/src/opus/silk/x86/VAD_sse4_1.c
Line | Count | Source |
1 | | /* Copyright (c) 2014-2020, Cisco Systems, INC |
2 | | Written by XiangMingZhu WeiZhou MinPeng YanWang FrancisQuiers |
3 | | |
4 | | Redistribution and use in source and binary forms, with or without |
5 | | modification, are permitted provided that the following conditions |
6 | | are met: |
7 | | |
8 | | - Redistributions of source code must retain the above copyright |
9 | | notice, this list of conditions and the following disclaimer. |
10 | | |
11 | | - Redistributions in binary form must reproduce the above copyright |
12 | | notice, this list of conditions and the following disclaimer in the |
13 | | documentation and/or other materials provided with the distribution. |
14 | | |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
16 | | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
17 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
18 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
19 | | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
20 | | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
21 | | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
22 | | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
23 | | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
24 | | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
25 | | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | | */ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | #include <xmmintrin.h> |
33 | | #include <emmintrin.h> |
34 | | #include <smmintrin.h> |
35 | | |
36 | | #include "main.h" |
37 | | #include "stack_alloc.h" |
38 | | |
39 | | /* Weighting factors for tilt measure */ |
40 | | static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 }; |
41 | | |
42 | | /***************************************/ |
43 | | /* Get the speech activity level in Q8 */ |
44 | | /***************************************/ |
45 | | opus_int silk_VAD_GetSA_Q8_sse4_1( /* O Return value, 0 if success */ |
46 | | silk_encoder_state *psEncC, /* I/O Encoder state */ |
47 | | const opus_int16 pIn[] /* I PCM input */ |
48 | | ) |
49 | 20.0M | { |
50 | 20.0M | opus_int SA_Q15, pSNR_dB_Q7, input_tilt; |
51 | 20.0M | opus_int decimated_framelength1, decimated_framelength2; |
52 | 20.0M | opus_int decimated_framelength; |
53 | 20.0M | opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s; |
54 | 20.0M | opus_int32 sumSquared, smooth_coef_Q16; |
55 | 20.0M | opus_int16 HPstateTmp; |
56 | 20.0M | VARDECL( opus_int16, X ); |
57 | 20.0M | opus_int32 Xnrg[ VAD_N_BANDS ]; |
58 | 20.0M | opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ]; |
59 | 20.0M | opus_int32 speech_nrg, x_tmp; |
60 | 20.0M | opus_int X_offset[ VAD_N_BANDS ]; |
61 | 20.0M | opus_int ret = 0; |
62 | 20.0M | silk_VAD_state *psSilk_VAD = &psEncC->sVAD; |
63 | | |
64 | 20.0M | SAVE_STACK; |
65 | | |
66 | | #ifdef OPUS_CHECK_ASM |
67 | | silk_encoder_state psEncC_c; |
68 | 19.9M | opus_int ret_c; |
69 | | |
70 | 19.9M | silk_memcpy( &psEncC_c, psEncC, sizeof( psEncC_c ) ); |
71 | | ret_c = silk_VAD_GetSA_Q8_c( &psEncC_c, pIn ); |
72 | | #endif |
73 | | |
74 | | /* Safety checks */ |
75 | 20.0M | silk_assert( VAD_N_BANDS == 4 ); |
76 | 20.0M | celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); |
77 | 20.0M | celt_assert( psEncC->frame_length <= 512 ); |
78 | 20.0M | celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); |
79 | | |
80 | | /***********************/ |
81 | | /* Filter and Decimate */ |
82 | | /***********************/ |
83 | 20.0M | decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 ); |
84 | 20.0M | decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 ); |
85 | 20.0M | decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 ); |
86 | | /* Decimate into 4 bands: |
87 | | 0 L 3L L 3L 5L |
88 | | - -- - -- -- |
89 | | 8 8 2 4 4 |
90 | | |
91 | | [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz | |
92 | | |
93 | | They're arranged to allow the minimal ( frame_length / 4 ) extra |
94 | | scratch space during the downsampling process */ |
95 | 20.0M | X_offset[ 0 ] = 0; |
96 | 20.0M | X_offset[ 1 ] = decimated_framelength + decimated_framelength2; |
97 | 20.0M | X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength; |
98 | 20.0M | X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2; |
99 | 20.0M | ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 ); |
100 | | |
101 | | /* 0-8 kHz to 0-4 kHz and 4-8 kHz */ |
102 | 20.0M | silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ], |
103 | 20.0M | X, &X[ X_offset[ 3 ] ], psEncC->frame_length ); |
104 | | |
105 | | /* 0-4 kHz to 0-2 kHz and 2-4 kHz */ |
106 | 20.0M | silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ], |
107 | 20.0M | X, &X[ X_offset[ 2 ] ], decimated_framelength1 ); |
108 | | |
109 | | /* 0-2 kHz to 0-1 kHz and 1-2 kHz */ |
110 | 20.0M | silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ], |
111 | 20.0M | X, &X[ X_offset[ 1 ] ], decimated_framelength2 ); |
112 | | |
113 | | /*********************************************/ |
114 | | /* HP filter on lowest band (differentiator) */ |
115 | | /*********************************************/ |
116 | 20.0M | X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 ); |
117 | 20.0M | HPstateTmp = X[ decimated_framelength - 1 ]; |
118 | 438M | for( i = decimated_framelength - 1; i > 0; i-- ) { |
119 | 418M | X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 ); |
120 | 418M | X[ i ] -= X[ i - 1 ]; |
121 | 418M | } |
122 | 20.0M | X[ 0 ] -= psSilk_VAD->HPstate; |
123 | 20.0M | psSilk_VAD->HPstate = HPstateTmp; |
124 | | |
125 | | /*************************************/ |
126 | | /* Calculate the energy in each band */ |
127 | | /*************************************/ |
128 | 100M | for( b = 0; b < VAD_N_BANDS; b++ ) { |
129 | | /* Find the decimated framelength in the non-uniformly divided bands */ |
130 | 80.0M | decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) ); |
131 | | |
132 | | /* Split length into subframe lengths */ |
133 | 80.0M | dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 ); |
134 | 80.0M | dec_subframe_offset = 0; |
135 | | |
136 | | /* Compute energy per sub-frame */ |
137 | | /* initialize with summed energy of last subframe */ |
138 | 80.0M | Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ]; |
139 | 400M | for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) { |
140 | 320M | __m128i xmm_X, xmm_acc; |
141 | 320M | sumSquared = 0; |
142 | | |
143 | 320M | xmm_acc = _mm_setzero_si128(); |
144 | | |
145 | 600M | for( i = 0; i < dec_subframe_length - 7; i += 8 ) |
146 | 280M | { |
147 | 280M | xmm_X = _mm_loadu_si128( (__m128i *)(void*)&(X[ X_offset[ b ] + i + dec_subframe_offset ] ) ); |
148 | 280M | xmm_X = _mm_srai_epi16( xmm_X, 3 ); |
149 | 280M | xmm_X = _mm_madd_epi16( xmm_X, xmm_X ); |
150 | 280M | xmm_acc = _mm_add_epi32( xmm_acc, xmm_X ); |
151 | 280M | } |
152 | | |
153 | 320M | xmm_acc = _mm_add_epi32( xmm_acc, _mm_unpackhi_epi64( xmm_acc, xmm_acc ) ); |
154 | 320M | xmm_acc = _mm_add_epi32( xmm_acc, _mm_shufflelo_epi16( xmm_acc, 0x0E ) ); |
155 | | |
156 | 320M | sumSquared += _mm_cvtsi128_si32( xmm_acc ); |
157 | | |
158 | 1.54G | for( ; i < dec_subframe_length; i++ ) { |
159 | | /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */ |
160 | | /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */ |
161 | 1.22G | x_tmp = silk_RSHIFT( |
162 | 1.22G | X[ X_offset[ b ] + i + dec_subframe_offset ], 3 ); |
163 | 1.22G | sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp ); |
164 | | |
165 | | /* Safety check */ |
166 | 1.22G | silk_assert( sumSquared >= 0 ); |
167 | 1.22G | } |
168 | | |
169 | | /* Add/saturate summed energy of current subframe */ |
170 | 320M | if( s < VAD_INTERNAL_SUBFRAMES - 1 ) { |
171 | 240M | Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared ); |
172 | 240M | } else { |
173 | | /* Look-ahead subframe */ |
174 | 80.0M | Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) ); |
175 | 80.0M | } |
176 | | |
177 | 320M | dec_subframe_offset += dec_subframe_length; |
178 | 320M | } |
179 | 80.0M | psSilk_VAD->XnrgSubfr[ b ] = sumSquared; |
180 | 80.0M | } |
181 | | |
182 | | /********************/ |
183 | | /* Noise estimation */ |
184 | | /********************/ |
185 | 20.0M | silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD ); |
186 | | |
187 | | /***********************************************/ |
188 | | /* Signal-plus-noise to noise ratio estimation */ |
189 | | /***********************************************/ |
190 | 113k | sumSquared = 0; |
191 | 113k | input_tilt = 0; |
192 | 100M | for( b = 0; b < VAD_N_BANDS; b++ ) { |
193 | 80.0M | speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ]; |
194 | 80.0M | if( speech_nrg > 0 ) { |
195 | | /* Divide, with sufficient resolution */ |
196 | 2.52M | if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) { |
197 | 1.60M | NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 ); |
198 | 1.60M | } else { |
199 | 924k | NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 ); |
200 | 924k | } |
201 | | |
202 | | /* Convert to log domain */ |
203 | 2.52M | SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128; |
204 | | |
205 | | /* Sum-of-squares */ |
206 | 2.52M | sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */ |
207 | | |
208 | | /* Tilt measure */ |
209 | 2.52M | if( speech_nrg < ( (opus_int32)1 << 20 ) ) { |
210 | | /* Scale down SNR value for small subband speech energies */ |
211 | 1.01M | SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 ); |
212 | 1.01M | } |
213 | 2.52M | input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 ); |
214 | 77.5M | } else { |
215 | 77.5M | NrgToNoiseRatio_Q8[ b ] = 256; |
216 | 77.5M | } |
217 | 80.0M | } |
218 | | |
219 | | /* Mean-of-squares */ |
220 | 20.0M | sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */ |
221 | | |
222 | | /* Root-mean-square approximation, scale to dBs, and write to output pointer */ |
223 | 113k | pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */ |
224 | | |
225 | | /*********************************/ |
226 | | /* Speech Probability Estimation */ |
227 | | /*********************************/ |
228 | 20.0M | SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 ); |
229 | | |
230 | | /**************************/ |
231 | | /* Frequency Tilt Measure */ |
232 | | /**************************/ |
233 | 20.0M | psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 ); |
234 | | |
235 | | /**************************************************/ |
236 | | /* Scale the sigmoid output based on power levels */ |
237 | | /**************************************************/ |
238 | 113k | speech_nrg = 0; |
239 | 100M | for( b = 0; b < VAD_N_BANDS; b++ ) { |
240 | | /* Accumulate signal-without-noise energies, higher frequency bands have more weight */ |
241 | 80.0M | speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 ); |
242 | 80.0M | } |
243 | | |
244 | 20.0M | if( psEncC->frame_length == 20 * psEncC->fs_kHz ) { |
245 | 12.3M | speech_nrg = silk_RSHIFT32( speech_nrg, 1 ); |
246 | 12.3M | } |
247 | | /* Power scaling */ |
248 | 20.0M | if( speech_nrg <= 0 ) { |
249 | 19.3M | SA_Q15 = silk_RSHIFT( SA_Q15, 1 ); |
250 | 19.3M | } else if( speech_nrg < 16384 ) { |
251 | 62.1k | speech_nrg = silk_LSHIFT32( speech_nrg, 16 ); |
252 | | |
253 | | /* square-root */ |
254 | 62.1k | speech_nrg = silk_SQRT_APPROX( speech_nrg ); |
255 | 62.1k | SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 ); |
256 | 62.1k | } |
257 | | |
258 | | /* Copy the resulting speech activity in Q8 */ |
259 | 20.0M | psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX ); |
260 | | |
261 | | /***********************************/ |
262 | | /* Energy Level and SNR estimation */ |
263 | | /***********************************/ |
264 | | /* Smoothing coefficient */ |
265 | 20.0M | smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) ); |
266 | | |
267 | 20.0M | if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { |
268 | 7.70M | smooth_coef_Q16 >>= 1; |
269 | 7.70M | } |
270 | | |
271 | 100M | for( b = 0; b < VAD_N_BANDS; b++ ) { |
272 | | /* compute smoothed energy-to-noise ratio per band */ |
273 | 80.0M | psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ], |
274 | 80.0M | NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 ); |
275 | | |
276 | | /* signal to noise ratio in dB per band */ |
277 | 80.0M | SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 ); |
278 | | /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */ |
279 | 80.0M | psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) ); |
280 | 80.0M | } |
281 | | |
282 | | #ifdef OPUS_CHECK_ASM |
283 | 19.9M | silk_assert( ret == ret_c ); |
284 | 19.9M | silk_assert( !memcmp( &psEncC_c, psEncC, sizeof( psEncC_c ) ) ); |
285 | 19.9M | #endif |
286 | | |
287 | 19.9M | RESTORE_STACK; |
288 | 19.9M | return( ret ); |
289 | 19.9M | } Line | Count | Source | 49 | 19.9M | { | 50 | 19.9M | opus_int SA_Q15, pSNR_dB_Q7, input_tilt; | 51 | 19.9M | opus_int decimated_framelength1, decimated_framelength2; | 52 | 19.9M | opus_int decimated_framelength; | 53 | 19.9M | opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s; | 54 | 19.9M | opus_int32 sumSquared, smooth_coef_Q16; | 55 | 19.9M | opus_int16 HPstateTmp; | 56 | 19.9M | VARDECL( opus_int16, X ); | 57 | 19.9M | opus_int32 Xnrg[ VAD_N_BANDS ]; | 58 | 19.9M | opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ]; | 59 | 19.9M | opus_int32 speech_nrg, x_tmp; | 60 | 19.9M | opus_int X_offset[ VAD_N_BANDS ]; | 61 | 19.9M | opus_int ret = 0; | 62 | 19.9M | silk_VAD_state *psSilk_VAD = &psEncC->sVAD; | 63 | | | 64 | 19.9M | SAVE_STACK; | 65 | | | 66 | 19.9M | #ifdef OPUS_CHECK_ASM | 67 | 19.9M | silk_encoder_state psEncC_c; | 68 | 19.9M | opus_int ret_c; | 69 | | | 70 | 19.9M | silk_memcpy( &psEncC_c, psEncC, sizeof( psEncC_c ) ); | 71 | 19.9M | ret_c = silk_VAD_GetSA_Q8_c( &psEncC_c, pIn ); | 72 | 19.9M | #endif | 73 | | | 74 | | /* Safety checks */ | 75 | 19.9M | silk_assert( VAD_N_BANDS == 4 ); | 76 | 19.9M | celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); | 77 | 19.9M | celt_assert( psEncC->frame_length <= 512 ); | 78 | 19.9M | celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); | 79 | | | 80 | | /***********************/ | 81 | | /* Filter and Decimate */ | 82 | | /***********************/ | 83 | 19.9M | decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 ); | 84 | 19.9M | decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 ); | 85 | 19.9M | decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 ); | 86 | | /* Decimate into 4 bands: | 87 | | 0 L 3L L 3L 5L | 88 | | - -- - -- -- | 89 | | 8 8 2 4 4 | 90 | | | 91 | | [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz | | 92 | | | 93 | | They're arranged to allow the minimal ( frame_length / 4 ) extra | 94 | | scratch space during the downsampling process */ | 95 | 19.9M | X_offset[ 0 ] = 0; | 96 | 19.9M | X_offset[ 1 ] = decimated_framelength + decimated_framelength2; | 97 | 19.9M | X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength; | 98 | 19.9M | X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2; | 99 | 19.9M | ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 ); | 100 | | | 101 | | /* 0-8 kHz to 0-4 kHz and 4-8 kHz */ | 102 | 19.9M | silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ], | 103 | 19.9M | X, &X[ X_offset[ 3 ] ], psEncC->frame_length ); | 104 | | | 105 | | /* 0-4 kHz to 0-2 kHz and 2-4 kHz */ | 106 | 19.9M | silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ], | 107 | 19.9M | X, &X[ X_offset[ 2 ] ], decimated_framelength1 ); | 108 | | | 109 | | /* 0-2 kHz to 0-1 kHz and 1-2 kHz */ | 110 | 19.9M | silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ], | 111 | 19.9M | X, &X[ X_offset[ 1 ] ], decimated_framelength2 ); | 112 | | | 113 | | /*********************************************/ | 114 | | /* HP filter on lowest band (differentiator) */ | 115 | | /*********************************************/ | 116 | 19.9M | X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 ); | 117 | 19.9M | HPstateTmp = X[ decimated_framelength - 1 ]; | 118 | 435M | for( i = decimated_framelength - 1; i > 0; i-- ) { | 119 | 415M | X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 ); | 120 | 415M | X[ i ] -= X[ i - 1 ]; | 121 | 415M | } | 122 | 19.9M | X[ 0 ] -= psSilk_VAD->HPstate; | 123 | 19.9M | psSilk_VAD->HPstate = HPstateTmp; | 124 | | | 125 | | /*************************************/ | 126 | | /* Calculate the energy in each band */ | 127 | | /*************************************/ | 128 | 99.5M | for( b = 0; b < VAD_N_BANDS; b++ ) { | 129 | | /* Find the decimated framelength in the non-uniformly divided bands */ | 130 | 79.6M | decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) ); | 131 | | | 132 | | /* Split length into subframe lengths */ | 133 | 79.6M | dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 ); | 134 | 79.6M | dec_subframe_offset = 0; | 135 | | | 136 | | /* Compute energy per sub-frame */ | 137 | | /* initialize with summed energy of last subframe */ | 138 | 79.6M | Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ]; | 139 | 398M | for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) { | 140 | 318M | __m128i xmm_X, xmm_acc; | 141 | 318M | sumSquared = 0; | 142 | | | 143 | 318M | xmm_acc = _mm_setzero_si128(); | 144 | | | 145 | 597M | for( i = 0; i < dec_subframe_length - 7; i += 8 ) | 146 | 278M | { | 147 | 278M | xmm_X = _mm_loadu_si128( (__m128i *)(void*)&(X[ X_offset[ b ] + i + dec_subframe_offset ] ) ); | 148 | 278M | xmm_X = _mm_srai_epi16( xmm_X, 3 ); | 149 | 278M | xmm_X = _mm_madd_epi16( xmm_X, xmm_X ); | 150 | 278M | xmm_acc = _mm_add_epi32( xmm_acc, xmm_X ); | 151 | 278M | } | 152 | | | 153 | 318M | xmm_acc = _mm_add_epi32( xmm_acc, _mm_unpackhi_epi64( xmm_acc, xmm_acc ) ); | 154 | 318M | xmm_acc = _mm_add_epi32( xmm_acc, _mm_shufflelo_epi16( xmm_acc, 0x0E ) ); | 155 | | | 156 | 318M | sumSquared += _mm_cvtsi128_si32( xmm_acc ); | 157 | | | 158 | 1.53G | for( ; i < dec_subframe_length; i++ ) { | 159 | | /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */ | 160 | | /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */ | 161 | 1.21G | x_tmp = silk_RSHIFT( | 162 | 1.21G | X[ X_offset[ b ] + i + dec_subframe_offset ], 3 ); | 163 | 1.21G | sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp ); | 164 | | | 165 | | /* Safety check */ | 166 | 1.21G | silk_assert( sumSquared >= 0 ); | 167 | 1.21G | } | 168 | | | 169 | | /* Add/saturate summed energy of current subframe */ | 170 | 318M | if( s < VAD_INTERNAL_SUBFRAMES - 1 ) { | 171 | 238M | Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared ); | 172 | 238M | } else { | 173 | | /* Look-ahead subframe */ | 174 | 79.6M | Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) ); | 175 | 79.6M | } | 176 | | | 177 | 318M | dec_subframe_offset += dec_subframe_length; | 178 | 318M | } | 179 | 79.6M | psSilk_VAD->XnrgSubfr[ b ] = sumSquared; | 180 | 79.6M | } | 181 | | | 182 | | /********************/ | 183 | | /* Noise estimation */ | 184 | | /********************/ | 185 | 19.9M | silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD ); | 186 | | | 187 | | /***********************************************/ | 188 | | /* Signal-plus-noise to noise ratio estimation */ | 189 | | /***********************************************/ | 190 | 19.9M | sumSquared = 0; | 191 | 19.9M | input_tilt = 0; | 192 | 99.5M | for( b = 0; b < VAD_N_BANDS; b++ ) { | 193 | 79.6M | speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ]; | 194 | 79.6M | if( speech_nrg > 0 ) { | 195 | | /* Divide, with sufficient resolution */ | 196 | 2.18M | if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) { | 197 | 1.33M | NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 ); | 198 | 1.33M | } else { | 199 | 850k | NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 ); | 200 | 850k | } | 201 | | | 202 | | /* Convert to log domain */ | 203 | 2.18M | SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128; | 204 | | | 205 | | /* Sum-of-squares */ | 206 | 2.18M | sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */ | 207 | | | 208 | | /* Tilt measure */ | 209 | 2.18M | if( speech_nrg < ( (opus_int32)1 << 20 ) ) { | 210 | | /* Scale down SNR value for small subband speech energies */ | 211 | 848k | SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 ); | 212 | 848k | } | 213 | 2.18M | input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 ); | 214 | 77.4M | } else { | 215 | 77.4M | NrgToNoiseRatio_Q8[ b ] = 256; | 216 | 77.4M | } | 217 | 79.6M | } | 218 | | | 219 | | /* Mean-of-squares */ | 220 | 19.9M | sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */ | 221 | | | 222 | | /* Root-mean-square approximation, scale to dBs, and write to output pointer */ | 223 | 19.9M | pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */ | 224 | | | 225 | | /*********************************/ | 226 | | /* Speech Probability Estimation */ | 227 | | /*********************************/ | 228 | 19.9M | SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 ); | 229 | | | 230 | | /**************************/ | 231 | | /* Frequency Tilt Measure */ | 232 | | /**************************/ | 233 | 19.9M | psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 ); | 234 | | | 235 | | /**************************************************/ | 236 | | /* Scale the sigmoid output based on power levels */ | 237 | | /**************************************************/ | 238 | 19.9M | speech_nrg = 0; | 239 | 99.5M | for( b = 0; b < VAD_N_BANDS; b++ ) { | 240 | | /* Accumulate signal-without-noise energies, higher frequency bands have more weight */ | 241 | 79.6M | speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 ); | 242 | 79.6M | } | 243 | | | 244 | 19.9M | if( psEncC->frame_length == 20 * psEncC->fs_kHz ) { | 245 | 12.2M | speech_nrg = silk_RSHIFT32( speech_nrg, 1 ); | 246 | 12.2M | } | 247 | | /* Power scaling */ | 248 | 19.9M | if( speech_nrg <= 0 ) { | 249 | 19.2M | SA_Q15 = silk_RSHIFT( SA_Q15, 1 ); | 250 | 19.2M | } else if( speech_nrg < 16384 ) { | 251 | 50.3k | speech_nrg = silk_LSHIFT32( speech_nrg, 16 ); | 252 | | | 253 | | /* square-root */ | 254 | 50.3k | speech_nrg = silk_SQRT_APPROX( speech_nrg ); | 255 | 50.3k | SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 ); | 256 | 50.3k | } | 257 | | | 258 | | /* Copy the resulting speech activity in Q8 */ | 259 | 19.9M | psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX ); | 260 | | | 261 | | /***********************************/ | 262 | | /* Energy Level and SNR estimation */ | 263 | | /***********************************/ | 264 | | /* Smoothing coefficient */ | 265 | 19.9M | smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) ); | 266 | | | 267 | 19.9M | if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { | 268 | 7.67M | smooth_coef_Q16 >>= 1; | 269 | 7.67M | } | 270 | | | 271 | 99.5M | for( b = 0; b < VAD_N_BANDS; b++ ) { | 272 | | /* compute smoothed energy-to-noise ratio per band */ | 273 | 79.6M | psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ], | 274 | 79.6M | NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 ); | 275 | | | 276 | | /* signal to noise ratio in dB per band */ | 277 | 79.6M | SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 ); | 278 | | /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */ | 279 | 79.6M | psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) ); | 280 | 79.6M | } | 281 | | | 282 | 19.9M | #ifdef OPUS_CHECK_ASM | 283 | 19.9M | silk_assert( ret == ret_c ); | 284 | 19.9M | silk_assert( !memcmp( &psEncC_c, psEncC, sizeof( psEncC_c ) ) ); | 285 | 19.9M | #endif | 286 | | | 287 | 19.9M | RESTORE_STACK; | 288 | 19.9M | return( ret ); | 289 | 19.9M | } |
Line | Count | Source | 49 | 113k | { | 50 | 113k | opus_int SA_Q15, pSNR_dB_Q7, input_tilt; | 51 | 113k | opus_int decimated_framelength1, decimated_framelength2; | 52 | 113k | opus_int decimated_framelength; | 53 | 113k | opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s; | 54 | 113k | opus_int32 sumSquared, smooth_coef_Q16; | 55 | 113k | opus_int16 HPstateTmp; | 56 | 113k | VARDECL( opus_int16, X ); | 57 | 113k | opus_int32 Xnrg[ VAD_N_BANDS ]; | 58 | 113k | opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ]; | 59 | 113k | opus_int32 speech_nrg, x_tmp; | 60 | 113k | opus_int X_offset[ VAD_N_BANDS ]; | 61 | 113k | opus_int ret = 0; | 62 | 113k | silk_VAD_state *psSilk_VAD = &psEncC->sVAD; | 63 | | | 64 | 113k | SAVE_STACK; | 65 | | | 66 | | #ifdef OPUS_CHECK_ASM | 67 | | silk_encoder_state psEncC_c; | 68 | | opus_int ret_c; | 69 | | | 70 | | silk_memcpy( &psEncC_c, psEncC, sizeof( psEncC_c ) ); | 71 | | ret_c = silk_VAD_GetSA_Q8_c( &psEncC_c, pIn ); | 72 | | #endif | 73 | | | 74 | | /* Safety checks */ | 75 | 113k | silk_assert( VAD_N_BANDS == 4 ); | 76 | 113k | celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); | 77 | 113k | celt_assert( psEncC->frame_length <= 512 ); | 78 | 113k | celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); | 79 | | | 80 | | /***********************/ | 81 | | /* Filter and Decimate */ | 82 | | /***********************/ | 83 | 113k | decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 ); | 84 | 113k | decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 ); | 85 | 113k | decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 ); | 86 | | /* Decimate into 4 bands: | 87 | | 0 L 3L L 3L 5L | 88 | | - -- - -- -- | 89 | | 8 8 2 4 4 | 90 | | | 91 | | [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz | | 92 | | | 93 | | They're arranged to allow the minimal ( frame_length / 4 ) extra | 94 | | scratch space during the downsampling process */ | 95 | 113k | X_offset[ 0 ] = 0; | 96 | 113k | X_offset[ 1 ] = decimated_framelength + decimated_framelength2; | 97 | 113k | X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength; | 98 | 113k | X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2; | 99 | 113k | ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 ); | 100 | | | 101 | | /* 0-8 kHz to 0-4 kHz and 4-8 kHz */ | 102 | 113k | silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ], | 103 | 113k | X, &X[ X_offset[ 3 ] ], psEncC->frame_length ); | 104 | | | 105 | | /* 0-4 kHz to 0-2 kHz and 2-4 kHz */ | 106 | 113k | silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ], | 107 | 113k | X, &X[ X_offset[ 2 ] ], decimated_framelength1 ); | 108 | | | 109 | | /* 0-2 kHz to 0-1 kHz and 1-2 kHz */ | 110 | 113k | silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ], | 111 | 113k | X, &X[ X_offset[ 1 ] ], decimated_framelength2 ); | 112 | | | 113 | | /*********************************************/ | 114 | | /* HP filter on lowest band (differentiator) */ | 115 | | /*********************************************/ | 116 | 113k | X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 ); | 117 | 113k | HPstateTmp = X[ decimated_framelength - 1 ]; | 118 | 2.49M | for( i = decimated_framelength - 1; i > 0; i-- ) { | 119 | 2.37M | X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 ); | 120 | 2.37M | X[ i ] -= X[ i - 1 ]; | 121 | 2.37M | } | 122 | 113k | X[ 0 ] -= psSilk_VAD->HPstate; | 123 | 113k | psSilk_VAD->HPstate = HPstateTmp; | 124 | | | 125 | | /*************************************/ | 126 | | /* Calculate the energy in each band */ | 127 | | /*************************************/ | 128 | 567k | for( b = 0; b < VAD_N_BANDS; b++ ) { | 129 | | /* Find the decimated framelength in the non-uniformly divided bands */ | 130 | 453k | decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) ); | 131 | | | 132 | | /* Split length into subframe lengths */ | 133 | 453k | dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 ); | 134 | 453k | dec_subframe_offset = 0; | 135 | | | 136 | | /* Compute energy per sub-frame */ | 137 | | /* initialize with summed energy of last subframe */ | 138 | 453k | Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ]; | 139 | 2.26M | for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) { | 140 | 1.81M | __m128i xmm_X, xmm_acc; | 141 | 1.81M | sumSquared = 0; | 142 | | | 143 | 1.81M | xmm_acc = _mm_setzero_si128(); | 144 | | | 145 | 3.45M | for( i = 0; i < dec_subframe_length - 7; i += 8 ) | 146 | 1.63M | { | 147 | 1.63M | xmm_X = _mm_loadu_si128( (__m128i *)(void*)&(X[ X_offset[ b ] + i + dec_subframe_offset ] ) ); | 148 | 1.63M | xmm_X = _mm_srai_epi16( xmm_X, 3 ); | 149 | 1.63M | xmm_X = _mm_madd_epi16( xmm_X, xmm_X ); | 150 | 1.63M | xmm_acc = _mm_add_epi32( xmm_acc, xmm_X ); | 151 | 1.63M | } | 152 | | | 153 | 1.81M | xmm_acc = _mm_add_epi32( xmm_acc, _mm_unpackhi_epi64( xmm_acc, xmm_acc ) ); | 154 | 1.81M | xmm_acc = _mm_add_epi32( xmm_acc, _mm_shufflelo_epi16( xmm_acc, 0x0E ) ); | 155 | | | 156 | 1.81M | sumSquared += _mm_cvtsi128_si32( xmm_acc ); | 157 | | | 158 | 8.51M | for( ; i < dec_subframe_length; i++ ) { | 159 | | /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */ | 160 | | /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */ | 161 | 6.69M | x_tmp = silk_RSHIFT( | 162 | 6.69M | X[ X_offset[ b ] + i + dec_subframe_offset ], 3 ); | 163 | 6.69M | sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp ); | 164 | | | 165 | | /* Safety check */ | 166 | 6.69M | silk_assert( sumSquared >= 0 ); | 167 | 6.69M | } | 168 | | | 169 | | /* Add/saturate summed energy of current subframe */ | 170 | 1.81M | if( s < VAD_INTERNAL_SUBFRAMES - 1 ) { | 171 | 1.36M | Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared ); | 172 | 1.36M | } else { | 173 | | /* Look-ahead subframe */ | 174 | 453k | Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) ); | 175 | 453k | } | 176 | | | 177 | 1.81M | dec_subframe_offset += dec_subframe_length; | 178 | 1.81M | } | 179 | 453k | psSilk_VAD->XnrgSubfr[ b ] = sumSquared; | 180 | 453k | } | 181 | | | 182 | | /********************/ | 183 | | /* Noise estimation */ | 184 | | /********************/ | 185 | 113k | silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD ); | 186 | | | 187 | | /***********************************************/ | 188 | | /* Signal-plus-noise to noise ratio estimation */ | 189 | | /***********************************************/ | 190 | 113k | sumSquared = 0; | 191 | 113k | input_tilt = 0; | 192 | 567k | for( b = 0; b < VAD_N_BANDS; b++ ) { | 193 | 453k | speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ]; | 194 | 453k | if( speech_nrg > 0 ) { | 195 | | /* Divide, with sufficient resolution */ | 196 | 338k | if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) { | 197 | 264k | NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 ); | 198 | 264k | } else { | 199 | 74.0k | NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 ); | 200 | 74.0k | } | 201 | | | 202 | | /* Convert to log domain */ | 203 | 338k | SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128; | 204 | | | 205 | | /* Sum-of-squares */ | 206 | 338k | sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */ | 207 | | | 208 | | /* Tilt measure */ | 209 | 338k | if( speech_nrg < ( (opus_int32)1 << 20 ) ) { | 210 | | /* Scale down SNR value for small subband speech energies */ | 211 | 168k | SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 ); | 212 | 168k | } | 213 | 338k | input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 ); | 214 | 338k | } else { | 215 | 115k | NrgToNoiseRatio_Q8[ b ] = 256; | 216 | 115k | } | 217 | 453k | } | 218 | | | 219 | | /* Mean-of-squares */ | 220 | 113k | sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */ | 221 | | | 222 | | /* Root-mean-square approximation, scale to dBs, and write to output pointer */ | 223 | 113k | pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */ | 224 | | | 225 | | /*********************************/ | 226 | | /* Speech Probability Estimation */ | 227 | | /*********************************/ | 228 | 113k | SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 ); | 229 | | | 230 | | /**************************/ | 231 | | /* Frequency Tilt Measure */ | 232 | | /**************************/ | 233 | 113k | psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 ); | 234 | | | 235 | | /**************************************************/ | 236 | | /* Scale the sigmoid output based on power levels */ | 237 | | /**************************************************/ | 238 | 113k | speech_nrg = 0; | 239 | 567k | for( b = 0; b < VAD_N_BANDS; b++ ) { | 240 | | /* Accumulate signal-without-noise energies, higher frequency bands have more weight */ | 241 | 453k | speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 ); | 242 | 453k | } | 243 | | | 244 | 113k | if( psEncC->frame_length == 20 * psEncC->fs_kHz ) { | 245 | 86.2k | speech_nrg = silk_RSHIFT32( speech_nrg, 1 ); | 246 | 86.2k | } | 247 | | /* Power scaling */ | 248 | 113k | if( speech_nrg <= 0 ) { | 249 | 21.3k | SA_Q15 = silk_RSHIFT( SA_Q15, 1 ); | 250 | 92.1k | } else if( speech_nrg < 16384 ) { | 251 | 11.8k | speech_nrg = silk_LSHIFT32( speech_nrg, 16 ); | 252 | | | 253 | | /* square-root */ | 254 | 11.8k | speech_nrg = silk_SQRT_APPROX( speech_nrg ); | 255 | 11.8k | SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 ); | 256 | 11.8k | } | 257 | | | 258 | | /* Copy the resulting speech activity in Q8 */ | 259 | 113k | psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX ); | 260 | | | 261 | | /***********************************/ | 262 | | /* Energy Level and SNR estimation */ | 263 | | /***********************************/ | 264 | | /* Smoothing coefficient */ | 265 | 113k | smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) ); | 266 | | | 267 | 113k | if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { | 268 | 27.1k | smooth_coef_Q16 >>= 1; | 269 | 27.1k | } | 270 | | | 271 | 567k | for( b = 0; b < VAD_N_BANDS; b++ ) { | 272 | | /* compute smoothed energy-to-noise ratio per band */ | 273 | 453k | psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ], | 274 | 453k | NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 ); | 275 | | | 276 | | /* signal to noise ratio in dB per band */ | 277 | 453k | SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 ); | 278 | | /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */ | 279 | 453k | psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) ); | 280 | 453k | } | 281 | | | 282 | | #ifdef OPUS_CHECK_ASM | 283 | | silk_assert( ret == ret_c ); | 284 | | silk_assert( !memcmp( &psEncC_c, psEncC, sizeof( psEncC_c ) ) ); | 285 | | #endif | 286 | | | 287 | 113k | RESTORE_STACK; | 288 | 113k | return( ret ); | 289 | 113k | } |
|