Coverage Report

Created: 2025-11-11 07:43

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/opus/src/mlp.c
Line
Count
Source
1
/* Copyright (c) 2008-2011 Octasic Inc.
2
                 2012-2017 Jean-Marc Valin */
3
/*
4
   Redistribution and use in source and binary forms, with or without
5
   modification, are permitted provided that the following conditions
6
   are met:
7
8
   - Redistributions of source code must retain the above copyright
9
   notice, this list of conditions and the following disclaimer.
10
11
   - Redistributions in binary form must reproduce the above copyright
12
   notice, this list of conditions and the following disclaimer in the
13
   documentation and/or other materials provided with the distribution.
14
15
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
19
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
*/
27
28
#ifdef HAVE_CONFIG_H
29
#include "config.h"
30
#endif
31
32
#include <math.h>
33
#include "opus_types.h"
34
#include "opus_defines.h"
35
#include "arch.h"
36
#include "mlp.h"
37
38
65.8M
#define fmadd(a, b, c) ((a)*(b)+(c))
39
static OPUS_INLINE float tansig_approx(float x)
40
32.9M
{
41
32.9M
    const float N0 = 952.52801514f;
42
32.9M
    const float N1 = 96.39235687f;
43
32.9M
    const float N2 = 0.60863042f;
44
32.9M
    const float D0 = 952.72399902f;
45
32.9M
    const float D1 = 413.36801147f;
46
32.9M
    const float D2 = 11.88600922f;
47
32.9M
    float X2, num, den;
48
32.9M
    X2 = x*x;
49
32.9M
    num = fmadd(fmadd(N2, X2, N1), X2, N0);
50
32.9M
    den = fmadd(fmadd(D2, X2, D1), X2, D0);
51
32.9M
    num = num*x/den;
52
32.9M
    return MAX32(-1.f, MIN32(1.f, num));
53
32.9M
}
54
55
static OPUS_INLINE float sigmoid_approx(float x)
56
15.5M
{
57
15.5M
   return .5f + .5f*tansig_approx(.5f*x);
58
15.5M
}
59
60
static void gemm_accum(float *out, const opus_int8 *weights, int rows, int cols, int col_stride, const float *x)
61
2.48M
{
62
2.48M
   int i, j;
63
57.8M
   for (i=0;i<rows;i++)
64
55.3M
   {
65
1.57G
      for (j=0;j<cols;j++)
66
1.51G
         out[i] += weights[j*col_stride + i]*x[j];
67
55.3M
   }
68
2.48M
}
69
70
void analysis_compute_dense(const AnalysisDenseLayer *layer, float *output, const float *input)
71
621k
{
72
621k
   int i;
73
621k
   int N, M;
74
621k
   int stride;
75
621k
   M = layer->nb_inputs;
76
621k
   N = layer->nb_neurons;
77
621k
   stride = N;
78
11.1M
   for (i=0;i<N;i++)
79
10.5M
      output[i] = layer->bias[i];
80
621k
   gemm_accum(output, layer->input_weights, N, M, stride, input);
81
11.1M
   for (i=0;i<N;i++)
82
10.5M
      output[i] *= WEIGHTS_SCALE;
83
621k
   if (layer->sigmoid) {
84
932k
      for (i=0;i<N;i++)
85
621k
         output[i] = sigmoid_approx(output[i]);
86
310k
   } else {
87
10.2M
      for (i=0;i<N;i++)
88
9.94M
         output[i] = tansig_approx(output[i]);
89
310k
   }
90
621k
}
91
92
void analysis_compute_gru(const AnalysisGRULayer *gru, float *state, const float *input)
93
310k
{
94
310k
   int i;
95
310k
   int N, M;
96
310k
   int stride;
97
310k
   float tmp[MAX_NEURONS];
98
310k
   float z[MAX_NEURONS];
99
310k
   float r[MAX_NEURONS];
100
310k
   float h[MAX_NEURONS];
101
310k
   M = gru->nb_inputs;
102
310k
   N = gru->nb_neurons;
103
310k
   stride = 3*N;
104
   /* Compute update gate. */
105
7.77M
   for (i=0;i<N;i++)
106
7.45M
      z[i] = gru->bias[i];
107
310k
   gemm_accum(z, gru->input_weights, N, M, stride, input);
108
310k
   gemm_accum(z, gru->recurrent_weights, N, N, stride, state);
109
7.77M
   for (i=0;i<N;i++)
110
7.45M
      z[i] = sigmoid_approx(WEIGHTS_SCALE*z[i]);
111
112
   /* Compute reset gate. */
113
7.77M
   for (i=0;i<N;i++)
114
7.45M
      r[i] = gru->bias[N + i];
115
310k
   gemm_accum(r, &gru->input_weights[N], N, M, stride, input);
116
310k
   gemm_accum(r, &gru->recurrent_weights[N], N, N, stride, state);
117
7.77M
   for (i=0;i<N;i++)
118
7.45M
      r[i] = sigmoid_approx(WEIGHTS_SCALE*r[i]);
119
120
   /* Compute output. */
121
7.77M
   for (i=0;i<N;i++)
122
7.45M
      h[i] = gru->bias[2*N + i];
123
7.77M
   for (i=0;i<N;i++)
124
7.45M
      tmp[i] = state[i] * r[i];
125
310k
   gemm_accum(h, &gru->input_weights[2*N], N, M, stride, input);
126
310k
   gemm_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp);
127
7.77M
   for (i=0;i<N;i++)
128
7.45M
      h[i] = z[i]*state[i] + (1-z[i])*tansig_approx(WEIGHTS_SCALE*h[i]);
129
7.77M
   for (i=0;i<N;i++)
130
7.45M
      state[i] = h[i];
131
310k
}