/src/opus/silk/float/burg_modified_FLP.c
Line | Count | Source |
1 | | /*********************************************************************** |
2 | | Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
3 | | Redistribution and use in source and binary forms, with or without |
4 | | modification, are permitted provided that the following conditions |
5 | | are met: |
6 | | - Redistributions of source code must retain the above copyright notice, |
7 | | this list of conditions and the following disclaimer. |
8 | | - Redistributions in binary form must reproduce the above copyright |
9 | | notice, this list of conditions and the following disclaimer in the |
10 | | documentation and/or other materials provided with the distribution. |
11 | | - Neither the name of Internet Society, IETF or IETF Trust, nor the |
12 | | names of specific contributors, may be used to endorse or promote |
13 | | products derived from this software without specific prior written |
14 | | permission. |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
16 | | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
17 | | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
18 | | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
19 | | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
20 | | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
21 | | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
22 | | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
23 | | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
24 | | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
25 | | POSSIBILITY OF SUCH DAMAGE. |
26 | | ***********************************************************************/ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | #include "SigProc_FLP.h" |
33 | | #include "tuning_parameters.h" |
34 | | #include "define.h" |
35 | | |
36 | | #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/ |
37 | | |
38 | | /* Compute reflection coefficients from input signal */ |
39 | | silk_float silk_burg_modified_FLP( /* O returns residual energy */ |
40 | | silk_float A[], /* O prediction coefficients (length order) */ |
41 | | const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */ |
42 | | const silk_float minInvGain, /* I minimum inverse prediction gain */ |
43 | | const opus_int subfr_length, /* I input signal subframe length (incl. D preceding samples) */ |
44 | | const opus_int nb_subfr, /* I number of subframes stacked in x */ |
45 | | const opus_int D, /* I order */ |
46 | | int arch |
47 | | ) |
48 | 150k | { |
49 | 150k | opus_int k, n, s, reached_max_gain; |
50 | 150k | double C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2; |
51 | 150k | const silk_float *x_ptr; |
52 | 150k | double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ]; |
53 | 150k | double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ]; |
54 | 150k | double Af[ SILK_MAX_ORDER_LPC ]; |
55 | | |
56 | 150k | celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); |
57 | | |
58 | | /* Compute autocorrelations, added over subframes */ |
59 | 150k | C0 = silk_energy_FLP( x, nb_subfr * subfr_length ); |
60 | 150k | silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) ); |
61 | 623k | for( s = 0; s < nb_subfr; s++ ) { |
62 | 473k | x_ptr = x + s * subfr_length; |
63 | 5.79M | for( n = 1; n < D + 1; n++ ) { |
64 | 5.31M | C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n, arch ); |
65 | 5.31M | } |
66 | 473k | } |
67 | 150k | silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) ); |
68 | | |
69 | | /* Initialize */ |
70 | 150k | CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f; |
71 | 150k | invGain = 1.0f; |
72 | 150k | reached_max_gain = 0; |
73 | 1.77M | for( n = 0; n < D; n++ ) { |
74 | | /* Update first row of correlation matrix (without first element) */ |
75 | | /* Update last row of correlation matrix (without last element, stored in reversed order) */ |
76 | | /* Update C * Af */ |
77 | | /* Update C * flipud(Af) (stored in reversed order) */ |
78 | 6.76M | for( s = 0; s < nb_subfr; s++ ) { |
79 | 5.13M | x_ptr = x + s * subfr_length; |
80 | 5.13M | tmp1 = x_ptr[ n ]; |
81 | 5.13M | tmp2 = x_ptr[ subfr_length - n - 1 ]; |
82 | 32.6M | for( k = 0; k < n; k++ ) { |
83 | 27.4M | C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ]; |
84 | 27.4M | C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ]; |
85 | 27.4M | Atmp = Af[ k ]; |
86 | 27.4M | tmp1 += x_ptr[ n - k - 1 ] * Atmp; |
87 | 27.4M | tmp2 += x_ptr[ subfr_length - n + k ] * Atmp; |
88 | 27.4M | } |
89 | 37.7M | for( k = 0; k <= n; k++ ) { |
90 | 32.6M | CAf[ k ] -= tmp1 * x_ptr[ n - k ]; |
91 | 32.6M | CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ]; |
92 | 32.6M | } |
93 | 5.13M | } |
94 | 1.62M | tmp1 = C_first_row[ n ]; |
95 | 1.62M | tmp2 = C_last_row[ n ]; |
96 | 10.3M | for( k = 0; k < n; k++ ) { |
97 | 8.70M | Atmp = Af[ k ]; |
98 | 8.70M | tmp1 += C_last_row[ n - k - 1 ] * Atmp; |
99 | 8.70M | tmp2 += C_first_row[ n - k - 1 ] * Atmp; |
100 | 8.70M | } |
101 | 1.62M | CAf[ n + 1 ] = tmp1; |
102 | 1.62M | CAb[ n + 1 ] = tmp2; |
103 | | |
104 | | /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ |
105 | 1.62M | num = CAb[ n + 1 ]; |
106 | 1.62M | nrg_b = CAb[ 0 ]; |
107 | 1.62M | nrg_f = CAf[ 0 ]; |
108 | 10.3M | for( k = 0; k < n; k++ ) { |
109 | 8.70M | Atmp = Af[ k ]; |
110 | 8.70M | num += CAb[ n - k ] * Atmp; |
111 | 8.70M | nrg_b += CAb[ k + 1 ] * Atmp; |
112 | 8.70M | nrg_f += CAf[ k + 1 ] * Atmp; |
113 | 8.70M | } |
114 | 1.62M | silk_assert( nrg_f > 0.0 ); |
115 | 1.62M | silk_assert( nrg_b > 0.0 ); |
116 | | |
117 | | /* Calculate the next order reflection (parcor) coefficient */ |
118 | 1.62M | rc = -2.0 * num / ( nrg_f + nrg_b ); |
119 | 1.62M | silk_assert( rc > -1.0 && rc < 1.0 ); |
120 | | |
121 | | /* Update inverse prediction gain */ |
122 | 1.62M | tmp1 = invGain * ( 1.0 - rc * rc ); |
123 | 1.62M | if( tmp1 <= minInvGain ) { |
124 | | /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ |
125 | 7.55k | rc = sqrt( 1.0 - minInvGain / invGain ); |
126 | 7.55k | if( num > 0 ) { |
127 | | /* Ensure adjusted reflection coefficients has the original sign */ |
128 | 5.85k | rc = -rc; |
129 | 5.85k | } |
130 | 7.55k | invGain = minInvGain; |
131 | 7.55k | reached_max_gain = 1; |
132 | 1.62M | } else { |
133 | 1.62M | invGain = tmp1; |
134 | 1.62M | } |
135 | | |
136 | | /* Update the AR coefficients */ |
137 | 6.38M | for( k = 0; k < (n + 1) >> 1; k++ ) { |
138 | 4.75M | tmp1 = Af[ k ]; |
139 | 4.75M | tmp2 = Af[ n - k - 1 ]; |
140 | 4.75M | Af[ k ] = tmp1 + rc * tmp2; |
141 | 4.75M | Af[ n - k - 1 ] = tmp2 + rc * tmp1; |
142 | 4.75M | } |
143 | 1.62M | Af[ n ] = rc; |
144 | | |
145 | 1.62M | if( reached_max_gain ) { |
146 | | /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ |
147 | 67.9k | for( k = n + 1; k < D; k++ ) { |
148 | 60.3k | Af[ k ] = 0.0; |
149 | 60.3k | } |
150 | 7.55k | break; |
151 | 7.55k | } |
152 | | |
153 | | /* Update C * Af and C * Ab */ |
154 | 13.5M | for( k = 0; k <= n + 1; k++ ) { |
155 | 11.9M | tmp1 = CAf[ k ]; |
156 | 11.9M | CAf[ k ] += rc * CAb[ n - k + 1 ]; |
157 | 11.9M | CAb[ n - k + 1 ] += rc * tmp1; |
158 | 11.9M | } |
159 | 1.62M | } |
160 | | |
161 | 150k | if( reached_max_gain ) { |
162 | | /* Convert to silk_float */ |
163 | 91.8k | for( k = 0; k < D; k++ ) { |
164 | 84.3k | A[ k ] = (silk_float)( -Af[ k ] ); |
165 | 84.3k | } |
166 | | /* Subtract energy of preceding samples from C0 */ |
167 | 30.2k | for( s = 0; s < nb_subfr; s++ ) { |
168 | 22.7k | C0 -= silk_energy_FLP( x + s * subfr_length, D ); |
169 | 22.7k | } |
170 | | /* Approximate residual energy */ |
171 | 7.55k | nrg_f = C0 * invGain; |
172 | 142k | } else { |
173 | | /* Compute residual energy and store coefficients as silk_float */ |
174 | 142k | nrg_f = CAf[ 0 ]; |
175 | 142k | tmp1 = 1.0; |
176 | 1.74M | for( k = 0; k < D; k++ ) { |
177 | 1.60M | Atmp = Af[ k ]; |
178 | 1.60M | nrg_f += CAf[ k + 1 ] * Atmp; |
179 | 1.60M | tmp1 += Atmp * Atmp; |
180 | 1.60M | A[ k ] = (silk_float)(-Atmp); |
181 | 1.60M | } |
182 | 142k | nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1; |
183 | 142k | } |
184 | | |
185 | | /* Return residual energy */ |
186 | 150k | return (silk_float)nrg_f; |
187 | 150k | } |