29(a,b);
89
0
   if (result >= 536870912)       /*  2^29 */
90
0
      return 2147483647;          /*  2^31 - 1 */
91
0
   else if (result <= -536870912) /* -2^29 */
92
0
      return -2147483647;         /* -2^31 */
93
0
   else
94
0
      return SHL32(result, 2);
95
0
}
96
97
/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
98
opus_val16 celt_rsqrt_norm(opus_val32 x)
99
0
{
100
0
   opus_val16 n;
101
0
   opus_val16 r;
102
0
   opus_val16 r2;
103
0
   opus_val16 y;
104
   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
105
0
   n = x-32768;
106
   /* Get a rough initial guess for the root.
107
      The optimal minimax quadratic approximation (using relative error) is
108
       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
109
      Coefficients here, and the final result r, are Q14.*/
110
0
   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
111
   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
112
      We can compute the result from n and r using Q15 multiplies with some
113
       adjustment, carefully done to avoid overflow.
114
      Range of y is [-1564,1594]. */
115
0
   r2 = MULT16_16_Q15(r, r);
116
0
   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
117
   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
118
      This yields the Q14 reciprocal square root of the Q16 x, with a maximum
119
       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
120
       peak absolute error of 2.26591/16384. */
121
0
   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
122
0
              SUB16(MULT16_16_Q15(y, 12288), 16384))));
123
0
}
124
125
/** Reciprocal sqrt approximation in the range [0.25,1) (Q31 in, Q29 out) */
126
opus_val32 celt_rsqrt_norm32(opus_val32 x)
127
0
{
128
0
   opus_int32 tmp;
129
   /* Use the first-order Newton-Raphson method to refine the root estimate.
130
    * r = r * (1.5 - 0.5*x*r*r) */
131
0
   opus_int32 r_q29 = SHL32(celt_rsqrt_norm(SHR32(x, 31-16)), 15);
132
   /* Split evaluation in steps to avoid exploding macro expansion. */
133
0
   tmp = MULT32_32_Q31(r_q29, r_q29);
134
0
   tmp = MULT32_32_Q31(1073741824 /* Q31 */, tmp);
135
0
   tmp = MULT32_32_Q31(x, tmp);
136
0
   return SHL32(MULT32_32_Q31(r_q29, SUB32(201326592 /* Q27 */, tmp)), 4);
137
0
}
138
139
/** Sqrt approximation (QX input, QX/2 output) */
140
opus_val32 celt_sqrt(opus_val32 x)
141
0
{
142
0
   int k;
143
0
   opus_val16 n;
144
0
   opus_val32 rt;
145
   /* These coeffs are optimized in fixed-point to minimize both RMS and max error
146
      of sqrt(x) over .25<x<1 without exceeding 32767.
147
      The RMS error is 3.4e-5 and the max is 8.2e-5. */
148
0
   static const opus_val16 C[6] = {23171, 11574, -2901, 1592, -1002, 336};
149
0
   if (x==0)
150
0
      return 0;
151
0
   else if (x>=1073741824)
152
0
      return 32767;
153
0
   k = (celt_ilog2(x)>>1)-7;
154
0
   x = VSHR32(x, 2*k);
155
0
   n = x-32768;
156
0
   rt = ADD32(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
157
0
              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, ADD16(C[4], MULT16_16_Q15(n, (C[5])))))))))));
158
0
   rt = VSHR32(rt,7-k);
159
0
   return rt;
160
0
}
161
162
/* Perform fixed-point arithmetic to approximate the square root. When the input
163
 * is in Qx format, the output will be in Q(x/2 + 16) format. */
164
opus_val32 celt_sqrt32(opus_val32 x)
165
0
{
166
0
   int k;
167
0
   opus_int32 x_frac;
168
0
   if (x==0)
169
0
      return 0;
170
0
   else if (x>=1073741824)
171
0
      return 2147483647; /* 2^31 -1 */
172
0
   k = (celt_ilog2(x)>>1);
173
0
   x_frac = VSHR32(x, 2*(k-14)-1);
174
0
   x_frac = MULT32_32_Q31(celt_rsqrt_norm32(x_frac), x_frac);
175
0
   if (k < 12) return PSHR32(x_frac, 12-k);
176
0
   else return SHL32(x_frac, k-12);
177
0
}
178
179
#define L1 32767
180
#define L2 -7651
181
#define L3 8277
182
#define L4 -626
183
184
static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x)
185
0
{
186
0
   opus_val16 x2;
187
188
0
   x2 = MULT16_16_P15(x,x);
189
0
   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
190
0
                                                                                ))))))));
191
0
}
192
193
#undef L1
194
#undef L2
195
#undef L3
196
#undef L4
197
198
opus_val16 celt_cos_norm(opus_val32 x)
199
0
{
200
0
   x = x&0x0001ffff;
201
0
   if (x>SHL32(EXTEND32(1), 16))
202
0
      x = SUB32(SHL32(EXTEND32(1), 17),x);
203
0
   if (x&0x00007fff)
204
0
   {
205
0
      if (x<SHL32(EXTEND32(1), 15))
206
0
      {
207
0
         return _celt_cos_pi_2(EXTRACT16(x));
208
0
      } else {
209
0
         return NEG16(_celt_cos_pi_2(EXTRACT16(65536-x)));
210
0
      }
211
0
   } else {
212
0
      if (x&0x0000ffff)
213
0
         return 0;
214
0
      else if (x&0x0001ffff)
215
0
         return -32767;
216
0
      else
217
0
         return 32767;
218
0
   }
219
0
}
220
221
/* Calculates the cosine of (PI*0.5*x) where the input x ranges from -1 to 1 and
222
 * is in Q30 format. The output will also be in Q31 format. */
223
opus_val32 celt_cos_norm32(opus_val32 x)
224
0
{
225
0
   static const opus_val32 COS_NORM_COEFF_A0 = 134217720;   /* Q27 */
226
0
   static const opus_val32 COS_NORM_COEFF_A1 = -662336704;  /* Q29 */
227
0
   static const opus_val32 COS_NORM_COEFF_A2 = 544710848;   /* Q31 */
228
0
   static const opus_val32 COS_NORM_COEFF_A3 = -178761936;  /* Q33 */
229
0
   static const opus_val32 COS_NORM_COEFF_A4 = 29487206;    /* Q35 */
230
0
   opus_int32 x_sq_q29, tmp;
231
   /* The expected x is in the range of [-1.0f, 1.0f] */
232
0
   celt_sig_assert((x >= -1073741824) && (x <= 1073741824));
233
   /* Make cos(+/- pi/2) exactly zero. */
234
0
   if (ABS32(x) == 1<<30) return 0;
235
0
   x_sq_q29 = MULT32_32_Q31(x, x);
236
   /* Split evaluation in steps to avoid exploding macro expansion. */
237
0
   tmp = ADD32(COS_NORM_COEFF_A3, MULT32_32_Q31(x_sq_q29, COS_NORM_COEFF_A4));
238
0
   tmp = ADD32(COS_NORM_COEFF_A2, MULT32_32_Q31(x_sq_q29, tmp));
239
0
   tmp = ADD32(COS_NORM_COEFF_A1, MULT32_32_Q31(x_sq_q29, tmp));
240
0
   return SHL32(ADD32(COS_NORM_COEFF_A0, MULT32_32_Q31(x_sq_q29, tmp)), 4);
241
0
}
242
243
/* Computes a 16 bit approximate reciprocal (1/x) for a normalized Q15 input,
244
 * resulting in a Q15 output. */
245
opus_val16 celt_rcp_norm16(opus_val16 x)
246
0
{
247
0
   opus_val16 r;
248
   /* Start with a linear approximation:
249
      r = 1.8823529411764706-0.9411764705882353*n.
250
      The coefficients and the result are Q14 in the range [15420,30840].*/
251
0
   r = ADD16(30840, MULT16_16_Q15(-15420, x));
252
   /* Perform two Newton iterations:
253
      r -= r*((r*n)+(r-1.Q15))
254
         = r*((r*n)+(r-1.Q15)). */
255
0
   r = SUB16(r, MULT16_16_Q15(r,
256
0
             ADD16(MULT16_16_Q15(r, x), ADD16(r, -32768))));
257
   /* We subtract an extra 1 in the second iteration to avoid overflow; it also
258
       neatly compensates for truncation error in the rest of the process. */
259
0
   return SUB16(r, ADD16(1, MULT16_16_Q15(r,
260
0
                ADD16(MULT16_16_Q15(r, x), ADD16(r, -32768)))));
261
0
}
262
263
/* Computes a 32 bit approximated reciprocal (1/x) for a normalized Q31 input,
264
 * resulting in a Q30 output. The expected input range is [0.5f, 1.0f) in Q31
265
 * and the expected output range is [1.0f, 2.0f) in Q30. */
266
opus_val32 celt_rcp_norm32(opus_val32 x)
267
0
{
268
0
   opus_val32 r_q30;
269
0
   celt_sig_assert(x >= 1073741824);
270
0
   r_q30 = SHL32(EXTEND32(celt_rcp_norm16(SHR32(x, 15)-32768)), 16);
271
   /* Solving f(y) = a - 1/y using the Newton Method
272
    * Note: f(y)' = 1/y^2
273
    * r = r - f(r)/f(r)' = r - (x * r*r - r)
274
    *   = r - r*(r*x - 1)
275
    * where
276
    *   - r means 1/y's approximation.
277
    *   - x means a, the input of function.
278
    * Please note that:
279
    *   - It adds 1 to avoid overflow
280
    *   - -1.0f in Q30 is -1073741824. */
281
0
   return SUB32(r_q30, ADD32(SHL32(
282
0
                MULT32_32_Q31(ADD32(MULT32_32_Q31(r_q30, x), -1073741824),
283
0
                              r_q30), 1), 1));
284
0
}
285
286
/** Reciprocal approximation (Q15 input, Q16 output) */
287
opus_val32 celt_rcp(opus_val32 x)
288
0
{
289
0
   int i;
290
0
   opus_val16 r;
291
0
   celt_sig_assert(x>0);
292
0
   i = celt_ilog2(x);
293
294
   /* Compute the reciprocal of a Q15 number in the range [0, 1). */
295
0
   r = celt_rcp_norm16(VSHR32(x,i-15)-32768);
296
297
   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
298
       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
299
       error of 1.24665/32768. */
300
0
   return VSHR32(EXTEND32(r),i-16);
301
0
}
302
303
#endif
304
305
#ifndef DISABLE_FLOAT_API
306
307
void celt_float2int16_c(const float * OPUS_RESTRICT in, short * OPUS_RESTRICT out, int cnt)
308
0
{
309
0
   int i;
310
0
   for (i = 0; i < cnt; i++)
311
0
   {
312
0
      out[i] = FLOAT2INT16(in[i]);
313
0
   }
314
0
}
315
316
int opus_limit2_checkwithin1_c(float * samples, int cnt)
317
0
{
318
0
   int i;
319
0
   if (cnt <= 0)
320
0
   {
321
0
      return 1;
322
0
   }
323
324
0
   for (i = 0; i < cnt; i++)
325
0
   {
326
0
      float clippedVal = samples[i];
327
0
      clippedVal = FMAX(-2.0f, clippedVal);
328
0
      clippedVal = FMIN(2.0f, clippedVal);
329
0
      samples[i] = clippedVal;
330
0
   }
331
332
   /* C implementation can't provide quick hint. Assume it might exceed -1/+1. */
333
0
   return 0;
334
0
}
335
336
#endif /* DISABLE_FLOAT_API */