Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (c) 2007-2008 CSIRO |
2 | | Copyright (c) 2007-2009 Xiph.Org Foundation |
3 | | Copyright (c) 2008-2009 Gregory Maxwell |
4 | | Written by Jean-Marc Valin and Gregory Maxwell */ |
5 | | /* |
6 | | Redistribution and use in source and binary forms, with or without |
7 | | modification, are permitted provided that the following conditions |
8 | | are met: |
9 | | |
10 | | - Redistributions of source code must retain the above copyright |
11 | | notice, this list of conditions and the following disclaimer. |
12 | | |
13 | | - Redistributions in binary form must reproduce the above copyright |
14 | | notice, this list of conditions and the following disclaimer in the |
15 | | documentation and/or other materials provided with the distribution. |
16 | | |
17 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
18 | | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
19 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
20 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
21 | | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
22 | | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
23 | | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
24 | | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
25 | | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
26 | | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
27 | | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | |
30 | | #ifdef HAVE_CONFIG_H |
31 | | #include "config.h" |
32 | | #endif |
33 | | |
34 | | #include <math.h> |
35 | | #include "bands.h" |
36 | | #include "modes.h" |
37 | | #include "vq.h" |
38 | | #include "cwrs.h" |
39 | | #include "stack_alloc.h" |
40 | | #include "os_support.h" |
41 | | #include "mathops.h" |
42 | | #include "rate.h" |
43 | | #include "quant_bands.h" |
44 | | #include "pitch.h" |
45 | | |
46 | | #ifndef M_PI |
47 | | #define M_PI 3.141592653 |
48 | | #endif |
49 | | |
50 | | int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev) |
51 | 108k | { |
52 | 108k | int i; |
53 | 1.39M | for (i=0;i<N;i++) |
54 | 1.39M | { |
55 | 1.39M | if (val < thresholds[i]) |
56 | 107k | break; |
57 | 1.39M | } |
58 | 108k | if (i>prev && val < thresholds[prev]+hysteresis[prev]) |
59 | 1.05k | i=prev; |
60 | 108k | if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1]) |
61 | 699 | i=prev; |
62 | 108k | return i; |
63 | 108k | } |
64 | | |
65 | | opus_uint32 celt_lcg_rand(opus_uint32 seed) |
66 | 47.0M | { |
67 | 47.0M | return 1664525 * seed + 1013904223; |
68 | 47.0M | } |
69 | | |
70 | | /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness |
71 | | with this approximation is important because it has an impact on the bit allocation */ |
72 | | opus_int16 bitexact_cos(opus_int16 x) |
73 | 5.33M | { |
74 | 5.33M | opus_int32 tmp; |
75 | 5.33M | opus_int16 x2; |
76 | 5.33M | tmp = (4096+((opus_int32)(x)*(x)))>>13; |
77 | 5.33M | celt_sig_assert(tmp<=32767); |
78 | 5.33M | x2 = tmp; |
79 | 5.33M | x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); |
80 | 5.33M | celt_sig_assert(x2<=32766); |
81 | 5.33M | return 1+x2; |
82 | 5.33M | } |
83 | | |
84 | | int bitexact_log2tan(int isin,int icos) |
85 | 2.66M | { |
86 | 2.66M | int lc; |
87 | 2.66M | int ls; |
88 | 2.66M | lc=EC_ILOG(icos); |
89 | 2.66M | ls=EC_ILOG(isin); |
90 | 2.66M | icos<<=15-lc; |
91 | 2.66M | isin<<=15-ls; |
92 | 2.66M | return (ls-lc)*(1<<11) |
93 | 2.66M | +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932) |
94 | 2.66M | -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932); |
95 | 2.66M | } |
96 | | |
97 | | #ifdef FIXED_POINT |
98 | | /* Compute the amplitude (sqrt energy) in each of the bands */ |
99 | | void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch) |
100 | 238k | { |
101 | 238k | int i, c, N; |
102 | 238k | const opus_int16 *eBands = m->eBands; |
103 | 238k | (void)arch; |
104 | 238k | N = m->shortMdctSize<<LM; |
105 | 318k | c=0; do { |
106 | 5.12M | for (i=0;i<end;i++) |
107 | 4.80M | { |
108 | 4.80M | int j; |
109 | 4.80M | opus_val32 maxval=0; |
110 | 4.80M | opus_val32 sum = 0; |
111 | | |
112 | 4.80M | maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); |
113 | 4.80M | if (maxval > 0) |
114 | 3.97M | { |
115 | 3.97M | int shift = IMAX(0, 30 - celt_ilog2(maxval+(maxval>>14)+1) - ((((m->logN[i]+7)>>BITRES)+LM+1)>>1)); |
116 | 41.9M | j=eBands[i]<<LM; do { |
117 | 41.9M | opus_val32 x = SHL32(X[j+c*N],shift); |
118 | 41.9M | sum = ADD32(sum, MULT32_32_Q31(x, x)); |
119 | 41.9M | } while (++j<eBands[i+1]<<LM); |
120 | 3.97M | bandE[i+c*m->nbEBands] = MAX32(maxval, PSHR32(celt_sqrt32(SHR32(sum,1)), shift)); |
121 | 3.97M | } else { |
122 | 825k | bandE[i+c*m->nbEBands] = EPSILON; |
123 | 825k | } |
124 | 4.80M | } |
125 | 318k | } while (++c<C); |
126 | 238k | } |
127 | | |
128 | | /* Normalise each band such that the energy is one. */ |
129 | | void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
130 | 178k | { |
131 | 178k | int i, c, N; |
132 | 178k | const opus_int16 *eBands = m->eBands; |
133 | 178k | N = M*m->shortMdctSize; |
134 | 239k | c=0; do { |
135 | 3.51M | i=0; do { |
136 | 3.51M | int j,shift; |
137 | 3.51M | opus_val32 E; |
138 | 3.51M | opus_val32 g; |
139 | 3.51M | E = bandE[i+c*m->nbEBands]; |
140 | | /* For very low energies, we need this to make sure not to prevent energy rounding from |
141 | | blowing up the normalized signal. */ |
142 | 3.51M | if (E < 10) E += EPSILON; |
143 | 3.51M | shift = 30-celt_zlog2(E); |
144 | 3.51M | E = SHL32(E, shift); |
145 | 3.51M | g = celt_rcp_norm32(E); |
146 | 32.2M | j=M*eBands[i]; do { |
147 | 32.2M | X[j+c*N] = PSHR32(MULT32_32_Q31(g, SHL32(freq[j+c*N], shift)), 30-NORM_SHIFT); |
148 | 32.2M | } while (++j<M*eBands[i+1]); |
149 | 3.51M | } while (++i<end); |
150 | 239k | } while (++c<C); |
151 | 178k | } |
152 | | |
153 | | #else /* FIXED_POINT */ |
154 | | /* Compute the amplitude (sqrt energy) in each of the bands */ |
155 | | void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch) |
156 | 205k | { |
157 | 205k | int i, c, N; |
158 | 205k | const opus_int16 *eBands = m->eBands; |
159 | 205k | N = m->shortMdctSize<<LM; |
160 | 268k | c=0; do { |
161 | 4.35M | for (i=0;i<end;i++) |
162 | 4.09M | { |
163 | 4.09M | opus_val32 sum; |
164 | 4.09M | sum = 1e-27f + celt_inner_prod(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM, arch); |
165 | 4.09M | bandE[i+c*m->nbEBands] = celt_sqrt(sum); |
166 | | /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
167 | 4.09M | } |
168 | 268k | } while (++c<C); |
169 | | /*printf ("\n");*/ |
170 | 205k | } |
171 | | |
172 | | /* Normalise each band such that the energy is one. */ |
173 | | void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
174 | 159k | { |
175 | 159k | int i, c, N; |
176 | 159k | const opus_int16 *eBands = m->eBands; |
177 | 159k | N = M*m->shortMdctSize; |
178 | 207k | c=0; do { |
179 | 3.29M | for (i=0;i<end;i++) |
180 | 3.09M | { |
181 | 3.09M | int j; |
182 | 3.09M | opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); |
183 | 34.4M | for (j=M*eBands[i];j<M*eBands[i+1];j++) |
184 | 31.3M | X[j+c*N] = freq[j+c*N]*g; |
185 | 3.09M | } |
186 | 207k | } while (++c<C); |
187 | 159k | } |
188 | | |
189 | | #endif /* FIXED_POINT */ |
190 | | |
191 | | /* De-normalise the energy to produce the synthesis from the unit-energy bands */ |
192 | | void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, |
193 | | celt_sig * OPUS_RESTRICT freq, const celt_glog *bandLogE, int start, |
194 | | int end, int M, int downsample, int silence) |
195 | 453k | { |
196 | 453k | int i, N; |
197 | 453k | int bound; |
198 | 453k | celt_sig * OPUS_RESTRICT f; |
199 | 453k | const celt_norm * OPUS_RESTRICT x; |
200 | 453k | const opus_int16 *eBands = m->eBands; |
201 | 453k | N = M*m->shortMdctSize; |
202 | 453k | bound = M*eBands[end]; |
203 | 453k | if (downsample!=1) |
204 | 285k | bound = IMIN(bound, N/downsample); |
205 | 453k | if (silence) |
206 | 58.2k | { |
207 | 58.2k | bound = 0; |
208 | 58.2k | start = end = 0; |
209 | 58.2k | } |
210 | 453k | f = freq; |
211 | 453k | x = X+M*eBands[start]; |
212 | 453k | if (start != 0) |
213 | 64.0k | { |
214 | 11.8M | for (i=0;i<M*eBands[start];i++) |
215 | 11.7M | *f++ = 0; |
216 | 389k | } else { |
217 | 389k | f += M*eBands[start]; |
218 | 389k | } |
219 | 6.41M | for (i=start;i<end;i++) |
220 | 5.96M | { |
221 | 5.96M | int j, band_end; |
222 | 5.96M | opus_val32 g; |
223 | 5.96M | celt_glog lg; |
224 | | #ifdef FIXED_POINT |
225 | | int shift; |
226 | | #endif |
227 | 5.96M | j=M*eBands[i]; |
228 | 5.96M | band_end = M*eBands[i+1]; |
229 | 5.96M | lg = ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],DB_SHIFT-4)); |
230 | | #ifndef FIXED_POINT |
231 | 2.52M | g = celt_exp2_db(MIN32(32.f, lg)); |
232 | | #else |
233 | | /* Handle the integer part of the log energy */ |
234 | 3.44M | shift = 17-(lg>>DB_SHIFT); |
235 | 3.44M | if (shift>=31) |
236 | 61.5k | { |
237 | 61.5k | shift=0; |
238 | 61.5k | g=0; |
239 | 3.38M | } else { |
240 | | /* Handle the fractional part. */ |
241 | 3.38M | g = SHL32(celt_exp2_db_frac((lg&((1<<DB_SHIFT)-1))), 2); |
242 | 3.38M | } |
243 | | /* Handle extreme gains with negative shift. */ |
244 | 3.44M | if (shift<0) |
245 | 41.1k | { |
246 | | /* To avoid overflow, we're |
247 | | capping the gain here, which is equivalent to a cap of 18 on lg. |
248 | | This shouldn't trigger unless the bitstream is already corrupted. */ |
249 | 41.1k | g = 2147483647; |
250 | 41.1k | shift = 0; |
251 | 41.1k | } |
252 | | #endif |
253 | 60.6M | do { |
254 | 60.6M | *f++ = PSHR32(MULT32_32_Q31(SHL32(*x, 30-NORM_SHIFT), g), shift); |
255 | 60.6M | x++; |
256 | 60.6M | } while (++j<band_end); |
257 | 5.96M | } |
258 | 453k | celt_assert(start <= end); |
259 | 453k | OPUS_CLEAR(&freq[bound], N-bound); |
260 | 453k | } Line | Count | Source | 195 | 247k | { | 196 | 247k | int i, N; | 197 | 247k | int bound; | 198 | 247k | celt_sig * OPUS_RESTRICT f; | 199 | 247k | const celt_norm * OPUS_RESTRICT x; | 200 | 247k | const opus_int16 *eBands = m->eBands; | 201 | 247k | N = M*m->shortMdctSize; | 202 | 247k | bound = M*eBands[end]; | 203 | 247k | if (downsample!=1) | 204 | 147k | bound = IMIN(bound, N/downsample); | 205 | 247k | if (silence) | 206 | 25.7k | { | 207 | 25.7k | bound = 0; | 208 | 25.7k | start = end = 0; | 209 | 25.7k | } | 210 | 247k | f = freq; | 211 | 247k | x = X+M*eBands[start]; | 212 | 247k | if (start != 0) | 213 | 31.3k | { | 214 | 5.68M | for (i=0;i<M*eBands[start];i++) | 215 | 5.65M | *f++ = 0; | 216 | 216k | } else { | 217 | 216k | f += M*eBands[start]; | 218 | 216k | } | 219 | 3.69M | for (i=start;i<end;i++) | 220 | 3.44M | { | 221 | 3.44M | int j, band_end; | 222 | 3.44M | opus_val32 g; | 223 | 3.44M | celt_glog lg; | 224 | 3.44M | #ifdef FIXED_POINT | 225 | 3.44M | int shift; | 226 | 3.44M | #endif | 227 | 3.44M | j=M*eBands[i]; | 228 | 3.44M | band_end = M*eBands[i+1]; | 229 | 3.44M | lg = ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],DB_SHIFT-4)); | 230 | | #ifndef FIXED_POINT | 231 | | g = celt_exp2_db(MIN32(32.f, lg)); | 232 | | #else | 233 | | /* Handle the integer part of the log energy */ | 234 | 3.44M | shift = 17-(lg>>DB_SHIFT); | 235 | 3.44M | if (shift>=31) | 236 | 61.5k | { | 237 | 61.5k | shift=0; | 238 | 61.5k | g=0; | 239 | 3.38M | } else { | 240 | | /* Handle the fractional part. */ | 241 | 3.38M | g = SHL32(celt_exp2_db_frac((lg&((1<<DB_SHIFT)-1))), 2); | 242 | 3.38M | } | 243 | | /* Handle extreme gains with negative shift. */ | 244 | 3.44M | if (shift<0) | 245 | 41.1k | { | 246 | | /* To avoid overflow, we're | 247 | | capping the gain here, which is equivalent to a cap of 18 on lg. | 248 | | This shouldn't trigger unless the bitstream is already corrupted. */ | 249 | 41.1k | g = 2147483647; | 250 | 41.1k | shift = 0; | 251 | 41.1k | } | 252 | 3.44M | #endif | 253 | 32.6M | do { | 254 | 32.6M | *f++ = PSHR32(MULT32_32_Q31(SHL32(*x, 30-NORM_SHIFT), g), shift); | 255 | 32.6M | x++; | 256 | 32.6M | } while (++j<band_end); | 257 | 3.44M | } | 258 | 247k | celt_assert(start <= end); | 259 | 247k | OPUS_CLEAR(&freq[bound], N-bound); | 260 | 247k | } |
Line | Count | Source | 195 | 205k | { | 196 | 205k | int i, N; | 197 | 205k | int bound; | 198 | 205k | celt_sig * OPUS_RESTRICT f; | 199 | 205k | const celt_norm * OPUS_RESTRICT x; | 200 | 205k | const opus_int16 *eBands = m->eBands; | 201 | 205k | N = M*m->shortMdctSize; | 202 | 205k | bound = M*eBands[end]; | 203 | 205k | if (downsample!=1) | 204 | 138k | bound = IMIN(bound, N/downsample); | 205 | 205k | if (silence) | 206 | 32.5k | { | 207 | 32.5k | bound = 0; | 208 | 32.5k | start = end = 0; | 209 | 32.5k | } | 210 | 205k | f = freq; | 211 | 205k | x = X+M*eBands[start]; | 212 | 205k | if (start != 0) | 213 | 32.6k | { | 214 | 6.12M | for (i=0;i<M*eBands[start];i++) | 215 | 6.09M | *f++ = 0; | 216 | 173k | } else { | 217 | 173k | f += M*eBands[start]; | 218 | 173k | } | 219 | 2.72M | for (i=start;i<end;i++) | 220 | 2.52M | { | 221 | 2.52M | int j, band_end; | 222 | 2.52M | opus_val32 g; | 223 | 2.52M | celt_glog lg; | 224 | | #ifdef FIXED_POINT | 225 | | int shift; | 226 | | #endif | 227 | 2.52M | j=M*eBands[i]; | 228 | 2.52M | band_end = M*eBands[i+1]; | 229 | 2.52M | lg = ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],DB_SHIFT-4)); | 230 | 2.52M | #ifndef FIXED_POINT | 231 | 2.52M | g = celt_exp2_db(MIN32(32.f, lg)); | 232 | | #else | 233 | | /* Handle the integer part of the log energy */ | 234 | | shift = 17-(lg>>DB_SHIFT); | 235 | | if (shift>=31) | 236 | | { | 237 | | shift=0; | 238 | | g=0; | 239 | | } else { | 240 | | /* Handle the fractional part. */ | 241 | | g = SHL32(celt_exp2_db_frac((lg&((1<<DB_SHIFT)-1))), 2); | 242 | | } | 243 | | /* Handle extreme gains with negative shift. */ | 244 | | if (shift<0) | 245 | | { | 246 | | /* To avoid overflow, we're | 247 | | capping the gain here, which is equivalent to a cap of 18 on lg. | 248 | | This shouldn't trigger unless the bitstream is already corrupted. */ | 249 | | g = 2147483647; | 250 | | shift = 0; | 251 | | } | 252 | | #endif | 253 | 28.0M | do { | 254 | 28.0M | *f++ = PSHR32(MULT32_32_Q31(SHL32(*x, 30-NORM_SHIFT), g), shift); | 255 | 28.0M | x++; | 256 | 28.0M | } while (++j<band_end); | 257 | 2.52M | } | 258 | 205k | celt_assert(start <= end); | 259 | 205k | OPUS_CLEAR(&freq[bound], N-bound); | 260 | 205k | } |
|
261 | | |
262 | | /* This prevents energy collapse for transients with multiple short MDCTs */ |
263 | | void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, |
264 | | int start, int end, const celt_glog *logE, const celt_glog *prev1logE, |
265 | | const celt_glog *prev2logE, const int *pulses, opus_uint32 seed, int encode, int arch) |
266 | 6.38k | { |
267 | 6.38k | int c, i, j, k; |
268 | 108k | for (i=start;i<end;i++) |
269 | 102k | { |
270 | 102k | int N0; |
271 | 102k | opus_val16 thresh, sqrt_1; |
272 | 102k | int depth; |
273 | | #ifdef FIXED_POINT |
274 | | int shift; |
275 | | opus_val32 thresh32; |
276 | | #endif |
277 | | |
278 | 102k | N0 = m->eBands[i+1]-m->eBands[i]; |
279 | | /* depth in 1/8 bits */ |
280 | 102k | celt_sig_assert(pulses[i]>=0); |
281 | 102k | depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; |
282 | | |
283 | | #ifdef FIXED_POINT |
284 | 54.8k | thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); |
285 | 54.8k | thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); |
286 | | { |
287 | | opus_val32 t; |
288 | | t = N0<<LM; |
289 | | shift = celt_ilog2(t)>>1; |
290 | 54.8k | t = SHL32(t, (7-shift)<<1); |
291 | | sqrt_1 = celt_rsqrt_norm(t); |
292 | | } |
293 | | #else |
294 | | thresh = .5f*celt_exp2(-.125f*depth); |
295 | 47.6k | sqrt_1 = celt_rsqrt(N0<<LM); |
296 | | #endif |
297 | | |
298 | 102k | c=0; do |
299 | 179k | { |
300 | 179k | celt_norm *X; |
301 | 179k | celt_glog prev1; |
302 | 179k | celt_glog prev2; |
303 | 179k | opus_val32 Ediff; |
304 | 179k | celt_norm r; |
305 | 179k | int renormalize=0; |
306 | 179k | prev1 = prev1logE[c*m->nbEBands+i]; |
307 | 179k | prev2 = prev2logE[c*m->nbEBands+i]; |
308 | 179k | if (!encode && C==1) |
309 | 25.9k | { |
310 | 25.9k | prev1 = MAXG(prev1,prev1logE[m->nbEBands+i]); |
311 | 25.9k | prev2 = MAXG(prev2,prev2logE[m->nbEBands+i]); |
312 | 25.9k | } |
313 | 179k | Ediff = logE[c*m->nbEBands+i]-MING(prev1,prev2); |
314 | 179k | Ediff = MAX32(0, Ediff); |
315 | | |
316 | | #ifdef FIXED_POINT |
317 | 94.6k | if (Ediff < GCONST(16.f)) |
318 | 15.4k | { |
319 | 15.4k | opus_val32 r32 = SHR32(celt_exp2_db(-Ediff),1); |
320 | 15.4k | r = 2*MIN16(16383,r32); |
321 | 79.2k | } else { |
322 | 79.2k | r = 0; |
323 | 79.2k | } |
324 | 94.6k | if (LM==3) |
325 | 16.5k | r = MULT16_16_Q14(23170, MIN32(23169, r)); |
326 | 94.6k | r = SHR16(MIN16(thresh, r),1); |
327 | 94.6k | r = VSHR32(MULT16_16_Q15(sqrt_1, r),shift+14-NORM_SHIFT); |
328 | | #else |
329 | | /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because |
330 | | short blocks don't have the same energy as long */ |
331 | 84.4k | r = 2.f*celt_exp2_db(-Ediff); |
332 | 84.4k | if (LM==3) |
333 | 14.9k | r *= 1.41421356f; |
334 | 84.4k | r = MIN16(thresh, r); |
335 | | r = r*sqrt_1; |
336 | | #endif |
337 | 179k | X = X_+c*size+(m->eBands[i]<<LM); |
338 | 1.02M | for (k=0;k<1<<LM;k++) |
339 | 841k | { |
340 | | /* Detect collapse */ |
341 | 841k | if (!(collapse_masks[i*C+c]&1<<k)) |
342 | 91.4k | { |
343 | | /* Fill with noise */ |
344 | 354k | for (j=0;j<N0;j++) |
345 | 262k | { |
346 | 262k | seed = celt_lcg_rand(seed); |
347 | 262k | X[(j<<LM)+k] = (seed&0x8000 ? r : -r); |
348 | 262k | } |
349 | 91.4k | renormalize = 1; |
350 | 91.4k | } |
351 | 841k | } |
352 | | /* We just added some energy, so we need to renormalise */ |
353 | 179k | if (renormalize) |
354 | 33.7k | renormalise_vector(X, N0<<LM, Q31ONE, arch); |
355 | 179k | } while (++c<C); |
356 | 102k | } |
357 | 6.38k | } Line | Count | Source | 266 | 3.40k | { | 267 | 3.40k | int c, i, j, k; | 268 | 58.2k | for (i=start;i<end;i++) | 269 | 54.8k | { | 270 | 54.8k | int N0; | 271 | 54.8k | opus_val16 thresh, sqrt_1; | 272 | 54.8k | int depth; | 273 | 54.8k | #ifdef FIXED_POINT | 274 | 54.8k | int shift; | 275 | 54.8k | opus_val32 thresh32; | 276 | 54.8k | #endif | 277 | | | 278 | 54.8k | N0 = m->eBands[i+1]-m->eBands[i]; | 279 | | /* depth in 1/8 bits */ | 280 | 54.8k | celt_sig_assert(pulses[i]>=0); | 281 | 54.8k | depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; | 282 | | | 283 | 54.8k | #ifdef FIXED_POINT | 284 | 54.8k | thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); | 285 | 54.8k | thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); | 286 | 54.8k | { | 287 | 54.8k | opus_val32 t; | 288 | 54.8k | t = N0<<LM; | 289 | 54.8k | shift = celt_ilog2(t)>>1; | 290 | 54.8k | t = SHL32(t, (7-shift)<<1); | 291 | 54.8k | sqrt_1 = celt_rsqrt_norm(t); | 292 | 54.8k | } | 293 | | #else | 294 | | thresh = .5f*celt_exp2(-.125f*depth); | 295 | | sqrt_1 = celt_rsqrt(N0<<LM); | 296 | | #endif | 297 | | | 298 | 54.8k | c=0; do | 299 | 94.6k | { | 300 | 94.6k | celt_norm *X; | 301 | 94.6k | celt_glog prev1; | 302 | 94.6k | celt_glog prev2; | 303 | 94.6k | opus_val32 Ediff; | 304 | 94.6k | celt_norm r; | 305 | 94.6k | int renormalize=0; | 306 | 94.6k | prev1 = prev1logE[c*m->nbEBands+i]; | 307 | 94.6k | prev2 = prev2logE[c*m->nbEBands+i]; | 308 | 94.6k | if (!encode && C==1) | 309 | 14.9k | { | 310 | 14.9k | prev1 = MAXG(prev1,prev1logE[m->nbEBands+i]); | 311 | 14.9k | prev2 = MAXG(prev2,prev2logE[m->nbEBands+i]); | 312 | 14.9k | } | 313 | 94.6k | Ediff = logE[c*m->nbEBands+i]-MING(prev1,prev2); | 314 | 94.6k | Ediff = MAX32(0, Ediff); | 315 | | | 316 | 94.6k | #ifdef FIXED_POINT | 317 | 94.6k | if (Ediff < GCONST(16.f)) | 318 | 15.4k | { | 319 | 15.4k | opus_val32 r32 = SHR32(celt_exp2_db(-Ediff),1); | 320 | 15.4k | r = 2*MIN16(16383,r32); | 321 | 79.2k | } else { | 322 | 79.2k | r = 0; | 323 | 79.2k | } | 324 | 94.6k | if (LM==3) | 325 | 16.5k | r = MULT16_16_Q14(23170, MIN32(23169, r)); | 326 | 94.6k | r = SHR16(MIN16(thresh, r),1); | 327 | 94.6k | r = VSHR32(MULT16_16_Q15(sqrt_1, r),shift+14-NORM_SHIFT); | 328 | | #else | 329 | | /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because | 330 | | short blocks don't have the same energy as long */ | 331 | | r = 2.f*celt_exp2_db(-Ediff); | 332 | | if (LM==3) | 333 | | r *= 1.41421356f; | 334 | | r = MIN16(thresh, r); | 335 | | r = r*sqrt_1; | 336 | | #endif | 337 | 94.6k | X = X_+c*size+(m->eBands[i]<<LM); | 338 | 539k | for (k=0;k<1<<LM;k++) | 339 | 444k | { | 340 | | /* Detect collapse */ | 341 | 444k | if (!(collapse_masks[i*C+c]&1<<k)) | 342 | 53.3k | { | 343 | | /* Fill with noise */ | 344 | 205k | for (j=0;j<N0;j++) | 345 | 152k | { | 346 | 152k | seed = celt_lcg_rand(seed); | 347 | 152k | X[(j<<LM)+k] = (seed&0x8000 ? r : -r); | 348 | 152k | } | 349 | 53.3k | renormalize = 1; | 350 | 53.3k | } | 351 | 444k | } | 352 | | /* We just added some energy, so we need to renormalise */ | 353 | 94.6k | if (renormalize) | 354 | 18.4k | renormalise_vector(X, N0<<LM, Q31ONE, arch); | 355 | 94.6k | } while (++c<C); | 356 | 54.8k | } | 357 | 3.40k | } |
Line | Count | Source | 266 | 2.98k | { | 267 | 2.98k | int c, i, j, k; | 268 | 50.6k | for (i=start;i<end;i++) | 269 | 47.6k | { | 270 | 47.6k | int N0; | 271 | 47.6k | opus_val16 thresh, sqrt_1; | 272 | 47.6k | int depth; | 273 | | #ifdef FIXED_POINT | 274 | | int shift; | 275 | | opus_val32 thresh32; | 276 | | #endif | 277 | | | 278 | 47.6k | N0 = m->eBands[i+1]-m->eBands[i]; | 279 | | /* depth in 1/8 bits */ | 280 | 47.6k | celt_sig_assert(pulses[i]>=0); | 281 | 47.6k | depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; | 282 | | | 283 | | #ifdef FIXED_POINT | 284 | | thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); | 285 | | thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); | 286 | | { | 287 | | opus_val32 t; | 288 | | t = N0<<LM; | 289 | | shift = celt_ilog2(t)>>1; | 290 | | t = SHL32(t, (7-shift)<<1); | 291 | | sqrt_1 = celt_rsqrt_norm(t); | 292 | | } | 293 | | #else | 294 | 47.6k | thresh = .5f*celt_exp2(-.125f*depth); | 295 | 47.6k | sqrt_1 = celt_rsqrt(N0<<LM); | 296 | 47.6k | #endif | 297 | | | 298 | 47.6k | c=0; do | 299 | 84.4k | { | 300 | 84.4k | celt_norm *X; | 301 | 84.4k | celt_glog prev1; | 302 | 84.4k | celt_glog prev2; | 303 | 84.4k | opus_val32 Ediff; | 304 | 84.4k | celt_norm r; | 305 | 84.4k | int renormalize=0; | 306 | 84.4k | prev1 = prev1logE[c*m->nbEBands+i]; | 307 | 84.4k | prev2 = prev2logE[c*m->nbEBands+i]; | 308 | 84.4k | if (!encode && C==1) | 309 | 10.9k | { | 310 | 10.9k | prev1 = MAXG(prev1,prev1logE[m->nbEBands+i]); | 311 | 10.9k | prev2 = MAXG(prev2,prev2logE[m->nbEBands+i]); | 312 | 10.9k | } | 313 | 84.4k | Ediff = logE[c*m->nbEBands+i]-MING(prev1,prev2); | 314 | 84.4k | Ediff = MAX32(0, Ediff); | 315 | | | 316 | | #ifdef FIXED_POINT | 317 | | if (Ediff < GCONST(16.f)) | 318 | | { | 319 | | opus_val32 r32 = SHR32(celt_exp2_db(-Ediff),1); | 320 | | r = 2*MIN16(16383,r32); | 321 | | } else { | 322 | | r = 0; | 323 | | } | 324 | | if (LM==3) | 325 | | r = MULT16_16_Q14(23170, MIN32(23169, r)); | 326 | | r = SHR16(MIN16(thresh, r),1); | 327 | | r = VSHR32(MULT16_16_Q15(sqrt_1, r),shift+14-NORM_SHIFT); | 328 | | #else | 329 | | /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because | 330 | | short blocks don't have the same energy as long */ | 331 | 84.4k | r = 2.f*celt_exp2_db(-Ediff); | 332 | 84.4k | if (LM==3) | 333 | 14.9k | r *= 1.41421356f; | 334 | 84.4k | r = MIN16(thresh, r); | 335 | 84.4k | r = r*sqrt_1; | 336 | 84.4k | #endif | 337 | 84.4k | X = X_+c*size+(m->eBands[i]<<LM); | 338 | 481k | for (k=0;k<1<<LM;k++) | 339 | 397k | { | 340 | | /* Detect collapse */ | 341 | 397k | if (!(collapse_masks[i*C+c]&1<<k)) | 342 | 38.1k | { | 343 | | /* Fill with noise */ | 344 | 148k | for (j=0;j<N0;j++) | 345 | 110k | { | 346 | 110k | seed = celt_lcg_rand(seed); | 347 | 110k | X[(j<<LM)+k] = (seed&0x8000 ? r : -r); | 348 | 110k | } | 349 | 38.1k | renormalize = 1; | 350 | 38.1k | } | 351 | 397k | } | 352 | | /* We just added some energy, so we need to renormalise */ | 353 | 84.4k | if (renormalize) | 354 | 15.3k | renormalise_vector(X, N0<<LM, Q31ONE, arch); | 355 | 84.4k | } while (++c<C); | 356 | 47.6k | } | 357 | 2.98k | } |
|
358 | | |
359 | | /* Compute the weights to use for optimizing normalized distortion across |
360 | | channels. We use the amplitude to weight square distortion, which means |
361 | | that we use the square root of the value we would have been using if we |
362 | | wanted to minimize the MSE in the non-normalized domain. This roughly |
363 | | corresponds to some quick-and-dirty perceptual experiments I ran to |
364 | | measure inter-aural masking (there doesn't seem to be any published data |
365 | | on the topic). */ |
366 | | static void compute_channel_weights(celt_ener Ex, celt_ener Ey, opus_val16 w[2]) |
367 | 454k | { |
368 | 454k | celt_ener minE; |
369 | | #ifdef FIXED_POINT |
370 | | int shift; |
371 | | #endif |
372 | 454k | minE = MIN32(Ex, Ey); |
373 | | /* Adjustment to make the weights a bit more conservative. */ |
374 | 454k | Ex = ADD32(Ex, minE/3); |
375 | 454k | Ey = ADD32(Ey, minE/3); |
376 | | #ifdef FIXED_POINT |
377 | 275k | shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14; |
378 | | #endif |
379 | 454k | w[0] = VSHR32(Ex, shift); |
380 | 454k | w[1] = VSHR32(Ey, shift); |
381 | 454k | } bands.c:compute_channel_weights Line | Count | Source | 367 | 275k | { | 368 | 275k | celt_ener minE; | 369 | 275k | #ifdef FIXED_POINT | 370 | 275k | int shift; | 371 | 275k | #endif | 372 | 275k | minE = MIN32(Ex, Ey); | 373 | | /* Adjustment to make the weights a bit more conservative. */ | 374 | 275k | Ex = ADD32(Ex, minE/3); | 375 | 275k | Ey = ADD32(Ey, minE/3); | 376 | 275k | #ifdef FIXED_POINT | 377 | 275k | shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14; | 378 | 275k | #endif | 379 | 275k | w[0] = VSHR32(Ex, shift); | 380 | 275k | w[1] = VSHR32(Ey, shift); | 381 | 275k | } |
bands.c:compute_channel_weights Line | Count | Source | 367 | 179k | { | 368 | 179k | celt_ener minE; | 369 | | #ifdef FIXED_POINT | 370 | | int shift; | 371 | | #endif | 372 | 179k | minE = MIN32(Ex, Ey); | 373 | | /* Adjustment to make the weights a bit more conservative. */ | 374 | 179k | Ex = ADD32(Ex, minE/3); | 375 | 179k | Ey = ADD32(Ey, minE/3); | 376 | | #ifdef FIXED_POINT | 377 | | shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14; | 378 | | #endif | 379 | 179k | w[0] = VSHR32(Ex, shift); | 380 | 179k | w[1] = VSHR32(Ey, shift); | 381 | 179k | } |
|
382 | | |
383 | | static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N) |
384 | 637k | { |
385 | 637k | int i = bandID; |
386 | 637k | int j; |
387 | 637k | opus_val16 a1, a2; |
388 | 637k | opus_val16 left, right; |
389 | 637k | opus_val16 norm; |
390 | | #ifdef FIXED_POINT |
391 | 337k | int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; |
392 | | #endif |
393 | 637k | left = VSHR32(bandE[i],shift); |
394 | 637k | right = VSHR32(bandE[i+m->nbEBands],shift); |
395 | 637k | norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); |
396 | | #ifdef FIXED_POINT |
397 | 337k | left = MIN32(left, norm-1); |
398 | 337k | right = MIN32(right, norm-1); |
399 | | #endif |
400 | 637k | a1 = DIV32_16(SHL32(EXTEND32(left),15),norm); |
401 | 637k | a2 = DIV32_16(SHL32(EXTEND32(right),15),norm); |
402 | 9.67M | for (j=0;j<N;j++) |
403 | 9.03M | { |
404 | 9.03M | X[j] = ADD32(MULT16_32_Q15(a1, X[j]), MULT16_32_Q15(a2, Y[j])); |
405 | | /* Side is not encoded, no need to calculate */ |
406 | 9.03M | } |
407 | 637k | } Line | Count | Source | 384 | 337k | { | 385 | 337k | int i = bandID; | 386 | 337k | int j; | 387 | 337k | opus_val16 a1, a2; | 388 | 337k | opus_val16 left, right; | 389 | 337k | opus_val16 norm; | 390 | 337k | #ifdef FIXED_POINT | 391 | 337k | int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; | 392 | 337k | #endif | 393 | 337k | left = VSHR32(bandE[i],shift); | 394 | 337k | right = VSHR32(bandE[i+m->nbEBands],shift); | 395 | 337k | norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); | 396 | 337k | #ifdef FIXED_POINT | 397 | 337k | left = MIN32(left, norm-1); | 398 | 337k | right = MIN32(right, norm-1); | 399 | 337k | #endif | 400 | 337k | a1 = DIV32_16(SHL32(EXTEND32(left),15),norm); | 401 | 337k | a2 = DIV32_16(SHL32(EXTEND32(right),15),norm); | 402 | 4.92M | for (j=0;j<N;j++) | 403 | 4.58M | { | 404 | 4.58M | X[j] = ADD32(MULT16_32_Q15(a1, X[j]), MULT16_32_Q15(a2, Y[j])); | 405 | | /* Side is not encoded, no need to calculate */ | 406 | 4.58M | } | 407 | 337k | } |
Line | Count | Source | 384 | 299k | { | 385 | 299k | int i = bandID; | 386 | 299k | int j; | 387 | 299k | opus_val16 a1, a2; | 388 | 299k | opus_val16 left, right; | 389 | 299k | opus_val16 norm; | 390 | | #ifdef FIXED_POINT | 391 | | int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; | 392 | | #endif | 393 | 299k | left = VSHR32(bandE[i],shift); | 394 | 299k | right = VSHR32(bandE[i+m->nbEBands],shift); | 395 | 299k | norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); | 396 | | #ifdef FIXED_POINT | 397 | | left = MIN32(left, norm-1); | 398 | | right = MIN32(right, norm-1); | 399 | | #endif | 400 | 299k | a1 = DIV32_16(SHL32(EXTEND32(left),15),norm); | 401 | 299k | a2 = DIV32_16(SHL32(EXTEND32(right),15),norm); | 402 | 4.74M | for (j=0;j<N;j++) | 403 | 4.44M | { | 404 | 4.44M | X[j] = ADD32(MULT16_32_Q15(a1, X[j]), MULT16_32_Q15(a2, Y[j])); | 405 | | /* Side is not encoded, no need to calculate */ | 406 | 4.44M | } | 407 | 299k | } |
|
408 | | |
409 | | static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N) |
410 | 1.35M | { |
411 | 1.35M | int j; |
412 | 12.7M | for (j=0;j<N;j++) |
413 | 11.3M | { |
414 | 11.3M | opus_val32 r, l; |
415 | 11.3M | l = MULT32_32_Q31(QCONST32(.70710678f,31), X[j]); |
416 | 11.3M | r = MULT32_32_Q31(QCONST32(.70710678f,31), Y[j]); |
417 | 11.3M | X[j] = ADD32(l, r); |
418 | 11.3M | Y[j] = SUB32(r, l); |
419 | 11.3M | } |
420 | 1.35M | } Line | Count | Source | 410 | 677k | { | 411 | 677k | int j; | 412 | 6.35M | for (j=0;j<N;j++) | 413 | 5.67M | { | 414 | 5.67M | opus_val32 r, l; | 415 | 5.67M | l = MULT32_32_Q31(QCONST32(.70710678f,31), X[j]); | 416 | 5.67M | r = MULT32_32_Q31(QCONST32(.70710678f,31), Y[j]); | 417 | 5.67M | X[j] = ADD32(l, r); | 418 | 5.67M | Y[j] = SUB32(r, l); | 419 | 5.67M | } | 420 | 677k | } |
Line | Count | Source | 410 | 677k | { | 411 | 677k | int j; | 412 | 6.35M | for (j=0;j<N;j++) | 413 | 5.67M | { | 414 | 5.67M | opus_val32 r, l; | 415 | 5.67M | l = MULT32_32_Q31(QCONST32(.70710678f,31), X[j]); | 416 | 5.67M | r = MULT32_32_Q31(QCONST32(.70710678f,31), Y[j]); | 417 | 5.67M | X[j] = ADD32(l, r); | 418 | 5.67M | Y[j] = SUB32(r, l); | 419 | 5.67M | } | 420 | 677k | } |
|
421 | | |
422 | | static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val32 mid, int N, int arch) |
423 | 1.61M | { |
424 | 1.61M | int j; |
425 | 1.61M | opus_val32 xp=0, side=0; |
426 | 1.61M | opus_val32 El, Er; |
427 | | #ifdef FIXED_POINT |
428 | | int kl, kr; |
429 | | #endif |
430 | 1.61M | opus_val32 t, lgain, rgain; |
431 | | |
432 | | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
433 | 1.61M | xp = celt_inner_prod_norm_shift(Y, X, N, arch); |
434 | 1.61M | side = celt_inner_prod_norm_shift(Y, Y, N, arch); |
435 | | /* Compensating for the mid normalization */ |
436 | 1.61M | xp = MULT32_32_Q31(mid, xp); |
437 | | /* mid and side are in Q15, not Q14 like X and Y */ |
438 | 1.61M | El = SHR32(MULT32_32_Q31(mid, mid),3) + side - 2*xp; |
439 | 1.61M | Er = SHR32(MULT32_32_Q31(mid, mid),3) + side + 2*xp; |
440 | 1.61M | if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) |
441 | 3.00k | { |
442 | 3.00k | OPUS_COPY(Y, X, N); |
443 | 3.00k | return; |
444 | 3.00k | } |
445 | | |
446 | | #ifdef FIXED_POINT |
447 | 934k | kl = celt_ilog2(El)>>1; |
448 | 934k | kr = celt_ilog2(Er)>>1; |
449 | 934k | #endif |
450 | 1.61M | t = VSHR32(El, (kl<<1)-29); |
451 | 680k | lgain = celt_rsqrt_norm32(t); |
452 | 1.61M | t = VSHR32(Er, (kr<<1)-29); |
453 | 680k | rgain = celt_rsqrt_norm32(t); |
454 | | |
455 | | #ifdef FIXED_POINT |
456 | 934k | if (kl < 7) |
457 | 0 | kl = 7; |
458 | 934k | if (kr < 7) |
459 | 0 | kr = 7; |
460 | | #endif |
461 | | |
462 | 28.7M | for (j=0;j<N;j++) |
463 | 27.1M | { |
464 | 27.1M | celt_norm r, l; |
465 | | /* Apply mid scaling (side is already scaled) */ |
466 | 27.1M | l = MULT32_32_Q31(mid, X[j]); |
467 | 27.1M | r = Y[j]; |
468 | 27.1M | X[j] = VSHR32(MULT32_32_Q31(lgain, SUB32(l,r)), kl-15); |
469 | 27.1M | Y[j] = VSHR32(MULT32_32_Q31(rgain, ADD32(l,r)), kr-15); |
470 | 27.1M | } |
471 | 680k | } Line | Count | Source | 423 | 936k | { | 424 | 936k | int j; | 425 | 936k | opus_val32 xp=0, side=0; | 426 | 936k | opus_val32 El, Er; | 427 | 936k | #ifdef FIXED_POINT | 428 | 936k | int kl, kr; | 429 | 936k | #endif | 430 | 936k | opus_val32 t, lgain, rgain; | 431 | | | 432 | | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ | 433 | 936k | xp = celt_inner_prod_norm_shift(Y, X, N, arch); | 434 | 936k | side = celt_inner_prod_norm_shift(Y, Y, N, arch); | 435 | | /* Compensating for the mid normalization */ | 436 | 936k | xp = MULT32_32_Q31(mid, xp); | 437 | | /* mid and side are in Q15, not Q14 like X and Y */ | 438 | 936k | El = SHR32(MULT32_32_Q31(mid, mid),3) + side - 2*xp; | 439 | 936k | Er = SHR32(MULT32_32_Q31(mid, mid),3) + side + 2*xp; | 440 | 936k | if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) | 441 | 1.86k | { | 442 | 1.86k | OPUS_COPY(Y, X, N); | 443 | 1.86k | return; | 444 | 1.86k | } | 445 | | | 446 | 934k | #ifdef FIXED_POINT | 447 | 934k | kl = celt_ilog2(El)>>1; | 448 | 934k | kr = celt_ilog2(Er)>>1; | 449 | 934k | #endif | 450 | 934k | t = VSHR32(El, (kl<<1)-29); | 451 | 934k | lgain = celt_rsqrt_norm32(t); | 452 | 934k | t = VSHR32(Er, (kr<<1)-29); | 453 | 934k | rgain = celt_rsqrt_norm32(t); | 454 | | | 455 | 934k | #ifdef FIXED_POINT | 456 | 934k | if (kl < 7) | 457 | 0 | kl = 7; | 458 | 934k | if (kr < 7) | 459 | 0 | kr = 7; | 460 | 934k | #endif | 461 | | | 462 | 16.3M | for (j=0;j<N;j++) | 463 | 15.4M | { | 464 | 15.4M | celt_norm r, l; | 465 | | /* Apply mid scaling (side is already scaled) */ | 466 | 15.4M | l = MULT32_32_Q31(mid, X[j]); | 467 | 15.4M | r = Y[j]; | 468 | 15.4M | X[j] = VSHR32(MULT32_32_Q31(lgain, SUB32(l,r)), kl-15); | 469 | 15.4M | Y[j] = VSHR32(MULT32_32_Q31(rgain, ADD32(l,r)), kr-15); | 470 | 15.4M | } | 471 | 934k | } |
Line | Count | Source | 423 | 681k | { | 424 | 681k | int j; | 425 | 681k | opus_val32 xp=0, side=0; | 426 | 681k | opus_val32 El, Er; | 427 | | #ifdef FIXED_POINT | 428 | | int kl, kr; | 429 | | #endif | 430 | 681k | opus_val32 t, lgain, rgain; | 431 | | | 432 | | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ | 433 | 681k | xp = celt_inner_prod_norm_shift(Y, X, N, arch); | 434 | 681k | side = celt_inner_prod_norm_shift(Y, Y, N, arch); | 435 | | /* Compensating for the mid normalization */ | 436 | 681k | xp = MULT32_32_Q31(mid, xp); | 437 | | /* mid and side are in Q15, not Q14 like X and Y */ | 438 | 681k | El = SHR32(MULT32_32_Q31(mid, mid),3) + side - 2*xp; | 439 | 681k | Er = SHR32(MULT32_32_Q31(mid, mid),3) + side + 2*xp; | 440 | 681k | if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) | 441 | 1.14k | { | 442 | 1.14k | OPUS_COPY(Y, X, N); | 443 | 1.14k | return; | 444 | 1.14k | } | 445 | | | 446 | | #ifdef FIXED_POINT | 447 | | kl = celt_ilog2(El)>>1; | 448 | | kr = celt_ilog2(Er)>>1; | 449 | | #endif | 450 | 680k | t = VSHR32(El, (kl<<1)-29); | 451 | 680k | lgain = celt_rsqrt_norm32(t); | 452 | 680k | t = VSHR32(Er, (kr<<1)-29); | 453 | 680k | rgain = celt_rsqrt_norm32(t); | 454 | | | 455 | | #ifdef FIXED_POINT | 456 | | if (kl < 7) | 457 | | kl = 7; | 458 | | if (kr < 7) | 459 | | kr = 7; | 460 | | #endif | 461 | | | 462 | 12.3M | for (j=0;j<N;j++) | 463 | 11.6M | { | 464 | 11.6M | celt_norm r, l; | 465 | | /* Apply mid scaling (side is already scaled) */ | 466 | 11.6M | l = MULT32_32_Q31(mid, X[j]); | 467 | 11.6M | r = Y[j]; | 468 | 11.6M | X[j] = VSHR32(MULT32_32_Q31(lgain, SUB32(l,r)), kl-15); | 469 | 11.6M | Y[j] = VSHR32(MULT32_32_Q31(rgain, ADD32(l,r)), kr-15); | 470 | 11.6M | } | 471 | 680k | } |
|
472 | | |
473 | | /* Decide whether we should spread the pulses in the current frame */ |
474 | | int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, |
475 | | int last_decision, int *hf_average, int *tapset_decision, int update_hf, |
476 | | int end, int C, int M, const int *spread_weight) |
477 | 198k | { |
478 | 198k | int i, c, N0; |
479 | 198k | int sum = 0, nbBands=0; |
480 | 198k | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
481 | 198k | int decision; |
482 | 198k | int hf_sum=0; |
483 | | |
484 | 198k | celt_assert(end>0); |
485 | | |
486 | 198k | N0 = M*m->shortMdctSize; |
487 | | |
488 | 198k | if (M*(eBands[end]-eBands[end-1]) <= 8) |
489 | 126k | return SPREAD_NONE; |
490 | 98.3k | c=0; do { |
491 | 1.70M | for (i=0;i<end;i++) |
492 | 1.60M | { |
493 | 1.60M | int j, N, tmp=0; |
494 | 1.60M | int tcount[3] = {0,0,0}; |
495 | 1.60M | const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; |
496 | 1.60M | N = M*(eBands[i+1]-eBands[i]); |
497 | 1.60M | if (N<=8) |
498 | 1.12M | continue; |
499 | | /* Compute rough CDF of |x[j]| */ |
500 | 12.4M | for (j=0;j<N;j++) |
501 | 11.9M | { |
502 | 11.9M | opus_val32 x2N; /* Q13 */ |
503 | | |
504 | 11.9M | x2N = MULT16_16(MULT16_16_Q15(SHR32(x[j], NORM_SHIFT-14), SHR32(x[j], NORM_SHIFT-14)), N); |
505 | 11.9M | if (x2N < QCONST16(0.25f,13)) |
506 | 6.05M | tcount[0]++; |
507 | 11.9M | if (x2N < QCONST16(0.0625f,13)) |
508 | 4.29M | tcount[1]++; |
509 | 11.9M | if (x2N < QCONST16(0.015625f,13)) |
510 | 3.18M | tcount[2]++; |
511 | 11.9M | } |
512 | | |
513 | | /* Only include four last bands (8 kHz and up) */ |
514 | 477k | if (i>m->nbEBands-4) |
515 | 66.7k | hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); |
516 | 477k | tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); |
517 | 477k | sum += tmp*spread_weight[i]; |
518 | 477k | nbBands+=spread_weight[i]; |
519 | 477k | } |
520 | 98.3k | } while (++c<C); |
521 | | |
522 | 72.3k | if (update_hf) |
523 | 6.04k | { |
524 | 6.04k | if (hf_sum) |
525 | 3.35k | hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); |
526 | 6.04k | *hf_average = (*hf_average+hf_sum)>>1; |
527 | 6.04k | hf_sum = *hf_average; |
528 | 6.04k | if (*tapset_decision==2) |
529 | 166 | hf_sum += 4; |
530 | 5.87k | else if (*tapset_decision==0) |
531 | 5.58k | hf_sum -= 4; |
532 | 6.04k | if (hf_sum > 22) |
533 | 342 | *tapset_decision=2; |
534 | 5.70k | else if (hf_sum > 18) |
535 | 450 | *tapset_decision=1; |
536 | 5.25k | else |
537 | 5.25k | *tapset_decision=0; |
538 | 6.04k | } |
539 | | /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ |
540 | 72.3k | celt_assert(nbBands>0); /* end has to be non-zero */ |
541 | 72.3k | celt_assert(sum>=0); |
542 | 72.3k | sum = celt_udiv((opus_int32)sum<<8, nbBands); |
543 | | /* Recursive averaging */ |
544 | 72.3k | sum = (sum+*average)>>1; |
545 | 72.3k | *average = sum; |
546 | | /* Hysteresis */ |
547 | 72.3k | sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; |
548 | 72.3k | if (sum < 80) |
549 | 3.38k | { |
550 | 3.38k | decision = SPREAD_AGGRESSIVE; |
551 | 69.0k | } else if (sum < 256) |
552 | 54.1k | { |
553 | 54.1k | decision = SPREAD_NORMAL; |
554 | 54.1k | } else if (sum < 384) |
555 | 7.16k | { |
556 | 7.16k | decision = SPREAD_LIGHT; |
557 | 7.65k | } else { |
558 | 7.65k | decision = SPREAD_NONE; |
559 | 7.65k | } |
560 | | #ifdef FUZZING |
561 | | decision = rand()&0x3; |
562 | | *tapset_decision=rand()%3; |
563 | | #endif |
564 | 72.3k | return decision; |
565 | 72.3k | } Line | Count | Source | 477 | 99.2k | { | 478 | 99.2k | int i, c, N0; | 479 | 99.2k | int sum = 0, nbBands=0; | 480 | 99.2k | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 481 | 99.2k | int decision; | 482 | 99.2k | int hf_sum=0; | 483 | | | 484 | 99.2k | celt_assert(end>0); | 485 | | | 486 | 99.2k | N0 = M*m->shortMdctSize; | 487 | | | 488 | 99.2k | if (M*(eBands[end]-eBands[end-1]) <= 8) | 489 | 63.1k | return SPREAD_NONE; | 490 | 49.1k | c=0; do { | 491 | 852k | for (i=0;i<end;i++) | 492 | 802k | { | 493 | 802k | int j, N, tmp=0; | 494 | 802k | int tcount[3] = {0,0,0}; | 495 | 802k | const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; | 496 | 802k | N = M*(eBands[i+1]-eBands[i]); | 497 | 802k | if (N<=8) | 498 | 564k | continue; | 499 | | /* Compute rough CDF of |x[j]| */ | 500 | 6.21M | for (j=0;j<N;j++) | 501 | 5.97M | { | 502 | 5.97M | opus_val32 x2N; /* Q13 */ | 503 | | | 504 | 5.97M | x2N = MULT16_16(MULT16_16_Q15(SHR32(x[j], NORM_SHIFT-14), SHR32(x[j], NORM_SHIFT-14)), N); | 505 | 5.97M | if (x2N < QCONST16(0.25f,13)) | 506 | 3.02M | tcount[0]++; | 507 | 5.97M | if (x2N < QCONST16(0.0625f,13)) | 508 | 2.14M | tcount[1]++; | 509 | 5.97M | if (x2N < QCONST16(0.015625f,13)) | 510 | 1.59M | tcount[2]++; | 511 | 5.97M | } | 512 | | | 513 | | /* Only include four last bands (8 kHz and up) */ | 514 | 238k | if (i>m->nbEBands-4) | 515 | 33.3k | hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); | 516 | 238k | tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); | 517 | 238k | sum += tmp*spread_weight[i]; | 518 | 238k | nbBands+=spread_weight[i]; | 519 | 238k | } | 520 | 49.1k | } while (++c<C); | 521 | | | 522 | 36.1k | if (update_hf) | 523 | 3.02k | { | 524 | 3.02k | if (hf_sum) | 525 | 1.67k | hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); | 526 | 3.02k | *hf_average = (*hf_average+hf_sum)>>1; | 527 | 3.02k | hf_sum = *hf_average; | 528 | 3.02k | if (*tapset_decision==2) | 529 | 83 | hf_sum += 4; | 530 | 2.93k | else if (*tapset_decision==0) | 531 | 2.79k | hf_sum -= 4; | 532 | 3.02k | if (hf_sum > 22) | 533 | 171 | *tapset_decision=2; | 534 | 2.85k | else if (hf_sum > 18) | 535 | 225 | *tapset_decision=1; | 536 | 2.62k | else | 537 | 2.62k | *tapset_decision=0; | 538 | 3.02k | } | 539 | | /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ | 540 | 36.1k | celt_assert(nbBands>0); /* end has to be non-zero */ | 541 | 36.1k | celt_assert(sum>=0); | 542 | 36.1k | sum = celt_udiv((opus_int32)sum<<8, nbBands); | 543 | | /* Recursive averaging */ | 544 | 36.1k | sum = (sum+*average)>>1; | 545 | 36.1k | *average = sum; | 546 | | /* Hysteresis */ | 547 | 36.1k | sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; | 548 | 36.1k | if (sum < 80) | 549 | 1.69k | { | 550 | 1.69k | decision = SPREAD_AGGRESSIVE; | 551 | 34.5k | } else if (sum < 256) | 552 | 27.0k | { | 553 | 27.0k | decision = SPREAD_NORMAL; | 554 | 27.0k | } else if (sum < 384) | 555 | 3.58k | { | 556 | 3.58k | decision = SPREAD_LIGHT; | 557 | 3.82k | } else { | 558 | 3.82k | decision = SPREAD_NONE; | 559 | 3.82k | } | 560 | | #ifdef FUZZING | 561 | | decision = rand()&0x3; | 562 | | *tapset_decision=rand()%3; | 563 | | #endif | 564 | 36.1k | return decision; | 565 | 36.1k | } |
Line | Count | Source | 477 | 99.2k | { | 478 | 99.2k | int i, c, N0; | 479 | 99.2k | int sum = 0, nbBands=0; | 480 | 99.2k | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 481 | 99.2k | int decision; | 482 | 99.2k | int hf_sum=0; | 483 | | | 484 | 99.2k | celt_assert(end>0); | 485 | | | 486 | 99.2k | N0 = M*m->shortMdctSize; | 487 | | | 488 | 99.2k | if (M*(eBands[end]-eBands[end-1]) <= 8) | 489 | 63.1k | return SPREAD_NONE; | 490 | 49.1k | c=0; do { | 491 | 852k | for (i=0;i<end;i++) | 492 | 802k | { | 493 | 802k | int j, N, tmp=0; | 494 | 802k | int tcount[3] = {0,0,0}; | 495 | 802k | const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; | 496 | 802k | N = M*(eBands[i+1]-eBands[i]); | 497 | 802k | if (N<=8) | 498 | 564k | continue; | 499 | | /* Compute rough CDF of |x[j]| */ | 500 | 6.21M | for (j=0;j<N;j++) | 501 | 5.97M | { | 502 | 5.97M | opus_val32 x2N; /* Q13 */ | 503 | | | 504 | 5.97M | x2N = MULT16_16(MULT16_16_Q15(SHR32(x[j], NORM_SHIFT-14), SHR32(x[j], NORM_SHIFT-14)), N); | 505 | 5.97M | if (x2N < QCONST16(0.25f,13)) | 506 | 3.02M | tcount[0]++; | 507 | 5.97M | if (x2N < QCONST16(0.0625f,13)) | 508 | 2.14M | tcount[1]++; | 509 | 5.97M | if (x2N < QCONST16(0.015625f,13)) | 510 | 1.59M | tcount[2]++; | 511 | 5.97M | } | 512 | | | 513 | | /* Only include four last bands (8 kHz and up) */ | 514 | 238k | if (i>m->nbEBands-4) | 515 | 33.3k | hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); | 516 | 238k | tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); | 517 | 238k | sum += tmp*spread_weight[i]; | 518 | 238k | nbBands+=spread_weight[i]; | 519 | 238k | } | 520 | 49.1k | } while (++c<C); | 521 | | | 522 | 36.1k | if (update_hf) | 523 | 3.02k | { | 524 | 3.02k | if (hf_sum) | 525 | 1.67k | hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); | 526 | 3.02k | *hf_average = (*hf_average+hf_sum)>>1; | 527 | 3.02k | hf_sum = *hf_average; | 528 | 3.02k | if (*tapset_decision==2) | 529 | 83 | hf_sum += 4; | 530 | 2.93k | else if (*tapset_decision==0) | 531 | 2.79k | hf_sum -= 4; | 532 | 3.02k | if (hf_sum > 22) | 533 | 171 | *tapset_decision=2; | 534 | 2.85k | else if (hf_sum > 18) | 535 | 225 | *tapset_decision=1; | 536 | 2.62k | else | 537 | 2.62k | *tapset_decision=0; | 538 | 3.02k | } | 539 | | /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ | 540 | 36.1k | celt_assert(nbBands>0); /* end has to be non-zero */ | 541 | 36.1k | celt_assert(sum>=0); | 542 | 36.1k | sum = celt_udiv((opus_int32)sum<<8, nbBands); | 543 | | /* Recursive averaging */ | 544 | 36.1k | sum = (sum+*average)>>1; | 545 | 36.1k | *average = sum; | 546 | | /* Hysteresis */ | 547 | 36.1k | sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; | 548 | 36.1k | if (sum < 80) | 549 | 1.69k | { | 550 | 1.69k | decision = SPREAD_AGGRESSIVE; | 551 | 34.5k | } else if (sum < 256) | 552 | 27.0k | { | 553 | 27.0k | decision = SPREAD_NORMAL; | 554 | 27.0k | } else if (sum < 384) | 555 | 3.58k | { | 556 | 3.58k | decision = SPREAD_LIGHT; | 557 | 3.82k | } else { | 558 | 3.82k | decision = SPREAD_NONE; | 559 | 3.82k | } | 560 | | #ifdef FUZZING | 561 | | decision = rand()&0x3; | 562 | | *tapset_decision=rand()%3; | 563 | | #endif | 564 | 36.1k | return decision; | 565 | 36.1k | } |
|
566 | | |
567 | | /* Indexing table for converting from natural Hadamard to ordery Hadamard |
568 | | This is essentially a bit-reversed Gray, on top of which we've added |
569 | | an inversion of the order because we want the DC at the end rather than |
570 | | the beginning. The lines are for N=2, 4, 8, 16 */ |
571 | | static const int ordery_table[] = { |
572 | | 1, 0, |
573 | | 3, 0, 2, 1, |
574 | | 7, 0, 4, 3, 6, 1, 5, 2, |
575 | | 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, |
576 | | }; |
577 | | |
578 | | static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
579 | 3.61M | { |
580 | 3.61M | int i,j; |
581 | 3.61M | VARDECL(celt_norm, tmp); |
582 | 3.61M | int N; |
583 | 3.61M | SAVE_STACK; |
584 | 3.61M | N = N0*stride; |
585 | 3.61M | ALLOC(tmp, N, celt_norm); |
586 | 3.61M | celt_assert(stride>0); |
587 | 3.61M | if (hadamard) |
588 | 648k | { |
589 | 648k | const int *ordery = ordery_table+stride-2; |
590 | 2.96M | for (i=0;i<stride;i++) |
591 | 2.31M | { |
592 | 11.0M | for (j=0;j<N0;j++) |
593 | 8.74M | tmp[ordery[i]*N0+j] = X[j*stride+i]; |
594 | 2.31M | } |
595 | 2.97M | } else { |
596 | 24.8M | for (i=0;i<stride;i++) |
597 | 59.8M | for (j=0;j<N0;j++) |
598 | 38.0M | tmp[i*N0+j] = X[j*stride+i]; |
599 | 2.97M | } |
600 | 3.61M | OPUS_COPY(X, tmp, N); |
601 | 3.61M | RESTORE_STACK; |
602 | 3.61M | } |
603 | | |
604 | | static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
605 | 1.56M | { |
606 | 1.56M | int i,j; |
607 | 1.56M | VARDECL(celt_norm, tmp); |
608 | 1.56M | int N; |
609 | 1.56M | SAVE_STACK; |
610 | 1.56M | N = N0*stride; |
611 | 1.56M | ALLOC(tmp, N, celt_norm); |
612 | 1.56M | if (hadamard) |
613 | 510k | { |
614 | 510k | const int *ordery = ordery_table+stride-2; |
615 | 2.23M | for (i=0;i<stride;i++) |
616 | 8.51M | for (j=0;j<N0;j++) |
617 | 6.78M | tmp[j*stride+i] = X[ordery[i]*N0+j]; |
618 | 1.05M | } else { |
619 | 8.41M | for (i=0;i<stride;i++) |
620 | 20.6M | for (j=0;j<N0;j++) |
621 | 13.2M | tmp[j*stride+i] = X[i*N0+j]; |
622 | 1.05M | } |
623 | 1.56M | OPUS_COPY(X, tmp, N); |
624 | 1.56M | RESTORE_STACK; |
625 | 1.56M | } |
626 | | |
627 | | void haar1(celt_norm *X, int N0, int stride) |
628 | 21.1M | { |
629 | 21.1M | int i, j; |
630 | 21.1M | N0 >>= 1; |
631 | 75.9M | for (i=0;i<stride;i++) |
632 | 227M | for (j=0;j<N0;j++) |
633 | 172M | { |
634 | 172M | opus_val32 tmp1, tmp2; |
635 | 172M | tmp1 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*2*j+i]); |
636 | 172M | tmp2 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*(2*j+1)+i]); |
637 | 172M | X[stride*2*j+i] = ADD32(tmp1, tmp2); |
638 | 172M | X[stride*(2*j+1)+i] = SUB32(tmp1, tmp2); |
639 | 172M | } |
640 | 21.1M | } Line | Count | Source | 628 | 10.5M | { | 629 | 10.5M | int i, j; | 630 | 10.5M | N0 >>= 1; | 631 | 37.9M | for (i=0;i<stride;i++) | 632 | 113M | for (j=0;j<N0;j++) | 633 | 86.2M | { | 634 | 86.2M | opus_val32 tmp1, tmp2; | 635 | 86.2M | tmp1 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*2*j+i]); | 636 | 86.2M | tmp2 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*(2*j+1)+i]); | 637 | 86.2M | X[stride*2*j+i] = ADD32(tmp1, tmp2); | 638 | 86.2M | X[stride*(2*j+1)+i] = SUB32(tmp1, tmp2); | 639 | 86.2M | } | 640 | 10.5M | } |
Line | Count | Source | 628 | 10.5M | { | 629 | 10.5M | int i, j; | 630 | 10.5M | N0 >>= 1; | 631 | 37.9M | for (i=0;i<stride;i++) | 632 | 113M | for (j=0;j<N0;j++) | 633 | 86.2M | { | 634 | 86.2M | opus_val32 tmp1, tmp2; | 635 | 86.2M | tmp1 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*2*j+i]); | 636 | 86.2M | tmp2 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*(2*j+1)+i]); | 637 | 86.2M | X[stride*2*j+i] = ADD32(tmp1, tmp2); | 638 | 86.2M | X[stride*(2*j+1)+i] = SUB32(tmp1, tmp2); | 639 | 86.2M | } | 640 | 10.5M | } |
|
641 | | |
642 | | static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) |
643 | 4.95M | { |
644 | 4.95M | static const opus_int16 exp2_table8[8] = |
645 | 4.95M | {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; |
646 | 4.95M | int qn, qb; |
647 | 4.95M | int N2 = 2*N-1; |
648 | 4.95M | if (stereo && N==2) |
649 | 631k | N2--; |
650 | | /* The upper limit ensures that in a stereo split with itheta==16384, we'll |
651 | | always have enough bits left over to code at least one pulse in the |
652 | | side; otherwise it would collapse, since it doesn't get folded. */ |
653 | 4.95M | qb = celt_sudiv(b+N2*offset, N2); |
654 | 4.95M | qb = IMIN(b-pulse_cap-(4<<BITRES), qb); |
655 | | |
656 | 4.95M | qb = IMIN(8<<BITRES, qb); |
657 | | |
658 | 4.95M | if (qb<(1<<BITRES>>1)) { |
659 | 1.40M | qn = 1; |
660 | 3.54M | } else { |
661 | 3.54M | qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES)); |
662 | 3.54M | qn = (qn+1)>>1<<1; |
663 | 3.54M | } |
664 | 4.95M | celt_assert(qn <= 256); |
665 | 4.95M | return qn; |
666 | 4.95M | } |
667 | | |
668 | | struct band_ctx { |
669 | | int encode; |
670 | | int resynth; |
671 | | const CELTMode *m; |
672 | | int i; |
673 | | int intensity; |
674 | | int spread; |
675 | | int tf_change; |
676 | | ec_ctx *ec; |
677 | | opus_int32 remaining_bits; |
678 | | const celt_ener *bandE; |
679 | | opus_uint32 seed; |
680 | | int arch; |
681 | | int theta_round; |
682 | | int disable_inv; |
683 | | int avoid_split_noise; |
684 | | #ifdef ENABLE_QEXT |
685 | | ec_ctx *ext_ec; |
686 | | int extra_bits; |
687 | | opus_int32 ext_total_bits; |
688 | | int extra_bands; |
689 | | #endif |
690 | | }; |
691 | | |
692 | | struct split_ctx { |
693 | | int inv; |
694 | | int imid; |
695 | | int iside; |
696 | | int delta; |
697 | | int itheta; |
698 | | #ifdef ENABLE_QEXT |
699 | | int itheta_q30; |
700 | | #endif |
701 | | int qalloc; |
702 | | }; |
703 | | |
704 | | static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, |
705 | | celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0, |
706 | | int LM, |
707 | | int stereo, int *fill ARG_QEXT(int *ext_b)) |
708 | 4.95M | { |
709 | 4.95M | int qn; |
710 | 4.95M | int itheta=0; |
711 | 4.95M | int itheta_q30=0; |
712 | 4.95M | int delta; |
713 | 4.95M | int imid, iside; |
714 | 4.95M | int qalloc; |
715 | 4.95M | int pulse_cap; |
716 | 4.95M | int offset; |
717 | 4.95M | opus_int32 tell; |
718 | 4.95M | int inv=0; |
719 | 4.95M | int encode; |
720 | 4.95M | const CELTMode *m; |
721 | 4.95M | int i; |
722 | 4.95M | int intensity; |
723 | 4.95M | ec_ctx *ec; |
724 | 4.95M | const celt_ener *bandE; |
725 | | |
726 | 4.95M | encode = ctx->encode; |
727 | 4.95M | m = ctx->m; |
728 | 4.95M | i = ctx->i; |
729 | 4.95M | intensity = ctx->intensity; |
730 | 4.95M | ec = ctx->ec; |
731 | 4.95M | bandE = ctx->bandE; |
732 | | |
733 | | /* Decide on the resolution to give to the split parameter theta */ |
734 | 4.95M | pulse_cap = m->logN[i]+LM*(1<<BITRES); |
735 | 4.95M | offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); |
736 | 4.95M | qn = compute_qn(N, *b, offset, pulse_cap, stereo); |
737 | 4.95M | if (stereo && i>=intensity) |
738 | 1.62M | qn = 1; |
739 | 4.95M | if (encode) |
740 | 2.94M | { |
741 | | /* theta is the atan() of the ratio between the (normalized) |
742 | | side and mid. With just that parameter, we can re-scale both |
743 | | mid and side because we know that 1) they have unit norm and |
744 | | 2) they are orthogonal. */ |
745 | 2.94M | itheta_q30 = stereo_itheta(X, Y, stereo, N, ctx->arch); |
746 | 2.94M | itheta = itheta_q30>>16; |
747 | 2.94M | } |
748 | 4.95M | tell = ec_tell_frac(ec); |
749 | 4.95M | if (qn!=1) |
750 | 3.24M | { |
751 | 3.24M | if (encode) |
752 | 2.44M | { |
753 | 2.44M | if (!stereo || ctx->theta_round == 0) |
754 | 1.82M | { |
755 | 1.82M | itheta = (itheta*(opus_int32)qn+8192)>>14; |
756 | 1.82M | if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn) |
757 | 66.2k | { |
758 | | /* Check if the selected value of theta will cause the bit allocation |
759 | | to inject noise on one side. If so, make sure the energy of that side |
760 | | is zero. */ |
761 | 66.2k | int unquantized = celt_udiv((opus_int32)itheta*16384, qn); |
762 | 66.2k | imid = bitexact_cos((opus_int16)unquantized); |
763 | 66.2k | iside = bitexact_cos((opus_int16)(16384-unquantized)); |
764 | 66.2k | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
765 | 66.2k | if (delta > *b) |
766 | 642 | itheta = qn; |
767 | 65.6k | else if (delta < -*b) |
768 | 487 | itheta = 0; |
769 | 66.2k | } |
770 | 1.82M | } else { |
771 | 620k | int down; |
772 | | /* Bias quantization towards itheta=0 and itheta=16384. */ |
773 | 620k | int bias = itheta > 8192 ? 32767/qn : -32767/qn; |
774 | 620k | down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14)); |
775 | 620k | if (ctx->theta_round < 0) |
776 | 310k | itheta = down; |
777 | 310k | else |
778 | 310k | itheta = down+1; |
779 | 620k | } |
780 | 2.44M | } |
781 | | /* Entropy coding of the angle. We use a uniform pdf for the |
782 | | time split, a step for stereo, and a triangular one for the rest. */ |
783 | 3.24M | if (stereo && N>2) |
784 | 662k | { |
785 | 662k | int p0 = 3; |
786 | 662k | int x = itheta; |
787 | 662k | int x0 = qn/2; |
788 | 662k | int ft = p0*(x0+1) + x0; |
789 | | /* Use a probability of p0 up to itheta=8192 and then use 1 after */ |
790 | 662k | if (encode) |
791 | 602k | { |
792 | 602k | ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
793 | 602k | } else { |
794 | 60.6k | int fs; |
795 | 60.6k | fs=ec_decode(ec,ft); |
796 | 60.6k | if (fs<(x0+1)*p0) |
797 | 42.8k | x=fs/p0; |
798 | 17.7k | else |
799 | 17.7k | x=x0+1+(fs-(x0+1)*p0); |
800 | 60.6k | ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
801 | 60.6k | itheta = x; |
802 | 60.6k | } |
803 | 2.58M | } else if (B0>1 || stereo) { |
804 | | /* Uniform pdf */ |
805 | 1.82M | if (encode) |
806 | 1.50M | ec_enc_uint(ec, itheta, qn+1); |
807 | 323k | else |
808 | 323k | itheta = ec_dec_uint(ec, qn+1); |
809 | 1.82M | } else { |
810 | 758k | int fs=1, ft; |
811 | 758k | ft = ((qn>>1)+1)*((qn>>1)+1); |
812 | 758k | if (encode) |
813 | 340k | { |
814 | 340k | int fl; |
815 | | |
816 | 340k | fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; |
817 | 340k | fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : |
818 | 340k | ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
819 | | |
820 | 340k | ec_encode(ec, fl, fl+fs, ft); |
821 | 417k | } else { |
822 | | /* Triangular pdf */ |
823 | 417k | int fl=0; |
824 | 417k | int fm; |
825 | 417k | fm = ec_decode(ec, ft); |
826 | | |
827 | 417k | if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) |
828 | 211k | { |
829 | 211k | itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; |
830 | 211k | fs = itheta + 1; |
831 | 211k | fl = itheta*(itheta + 1)>>1; |
832 | 211k | } |
833 | 205k | else |
834 | 205k | { |
835 | 205k | itheta = (2*(qn + 1) |
836 | 205k | - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; |
837 | 205k | fs = qn + 1 - itheta; |
838 | 205k | fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
839 | 205k | } |
840 | | |
841 | 417k | ec_dec_update(ec, fl, fl+fs, ft); |
842 | 417k | } |
843 | 758k | } |
844 | 3.24M | celt_assert(itheta>=0); |
845 | 3.24M | itheta = celt_udiv((opus_int32)itheta*16384, qn); |
846 | | #ifdef ENABLE_QEXT |
847 | 1.81M | *ext_b = IMIN(*ext_b, ctx->ext_total_bits - (opus_int32)ec_tell_frac(ctx->ext_ec)); |
848 | 1.81M | if (*ext_b >= 2*N<<BITRES && ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec)-1 > 2<<BITRES) { |
849 | 30.2k | int extra_bits; |
850 | 30.2k | int ext_tell = ec_tell_frac(ctx->ext_ec); |
851 | 30.2k | extra_bits = IMIN(12, IMAX(2, celt_sudiv(*ext_b, (2*N-1)<<BITRES))); |
852 | 30.2k | if (encode) { |
853 | 0 | itheta_q30 = itheta_q30 - (itheta<<16); |
854 | 0 | itheta_q30 = (itheta_q30*(opus_int64)qn*((1<<extra_bits)-1)+(1<<29))>>30; |
855 | 0 | itheta_q30 += (1<<(extra_bits-1))-1; |
856 | 0 | itheta_q30 = IMAX(0, IMIN((1<<extra_bits)-2, itheta_q30)); |
857 | 0 | ec_enc_uint(ctx->ext_ec, itheta_q30, (1<<extra_bits)-1); |
858 | 30.2k | } else { |
859 | 30.2k | itheta_q30 = ec_dec_uint(ctx->ext_ec, (1<<extra_bits)-1); |
860 | 30.2k | } |
861 | 30.2k | itheta_q30 -= (1<<(extra_bits-1))-1; |
862 | 30.2k | itheta_q30 = (itheta<<16) + itheta_q30*(opus_int64)(1<<30)/(qn*((1<<extra_bits)-1)); |
863 | | /* Hard bounds on itheta (can only trigger on corrupted bitstreams). */ |
864 | 30.2k | itheta_q30 = IMAX(0, IMIN(itheta_q30, 1073741824)); |
865 | 30.2k | *ext_b -= ec_tell_frac(ctx->ext_ec) - ext_tell; |
866 | 1.78M | } else { |
867 | 1.78M | itheta_q30 = (opus_int32)itheta<<16; |
868 | 1.78M | } |
869 | | #endif |
870 | 3.24M | if (encode && stereo) |
871 | 817k | { |
872 | 817k | if (itheta==0) |
873 | 140k | intensity_stereo(m, X, Y, bandE, i, N); |
874 | 677k | else |
875 | 677k | stereo_split(X, Y, N); |
876 | 817k | } |
877 | | /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. |
878 | | Let's do that at higher complexity */ |
879 | 3.24M | } else if (stereo) { |
880 | 1.70M | if (encode) |
881 | 497k | { |
882 | 497k | inv = itheta > 8192 && !ctx->disable_inv; |
883 | 497k | if (inv) |
884 | 129k | { |
885 | 129k | int j; |
886 | 2.28M | for (j=0;j<N;j++) |
887 | 2.15M | Y[j] = -Y[j]; |
888 | 129k | } |
889 | 497k | intensity_stereo(m, X, Y, bandE, i, N); |
890 | 497k | } |
891 | 1.70M | if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) |
892 | 403k | { |
893 | 403k | if (encode) |
894 | 247k | ec_enc_bit_logp(ec, inv, 2); |
895 | 155k | else |
896 | 155k | inv = ec_dec_bit_logp(ec, 2); |
897 | 403k | } else |
898 | 1.29M | inv = 0; |
899 | | /* inv flag override to avoid problems with downmixing. */ |
900 | 1.70M | if (ctx->disable_inv) |
901 | 870k | inv = 0; |
902 | 1.70M | itheta = 0; |
903 | 1.70M | itheta_q30 = 0; |
904 | 1.70M | } |
905 | 4.95M | qalloc = ec_tell_frac(ec) - tell; |
906 | 4.95M | *b -= qalloc; |
907 | | |
908 | 4.95M | if (itheta == 0) |
909 | 2.00M | { |
910 | 2.00M | imid = 32767; |
911 | 2.00M | iside = 0; |
912 | 2.00M | *fill &= (1<<B)-1; |
913 | 2.00M | delta = -16384; |
914 | 2.94M | } else if (itheta == 16384) |
915 | 342k | { |
916 | 342k | imid = 0; |
917 | 342k | iside = 32767; |
918 | 342k | *fill &= ((1<<B)-1)<<B; |
919 | 342k | delta = 16384; |
920 | 2.60M | } else { |
921 | 2.60M | imid = bitexact_cos((opus_int16)itheta); |
922 | 2.60M | iside = bitexact_cos((opus_int16)(16384-itheta)); |
923 | | /* This is the mid vs side allocation that minimizes squared error |
924 | | in that band. */ |
925 | 2.60M | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
926 | 2.60M | } |
927 | | |
928 | 4.95M | sctx->inv = inv; |
929 | 4.95M | sctx->imid = imid; |
930 | 4.95M | sctx->iside = iside; |
931 | 4.95M | sctx->delta = delta; |
932 | 4.95M | sctx->itheta = itheta; |
933 | | #ifdef ENABLE_QEXT |
934 | | sctx->itheta_q30 = itheta_q30; |
935 | | #endif |
936 | 4.95M | sctx->qalloc = qalloc; |
937 | 4.95M | } Line | Count | Source | 708 | 2.31M | { | 709 | 2.31M | int qn; | 710 | 2.31M | int itheta=0; | 711 | 2.31M | int itheta_q30=0; | 712 | 2.31M | int delta; | 713 | 2.31M | int imid, iside; | 714 | 2.31M | int qalloc; | 715 | 2.31M | int pulse_cap; | 716 | 2.31M | int offset; | 717 | 2.31M | opus_int32 tell; | 718 | 2.31M | int inv=0; | 719 | 2.31M | int encode; | 720 | 2.31M | const CELTMode *m; | 721 | 2.31M | int i; | 722 | 2.31M | int intensity; | 723 | 2.31M | ec_ctx *ec; | 724 | 2.31M | const celt_ener *bandE; | 725 | | | 726 | 2.31M | encode = ctx->encode; | 727 | 2.31M | m = ctx->m; | 728 | 2.31M | i = ctx->i; | 729 | 2.31M | intensity = ctx->intensity; | 730 | 2.31M | ec = ctx->ec; | 731 | 2.31M | bandE = ctx->bandE; | 732 | | | 733 | | /* Decide on the resolution to give to the split parameter theta */ | 734 | 2.31M | pulse_cap = m->logN[i]+LM*(1<<BITRES); | 735 | 2.31M | offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); | 736 | 2.31M | qn = compute_qn(N, *b, offset, pulse_cap, stereo); | 737 | 2.31M | if (stereo && i>=intensity) | 738 | 848k | qn = 1; | 739 | 2.31M | if (encode) | 740 | 1.36M | { | 741 | | /* theta is the atan() of the ratio between the (normalized) | 742 | | side and mid. With just that parameter, we can re-scale both | 743 | | mid and side because we know that 1) they have unit norm and | 744 | | 2) they are orthogonal. */ | 745 | 1.36M | itheta_q30 = stereo_itheta(X, Y, stereo, N, ctx->arch); | 746 | 1.36M | itheta = itheta_q30>>16; | 747 | 1.36M | } | 748 | 2.31M | tell = ec_tell_frac(ec); | 749 | 2.31M | if (qn!=1) | 750 | 1.43M | { | 751 | 1.43M | if (encode) | 752 | 1.11M | { | 753 | 1.11M | if (!stereo || ctx->theta_round == 0) | 754 | 826k | { | 755 | 826k | itheta = (itheta*(opus_int32)qn+8192)>>14; | 756 | 826k | if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn) | 757 | 27.7k | { | 758 | | /* Check if the selected value of theta will cause the bit allocation | 759 | | to inject noise on one side. If so, make sure the energy of that side | 760 | | is zero. */ | 761 | 27.7k | int unquantized = celt_udiv((opus_int32)itheta*16384, qn); | 762 | 27.7k | imid = bitexact_cos((opus_int16)unquantized); | 763 | 27.7k | iside = bitexact_cos((opus_int16)(16384-unquantized)); | 764 | 27.7k | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); | 765 | 27.7k | if (delta > *b) | 766 | 282 | itheta = qn; | 767 | 27.4k | else if (delta < -*b) | 768 | 211 | itheta = 0; | 769 | 27.7k | } | 770 | 826k | } else { | 771 | 288k | int down; | 772 | | /* Bias quantization towards itheta=0 and itheta=16384. */ | 773 | 288k | int bias = itheta > 8192 ? 32767/qn : -32767/qn; | 774 | 288k | down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14)); | 775 | 288k | if (ctx->theta_round < 0) | 776 | 144k | itheta = down; | 777 | 144k | else | 778 | 144k | itheta = down+1; | 779 | 288k | } | 780 | 1.11M | } | 781 | | /* Entropy coding of the angle. We use a uniform pdf for the | 782 | | time split, a step for stereo, and a triangular one for the rest. */ | 783 | 1.43M | if (stereo && N>2) | 784 | 299k | { | 785 | 299k | int p0 = 3; | 786 | 299k | int x = itheta; | 787 | 299k | int x0 = qn/2; | 788 | 299k | int ft = p0*(x0+1) + x0; | 789 | | /* Use a probability of p0 up to itheta=8192 and then use 1 after */ | 790 | 299k | if (encode) | 791 | 275k | { | 792 | 275k | ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | 793 | 275k | } else { | 794 | 24.8k | int fs; | 795 | 24.8k | fs=ec_decode(ec,ft); | 796 | 24.8k | if (fs<(x0+1)*p0) | 797 | 17.4k | x=fs/p0; | 798 | 7.40k | else | 799 | 7.40k | x=x0+1+(fs-(x0+1)*p0); | 800 | 24.8k | ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | 801 | 24.8k | itheta = x; | 802 | 24.8k | } | 803 | 1.13M | } else if (B0>1 || stereo) { | 804 | | /* Uniform pdf */ | 805 | 830k | if (encode) | 806 | 689k | ec_enc_uint(ec, itheta, qn+1); | 807 | 141k | else | 808 | 141k | itheta = ec_dec_uint(ec, qn+1); | 809 | 830k | } else { | 810 | 306k | int fs=1, ft; | 811 | 306k | ft = ((qn>>1)+1)*((qn>>1)+1); | 812 | 306k | if (encode) | 813 | 150k | { | 814 | 150k | int fl; | 815 | | | 816 | 150k | fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; | 817 | 150k | fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : | 818 | 150k | ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | 819 | | | 820 | 150k | ec_encode(ec, fl, fl+fs, ft); | 821 | 156k | } else { | 822 | | /* Triangular pdf */ | 823 | 156k | int fl=0; | 824 | 156k | int fm; | 825 | 156k | fm = ec_decode(ec, ft); | 826 | | | 827 | 156k | if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) | 828 | 79.4k | { | 829 | 79.4k | itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; | 830 | 79.4k | fs = itheta + 1; | 831 | 79.4k | fl = itheta*(itheta + 1)>>1; | 832 | 79.4k | } | 833 | 77.0k | else | 834 | 77.0k | { | 835 | 77.0k | itheta = (2*(qn + 1) | 836 | 77.0k | - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; | 837 | 77.0k | fs = qn + 1 - itheta; | 838 | 77.0k | fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | 839 | 77.0k | } | 840 | | | 841 | 156k | ec_dec_update(ec, fl, fl+fs, ft); | 842 | 156k | } | 843 | 306k | } | 844 | 1.43M | celt_assert(itheta>=0); | 845 | 1.43M | itheta = celt_udiv((opus_int32)itheta*16384, qn); | 846 | | #ifdef ENABLE_QEXT | 847 | | *ext_b = IMIN(*ext_b, ctx->ext_total_bits - (opus_int32)ec_tell_frac(ctx->ext_ec)); | 848 | | if (*ext_b >= 2*N<<BITRES && ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec)-1 > 2<<BITRES) { | 849 | | int extra_bits; | 850 | | int ext_tell = ec_tell_frac(ctx->ext_ec); | 851 | | extra_bits = IMIN(12, IMAX(2, celt_sudiv(*ext_b, (2*N-1)<<BITRES))); | 852 | | if (encode) { | 853 | | itheta_q30 = itheta_q30 - (itheta<<16); | 854 | | itheta_q30 = (itheta_q30*(opus_int64)qn*((1<<extra_bits)-1)+(1<<29))>>30; | 855 | | itheta_q30 += (1<<(extra_bits-1))-1; | 856 | | itheta_q30 = IMAX(0, IMIN((1<<extra_bits)-2, itheta_q30)); | 857 | | ec_enc_uint(ctx->ext_ec, itheta_q30, (1<<extra_bits)-1); | 858 | | } else { | 859 | | itheta_q30 = ec_dec_uint(ctx->ext_ec, (1<<extra_bits)-1); | 860 | | } | 861 | | itheta_q30 -= (1<<(extra_bits-1))-1; | 862 | | itheta_q30 = (itheta<<16) + itheta_q30*(opus_int64)(1<<30)/(qn*((1<<extra_bits)-1)); | 863 | | /* Hard bounds on itheta (can only trigger on corrupted bitstreams). */ | 864 | | itheta_q30 = IMAX(0, IMIN(itheta_q30, 1073741824)); | 865 | | *ext_b -= ec_tell_frac(ctx->ext_ec) - ext_tell; | 866 | | } else { | 867 | | itheta_q30 = (opus_int32)itheta<<16; | 868 | | } | 869 | | #endif | 870 | 1.43M | if (encode && stereo) | 871 | 378k | { | 872 | 378k | if (itheta==0) | 873 | 63.6k | intensity_stereo(m, X, Y, bandE, i, N); | 874 | 314k | else | 875 | 314k | stereo_split(X, Y, N); | 876 | 378k | } | 877 | | /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. | 878 | | Let's do that at higher complexity */ | 879 | 1.43M | } else if (stereo) { | 880 | 882k | if (encode) | 881 | 249k | { | 882 | 249k | inv = itheta > 8192 && !ctx->disable_inv; | 883 | 249k | if (inv) | 884 | 65.1k | { | 885 | 65.1k | int j; | 886 | 1.17M | for (j=0;j<N;j++) | 887 | 1.11M | Y[j] = -Y[j]; | 888 | 65.1k | } | 889 | 249k | intensity_stereo(m, X, Y, bandE, i, N); | 890 | 249k | } | 891 | 882k | if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) | 892 | 183k | { | 893 | 183k | if (encode) | 894 | 120k | ec_enc_bit_logp(ec, inv, 2); | 895 | 62.9k | else | 896 | 62.9k | inv = ec_dec_bit_logp(ec, 2); | 897 | 183k | } else | 898 | 698k | inv = 0; | 899 | | /* inv flag override to avoid problems with downmixing. */ | 900 | 882k | if (ctx->disable_inv) | 901 | 423k | inv = 0; | 902 | 882k | itheta = 0; | 903 | 882k | itheta_q30 = 0; | 904 | 882k | } | 905 | 2.31M | qalloc = ec_tell_frac(ec) - tell; | 906 | 2.31M | *b -= qalloc; | 907 | | | 908 | 2.31M | if (itheta == 0) | 909 | 1.01M | { | 910 | 1.01M | imid = 32767; | 911 | 1.01M | iside = 0; | 912 | 1.01M | *fill &= (1<<B)-1; | 913 | 1.01M | delta = -16384; | 914 | 1.30M | } else if (itheta == 16384) | 915 | 161k | { | 916 | 161k | imid = 0; | 917 | 161k | iside = 32767; | 918 | 161k | *fill &= ((1<<B)-1)<<B; | 919 | 161k | delta = 16384; | 920 | 1.13M | } else { | 921 | 1.13M | imid = bitexact_cos((opus_int16)itheta); | 922 | 1.13M | iside = bitexact_cos((opus_int16)(16384-itheta)); | 923 | | /* This is the mid vs side allocation that minimizes squared error | 924 | | in that band. */ | 925 | 1.13M | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); | 926 | 1.13M | } | 927 | | | 928 | 2.31M | sctx->inv = inv; | 929 | 2.31M | sctx->imid = imid; | 930 | 2.31M | sctx->iside = iside; | 931 | 2.31M | sctx->delta = delta; | 932 | 2.31M | sctx->itheta = itheta; | 933 | | #ifdef ENABLE_QEXT | 934 | | sctx->itheta_q30 = itheta_q30; | 935 | | #endif | 936 | 2.31M | sctx->qalloc = qalloc; | 937 | 2.31M | } |
Line | Count | Source | 708 | 2.63M | { | 709 | 2.63M | int qn; | 710 | 2.63M | int itheta=0; | 711 | 2.63M | int itheta_q30=0; | 712 | 2.63M | int delta; | 713 | 2.63M | int imid, iside; | 714 | 2.63M | int qalloc; | 715 | 2.63M | int pulse_cap; | 716 | 2.63M | int offset; | 717 | 2.63M | opus_int32 tell; | 718 | 2.63M | int inv=0; | 719 | 2.63M | int encode; | 720 | 2.63M | const CELTMode *m; | 721 | 2.63M | int i; | 722 | 2.63M | int intensity; | 723 | 2.63M | ec_ctx *ec; | 724 | 2.63M | const celt_ener *bandE; | 725 | | | 726 | 2.63M | encode = ctx->encode; | 727 | 2.63M | m = ctx->m; | 728 | 2.63M | i = ctx->i; | 729 | 2.63M | intensity = ctx->intensity; | 730 | 2.63M | ec = ctx->ec; | 731 | 2.63M | bandE = ctx->bandE; | 732 | | | 733 | | /* Decide on the resolution to give to the split parameter theta */ | 734 | 2.63M | pulse_cap = m->logN[i]+LM*(1<<BITRES); | 735 | 2.63M | offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); | 736 | 2.63M | qn = compute_qn(N, *b, offset, pulse_cap, stereo); | 737 | 2.63M | if (stereo && i>=intensity) | 738 | 775k | qn = 1; | 739 | 2.63M | if (encode) | 740 | 1.58M | { | 741 | | /* theta is the atan() of the ratio between the (normalized) | 742 | | side and mid. With just that parameter, we can re-scale both | 743 | | mid and side because we know that 1) they have unit norm and | 744 | | 2) they are orthogonal. */ | 745 | 1.58M | itheta_q30 = stereo_itheta(X, Y, stereo, N, ctx->arch); | 746 | 1.58M | itheta = itheta_q30>>16; | 747 | 1.58M | } | 748 | 2.63M | tell = ec_tell_frac(ec); | 749 | 2.63M | if (qn!=1) | 750 | 1.81M | { | 751 | 1.81M | if (encode) | 752 | 1.33M | { | 753 | 1.33M | if (!stereo || ctx->theta_round == 0) | 754 | 1.00M | { | 755 | 1.00M | itheta = (itheta*(opus_int32)qn+8192)>>14; | 756 | 1.00M | if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn) | 757 | 38.4k | { | 758 | | /* Check if the selected value of theta will cause the bit allocation | 759 | | to inject noise on one side. If so, make sure the energy of that side | 760 | | is zero. */ | 761 | 38.4k | int unquantized = celt_udiv((opus_int32)itheta*16384, qn); | 762 | 38.4k | imid = bitexact_cos((opus_int16)unquantized); | 763 | 38.4k | iside = bitexact_cos((opus_int16)(16384-unquantized)); | 764 | 38.4k | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); | 765 | 38.4k | if (delta > *b) | 766 | 360 | itheta = qn; | 767 | 38.1k | else if (delta < -*b) | 768 | 276 | itheta = 0; | 769 | 38.4k | } | 770 | 1.00M | } else { | 771 | 331k | int down; | 772 | | /* Bias quantization towards itheta=0 and itheta=16384. */ | 773 | 331k | int bias = itheta > 8192 ? 32767/qn : -32767/qn; | 774 | 331k | down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14)); | 775 | 331k | if (ctx->theta_round < 0) | 776 | 165k | itheta = down; | 777 | 165k | else | 778 | 165k | itheta = down+1; | 779 | 331k | } | 780 | 1.33M | } | 781 | | /* Entropy coding of the angle. We use a uniform pdf for the | 782 | | time split, a step for stereo, and a triangular one for the rest. */ | 783 | 1.81M | if (stereo && N>2) | 784 | 362k | { | 785 | 362k | int p0 = 3; | 786 | 362k | int x = itheta; | 787 | 362k | int x0 = qn/2; | 788 | 362k | int ft = p0*(x0+1) + x0; | 789 | | /* Use a probability of p0 up to itheta=8192 and then use 1 after */ | 790 | 362k | if (encode) | 791 | 326k | { | 792 | 326k | ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | 793 | 326k | } else { | 794 | 35.7k | int fs; | 795 | 35.7k | fs=ec_decode(ec,ft); | 796 | 35.7k | if (fs<(x0+1)*p0) | 797 | 25.3k | x=fs/p0; | 798 | 10.3k | else | 799 | 10.3k | x=x0+1+(fs-(x0+1)*p0); | 800 | 35.7k | ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | 801 | 35.7k | itheta = x; | 802 | 35.7k | } | 803 | 1.44M | } else if (B0>1 || stereo) { | 804 | | /* Uniform pdf */ | 805 | 997k | if (encode) | 806 | 815k | ec_enc_uint(ec, itheta, qn+1); | 807 | 182k | else | 808 | 182k | itheta = ec_dec_uint(ec, qn+1); | 809 | 997k | } else { | 810 | 451k | int fs=1, ft; | 811 | 451k | ft = ((qn>>1)+1)*((qn>>1)+1); | 812 | 451k | if (encode) | 813 | 190k | { | 814 | 190k | int fl; | 815 | | | 816 | 190k | fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; | 817 | 190k | fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : | 818 | 190k | ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | 819 | | | 820 | 190k | ec_encode(ec, fl, fl+fs, ft); | 821 | 260k | } else { | 822 | | /* Triangular pdf */ | 823 | 260k | int fl=0; | 824 | 260k | int fm; | 825 | 260k | fm = ec_decode(ec, ft); | 826 | | | 827 | 260k | if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) | 828 | 132k | { | 829 | 132k | itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; | 830 | 132k | fs = itheta + 1; | 831 | 132k | fl = itheta*(itheta + 1)>>1; | 832 | 132k | } | 833 | 128k | else | 834 | 128k | { | 835 | 128k | itheta = (2*(qn + 1) | 836 | 128k | - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; | 837 | 128k | fs = qn + 1 - itheta; | 838 | 128k | fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | 839 | 128k | } | 840 | | | 841 | 260k | ec_dec_update(ec, fl, fl+fs, ft); | 842 | 260k | } | 843 | 451k | } | 844 | 1.81M | celt_assert(itheta>=0); | 845 | 1.81M | itheta = celt_udiv((opus_int32)itheta*16384, qn); | 846 | 1.81M | #ifdef ENABLE_QEXT | 847 | 1.81M | *ext_b = IMIN(*ext_b, ctx->ext_total_bits - (opus_int32)ec_tell_frac(ctx->ext_ec)); | 848 | 1.81M | if (*ext_b >= 2*N<<BITRES && ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec)-1 > 2<<BITRES) { | 849 | 30.2k | int extra_bits; | 850 | 30.2k | int ext_tell = ec_tell_frac(ctx->ext_ec); | 851 | 30.2k | extra_bits = IMIN(12, IMAX(2, celt_sudiv(*ext_b, (2*N-1)<<BITRES))); | 852 | 30.2k | if (encode) { | 853 | 0 | itheta_q30 = itheta_q30 - (itheta<<16); | 854 | 0 | itheta_q30 = (itheta_q30*(opus_int64)qn*((1<<extra_bits)-1)+(1<<29))>>30; | 855 | 0 | itheta_q30 += (1<<(extra_bits-1))-1; | 856 | 0 | itheta_q30 = IMAX(0, IMIN((1<<extra_bits)-2, itheta_q30)); | 857 | 0 | ec_enc_uint(ctx->ext_ec, itheta_q30, (1<<extra_bits)-1); | 858 | 30.2k | } else { | 859 | 30.2k | itheta_q30 = ec_dec_uint(ctx->ext_ec, (1<<extra_bits)-1); | 860 | 30.2k | } | 861 | 30.2k | itheta_q30 -= (1<<(extra_bits-1))-1; | 862 | 30.2k | itheta_q30 = (itheta<<16) + itheta_q30*(opus_int64)(1<<30)/(qn*((1<<extra_bits)-1)); | 863 | | /* Hard bounds on itheta (can only trigger on corrupted bitstreams). */ | 864 | 30.2k | itheta_q30 = IMAX(0, IMIN(itheta_q30, 1073741824)); | 865 | 30.2k | *ext_b -= ec_tell_frac(ctx->ext_ec) - ext_tell; | 866 | 1.78M | } else { | 867 | 1.78M | itheta_q30 = (opus_int32)itheta<<16; | 868 | 1.78M | } | 869 | 1.81M | #endif | 870 | 1.81M | if (encode && stereo) | 871 | 439k | { | 872 | 439k | if (itheta==0) | 873 | 76.6k | intensity_stereo(m, X, Y, bandE, i, N); | 874 | 362k | else | 875 | 362k | stereo_split(X, Y, N); | 876 | 439k | } | 877 | | /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. | 878 | | Let's do that at higher complexity */ | 879 | 1.81M | } else if (stereo) { | 880 | 819k | if (encode) | 881 | 248k | { | 882 | 248k | inv = itheta > 8192 && !ctx->disable_inv; | 883 | 248k | if (inv) | 884 | 64.7k | { | 885 | 64.7k | int j; | 886 | 1.10M | for (j=0;j<N;j++) | 887 | 1.04M | Y[j] = -Y[j]; | 888 | 64.7k | } | 889 | 248k | intensity_stereo(m, X, Y, bandE, i, N); | 890 | 248k | } | 891 | 819k | if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) | 892 | 220k | { | 893 | 220k | if (encode) | 894 | 127k | ec_enc_bit_logp(ec, inv, 2); | 895 | 92.9k | else | 896 | 92.9k | inv = ec_dec_bit_logp(ec, 2); | 897 | 220k | } else | 898 | 599k | inv = 0; | 899 | | /* inv flag override to avoid problems with downmixing. */ | 900 | 819k | if (ctx->disable_inv) | 901 | 446k | inv = 0; | 902 | 819k | itheta = 0; | 903 | 819k | itheta_q30 = 0; | 904 | 819k | } | 905 | 2.63M | qalloc = ec_tell_frac(ec) - tell; | 906 | 2.63M | *b -= qalloc; | 907 | | | 908 | 2.63M | if (itheta == 0) | 909 | 985k | { | 910 | 985k | imid = 32767; | 911 | 985k | iside = 0; | 912 | 985k | *fill &= (1<<B)-1; | 913 | 985k | delta = -16384; | 914 | 1.64M | } else if (itheta == 16384) | 915 | 181k | { | 916 | 181k | imid = 0; | 917 | 181k | iside = 32767; | 918 | 181k | *fill &= ((1<<B)-1)<<B; | 919 | 181k | delta = 16384; | 920 | 1.46M | } else { | 921 | 1.46M | imid = bitexact_cos((opus_int16)itheta); | 922 | 1.46M | iside = bitexact_cos((opus_int16)(16384-itheta)); | 923 | | /* This is the mid vs side allocation that minimizes squared error | 924 | | in that band. */ | 925 | 1.46M | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); | 926 | 1.46M | } | 927 | | | 928 | 2.63M | sctx->inv = inv; | 929 | 2.63M | sctx->imid = imid; | 930 | 2.63M | sctx->iside = iside; | 931 | 2.63M | sctx->delta = delta; | 932 | 2.63M | sctx->itheta = itheta; | 933 | 2.63M | #ifdef ENABLE_QEXT | 934 | 2.63M | sctx->itheta_q30 = itheta_q30; | 935 | 2.63M | #endif | 936 | 2.63M | sctx->qalloc = qalloc; | 937 | 2.63M | } |
|
938 | | static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
939 | | celt_norm *lowband_out) |
940 | 4.33M | { |
941 | 4.33M | int c; |
942 | 4.33M | int stereo; |
943 | 4.33M | celt_norm *x = X; |
944 | 4.33M | int encode; |
945 | 4.33M | ec_ctx *ec; |
946 | | |
947 | 4.33M | encode = ctx->encode; |
948 | 4.33M | ec = ctx->ec; |
949 | | |
950 | 4.33M | stereo = Y != NULL; |
951 | 5.58M | c=0; do { |
952 | 5.58M | int sign=0; |
953 | 5.58M | if (ctx->remaining_bits>=1<<BITRES) |
954 | 3.00M | { |
955 | 3.00M | if (encode) |
956 | 2.44M | { |
957 | 2.44M | sign = x[0]<0; |
958 | 2.44M | ec_enc_bits(ec, sign, 1); |
959 | 2.44M | } else { |
960 | 557k | sign = ec_dec_bits(ec, 1); |
961 | 557k | } |
962 | 3.00M | ctx->remaining_bits -= 1<<BITRES; |
963 | 3.00M | } |
964 | 5.58M | if (ctx->resynth) |
965 | 3.49M | x[0] = sign ? -NORM_SCALING : NORM_SCALING; |
966 | 5.58M | x = Y; |
967 | 5.58M | } while (++c<1+stereo); |
968 | 4.33M | if (lowband_out) |
969 | 4.33M | lowband_out[0] = SHR32(X[0],4); |
970 | 4.33M | return 1; |
971 | 4.33M | } Line | Count | Source | 940 | 2.16M | { | 941 | 2.16M | int c; | 942 | 2.16M | int stereo; | 943 | 2.16M | celt_norm *x = X; | 944 | 2.16M | int encode; | 945 | 2.16M | ec_ctx *ec; | 946 | | | 947 | 2.16M | encode = ctx->encode; | 948 | 2.16M | ec = ctx->ec; | 949 | | | 950 | 2.16M | stereo = Y != NULL; | 951 | 2.79M | c=0; do { | 952 | 2.79M | int sign=0; | 953 | 2.79M | if (ctx->remaining_bits>=1<<BITRES) | 954 | 1.50M | { | 955 | 1.50M | if (encode) | 956 | 1.22M | { | 957 | 1.22M | sign = x[0]<0; | 958 | 1.22M | ec_enc_bits(ec, sign, 1); | 959 | 1.22M | } else { | 960 | 278k | sign = ec_dec_bits(ec, 1); | 961 | 278k | } | 962 | 1.50M | ctx->remaining_bits -= 1<<BITRES; | 963 | 1.50M | } | 964 | 2.79M | if (ctx->resynth) | 965 | 1.74M | x[0] = sign ? -NORM_SCALING : NORM_SCALING; | 966 | 2.79M | x = Y; | 967 | 2.79M | } while (++c<1+stereo); | 968 | 2.16M | if (lowband_out) | 969 | 2.16M | lowband_out[0] = SHR32(X[0],4); | 970 | 2.16M | return 1; | 971 | 2.16M | } |
Line | Count | Source | 940 | 2.16M | { | 941 | 2.16M | int c; | 942 | 2.16M | int stereo; | 943 | 2.16M | celt_norm *x = X; | 944 | 2.16M | int encode; | 945 | 2.16M | ec_ctx *ec; | 946 | | | 947 | 2.16M | encode = ctx->encode; | 948 | 2.16M | ec = ctx->ec; | 949 | | | 950 | 2.16M | stereo = Y != NULL; | 951 | 2.79M | c=0; do { | 952 | 2.79M | int sign=0; | 953 | 2.79M | if (ctx->remaining_bits>=1<<BITRES) | 954 | 1.50M | { | 955 | 1.50M | if (encode) | 956 | 1.22M | { | 957 | 1.22M | sign = x[0]<0; | 958 | 1.22M | ec_enc_bits(ec, sign, 1); | 959 | 1.22M | } else { | 960 | 278k | sign = ec_dec_bits(ec, 1); | 961 | 278k | } | 962 | 1.50M | ctx->remaining_bits -= 1<<BITRES; | 963 | 1.50M | } | 964 | 2.79M | if (ctx->resynth) | 965 | 1.74M | x[0] = sign ? -NORM_SCALING : NORM_SCALING; | 966 | 2.79M | x = Y; | 967 | 2.79M | } while (++c<1+stereo); | 968 | 2.16M | if (lowband_out) | 969 | 2.16M | lowband_out[0] = SHR32(X[0],4); | 970 | 2.16M | return 1; | 971 | 2.16M | } |
|
972 | | |
973 | | /* This function is responsible for encoding and decoding a mono partition. |
974 | | It can split the band in two and transmit the energy difference with |
975 | | the two half-bands. It can be called recursively so bands can end up being |
976 | | split in 8 parts. */ |
977 | | static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, |
978 | | int N, int b, int B, celt_norm *lowband, |
979 | | int LM, |
980 | | opus_val32 gain, int fill |
981 | | ARG_QEXT(int ext_b)) |
982 | 28.9M | { |
983 | 28.9M | const unsigned char *cache; |
984 | 28.9M | int q; |
985 | 28.9M | int curr_bits; |
986 | 28.9M | int imid=0, iside=0; |
987 | 28.9M | int B0=B; |
988 | 28.9M | opus_val32 mid=0, side=0; |
989 | 28.9M | unsigned cm=0; |
990 | 28.9M | celt_norm *Y=NULL; |
991 | 28.9M | int encode; |
992 | 28.9M | const CELTMode *m; |
993 | 28.9M | int i; |
994 | 28.9M | int spread; |
995 | 28.9M | ec_ctx *ec; |
996 | | |
997 | 28.9M | encode = ctx->encode; |
998 | 28.9M | m = ctx->m; |
999 | 28.9M | i = ctx->i; |
1000 | 28.9M | spread = ctx->spread; |
1001 | 28.9M | ec = ctx->ec; |
1002 | | |
1003 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ |
1004 | 28.9M | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; |
1005 | 28.9M | if (LM != -1 && b > cache[cache[0]]+12 && N>2) |
1006 | 4.67M | { |
1007 | 4.67M | int mbits, sbits, delta; |
1008 | 4.67M | int itheta; |
1009 | 4.67M | int qalloc; |
1010 | 4.67M | struct split_ctx sctx; |
1011 | 4.67M | celt_norm *next_lowband2=NULL; |
1012 | 4.67M | opus_int32 rebalance; |
1013 | | |
1014 | 4.67M | N >>= 1; |
1015 | 4.67M | Y = X+N; |
1016 | 4.67M | LM -= 1; |
1017 | 4.67M | if (B==1) |
1018 | 1.51M | fill = (fill&1)|(fill<<1); |
1019 | 4.67M | B = (B+1)>>1; |
1020 | | |
1021 | 4.67M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill ARG_QEXT(&ext_b)); |
1022 | 4.67M | imid = sctx.imid; |
1023 | 4.67M | iside = sctx.iside; |
1024 | 4.67M | delta = sctx.delta; |
1025 | 4.67M | itheta = sctx.itheta; |
1026 | 4.67M | qalloc = sctx.qalloc; |
1027 | | #ifdef FIXED_POINT |
1028 | | # ifdef ENABLE_QEXT |
1029 | | (void)imid; |
1030 | | (void)iside; |
1031 | | mid = celt_cos_norm32(sctx.itheta_q30); |
1032 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); |
1033 | | # else |
1034 | 1.02M | mid = SHL32(EXTEND32(imid), 16); |
1035 | 1.02M | side = SHL32(EXTEND32(iside), 16); |
1036 | | # endif |
1037 | | #else |
1038 | | # ifdef ENABLE_QEXT |
1039 | | (void)imid; |
1040 | | (void)iside; |
1041 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); |
1042 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); |
1043 | | # else |
1044 | | mid = (1.f/32768)*imid; |
1045 | | side = (1.f/32768)*iside; |
1046 | | # endif |
1047 | | #endif |
1048 | | |
1049 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ |
1050 | 4.67M | if (B0>1 && (itheta&0x3fff)) |
1051 | 2.46M | { |
1052 | 2.46M | if (itheta > 8192) |
1053 | | /* Rough approximation for pre-echo masking */ |
1054 | 1.26M | delta -= delta>>(4-LM); |
1055 | 1.20M | else |
1056 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ |
1057 | 1.20M | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); |
1058 | 2.46M | } |
1059 | 4.67M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
1060 | 4.67M | sbits = b-mbits; |
1061 | 4.67M | ctx->remaining_bits -= qalloc; |
1062 | | |
1063 | 4.67M | if (lowband) |
1064 | 1.83M | next_lowband2 = lowband+N; /* >32-bit split case */ |
1065 | | |
1066 | 4.67M | rebalance = ctx->remaining_bits; |
1067 | 4.67M | if (mbits >= sbits) |
1068 | 2.13M | { |
1069 | 2.13M | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, |
1070 | 2.13M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); |
1071 | 2.13M | rebalance = mbits - (rebalance-ctx->remaining_bits); |
1072 | 2.13M | if (rebalance > 3<<BITRES && itheta!=0) |
1073 | 727k | sbits += rebalance - (3<<BITRES); |
1074 | 2.13M | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, |
1075 | 2.13M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); |
1076 | 2.53M | } else { |
1077 | 2.53M | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, |
1078 | 2.53M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); |
1079 | 2.53M | rebalance = sbits - (rebalance-ctx->remaining_bits); |
1080 | 2.53M | if (rebalance > 3<<BITRES && itheta!=16384) |
1081 | 843k | mbits += rebalance - (3<<BITRES); |
1082 | 2.53M | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, |
1083 | 2.53M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); |
1084 | 2.53M | } |
1085 | 24.3M | } else { |
1086 | | #ifdef ENABLE_QEXT |
1087 | | int extra_bits; |
1088 | | int ext_remaining_bits; |
1089 | 12.4M | extra_bits = ext_b/(N-1)>>BITRES; |
1090 | | ext_remaining_bits = ctx->ext_total_bits-(opus_int32)ec_tell_frac(ctx->ext_ec); |
1091 | 12.4M | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { |
1092 | 12.1M | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; |
1093 | 12.1M | extra_bits = IMAX(extra_bits-1, 0); |
1094 | 12.1M | } |
1095 | 12.4M | extra_bits = IMIN(12, extra_bits); |
1096 | | #endif |
1097 | | /* This is the basic no-split case */ |
1098 | 24.3M | q = bits2pulses(m, i, LM, b); |
1099 | 24.3M | curr_bits = pulses2bits(m, i, LM, q); |
1100 | 24.3M | ctx->remaining_bits -= curr_bits; |
1101 | | |
1102 | | /* Ensures we can never bust the budget */ |
1103 | 24.5M | while (ctx->remaining_bits < 0 && q > 0) |
1104 | 260k | { |
1105 | 260k | ctx->remaining_bits += curr_bits; |
1106 | 260k | q--; |
1107 | 260k | curr_bits = pulses2bits(m, i, LM, q); |
1108 | 260k | ctx->remaining_bits -= curr_bits; |
1109 | 260k | } |
1110 | | |
1111 | 24.3M | if (q!=0) |
1112 | 13.0M | { |
1113 | 7.18M | int K = get_pulses(q); |
1114 | | |
1115 | | /* Finally do the actual quantization */ |
1116 | 13.0M | if (encode) |
1117 | 9.59M | { |
1118 | 9.59M | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth |
1119 | 9.59M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits), |
1120 | 9.59M | ctx->arch); |
1121 | 9.59M | } else { |
1122 | 3.44M | cm = alg_unquant(X, N, K, spread, B, ec, gain |
1123 | 3.44M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits)); |
1124 | 3.44M | } |
1125 | | #ifdef ENABLE_QEXT |
1126 | 5.26M | } else if (ext_b > 2*N<<BITRES) |
1127 | 16.8k | { |
1128 | 16.8k | extra_bits = ext_b/(N-1)>>BITRES; |
1129 | 16.8k | ext_remaining_bits = ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec); |
1130 | 16.8k | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { |
1131 | 2.49k | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; |
1132 | 2.49k | extra_bits = IMAX(extra_bits-1, 0); |
1133 | 2.49k | } |
1134 | 16.8k | extra_bits = IMIN(14, extra_bits); |
1135 | 16.8k | if (encode) cm = cubic_quant(X, N, extra_bits, B, ctx->ext_ec, gain, ctx->resynth); |
1136 | 16.8k | else cm = cubic_unquant(X, N, extra_bits, B, ctx->ext_ec, gain); |
1137 | | #endif |
1138 | 11.2M | } else { |
1139 | | /* If there's no pulse, fill the band anyway */ |
1140 | 11.2M | int j; |
1141 | 11.2M | if (ctx->resynth) |
1142 | 8.39M | { |
1143 | 8.39M | unsigned cm_mask; |
1144 | | /* B can be as large as 16, so this shift might overflow an int on a |
1145 | | 16-bit platform; use a long to get defined behavior.*/ |
1146 | 8.39M | cm_mask = (unsigned)(1UL<<B)-1; |
1147 | 8.39M | fill &= cm_mask; |
1148 | 8.39M | if (!fill) |
1149 | 2.74M | { |
1150 | 2.74M | OPUS_CLEAR(X, N); |
1151 | 5.64M | } else { |
1152 | 5.64M | if (lowband == NULL) |
1153 | 233k | { |
1154 | | /* Noise */ |
1155 | 3.80M | for (j=0;j<N;j++) |
1156 | 3.57M | { |
1157 | 3.57M | ctx->seed = celt_lcg_rand(ctx->seed); |
1158 | 3.57M | X[j] = SHL32((celt_norm)((opus_int32)ctx->seed>>20), NORM_SHIFT-14); |
1159 | 3.57M | } |
1160 | 233k | cm = cm_mask; |
1161 | 5.41M | } else { |
1162 | | /* Folded spectrum */ |
1163 | 76.4M | for (j=0;j<N;j++) |
1164 | 71.0M | { |
1165 | 71.0M | opus_val16 tmp; |
1166 | 71.0M | ctx->seed = celt_lcg_rand(ctx->seed); |
1167 | | /* About 48 dB below the "normal" folding level */ |
1168 | 71.0M | tmp = QCONST16(1.0f/256, NORM_SHIFT-4); |
1169 | 71.0M | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; |
1170 | 71.0M | X[j] = lowband[j]+tmp; |
1171 | 71.0M | } |
1172 | 5.41M | cm = fill; |
1173 | 5.41M | } |
1174 | 5.64M | renormalise_vector(X, N, gain, ctx->arch); |
1175 | 5.64M | } |
1176 | 8.39M | } |
1177 | 11.2M | } |
1178 | 24.3M | } |
1179 | | |
1180 | 28.9M | return cm; |
1181 | 28.9M | } Line | Count | Source | 982 | 6.94M | { | 983 | 6.94M | const unsigned char *cache; | 984 | 6.94M | int q; | 985 | 6.94M | int curr_bits; | 986 | 6.94M | int imid=0, iside=0; | 987 | 6.94M | int B0=B; | 988 | 6.94M | opus_val32 mid=0, side=0; | 989 | 6.94M | unsigned cm=0; | 990 | 6.94M | celt_norm *Y=NULL; | 991 | 6.94M | int encode; | 992 | 6.94M | const CELTMode *m; | 993 | 6.94M | int i; | 994 | 6.94M | int spread; | 995 | 6.94M | ec_ctx *ec; | 996 | | | 997 | 6.94M | encode = ctx->encode; | 998 | 6.94M | m = ctx->m; | 999 | 6.94M | i = ctx->i; | 1000 | 6.94M | spread = ctx->spread; | 1001 | 6.94M | ec = ctx->ec; | 1002 | | | 1003 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ | 1004 | 6.94M | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; | 1005 | 6.94M | if (LM != -1 && b > cache[cache[0]]+12 && N>2) | 1006 | 1.02M | { | 1007 | 1.02M | int mbits, sbits, delta; | 1008 | 1.02M | int itheta; | 1009 | 1.02M | int qalloc; | 1010 | 1.02M | struct split_ctx sctx; | 1011 | 1.02M | celt_norm *next_lowband2=NULL; | 1012 | 1.02M | opus_int32 rebalance; | 1013 | | | 1014 | 1.02M | N >>= 1; | 1015 | 1.02M | Y = X+N; | 1016 | 1.02M | LM -= 1; | 1017 | 1.02M | if (B==1) | 1018 | 306k | fill = (fill&1)|(fill<<1); | 1019 | 1.02M | B = (B+1)>>1; | 1020 | | | 1021 | 1.02M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill ARG_QEXT(&ext_b)); | 1022 | 1.02M | imid = sctx.imid; | 1023 | 1.02M | iside = sctx.iside; | 1024 | 1.02M | delta = sctx.delta; | 1025 | 1.02M | itheta = sctx.itheta; | 1026 | 1.02M | qalloc = sctx.qalloc; | 1027 | 1.02M | #ifdef FIXED_POINT | 1028 | | # ifdef ENABLE_QEXT | 1029 | | (void)imid; | 1030 | | (void)iside; | 1031 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1032 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1033 | | # else | 1034 | 1.02M | mid = SHL32(EXTEND32(imid), 16); | 1035 | 1.02M | side = SHL32(EXTEND32(iside), 16); | 1036 | 1.02M | # endif | 1037 | | #else | 1038 | | # ifdef ENABLE_QEXT | 1039 | | (void)imid; | 1040 | | (void)iside; | 1041 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1042 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1043 | | # else | 1044 | | mid = (1.f/32768)*imid; | 1045 | | side = (1.f/32768)*iside; | 1046 | | # endif | 1047 | | #endif | 1048 | | | 1049 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ | 1050 | 1.02M | if (B0>1 && (itheta&0x3fff)) | 1051 | 547k | { | 1052 | 547k | if (itheta > 8192) | 1053 | | /* Rough approximation for pre-echo masking */ | 1054 | 281k | delta -= delta>>(4-LM); | 1055 | 266k | else | 1056 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ | 1057 | 266k | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); | 1058 | 547k | } | 1059 | 1.02M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1060 | 1.02M | sbits = b-mbits; | 1061 | 1.02M | ctx->remaining_bits -= qalloc; | 1062 | | | 1063 | 1.02M | if (lowband) | 1064 | 383k | next_lowband2 = lowband+N; /* >32-bit split case */ | 1065 | | | 1066 | 1.02M | rebalance = ctx->remaining_bits; | 1067 | 1.02M | if (mbits >= sbits) | 1068 | 461k | { | 1069 | 461k | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1070 | 461k | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1071 | 461k | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1072 | 461k | if (rebalance > 3<<BITRES && itheta!=0) | 1073 | 152k | sbits += rebalance - (3<<BITRES); | 1074 | 461k | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1075 | 461k | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1076 | 559k | } else { | 1077 | 559k | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1078 | 559k | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1079 | 559k | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1080 | 559k | if (rebalance > 3<<BITRES && itheta!=16384) | 1081 | 179k | mbits += rebalance - (3<<BITRES); | 1082 | 559k | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1083 | 559k | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1084 | 559k | } | 1085 | 5.92M | } else { | 1086 | | #ifdef ENABLE_QEXT | 1087 | | int extra_bits; | 1088 | | int ext_remaining_bits; | 1089 | | extra_bits = ext_b/(N-1)>>BITRES; | 1090 | | ext_remaining_bits = ctx->ext_total_bits-(opus_int32)ec_tell_frac(ctx->ext_ec); | 1091 | | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1092 | | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1093 | | extra_bits = IMAX(extra_bits-1, 0); | 1094 | | } | 1095 | | extra_bits = IMIN(12, extra_bits); | 1096 | | #endif | 1097 | | /* This is the basic no-split case */ | 1098 | 5.92M | q = bits2pulses(m, i, LM, b); | 1099 | 5.92M | curr_bits = pulses2bits(m, i, LM, q); | 1100 | 5.92M | ctx->remaining_bits -= curr_bits; | 1101 | | | 1102 | | /* Ensures we can never bust the budget */ | 1103 | 5.98M | while (ctx->remaining_bits < 0 && q > 0) | 1104 | 57.8k | { | 1105 | 57.8k | ctx->remaining_bits += curr_bits; | 1106 | 57.8k | q--; | 1107 | 57.8k | curr_bits = pulses2bits(m, i, LM, q); | 1108 | 57.8k | ctx->remaining_bits -= curr_bits; | 1109 | 57.8k | } | 1110 | | | 1111 | 5.92M | if (q!=0) | 1112 | 2.92M | { | 1113 | 2.92M | int K = get_pulses(q); | 1114 | | | 1115 | | /* Finally do the actual quantization */ | 1116 | 2.92M | if (encode) | 1117 | 2.24M | { | 1118 | 2.24M | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth | 1119 | 2.24M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits), | 1120 | 2.24M | ctx->arch); | 1121 | 2.24M | } else { | 1122 | 681k | cm = alg_unquant(X, N, K, spread, B, ec, gain | 1123 | 681k | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits)); | 1124 | 681k | } | 1125 | | #ifdef ENABLE_QEXT | 1126 | | } else if (ext_b > 2*N<<BITRES) | 1127 | | { | 1128 | | extra_bits = ext_b/(N-1)>>BITRES; | 1129 | | ext_remaining_bits = ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec); | 1130 | | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1131 | | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1132 | | extra_bits = IMAX(extra_bits-1, 0); | 1133 | | } | 1134 | | extra_bits = IMIN(14, extra_bits); | 1135 | | if (encode) cm = cubic_quant(X, N, extra_bits, B, ctx->ext_ec, gain, ctx->resynth); | 1136 | | else cm = cubic_unquant(X, N, extra_bits, B, ctx->ext_ec, gain); | 1137 | | #endif | 1138 | 3.00M | } else { | 1139 | | /* If there's no pulse, fill the band anyway */ | 1140 | 3.00M | int j; | 1141 | 3.00M | if (ctx->resynth) | 1142 | 2.27M | { | 1143 | 2.27M | unsigned cm_mask; | 1144 | | /* B can be as large as 16, so this shift might overflow an int on a | 1145 | | 16-bit platform; use a long to get defined behavior.*/ | 1146 | 2.27M | cm_mask = (unsigned)(1UL<<B)-1; | 1147 | 2.27M | fill &= cm_mask; | 1148 | 2.27M | if (!fill) | 1149 | 693k | { | 1150 | 693k | OPUS_CLEAR(X, N); | 1151 | 1.57M | } else { | 1152 | 1.57M | if (lowband == NULL) | 1153 | 63.1k | { | 1154 | | /* Noise */ | 1155 | 950k | for (j=0;j<N;j++) | 1156 | 886k | { | 1157 | 886k | ctx->seed = celt_lcg_rand(ctx->seed); | 1158 | 886k | X[j] = SHL32((celt_norm)((opus_int32)ctx->seed>>20), NORM_SHIFT-14); | 1159 | 886k | } | 1160 | 63.1k | cm = cm_mask; | 1161 | 1.51M | } else { | 1162 | | /* Folded spectrum */ | 1163 | 21.4M | for (j=0;j<N;j++) | 1164 | 19.9M | { | 1165 | 19.9M | opus_val16 tmp; | 1166 | 19.9M | ctx->seed = celt_lcg_rand(ctx->seed); | 1167 | | /* About 48 dB below the "normal" folding level */ | 1168 | 19.9M | tmp = QCONST16(1.0f/256, NORM_SHIFT-4); | 1169 | 19.9M | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; | 1170 | 19.9M | X[j] = lowband[j]+tmp; | 1171 | 19.9M | } | 1172 | 1.51M | cm = fill; | 1173 | 1.51M | } | 1174 | 1.57M | renormalise_vector(X, N, gain, ctx->arch); | 1175 | 1.57M | } | 1176 | 2.27M | } | 1177 | 3.00M | } | 1178 | 5.92M | } | 1179 | | | 1180 | 6.94M | return cm; | 1181 | 6.94M | } |
Line | Count | Source | 982 | 7.54M | { | 983 | 7.54M | const unsigned char *cache; | 984 | 7.54M | int q; | 985 | 7.54M | int curr_bits; | 986 | 7.54M | int imid=0, iside=0; | 987 | 7.54M | int B0=B; | 988 | 7.54M | opus_val32 mid=0, side=0; | 989 | 7.54M | unsigned cm=0; | 990 | 7.54M | celt_norm *Y=NULL; | 991 | 7.54M | int encode; | 992 | 7.54M | const CELTMode *m; | 993 | 7.54M | int i; | 994 | 7.54M | int spread; | 995 | 7.54M | ec_ctx *ec; | 996 | | | 997 | 7.54M | encode = ctx->encode; | 998 | 7.54M | m = ctx->m; | 999 | 7.54M | i = ctx->i; | 1000 | 7.54M | spread = ctx->spread; | 1001 | 7.54M | ec = ctx->ec; | 1002 | | | 1003 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ | 1004 | 7.54M | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; | 1005 | 7.54M | if (LM != -1 && b > cache[cache[0]]+12 && N>2) | 1006 | 1.31M | { | 1007 | 1.31M | int mbits, sbits, delta; | 1008 | 1.31M | int itheta; | 1009 | 1.31M | int qalloc; | 1010 | 1.31M | struct split_ctx sctx; | 1011 | 1.31M | celt_norm *next_lowband2=NULL; | 1012 | 1.31M | opus_int32 rebalance; | 1013 | | | 1014 | 1.31M | N >>= 1; | 1015 | 1.31M | Y = X+N; | 1016 | 1.31M | LM -= 1; | 1017 | 1.31M | if (B==1) | 1018 | 451k | fill = (fill&1)|(fill<<1); | 1019 | 1.31M | B = (B+1)>>1; | 1020 | | | 1021 | 1.31M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill ARG_QEXT(&ext_b)); | 1022 | 1.31M | imid = sctx.imid; | 1023 | 1.31M | iside = sctx.iside; | 1024 | 1.31M | delta = sctx.delta; | 1025 | 1.31M | itheta = sctx.itheta; | 1026 | 1.31M | qalloc = sctx.qalloc; | 1027 | 1.31M | #ifdef FIXED_POINT | 1028 | 1.31M | # ifdef ENABLE_QEXT | 1029 | 1.31M | (void)imid; | 1030 | 1.31M | (void)iside; | 1031 | 1.31M | mid = celt_cos_norm32(sctx.itheta_q30); | 1032 | 1.31M | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1033 | | # else | 1034 | | mid = SHL32(EXTEND32(imid), 16); | 1035 | | side = SHL32(EXTEND32(iside), 16); | 1036 | | # endif | 1037 | | #else | 1038 | | # ifdef ENABLE_QEXT | 1039 | | (void)imid; | 1040 | | (void)iside; | 1041 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1042 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1043 | | # else | 1044 | | mid = (1.f/32768)*imid; | 1045 | | side = (1.f/32768)*iside; | 1046 | | # endif | 1047 | | #endif | 1048 | | | 1049 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ | 1050 | 1.31M | if (B0>1 && (itheta&0x3fff)) | 1051 | 683k | { | 1052 | 683k | if (itheta > 8192) | 1053 | | /* Rough approximation for pre-echo masking */ | 1054 | 349k | delta -= delta>>(4-LM); | 1055 | 334k | else | 1056 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ | 1057 | 334k | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); | 1058 | 683k | } | 1059 | 1.31M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1060 | 1.31M | sbits = b-mbits; | 1061 | 1.31M | ctx->remaining_bits -= qalloc; | 1062 | | | 1063 | 1.31M | if (lowband) | 1064 | 532k | next_lowband2 = lowband+N; /* >32-bit split case */ | 1065 | | | 1066 | 1.31M | rebalance = ctx->remaining_bits; | 1067 | 1.31M | if (mbits >= sbits) | 1068 | 606k | { | 1069 | 606k | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1070 | 606k | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1071 | 606k | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1072 | 606k | if (rebalance > 3<<BITRES && itheta!=0) | 1073 | 211k | sbits += rebalance - (3<<BITRES); | 1074 | 606k | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1075 | 606k | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1076 | 710k | } else { | 1077 | 710k | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1078 | 710k | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1079 | 710k | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1080 | 710k | if (rebalance > 3<<BITRES && itheta!=16384) | 1081 | 242k | mbits += rebalance - (3<<BITRES); | 1082 | 710k | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1083 | 710k | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1084 | 710k | } | 1085 | 6.22M | } else { | 1086 | 6.22M | #ifdef ENABLE_QEXT | 1087 | 6.22M | int extra_bits; | 1088 | 6.22M | int ext_remaining_bits; | 1089 | 6.22M | extra_bits = ext_b/(N-1)>>BITRES; | 1090 | 6.22M | ext_remaining_bits = ctx->ext_total_bits-(opus_int32)ec_tell_frac(ctx->ext_ec); | 1091 | 6.22M | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1092 | 6.07M | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1093 | 6.07M | extra_bits = IMAX(extra_bits-1, 0); | 1094 | 6.07M | } | 1095 | 6.22M | extra_bits = IMIN(12, extra_bits); | 1096 | 6.22M | #endif | 1097 | | /* This is the basic no-split case */ | 1098 | 6.22M | q = bits2pulses(m, i, LM, b); | 1099 | 6.22M | curr_bits = pulses2bits(m, i, LM, q); | 1100 | 6.22M | ctx->remaining_bits -= curr_bits; | 1101 | | | 1102 | | /* Ensures we can never bust the budget */ | 1103 | 6.30M | while (ctx->remaining_bits < 0 && q > 0) | 1104 | 72.5k | { | 1105 | 72.5k | ctx->remaining_bits += curr_bits; | 1106 | 72.5k | q--; | 1107 | 72.5k | curr_bits = pulses2bits(m, i, LM, q); | 1108 | 72.5k | ctx->remaining_bits -= curr_bits; | 1109 | 72.5k | } | 1110 | | | 1111 | 6.22M | if (q!=0) | 1112 | 3.59M | { | 1113 | 3.59M | int K = get_pulses(q); | 1114 | | | 1115 | | /* Finally do the actual quantization */ | 1116 | 3.59M | if (encode) | 1117 | 2.55M | { | 1118 | 2.55M | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth | 1119 | 2.55M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits), | 1120 | 2.55M | ctx->arch); | 1121 | 2.55M | } else { | 1122 | 1.03M | cm = alg_unquant(X, N, K, spread, B, ec, gain | 1123 | 1.03M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits)); | 1124 | 1.03M | } | 1125 | 3.59M | #ifdef ENABLE_QEXT | 1126 | 3.59M | } else if (ext_b > 2*N<<BITRES) | 1127 | 8.41k | { | 1128 | 8.41k | extra_bits = ext_b/(N-1)>>BITRES; | 1129 | 8.41k | ext_remaining_bits = ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec); | 1130 | 8.41k | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1131 | 1.24k | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1132 | 1.24k | extra_bits = IMAX(extra_bits-1, 0); | 1133 | 1.24k | } | 1134 | 8.41k | extra_bits = IMIN(14, extra_bits); | 1135 | 8.41k | if (encode) cm = cubic_quant(X, N, extra_bits, B, ctx->ext_ec, gain, ctx->resynth); | 1136 | 8.41k | else cm = cubic_unquant(X, N, extra_bits, B, ctx->ext_ec, gain); | 1137 | 8.41k | #endif | 1138 | 2.62M | } else { | 1139 | | /* If there's no pulse, fill the band anyway */ | 1140 | 2.62M | int j; | 1141 | 2.62M | if (ctx->resynth) | 1142 | 1.92M | { | 1143 | 1.92M | unsigned cm_mask; | 1144 | | /* B can be as large as 16, so this shift might overflow an int on a | 1145 | | 16-bit platform; use a long to get defined behavior.*/ | 1146 | 1.92M | cm_mask = (unsigned)(1UL<<B)-1; | 1147 | 1.92M | fill &= cm_mask; | 1148 | 1.92M | if (!fill) | 1149 | 680k | { | 1150 | 680k | OPUS_CLEAR(X, N); | 1151 | 1.24M | } else { | 1152 | 1.24M | if (lowband == NULL) | 1153 | 53.4k | { | 1154 | | /* Noise */ | 1155 | 952k | for (j=0;j<N;j++) | 1156 | 899k | { | 1157 | 899k | ctx->seed = celt_lcg_rand(ctx->seed); | 1158 | 899k | X[j] = SHL32((celt_norm)((opus_int32)ctx->seed>>20), NORM_SHIFT-14); | 1159 | 899k | } | 1160 | 53.4k | cm = cm_mask; | 1161 | 1.18M | } else { | 1162 | | /* Folded spectrum */ | 1163 | 16.7M | for (j=0;j<N;j++) | 1164 | 15.5M | { | 1165 | 15.5M | opus_val16 tmp; | 1166 | 15.5M | ctx->seed = celt_lcg_rand(ctx->seed); | 1167 | | /* About 48 dB below the "normal" folding level */ | 1168 | 15.5M | tmp = QCONST16(1.0f/256, NORM_SHIFT-4); | 1169 | 15.5M | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; | 1170 | 15.5M | X[j] = lowband[j]+tmp; | 1171 | 15.5M | } | 1172 | 1.18M | cm = fill; | 1173 | 1.18M | } | 1174 | 1.24M | renormalise_vector(X, N, gain, ctx->arch); | 1175 | 1.24M | } | 1176 | 1.92M | } | 1177 | 2.62M | } | 1178 | 6.22M | } | 1179 | | | 1180 | 7.54M | return cm; | 1181 | 7.54M | } |
Line | Count | Source | 982 | 7.54M | { | 983 | 7.54M | const unsigned char *cache; | 984 | 7.54M | int q; | 985 | 7.54M | int curr_bits; | 986 | 7.54M | int imid=0, iside=0; | 987 | 7.54M | int B0=B; | 988 | 7.54M | opus_val32 mid=0, side=0; | 989 | 7.54M | unsigned cm=0; | 990 | 7.54M | celt_norm *Y=NULL; | 991 | 7.54M | int encode; | 992 | 7.54M | const CELTMode *m; | 993 | 7.54M | int i; | 994 | 7.54M | int spread; | 995 | 7.54M | ec_ctx *ec; | 996 | | | 997 | 7.54M | encode = ctx->encode; | 998 | 7.54M | m = ctx->m; | 999 | 7.54M | i = ctx->i; | 1000 | 7.54M | spread = ctx->spread; | 1001 | 7.54M | ec = ctx->ec; | 1002 | | | 1003 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ | 1004 | 7.54M | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; | 1005 | 7.54M | if (LM != -1 && b > cache[cache[0]]+12 && N>2) | 1006 | 1.31M | { | 1007 | 1.31M | int mbits, sbits, delta; | 1008 | 1.31M | int itheta; | 1009 | 1.31M | int qalloc; | 1010 | 1.31M | struct split_ctx sctx; | 1011 | 1.31M | celt_norm *next_lowband2=NULL; | 1012 | 1.31M | opus_int32 rebalance; | 1013 | | | 1014 | 1.31M | N >>= 1; | 1015 | 1.31M | Y = X+N; | 1016 | 1.31M | LM -= 1; | 1017 | 1.31M | if (B==1) | 1018 | 451k | fill = (fill&1)|(fill<<1); | 1019 | 1.31M | B = (B+1)>>1; | 1020 | | | 1021 | 1.31M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill ARG_QEXT(&ext_b)); | 1022 | 1.31M | imid = sctx.imid; | 1023 | 1.31M | iside = sctx.iside; | 1024 | 1.31M | delta = sctx.delta; | 1025 | 1.31M | itheta = sctx.itheta; | 1026 | 1.31M | qalloc = sctx.qalloc; | 1027 | | #ifdef FIXED_POINT | 1028 | | # ifdef ENABLE_QEXT | 1029 | | (void)imid; | 1030 | | (void)iside; | 1031 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1032 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1033 | | # else | 1034 | | mid = SHL32(EXTEND32(imid), 16); | 1035 | | side = SHL32(EXTEND32(iside), 16); | 1036 | | # endif | 1037 | | #else | 1038 | 1.31M | # ifdef ENABLE_QEXT | 1039 | 1.31M | (void)imid; | 1040 | 1.31M | (void)iside; | 1041 | 1.31M | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1042 | 1.31M | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1043 | | # else | 1044 | | mid = (1.f/32768)*imid; | 1045 | | side = (1.f/32768)*iside; | 1046 | | # endif | 1047 | 1.31M | #endif | 1048 | | | 1049 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ | 1050 | 1.31M | if (B0>1 && (itheta&0x3fff)) | 1051 | 683k | { | 1052 | 683k | if (itheta > 8192) | 1053 | | /* Rough approximation for pre-echo masking */ | 1054 | 349k | delta -= delta>>(4-LM); | 1055 | 334k | else | 1056 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ | 1057 | 334k | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); | 1058 | 683k | } | 1059 | 1.31M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1060 | 1.31M | sbits = b-mbits; | 1061 | 1.31M | ctx->remaining_bits -= qalloc; | 1062 | | | 1063 | 1.31M | if (lowband) | 1064 | 532k | next_lowband2 = lowband+N; /* >32-bit split case */ | 1065 | | | 1066 | 1.31M | rebalance = ctx->remaining_bits; | 1067 | 1.31M | if (mbits >= sbits) | 1068 | 606k | { | 1069 | 606k | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1070 | 606k | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1071 | 606k | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1072 | 606k | if (rebalance > 3<<BITRES && itheta!=0) | 1073 | 211k | sbits += rebalance - (3<<BITRES); | 1074 | 606k | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1075 | 606k | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1076 | 710k | } else { | 1077 | 710k | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1078 | 710k | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1079 | 710k | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1080 | 710k | if (rebalance > 3<<BITRES && itheta!=16384) | 1081 | 242k | mbits += rebalance - (3<<BITRES); | 1082 | 710k | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1083 | 710k | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1084 | 710k | } | 1085 | 6.22M | } else { | 1086 | 6.22M | #ifdef ENABLE_QEXT | 1087 | 6.22M | int extra_bits; | 1088 | 6.22M | int ext_remaining_bits; | 1089 | 6.22M | extra_bits = ext_b/(N-1)>>BITRES; | 1090 | 6.22M | ext_remaining_bits = ctx->ext_total_bits-(opus_int32)ec_tell_frac(ctx->ext_ec); | 1091 | 6.22M | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1092 | 6.07M | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1093 | 6.07M | extra_bits = IMAX(extra_bits-1, 0); | 1094 | 6.07M | } | 1095 | 6.22M | extra_bits = IMIN(12, extra_bits); | 1096 | 6.22M | #endif | 1097 | | /* This is the basic no-split case */ | 1098 | 6.22M | q = bits2pulses(m, i, LM, b); | 1099 | 6.22M | curr_bits = pulses2bits(m, i, LM, q); | 1100 | 6.22M | ctx->remaining_bits -= curr_bits; | 1101 | | | 1102 | | /* Ensures we can never bust the budget */ | 1103 | 6.30M | while (ctx->remaining_bits < 0 && q > 0) | 1104 | 72.5k | { | 1105 | 72.5k | ctx->remaining_bits += curr_bits; | 1106 | 72.5k | q--; | 1107 | 72.5k | curr_bits = pulses2bits(m, i, LM, q); | 1108 | 72.5k | ctx->remaining_bits -= curr_bits; | 1109 | 72.5k | } | 1110 | | | 1111 | 6.22M | if (q!=0) | 1112 | 3.59M | { | 1113 | 3.59M | int K = get_pulses(q); | 1114 | | | 1115 | | /* Finally do the actual quantization */ | 1116 | 3.59M | if (encode) | 1117 | 2.55M | { | 1118 | 2.55M | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth | 1119 | 2.55M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits), | 1120 | 2.55M | ctx->arch); | 1121 | 2.55M | } else { | 1122 | 1.03M | cm = alg_unquant(X, N, K, spread, B, ec, gain | 1123 | 1.03M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits)); | 1124 | 1.03M | } | 1125 | 3.59M | #ifdef ENABLE_QEXT | 1126 | 3.59M | } else if (ext_b > 2*N<<BITRES) | 1127 | 8.41k | { | 1128 | 8.41k | extra_bits = ext_b/(N-1)>>BITRES; | 1129 | 8.41k | ext_remaining_bits = ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec); | 1130 | 8.41k | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1131 | 1.24k | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1132 | 1.24k | extra_bits = IMAX(extra_bits-1, 0); | 1133 | 1.24k | } | 1134 | 8.41k | extra_bits = IMIN(14, extra_bits); | 1135 | 8.41k | if (encode) cm = cubic_quant(X, N, extra_bits, B, ctx->ext_ec, gain, ctx->resynth); | 1136 | 8.41k | else cm = cubic_unquant(X, N, extra_bits, B, ctx->ext_ec, gain); | 1137 | 8.41k | #endif | 1138 | 2.62M | } else { | 1139 | | /* If there's no pulse, fill the band anyway */ | 1140 | 2.62M | int j; | 1141 | 2.62M | if (ctx->resynth) | 1142 | 1.92M | { | 1143 | 1.92M | unsigned cm_mask; | 1144 | | /* B can be as large as 16, so this shift might overflow an int on a | 1145 | | 16-bit platform; use a long to get defined behavior.*/ | 1146 | 1.92M | cm_mask = (unsigned)(1UL<<B)-1; | 1147 | 1.92M | fill &= cm_mask; | 1148 | 1.92M | if (!fill) | 1149 | 680k | { | 1150 | 680k | OPUS_CLEAR(X, N); | 1151 | 1.24M | } else { | 1152 | 1.24M | if (lowband == NULL) | 1153 | 53.4k | { | 1154 | | /* Noise */ | 1155 | 952k | for (j=0;j<N;j++) | 1156 | 899k | { | 1157 | 899k | ctx->seed = celt_lcg_rand(ctx->seed); | 1158 | 899k | X[j] = SHL32((celt_norm)((opus_int32)ctx->seed>>20), NORM_SHIFT-14); | 1159 | 899k | } | 1160 | 53.4k | cm = cm_mask; | 1161 | 1.18M | } else { | 1162 | | /* Folded spectrum */ | 1163 | 16.7M | for (j=0;j<N;j++) | 1164 | 15.5M | { | 1165 | 15.5M | opus_val16 tmp; | 1166 | 15.5M | ctx->seed = celt_lcg_rand(ctx->seed); | 1167 | | /* About 48 dB below the "normal" folding level */ | 1168 | 15.5M | tmp = QCONST16(1.0f/256, NORM_SHIFT-4); | 1169 | 15.5M | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; | 1170 | 15.5M | X[j] = lowband[j]+tmp; | 1171 | 15.5M | } | 1172 | 1.18M | cm = fill; | 1173 | 1.18M | } | 1174 | 1.24M | renormalise_vector(X, N, gain, ctx->arch); | 1175 | 1.24M | } | 1176 | 1.92M | } | 1177 | 2.62M | } | 1178 | 6.22M | } | 1179 | | | 1180 | 7.54M | return cm; | 1181 | 7.54M | } |
Line | Count | Source | 982 | 6.94M | { | 983 | 6.94M | const unsigned char *cache; | 984 | 6.94M | int q; | 985 | 6.94M | int curr_bits; | 986 | 6.94M | int imid=0, iside=0; | 987 | 6.94M | int B0=B; | 988 | 6.94M | opus_val32 mid=0, side=0; | 989 | 6.94M | unsigned cm=0; | 990 | 6.94M | celt_norm *Y=NULL; | 991 | 6.94M | int encode; | 992 | 6.94M | const CELTMode *m; | 993 | 6.94M | int i; | 994 | 6.94M | int spread; | 995 | 6.94M | ec_ctx *ec; | 996 | | | 997 | 6.94M | encode = ctx->encode; | 998 | 6.94M | m = ctx->m; | 999 | 6.94M | i = ctx->i; | 1000 | 6.94M | spread = ctx->spread; | 1001 | 6.94M | ec = ctx->ec; | 1002 | | | 1003 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ | 1004 | 6.94M | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; | 1005 | 6.94M | if (LM != -1 && b > cache[cache[0]]+12 && N>2) | 1006 | 1.02M | { | 1007 | 1.02M | int mbits, sbits, delta; | 1008 | 1.02M | int itheta; | 1009 | 1.02M | int qalloc; | 1010 | 1.02M | struct split_ctx sctx; | 1011 | 1.02M | celt_norm *next_lowband2=NULL; | 1012 | 1.02M | opus_int32 rebalance; | 1013 | | | 1014 | 1.02M | N >>= 1; | 1015 | 1.02M | Y = X+N; | 1016 | 1.02M | LM -= 1; | 1017 | 1.02M | if (B==1) | 1018 | 306k | fill = (fill&1)|(fill<<1); | 1019 | 1.02M | B = (B+1)>>1; | 1020 | | | 1021 | 1.02M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill ARG_QEXT(&ext_b)); | 1022 | 1.02M | imid = sctx.imid; | 1023 | 1.02M | iside = sctx.iside; | 1024 | 1.02M | delta = sctx.delta; | 1025 | 1.02M | itheta = sctx.itheta; | 1026 | 1.02M | qalloc = sctx.qalloc; | 1027 | | #ifdef FIXED_POINT | 1028 | | # ifdef ENABLE_QEXT | 1029 | | (void)imid; | 1030 | | (void)iside; | 1031 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1032 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1033 | | # else | 1034 | | mid = SHL32(EXTEND32(imid), 16); | 1035 | | side = SHL32(EXTEND32(iside), 16); | 1036 | | # endif | 1037 | | #else | 1038 | | # ifdef ENABLE_QEXT | 1039 | | (void)imid; | 1040 | | (void)iside; | 1041 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1042 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1043 | | # else | 1044 | 1.02M | mid = (1.f/32768)*imid; | 1045 | 1.02M | side = (1.f/32768)*iside; | 1046 | 1.02M | # endif | 1047 | 1.02M | #endif | 1048 | | | 1049 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ | 1050 | 1.02M | if (B0>1 && (itheta&0x3fff)) | 1051 | 547k | { | 1052 | 547k | if (itheta > 8192) | 1053 | | /* Rough approximation for pre-echo masking */ | 1054 | 281k | delta -= delta>>(4-LM); | 1055 | 266k | else | 1056 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ | 1057 | 266k | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); | 1058 | 547k | } | 1059 | 1.02M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1060 | 1.02M | sbits = b-mbits; | 1061 | 1.02M | ctx->remaining_bits -= qalloc; | 1062 | | | 1063 | 1.02M | if (lowband) | 1064 | 383k | next_lowband2 = lowband+N; /* >32-bit split case */ | 1065 | | | 1066 | 1.02M | rebalance = ctx->remaining_bits; | 1067 | 1.02M | if (mbits >= sbits) | 1068 | 461k | { | 1069 | 461k | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1070 | 461k | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1071 | 461k | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1072 | 461k | if (rebalance > 3<<BITRES && itheta!=0) | 1073 | 152k | sbits += rebalance - (3<<BITRES); | 1074 | 461k | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1075 | 461k | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1076 | 559k | } else { | 1077 | 559k | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1078 | 559k | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1079 | 559k | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1080 | 559k | if (rebalance > 3<<BITRES && itheta!=16384) | 1081 | 179k | mbits += rebalance - (3<<BITRES); | 1082 | 559k | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1083 | 559k | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1084 | 559k | } | 1085 | 5.92M | } else { | 1086 | | #ifdef ENABLE_QEXT | 1087 | | int extra_bits; | 1088 | | int ext_remaining_bits; | 1089 | | extra_bits = ext_b/(N-1)>>BITRES; | 1090 | | ext_remaining_bits = ctx->ext_total_bits-(opus_int32)ec_tell_frac(ctx->ext_ec); | 1091 | | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1092 | | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1093 | | extra_bits = IMAX(extra_bits-1, 0); | 1094 | | } | 1095 | | extra_bits = IMIN(12, extra_bits); | 1096 | | #endif | 1097 | | /* This is the basic no-split case */ | 1098 | 5.92M | q = bits2pulses(m, i, LM, b); | 1099 | 5.92M | curr_bits = pulses2bits(m, i, LM, q); | 1100 | 5.92M | ctx->remaining_bits -= curr_bits; | 1101 | | | 1102 | | /* Ensures we can never bust the budget */ | 1103 | 5.98M | while (ctx->remaining_bits < 0 && q > 0) | 1104 | 57.8k | { | 1105 | 57.8k | ctx->remaining_bits += curr_bits; | 1106 | 57.8k | q--; | 1107 | 57.8k | curr_bits = pulses2bits(m, i, LM, q); | 1108 | 57.8k | ctx->remaining_bits -= curr_bits; | 1109 | 57.8k | } | 1110 | | | 1111 | 5.92M | if (q!=0) | 1112 | 2.92M | { | 1113 | 2.92M | int K = get_pulses(q); | 1114 | | | 1115 | | /* Finally do the actual quantization */ | 1116 | 2.92M | if (encode) | 1117 | 2.24M | { | 1118 | 2.24M | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth | 1119 | 2.24M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits), | 1120 | 2.24M | ctx->arch); | 1121 | 2.24M | } else { | 1122 | 681k | cm = alg_unquant(X, N, K, spread, B, ec, gain | 1123 | 681k | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits)); | 1124 | 681k | } | 1125 | | #ifdef ENABLE_QEXT | 1126 | | } else if (ext_b > 2*N<<BITRES) | 1127 | | { | 1128 | | extra_bits = ext_b/(N-1)>>BITRES; | 1129 | | ext_remaining_bits = ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec); | 1130 | | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1131 | | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1132 | | extra_bits = IMAX(extra_bits-1, 0); | 1133 | | } | 1134 | | extra_bits = IMIN(14, extra_bits); | 1135 | | if (encode) cm = cubic_quant(X, N, extra_bits, B, ctx->ext_ec, gain, ctx->resynth); | 1136 | | else cm = cubic_unquant(X, N, extra_bits, B, ctx->ext_ec, gain); | 1137 | | #endif | 1138 | 3.00M | } else { | 1139 | | /* If there's no pulse, fill the band anyway */ | 1140 | 3.00M | int j; | 1141 | 3.00M | if (ctx->resynth) | 1142 | 2.27M | { | 1143 | 2.27M | unsigned cm_mask; | 1144 | | /* B can be as large as 16, so this shift might overflow an int on a | 1145 | | 16-bit platform; use a long to get defined behavior.*/ | 1146 | 2.27M | cm_mask = (unsigned)(1UL<<B)-1; | 1147 | 2.27M | fill &= cm_mask; | 1148 | 2.27M | if (!fill) | 1149 | 693k | { | 1150 | 693k | OPUS_CLEAR(X, N); | 1151 | 1.57M | } else { | 1152 | 1.57M | if (lowband == NULL) | 1153 | 63.1k | { | 1154 | | /* Noise */ | 1155 | 950k | for (j=0;j<N;j++) | 1156 | 886k | { | 1157 | 886k | ctx->seed = celt_lcg_rand(ctx->seed); | 1158 | 886k | X[j] = SHL32((celt_norm)((opus_int32)ctx->seed>>20), NORM_SHIFT-14); | 1159 | 886k | } | 1160 | 63.1k | cm = cm_mask; | 1161 | 1.51M | } else { | 1162 | | /* Folded spectrum */ | 1163 | 21.4M | for (j=0;j<N;j++) | 1164 | 19.9M | { | 1165 | 19.9M | opus_val16 tmp; | 1166 | 19.9M | ctx->seed = celt_lcg_rand(ctx->seed); | 1167 | | /* About 48 dB below the "normal" folding level */ | 1168 | 19.9M | tmp = QCONST16(1.0f/256, NORM_SHIFT-4); | 1169 | 19.9M | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; | 1170 | 19.9M | X[j] = lowband[j]+tmp; | 1171 | 19.9M | } | 1172 | 1.51M | cm = fill; | 1173 | 1.51M | } | 1174 | 1.57M | renormalise_vector(X, N, gain, ctx->arch); | 1175 | 1.57M | } | 1176 | 2.27M | } | 1177 | 3.00M | } | 1178 | 5.92M | } | 1179 | | | 1180 | 6.94M | return cm; | 1181 | 6.94M | } |
|
1182 | | |
1183 | | #ifdef ENABLE_QEXT |
1184 | | static unsigned cubic_quant_partition(struct band_ctx *ctx, celt_norm *X, int N, int b, int B, ec_ctx *ec, int LM, opus_val32 gain, int resynth, int encode) |
1185 | 190k | { |
1186 | 190k | celt_assert(LM>=0); |
1187 | 190k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); |
1188 | 190k | b = IMIN(b, ctx->remaining_bits); |
1189 | | /* As long as we have at least two bits of depth, split all the way to LM=0 (not -1 like PVQ). */ |
1190 | 190k | if (LM==0 || b<=2*N<<BITRES) { |
1191 | 107k | int res, ret; |
1192 | 107k | b = IMIN(b + ((N-1)<<BITRES)/2, ctx->remaining_bits); |
1193 | | /* Resolution left after taking into account coding the cube face. */ |
1194 | 107k | res = (b-(1<<BITRES)-ctx->m->logN[ctx->i]-(LM<<BITRES)-1)/(N-1)>>BITRES; |
1195 | 107k | res = IMIN(14, IMAX(0, res)); |
1196 | 107k | if (encode) ret = cubic_quant(X, N, res, B, ec, gain, resynth); |
1197 | 107k | else ret = cubic_unquant(X, N, res, B, ec, gain); |
1198 | 107k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); |
1199 | 107k | return ret; |
1200 | 107k | } else { |
1201 | 83.2k | celt_norm *Y; |
1202 | 83.2k | opus_int32 itheta_q30; |
1203 | 83.2k | opus_val32 g1, g2; |
1204 | 83.2k | opus_int32 theta_res; |
1205 | 83.2k | opus_int32 qtheta; |
1206 | 83.2k | int delta; |
1207 | 83.2k | int b1, b2; |
1208 | 83.2k | int cm; |
1209 | 83.2k | int N0; |
1210 | 83.2k | N0 = N; |
1211 | 83.2k | N >>= 1; |
1212 | 83.2k | Y = X+N; |
1213 | 83.2k | LM -= 1; |
1214 | 83.2k | B = (B+1)>>1; |
1215 | 83.2k | theta_res = IMIN(16, (b>>BITRES)/(N0-1) + 1); |
1216 | 83.2k | if (encode) { |
1217 | 0 | itheta_q30 = stereo_itheta(X, Y, 0, N, ctx->arch); |
1218 | 0 | qtheta = (itheta_q30+(1<<(29-theta_res)))>>(30-theta_res); |
1219 | 0 | ec_enc_uint(ec, qtheta, (1<<theta_res)+1); |
1220 | 83.2k | } else { |
1221 | 83.2k | qtheta = ec_dec_uint(ec, (1<<theta_res)+1); |
1222 | 83.2k | } |
1223 | 83.2k | itheta_q30 = qtheta<<(30-theta_res); |
1224 | 83.2k | b -= theta_res<<BITRES; |
1225 | 83.2k | delta = (N0-1) * 23 * ((itheta_q30>>16)-8192) >> (17-BITRES); |
1226 | | |
1227 | | #ifdef FIXED_POINT |
1228 | | g1 = celt_cos_norm32(itheta_q30); |
1229 | | g2 = celt_cos_norm32((1<<30)-itheta_q30); |
1230 | | #else |
1231 | | g1 = celt_cos_norm2(itheta_q30*(1.f/(1<<30))); |
1232 | | g2 = celt_cos_norm2(1.f-itheta_q30*(1.f/(1<<30))); |
1233 | | #endif |
1234 | 83.2k | if (itheta_q30 == 0) { |
1235 | 1.97k | b1=b; |
1236 | 1.97k | b2=0; |
1237 | 81.2k | } else if (itheta_q30==1073741824) { |
1238 | 2.70k | b1=0; |
1239 | 2.70k | b2=b; |
1240 | 78.5k | } else { |
1241 | 78.5k | b1 = IMIN(b, IMAX(0, (b-delta)/2)); |
1242 | 78.5k | b2 = b-b1; |
1243 | 78.5k | } |
1244 | 83.2k | cm = cubic_quant_partition(ctx, X, N, b1, B, ec, LM, MULT32_32_Q31(gain, g1), resynth, encode); |
1245 | 83.2k | cm |= cubic_quant_partition(ctx, Y, N, b2, B, ec, LM, MULT32_32_Q31(gain, g2), resynth, encode); |
1246 | 83.2k | return cm; |
1247 | 83.2k | } |
1248 | 190k | } bands.c:cubic_quant_partition Line | Count | Source | 1185 | 95.2k | { | 1186 | 95.2k | celt_assert(LM>=0); | 1187 | 95.2k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); | 1188 | 95.2k | b = IMIN(b, ctx->remaining_bits); | 1189 | | /* As long as we have at least two bits of depth, split all the way to LM=0 (not -1 like PVQ). */ | 1190 | 95.2k | if (LM==0 || b<=2*N<<BITRES) { | 1191 | 53.6k | int res, ret; | 1192 | 53.6k | b = IMIN(b + ((N-1)<<BITRES)/2, ctx->remaining_bits); | 1193 | | /* Resolution left after taking into account coding the cube face. */ | 1194 | 53.6k | res = (b-(1<<BITRES)-ctx->m->logN[ctx->i]-(LM<<BITRES)-1)/(N-1)>>BITRES; | 1195 | 53.6k | res = IMIN(14, IMAX(0, res)); | 1196 | 53.6k | if (encode) ret = cubic_quant(X, N, res, B, ec, gain, resynth); | 1197 | 53.6k | else ret = cubic_unquant(X, N, res, B, ec, gain); | 1198 | 53.6k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); | 1199 | 53.6k | return ret; | 1200 | 53.6k | } else { | 1201 | 41.6k | celt_norm *Y; | 1202 | 41.6k | opus_int32 itheta_q30; | 1203 | 41.6k | opus_val32 g1, g2; | 1204 | 41.6k | opus_int32 theta_res; | 1205 | 41.6k | opus_int32 qtheta; | 1206 | 41.6k | int delta; | 1207 | 41.6k | int b1, b2; | 1208 | 41.6k | int cm; | 1209 | 41.6k | int N0; | 1210 | 41.6k | N0 = N; | 1211 | 41.6k | N >>= 1; | 1212 | 41.6k | Y = X+N; | 1213 | 41.6k | LM -= 1; | 1214 | 41.6k | B = (B+1)>>1; | 1215 | 41.6k | theta_res = IMIN(16, (b>>BITRES)/(N0-1) + 1); | 1216 | 41.6k | if (encode) { | 1217 | 0 | itheta_q30 = stereo_itheta(X, Y, 0, N, ctx->arch); | 1218 | 0 | qtheta = (itheta_q30+(1<<(29-theta_res)))>>(30-theta_res); | 1219 | 0 | ec_enc_uint(ec, qtheta, (1<<theta_res)+1); | 1220 | 41.6k | } else { | 1221 | 41.6k | qtheta = ec_dec_uint(ec, (1<<theta_res)+1); | 1222 | 41.6k | } | 1223 | 41.6k | itheta_q30 = qtheta<<(30-theta_res); | 1224 | 41.6k | b -= theta_res<<BITRES; | 1225 | 41.6k | delta = (N0-1) * 23 * ((itheta_q30>>16)-8192) >> (17-BITRES); | 1226 | | | 1227 | 41.6k | #ifdef FIXED_POINT | 1228 | 41.6k | g1 = celt_cos_norm32(itheta_q30); | 1229 | 41.6k | g2 = celt_cos_norm32((1<<30)-itheta_q30); | 1230 | | #else | 1231 | | g1 = celt_cos_norm2(itheta_q30*(1.f/(1<<30))); | 1232 | | g2 = celt_cos_norm2(1.f-itheta_q30*(1.f/(1<<30))); | 1233 | | #endif | 1234 | 41.6k | if (itheta_q30 == 0) { | 1235 | 989 | b1=b; | 1236 | 989 | b2=0; | 1237 | 40.6k | } else if (itheta_q30==1073741824) { | 1238 | 1.35k | b1=0; | 1239 | 1.35k | b2=b; | 1240 | 39.2k | } else { | 1241 | 39.2k | b1 = IMIN(b, IMAX(0, (b-delta)/2)); | 1242 | 39.2k | b2 = b-b1; | 1243 | 39.2k | } | 1244 | 41.6k | cm = cubic_quant_partition(ctx, X, N, b1, B, ec, LM, MULT32_32_Q31(gain, g1), resynth, encode); | 1245 | 41.6k | cm |= cubic_quant_partition(ctx, Y, N, b2, B, ec, LM, MULT32_32_Q31(gain, g2), resynth, encode); | 1246 | 41.6k | return cm; | 1247 | 41.6k | } | 1248 | 95.2k | } |
bands.c:cubic_quant_partition Line | Count | Source | 1185 | 95.2k | { | 1186 | 95.2k | celt_assert(LM>=0); | 1187 | 95.2k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); | 1188 | 95.2k | b = IMIN(b, ctx->remaining_bits); | 1189 | | /* As long as we have at least two bits of depth, split all the way to LM=0 (not -1 like PVQ). */ | 1190 | 95.2k | if (LM==0 || b<=2*N<<BITRES) { | 1191 | 53.6k | int res, ret; | 1192 | 53.6k | b = IMIN(b + ((N-1)<<BITRES)/2, ctx->remaining_bits); | 1193 | | /* Resolution left after taking into account coding the cube face. */ | 1194 | 53.6k | res = (b-(1<<BITRES)-ctx->m->logN[ctx->i]-(LM<<BITRES)-1)/(N-1)>>BITRES; | 1195 | 53.6k | res = IMIN(14, IMAX(0, res)); | 1196 | 53.6k | if (encode) ret = cubic_quant(X, N, res, B, ec, gain, resynth); | 1197 | 53.6k | else ret = cubic_unquant(X, N, res, B, ec, gain); | 1198 | 53.6k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); | 1199 | 53.6k | return ret; | 1200 | 53.6k | } else { | 1201 | 41.6k | celt_norm *Y; | 1202 | 41.6k | opus_int32 itheta_q30; | 1203 | 41.6k | opus_val32 g1, g2; | 1204 | 41.6k | opus_int32 theta_res; | 1205 | 41.6k | opus_int32 qtheta; | 1206 | 41.6k | int delta; | 1207 | 41.6k | int b1, b2; | 1208 | 41.6k | int cm; | 1209 | 41.6k | int N0; | 1210 | 41.6k | N0 = N; | 1211 | 41.6k | N >>= 1; | 1212 | 41.6k | Y = X+N; | 1213 | 41.6k | LM -= 1; | 1214 | 41.6k | B = (B+1)>>1; | 1215 | 41.6k | theta_res = IMIN(16, (b>>BITRES)/(N0-1) + 1); | 1216 | 41.6k | if (encode) { | 1217 | 0 | itheta_q30 = stereo_itheta(X, Y, 0, N, ctx->arch); | 1218 | 0 | qtheta = (itheta_q30+(1<<(29-theta_res)))>>(30-theta_res); | 1219 | 0 | ec_enc_uint(ec, qtheta, (1<<theta_res)+1); | 1220 | 41.6k | } else { | 1221 | 41.6k | qtheta = ec_dec_uint(ec, (1<<theta_res)+1); | 1222 | 41.6k | } | 1223 | 41.6k | itheta_q30 = qtheta<<(30-theta_res); | 1224 | 41.6k | b -= theta_res<<BITRES; | 1225 | 41.6k | delta = (N0-1) * 23 * ((itheta_q30>>16)-8192) >> (17-BITRES); | 1226 | | | 1227 | | #ifdef FIXED_POINT | 1228 | | g1 = celt_cos_norm32(itheta_q30); | 1229 | | g2 = celt_cos_norm32((1<<30)-itheta_q30); | 1230 | | #else | 1231 | 41.6k | g1 = celt_cos_norm2(itheta_q30*(1.f/(1<<30))); | 1232 | 41.6k | g2 = celt_cos_norm2(1.f-itheta_q30*(1.f/(1<<30))); | 1233 | 41.6k | #endif | 1234 | 41.6k | if (itheta_q30 == 0) { | 1235 | 989 | b1=b; | 1236 | 989 | b2=0; | 1237 | 40.6k | } else if (itheta_q30==1073741824) { | 1238 | 1.35k | b1=0; | 1239 | 1.35k | b2=b; | 1240 | 39.2k | } else { | 1241 | 39.2k | b1 = IMIN(b, IMAX(0, (b-delta)/2)); | 1242 | 39.2k | b2 = b-b1; | 1243 | 39.2k | } | 1244 | 41.6k | cm = cubic_quant_partition(ctx, X, N, b1, B, ec, LM, MULT32_32_Q31(gain, g1), resynth, encode); | 1245 | 41.6k | cm |= cubic_quant_partition(ctx, Y, N, b2, B, ec, LM, MULT32_32_Q31(gain, g2), resynth, encode); | 1246 | 41.6k | return cm; | 1247 | 41.6k | } | 1248 | 95.2k | } |
|
1249 | | #endif |
1250 | | |
1251 | | /* This function is responsible for encoding and decoding a band for the mono case. */ |
1252 | | static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, |
1253 | | int N, int b, int B, celt_norm *lowband, |
1254 | | int LM, celt_norm *lowband_out, |
1255 | | opus_val32 gain, celt_norm *lowband_scratch, int fill |
1256 | | ARG_QEXT(int ext_b)) |
1257 | 22.7M | { |
1258 | 22.7M | int N0=N; |
1259 | 22.7M | int N_B=N; |
1260 | 22.7M | int N_B0; |
1261 | 22.7M | int B0=B; |
1262 | 22.7M | int time_divide=0; |
1263 | 22.7M | int recombine=0; |
1264 | 22.7M | int longBlocks; |
1265 | 22.7M | unsigned cm=0; |
1266 | 22.7M | int k; |
1267 | 22.7M | int encode; |
1268 | 22.7M | int tf_change; |
1269 | | |
1270 | 22.7M | encode = ctx->encode; |
1271 | 22.7M | tf_change = ctx->tf_change; |
1272 | | |
1273 | 22.7M | longBlocks = B0==1; |
1274 | | |
1275 | 22.7M | N_B = celt_udiv(N_B, B); |
1276 | | |
1277 | | /* Special case for one sample */ |
1278 | 22.7M | if (N==1) |
1279 | 3.08M | { |
1280 | 3.08M | return quant_band_n1(ctx, X, NULL, lowband_out); |
1281 | 3.08M | } |
1282 | | |
1283 | 19.6M | if (tf_change>0) |
1284 | 1.43M | recombine = tf_change; |
1285 | | /* Band recombining to increase frequency resolution */ |
1286 | | |
1287 | 19.6M | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) |
1288 | 2.32M | { |
1289 | 2.32M | OPUS_COPY(lowband_scratch, lowband, N); |
1290 | 2.32M | lowband = lowband_scratch; |
1291 | 2.32M | } |
1292 | | |
1293 | 22.0M | for (k=0;k<recombine;k++) |
1294 | 2.38M | { |
1295 | 2.38M | static const unsigned char bit_interleave_table[16]={ |
1296 | 2.38M | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 |
1297 | 2.38M | }; |
1298 | 2.38M | if (encode) |
1299 | 761k | haar1(X, N>>k, 1<<k); |
1300 | 2.38M | if (lowband) |
1301 | 1.22M | haar1(lowband, N>>k, 1<<k); |
1302 | 2.38M | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; |
1303 | 2.38M | } |
1304 | 19.6M | B>>=recombine; |
1305 | 19.6M | N_B<<=recombine; |
1306 | | |
1307 | | /* Increasing the time resolution */ |
1308 | 23.2M | while ((N_B&1) == 0 && tf_change<0) |
1309 | 3.60M | { |
1310 | 3.60M | if (encode) |
1311 | 2.39M | haar1(X, N_B, B); |
1312 | 3.60M | if (lowband) |
1313 | 1.36M | haar1(lowband, N_B, B); |
1314 | 3.60M | fill |= fill<<B; |
1315 | 3.60M | B <<= 1; |
1316 | 3.60M | N_B >>= 1; |
1317 | 3.60M | time_divide++; |
1318 | 3.60M | tf_change++; |
1319 | 3.60M | } |
1320 | 19.6M | B0=B; |
1321 | 19.6M | N_B0 = N_B; |
1322 | | |
1323 | | /* Reorganize the samples in time order instead of frequency order */ |
1324 | 19.6M | if (B0>1) |
1325 | 6.58M | { |
1326 | 6.58M | if (encode) |
1327 | 5.39M | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
1328 | 6.58M | if (lowband) |
1329 | 1.84M | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); |
1330 | 6.58M | } |
1331 | | |
1332 | | #ifdef ENABLE_QEXT |
1333 | 9.84M | if (ctx->extra_bands && b > (3*N<<BITRES)+(ctx->m->logN[ctx->i]+8+8*LM)) { |
1334 | 24.0k | cm = cubic_quant_partition(ctx, X, N, b, B, ctx->ec, LM, gain, ctx->resynth, encode); |
1335 | 24.0k | } else |
1336 | 9.82M | #endif |
1337 | 9.82M | { |
1338 | 9.82M | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill ARG_QEXT(ext_b)); |
1339 | 9.82M | } |
1340 | | |
1341 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
1342 | 19.6M | if (ctx->resynth) |
1343 | 12.3M | { |
1344 | | /* Undo the sample reorganization going from time order to frequency order */ |
1345 | 12.3M | if (B0>1) |
1346 | 3.13M | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
1347 | | |
1348 | | /* Undo time-freq changes that we did earlier */ |
1349 | 12.3M | N_B = N_B0; |
1350 | 12.3M | B = B0; |
1351 | 14.5M | for (k=0;k<time_divide;k++) |
1352 | 2.22M | { |
1353 | 2.22M | B >>= 1; |
1354 | 2.22M | N_B <<= 1; |
1355 | 2.22M | cm |= cm>>B; |
1356 | 2.22M | haar1(X, N_B, B); |
1357 | 2.22M | } |
1358 | | |
1359 | 14.3M | for (k=0;k<recombine;k++) |
1360 | 1.95M | { |
1361 | 1.95M | static const unsigned char bit_deinterleave_table[16]={ |
1362 | 1.95M | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, |
1363 | 1.95M | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF |
1364 | 1.95M | }; |
1365 | 1.95M | cm = bit_deinterleave_table[cm]; |
1366 | 1.95M | haar1(X, N0>>k, 1<<k); |
1367 | 1.95M | } |
1368 | 12.3M | B<<=recombine; |
1369 | | |
1370 | | /* Scale output for later folding */ |
1371 | 12.3M | if (lowband_out) |
1372 | 8.42M | { |
1373 | 8.42M | int j; |
1374 | 8.42M | opus_val16 n; |
1375 | 8.42M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); |
1376 | 88.2M | for (j=0;j<N0;j++) |
1377 | 79.8M | lowband_out[j] = MULT16_32_Q15(n,X[j]); |
1378 | 8.42M | } |
1379 | 12.3M | cm &= (1<<B)-1; |
1380 | 12.3M | } |
1381 | 19.6M | return cm; |
1382 | 22.7M | } Line | Count | Source | 1257 | 5.75M | { | 1258 | 5.75M | int N0=N; | 1259 | 5.75M | int N_B=N; | 1260 | 5.75M | int N_B0; | 1261 | 5.75M | int B0=B; | 1262 | 5.75M | int time_divide=0; | 1263 | 5.75M | int recombine=0; | 1264 | 5.75M | int longBlocks; | 1265 | 5.75M | unsigned cm=0; | 1266 | 5.75M | int k; | 1267 | 5.75M | int encode; | 1268 | 5.75M | int tf_change; | 1269 | | | 1270 | 5.75M | encode = ctx->encode; | 1271 | 5.75M | tf_change = ctx->tf_change; | 1272 | | | 1273 | 5.75M | longBlocks = B0==1; | 1274 | | | 1275 | 5.75M | N_B = celt_udiv(N_B, B); | 1276 | | | 1277 | | /* Special case for one sample */ | 1278 | 5.75M | if (N==1) | 1279 | 843k | { | 1280 | 843k | return quant_band_n1(ctx, X, NULL, lowband_out); | 1281 | 843k | } | 1282 | | | 1283 | 4.90M | if (tf_change>0) | 1284 | 421k | recombine = tf_change; | 1285 | | /* Band recombining to increase frequency resolution */ | 1286 | | | 1287 | 4.90M | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) | 1288 | 578k | { | 1289 | 578k | OPUS_COPY(lowband_scratch, lowband, N); | 1290 | 578k | lowband = lowband_scratch; | 1291 | 578k | } | 1292 | | | 1293 | 5.63M | for (k=0;k<recombine;k++) | 1294 | 731k | { | 1295 | 731k | static const unsigned char bit_interleave_table[16]={ | 1296 | 731k | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 | 1297 | 731k | }; | 1298 | 731k | if (encode) | 1299 | 179k | haar1(X, N>>k, 1<<k); | 1300 | 731k | if (lowband) | 1301 | 404k | haar1(lowband, N>>k, 1<<k); | 1302 | 731k | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; | 1303 | 731k | } | 1304 | 4.90M | B>>=recombine; | 1305 | 4.90M | N_B<<=recombine; | 1306 | | | 1307 | | /* Increasing the time resolution */ | 1308 | 5.74M | while ((N_B&1) == 0 && tf_change<0) | 1309 | 841k | { | 1310 | 841k | if (encode) | 1311 | 579k | haar1(X, N_B, B); | 1312 | 841k | if (lowband) | 1313 | 302k | haar1(lowband, N_B, B); | 1314 | 841k | fill |= fill<<B; | 1315 | 841k | B <<= 1; | 1316 | 841k | N_B >>= 1; | 1317 | 841k | time_divide++; | 1318 | 841k | tf_change++; | 1319 | 841k | } | 1320 | 4.90M | B0=B; | 1321 | 4.90M | N_B0 = N_B; | 1322 | | | 1323 | | /* Reorganize the samples in time order instead of frequency order */ | 1324 | 4.90M | if (B0>1) | 1325 | 1.53M | { | 1326 | 1.53M | if (encode) | 1327 | 1.28M | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1328 | 1.53M | if (lowband) | 1329 | 410k | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); | 1330 | 1.53M | } | 1331 | | | 1332 | | #ifdef ENABLE_QEXT | 1333 | | if (ctx->extra_bands && b > (3*N<<BITRES)+(ctx->m->logN[ctx->i]+8+8*LM)) { | 1334 | | cm = cubic_quant_partition(ctx, X, N, b, B, ctx->ec, LM, gain, ctx->resynth, encode); | 1335 | | } else | 1336 | | #endif | 1337 | 4.90M | { | 1338 | 4.90M | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill ARG_QEXT(ext_b)); | 1339 | 4.90M | } | 1340 | | | 1341 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1342 | 4.90M | if (ctx->resynth) | 1343 | 3.11M | { | 1344 | | /* Undo the sample reorganization going from time order to frequency order */ | 1345 | 3.11M | if (B0>1) | 1346 | 705k | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1347 | | | 1348 | | /* Undo time-freq changes that we did earlier */ | 1349 | 3.11M | N_B = N_B0; | 1350 | 3.11M | B = B0; | 1351 | 3.61M | for (k=0;k<time_divide;k++) | 1352 | 504k | { | 1353 | 504k | B >>= 1; | 1354 | 504k | N_B <<= 1; | 1355 | 504k | cm |= cm>>B; | 1356 | 504k | haar1(X, N_B, B); | 1357 | 504k | } | 1358 | | | 1359 | 3.74M | for (k=0;k<recombine;k++) | 1360 | 636k | { | 1361 | 636k | static const unsigned char bit_deinterleave_table[16]={ | 1362 | 636k | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, | 1363 | 636k | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF | 1364 | 636k | }; | 1365 | 636k | cm = bit_deinterleave_table[cm]; | 1366 | 636k | haar1(X, N0>>k, 1<<k); | 1367 | 636k | } | 1368 | 3.11M | B<<=recombine; | 1369 | | | 1370 | | /* Scale output for later folding */ | 1371 | 3.11M | if (lowband_out) | 1372 | 2.13M | { | 1373 | 2.13M | int j; | 1374 | 2.13M | opus_val16 n; | 1375 | 2.13M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); | 1376 | 22.6M | for (j=0;j<N0;j++) | 1377 | 20.5M | lowband_out[j] = MULT16_32_Q15(n,X[j]); | 1378 | 2.13M | } | 1379 | 3.11M | cm &= (1<<B)-1; | 1380 | 3.11M | } | 1381 | 4.90M | return cm; | 1382 | 5.75M | } |
Line | Count | Source | 1257 | 5.62M | { | 1258 | 5.62M | int N0=N; | 1259 | 5.62M | int N_B=N; | 1260 | 5.62M | int N_B0; | 1261 | 5.62M | int B0=B; | 1262 | 5.62M | int time_divide=0; | 1263 | 5.62M | int recombine=0; | 1264 | 5.62M | int longBlocks; | 1265 | 5.62M | unsigned cm=0; | 1266 | 5.62M | int k; | 1267 | 5.62M | int encode; | 1268 | 5.62M | int tf_change; | 1269 | | | 1270 | 5.62M | encode = ctx->encode; | 1271 | 5.62M | tf_change = ctx->tf_change; | 1272 | | | 1273 | 5.62M | longBlocks = B0==1; | 1274 | | | 1275 | 5.62M | N_B = celt_udiv(N_B, B); | 1276 | | | 1277 | | /* Special case for one sample */ | 1278 | 5.62M | if (N==1) | 1279 | 698k | { | 1280 | 698k | return quant_band_n1(ctx, X, NULL, lowband_out); | 1281 | 698k | } | 1282 | | | 1283 | 4.92M | if (tf_change>0) | 1284 | 296k | recombine = tf_change; | 1285 | | /* Band recombining to increase frequency resolution */ | 1286 | | | 1287 | 4.92M | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) | 1288 | 585k | { | 1289 | 585k | OPUS_COPY(lowband_scratch, lowband, N); | 1290 | 585k | lowband = lowband_scratch; | 1291 | 585k | } | 1292 | | | 1293 | 5.38M | for (k=0;k<recombine;k++) | 1294 | 459k | { | 1295 | 459k | static const unsigned char bit_interleave_table[16]={ | 1296 | 459k | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 | 1297 | 459k | }; | 1298 | 459k | if (encode) | 1299 | 201k | haar1(X, N>>k, 1<<k); | 1300 | 459k | if (lowband) | 1301 | 209k | haar1(lowband, N>>k, 1<<k); | 1302 | 459k | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; | 1303 | 459k | } | 1304 | 4.92M | B>>=recombine; | 1305 | 4.92M | N_B<<=recombine; | 1306 | | | 1307 | | /* Increasing the time resolution */ | 1308 | 5.88M | while ((N_B&1) == 0 && tf_change<0) | 1309 | 961k | { | 1310 | 961k | if (encode) | 1311 | 620k | haar1(X, N_B, B); | 1312 | 961k | if (lowband) | 1313 | 380k | haar1(lowband, N_B, B); | 1314 | 961k | fill |= fill<<B; | 1315 | 961k | B <<= 1; | 1316 | 961k | N_B >>= 1; | 1317 | 961k | time_divide++; | 1318 | 961k | tf_change++; | 1319 | 961k | } | 1320 | 4.92M | B0=B; | 1321 | 4.92M | N_B0 = N_B; | 1322 | | | 1323 | | /* Reorganize the samples in time order instead of frequency order */ | 1324 | 4.92M | if (B0>1) | 1325 | 1.75M | { | 1326 | 1.75M | if (encode) | 1327 | 1.41M | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1328 | 1.75M | if (lowband) | 1329 | 511k | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); | 1330 | 1.75M | } | 1331 | | | 1332 | 4.92M | #ifdef ENABLE_QEXT | 1333 | 4.92M | if (ctx->extra_bands && b > (3*N<<BITRES)+(ctx->m->logN[ctx->i]+8+8*LM)) { | 1334 | 12.0k | cm = cubic_quant_partition(ctx, X, N, b, B, ctx->ec, LM, gain, ctx->resynth, encode); | 1335 | 12.0k | } else | 1336 | 4.91M | #endif | 1337 | 4.91M | { | 1338 | 4.91M | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill ARG_QEXT(ext_b)); | 1339 | 4.91M | } | 1340 | | | 1341 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1342 | 4.92M | if (ctx->resynth) | 1343 | 3.06M | { | 1344 | | /* Undo the sample reorganization going from time order to frequency order */ | 1345 | 3.06M | if (B0>1) | 1346 | 861k | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1347 | | | 1348 | | /* Undo time-freq changes that we did earlier */ | 1349 | 3.06M | N_B = N_B0; | 1350 | 3.06M | B = B0; | 1351 | 3.67M | for (k=0;k<time_divide;k++) | 1352 | 610k | { | 1353 | 610k | B >>= 1; | 1354 | 610k | N_B <<= 1; | 1355 | 610k | cm |= cm>>B; | 1356 | 610k | haar1(X, N_B, B); | 1357 | 610k | } | 1358 | | | 1359 | 3.40M | for (k=0;k<recombine;k++) | 1360 | 340k | { | 1361 | 340k | static const unsigned char bit_deinterleave_table[16]={ | 1362 | 340k | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, | 1363 | 340k | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF | 1364 | 340k | }; | 1365 | 340k | cm = bit_deinterleave_table[cm]; | 1366 | 340k | haar1(X, N0>>k, 1<<k); | 1367 | 340k | } | 1368 | 3.06M | B<<=recombine; | 1369 | | | 1370 | | /* Scale output for later folding */ | 1371 | 3.06M | if (lowband_out) | 1372 | 2.07M | { | 1373 | 2.07M | int j; | 1374 | 2.07M | opus_val16 n; | 1375 | 2.07M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); | 1376 | 21.5M | for (j=0;j<N0;j++) | 1377 | 19.4M | lowband_out[j] = MULT16_32_Q15(n,X[j]); | 1378 | 2.07M | } | 1379 | 3.06M | cm &= (1<<B)-1; | 1380 | 3.06M | } | 1381 | 4.92M | return cm; | 1382 | 5.62M | } |
Line | Count | Source | 1257 | 5.62M | { | 1258 | 5.62M | int N0=N; | 1259 | 5.62M | int N_B=N; | 1260 | 5.62M | int N_B0; | 1261 | 5.62M | int B0=B; | 1262 | 5.62M | int time_divide=0; | 1263 | 5.62M | int recombine=0; | 1264 | 5.62M | int longBlocks; | 1265 | 5.62M | unsigned cm=0; | 1266 | 5.62M | int k; | 1267 | 5.62M | int encode; | 1268 | 5.62M | int tf_change; | 1269 | | | 1270 | 5.62M | encode = ctx->encode; | 1271 | 5.62M | tf_change = ctx->tf_change; | 1272 | | | 1273 | 5.62M | longBlocks = B0==1; | 1274 | | | 1275 | 5.62M | N_B = celt_udiv(N_B, B); | 1276 | | | 1277 | | /* Special case for one sample */ | 1278 | 5.62M | if (N==1) | 1279 | 698k | { | 1280 | 698k | return quant_band_n1(ctx, X, NULL, lowband_out); | 1281 | 698k | } | 1282 | | | 1283 | 4.92M | if (tf_change>0) | 1284 | 296k | recombine = tf_change; | 1285 | | /* Band recombining to increase frequency resolution */ | 1286 | | | 1287 | 4.92M | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) | 1288 | 585k | { | 1289 | 585k | OPUS_COPY(lowband_scratch, lowband, N); | 1290 | 585k | lowband = lowband_scratch; | 1291 | 585k | } | 1292 | | | 1293 | 5.38M | for (k=0;k<recombine;k++) | 1294 | 459k | { | 1295 | 459k | static const unsigned char bit_interleave_table[16]={ | 1296 | 459k | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 | 1297 | 459k | }; | 1298 | 459k | if (encode) | 1299 | 201k | haar1(X, N>>k, 1<<k); | 1300 | 459k | if (lowband) | 1301 | 209k | haar1(lowband, N>>k, 1<<k); | 1302 | 459k | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; | 1303 | 459k | } | 1304 | 4.92M | B>>=recombine; | 1305 | 4.92M | N_B<<=recombine; | 1306 | | | 1307 | | /* Increasing the time resolution */ | 1308 | 5.88M | while ((N_B&1) == 0 && tf_change<0) | 1309 | 961k | { | 1310 | 961k | if (encode) | 1311 | 620k | haar1(X, N_B, B); | 1312 | 961k | if (lowband) | 1313 | 380k | haar1(lowband, N_B, B); | 1314 | 961k | fill |= fill<<B; | 1315 | 961k | B <<= 1; | 1316 | 961k | N_B >>= 1; | 1317 | 961k | time_divide++; | 1318 | 961k | tf_change++; | 1319 | 961k | } | 1320 | 4.92M | B0=B; | 1321 | 4.92M | N_B0 = N_B; | 1322 | | | 1323 | | /* Reorganize the samples in time order instead of frequency order */ | 1324 | 4.92M | if (B0>1) | 1325 | 1.75M | { | 1326 | 1.75M | if (encode) | 1327 | 1.41M | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1328 | 1.75M | if (lowband) | 1329 | 511k | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); | 1330 | 1.75M | } | 1331 | | | 1332 | 4.92M | #ifdef ENABLE_QEXT | 1333 | 4.92M | if (ctx->extra_bands && b > (3*N<<BITRES)+(ctx->m->logN[ctx->i]+8+8*LM)) { | 1334 | 12.0k | cm = cubic_quant_partition(ctx, X, N, b, B, ctx->ec, LM, gain, ctx->resynth, encode); | 1335 | 12.0k | } else | 1336 | 4.91M | #endif | 1337 | 4.91M | { | 1338 | 4.91M | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill ARG_QEXT(ext_b)); | 1339 | 4.91M | } | 1340 | | | 1341 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1342 | 4.92M | if (ctx->resynth) | 1343 | 3.06M | { | 1344 | | /* Undo the sample reorganization going from time order to frequency order */ | 1345 | 3.06M | if (B0>1) | 1346 | 861k | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1347 | | | 1348 | | /* Undo time-freq changes that we did earlier */ | 1349 | 3.06M | N_B = N_B0; | 1350 | 3.06M | B = B0; | 1351 | 3.67M | for (k=0;k<time_divide;k++) | 1352 | 610k | { | 1353 | 610k | B >>= 1; | 1354 | 610k | N_B <<= 1; | 1355 | 610k | cm |= cm>>B; | 1356 | 610k | haar1(X, N_B, B); | 1357 | 610k | } | 1358 | | | 1359 | 3.40M | for (k=0;k<recombine;k++) | 1360 | 340k | { | 1361 | 340k | static const unsigned char bit_deinterleave_table[16]={ | 1362 | 340k | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, | 1363 | 340k | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF | 1364 | 340k | }; | 1365 | 340k | cm = bit_deinterleave_table[cm]; | 1366 | 340k | haar1(X, N0>>k, 1<<k); | 1367 | 340k | } | 1368 | 3.06M | B<<=recombine; | 1369 | | | 1370 | | /* Scale output for later folding */ | 1371 | 3.06M | if (lowband_out) | 1372 | 2.07M | { | 1373 | 2.07M | int j; | 1374 | 2.07M | opus_val16 n; | 1375 | 2.07M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); | 1376 | 21.5M | for (j=0;j<N0;j++) | 1377 | 19.4M | lowband_out[j] = MULT16_32_Q15(n,X[j]); | 1378 | 2.07M | } | 1379 | 3.06M | cm &= (1<<B)-1; | 1380 | 3.06M | } | 1381 | 4.92M | return cm; | 1382 | 5.62M | } |
Line | Count | Source | 1257 | 5.75M | { | 1258 | 5.75M | int N0=N; | 1259 | 5.75M | int N_B=N; | 1260 | 5.75M | int N_B0; | 1261 | 5.75M | int B0=B; | 1262 | 5.75M | int time_divide=0; | 1263 | 5.75M | int recombine=0; | 1264 | 5.75M | int longBlocks; | 1265 | 5.75M | unsigned cm=0; | 1266 | 5.75M | int k; | 1267 | 5.75M | int encode; | 1268 | 5.75M | int tf_change; | 1269 | | | 1270 | 5.75M | encode = ctx->encode; | 1271 | 5.75M | tf_change = ctx->tf_change; | 1272 | | | 1273 | 5.75M | longBlocks = B0==1; | 1274 | | | 1275 | 5.75M | N_B = celt_udiv(N_B, B); | 1276 | | | 1277 | | /* Special case for one sample */ | 1278 | 5.75M | if (N==1) | 1279 | 843k | { | 1280 | 843k | return quant_band_n1(ctx, X, NULL, lowband_out); | 1281 | 843k | } | 1282 | | | 1283 | 4.90M | if (tf_change>0) | 1284 | 421k | recombine = tf_change; | 1285 | | /* Band recombining to increase frequency resolution */ | 1286 | | | 1287 | 4.90M | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) | 1288 | 578k | { | 1289 | 578k | OPUS_COPY(lowband_scratch, lowband, N); | 1290 | 578k | lowband = lowband_scratch; | 1291 | 578k | } | 1292 | | | 1293 | 5.63M | for (k=0;k<recombine;k++) | 1294 | 731k | { | 1295 | 731k | static const unsigned char bit_interleave_table[16]={ | 1296 | 731k | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 | 1297 | 731k | }; | 1298 | 731k | if (encode) | 1299 | 179k | haar1(X, N>>k, 1<<k); | 1300 | 731k | if (lowband) | 1301 | 404k | haar1(lowband, N>>k, 1<<k); | 1302 | 731k | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; | 1303 | 731k | } | 1304 | 4.90M | B>>=recombine; | 1305 | 4.90M | N_B<<=recombine; | 1306 | | | 1307 | | /* Increasing the time resolution */ | 1308 | 5.74M | while ((N_B&1) == 0 && tf_change<0) | 1309 | 841k | { | 1310 | 841k | if (encode) | 1311 | 579k | haar1(X, N_B, B); | 1312 | 841k | if (lowband) | 1313 | 302k | haar1(lowband, N_B, B); | 1314 | 841k | fill |= fill<<B; | 1315 | 841k | B <<= 1; | 1316 | 841k | N_B >>= 1; | 1317 | 841k | time_divide++; | 1318 | 841k | tf_change++; | 1319 | 841k | } | 1320 | 4.90M | B0=B; | 1321 | 4.90M | N_B0 = N_B; | 1322 | | | 1323 | | /* Reorganize the samples in time order instead of frequency order */ | 1324 | 4.90M | if (B0>1) | 1325 | 1.53M | { | 1326 | 1.53M | if (encode) | 1327 | 1.28M | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1328 | 1.53M | if (lowband) | 1329 | 410k | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); | 1330 | 1.53M | } | 1331 | | | 1332 | | #ifdef ENABLE_QEXT | 1333 | | if (ctx->extra_bands && b > (3*N<<BITRES)+(ctx->m->logN[ctx->i]+8+8*LM)) { | 1334 | | cm = cubic_quant_partition(ctx, X, N, b, B, ctx->ec, LM, gain, ctx->resynth, encode); | 1335 | | } else | 1336 | | #endif | 1337 | 4.90M | { | 1338 | 4.90M | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill ARG_QEXT(ext_b)); | 1339 | 4.90M | } | 1340 | | | 1341 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1342 | 4.90M | if (ctx->resynth) | 1343 | 3.11M | { | 1344 | | /* Undo the sample reorganization going from time order to frequency order */ | 1345 | 3.11M | if (B0>1) | 1346 | 705k | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1347 | | | 1348 | | /* Undo time-freq changes that we did earlier */ | 1349 | 3.11M | N_B = N_B0; | 1350 | 3.11M | B = B0; | 1351 | 3.61M | for (k=0;k<time_divide;k++) | 1352 | 504k | { | 1353 | 504k | B >>= 1; | 1354 | 504k | N_B <<= 1; | 1355 | 504k | cm |= cm>>B; | 1356 | 504k | haar1(X, N_B, B); | 1357 | 504k | } | 1358 | | | 1359 | 3.74M | for (k=0;k<recombine;k++) | 1360 | 636k | { | 1361 | 636k | static const unsigned char bit_deinterleave_table[16]={ | 1362 | 636k | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, | 1363 | 636k | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF | 1364 | 636k | }; | 1365 | 636k | cm = bit_deinterleave_table[cm]; | 1366 | 636k | haar1(X, N0>>k, 1<<k); | 1367 | 636k | } | 1368 | 3.11M | B<<=recombine; | 1369 | | | 1370 | | /* Scale output for later folding */ | 1371 | 3.11M | if (lowband_out) | 1372 | 2.13M | { | 1373 | 2.13M | int j; | 1374 | 2.13M | opus_val16 n; | 1375 | 2.13M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); | 1376 | 22.6M | for (j=0;j<N0;j++) | 1377 | 20.5M | lowband_out[j] = MULT16_32_Q15(n,X[j]); | 1378 | 2.13M | } | 1379 | 3.11M | cm &= (1<<B)-1; | 1380 | 3.11M | } | 1381 | 4.90M | return cm; | 1382 | 5.75M | } |
|
1383 | | |
1384 | | #ifdef FIXED_POINT |
1385 | 3.83M | #define MIN_STEREO_ENERGY 2 |
1386 | | #else |
1387 | 3.83M | #define MIN_STEREO_ENERGY 1e-10f |
1388 | | #endif |
1389 | | |
1390 | | /* This function is responsible for encoding and decoding a band for the stereo case. */ |
1391 | | static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
1392 | | int N, int b, int B, celt_norm *lowband, |
1393 | | int LM, celt_norm *lowband_out, |
1394 | | celt_norm *lowband_scratch, int fill |
1395 | | ARG_QEXT(int ext_b) ARG_QEXT(const int *cap)) |
1396 | 6.47M | { |
1397 | 6.47M | int imid=0, iside=0; |
1398 | 6.47M | int inv = 0; |
1399 | 6.47M | opus_val32 mid=0, side=0; |
1400 | 6.47M | unsigned cm=0; |
1401 | 6.47M | int mbits, sbits, delta; |
1402 | 6.47M | int itheta; |
1403 | 6.47M | int qalloc; |
1404 | 6.47M | struct split_ctx sctx; |
1405 | 6.47M | int orig_fill; |
1406 | 6.47M | int encode; |
1407 | 6.47M | ec_ctx *ec; |
1408 | | |
1409 | 6.47M | encode = ctx->encode; |
1410 | 6.47M | ec = ctx->ec; |
1411 | | |
1412 | | /* Special case for one sample */ |
1413 | 6.47M | if (N==1) |
1414 | 1.25M | { |
1415 | 1.25M | return quant_band_n1(ctx, X, Y, lowband_out); |
1416 | 1.25M | } |
1417 | | |
1418 | 5.22M | orig_fill = fill; |
1419 | | |
1420 | 5.22M | if (encode) { |
1421 | 2.62M | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { |
1422 | 253k | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); |
1423 | 225k | else OPUS_COPY(X, Y, N); |
1424 | 253k | } |
1425 | 2.62M | } |
1426 | 5.22M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill ARG_QEXT(&ext_b)); |
1427 | 5.22M | inv = sctx.inv; |
1428 | 5.22M | imid = sctx.imid; |
1429 | 5.22M | iside = sctx.iside; |
1430 | 5.22M | delta = sctx.delta; |
1431 | 5.22M | itheta = sctx.itheta; |
1432 | 5.22M | qalloc = sctx.qalloc; |
1433 | | #ifdef FIXED_POINT |
1434 | | # ifdef ENABLE_QEXT |
1435 | | (void)imid; |
1436 | | (void)iside; |
1437 | | mid = celt_cos_norm32(sctx.itheta_q30); |
1438 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); |
1439 | | # else |
1440 | 1.29M | mid = SHL32(EXTEND32(imid), 16); |
1441 | 1.29M | side = SHL32(EXTEND32(iside), 16); |
1442 | | # endif |
1443 | | #else |
1444 | | # ifdef ENABLE_QEXT |
1445 | | (void)imid; |
1446 | | (void)iside; |
1447 | | mid = cos(.5*M_PI*sctx.itheta_q30*(1.f/(1<<30))); |
1448 | | side = sin(.5*M_PI*sctx.itheta_q30*(1.f/(1<<30))); |
1449 | | # else |
1450 | | mid = (1.f/32768)*imid; |
1451 | | side = (1.f/32768)*iside; |
1452 | | # endif |
1453 | | #endif |
1454 | | |
1455 | | /* This is a special case for N=2 that only works for stereo and takes |
1456 | | advantage of the fact that mid and side are orthogonal to encode |
1457 | | the side with just one bit. */ |
1458 | 5.22M | if (N==2) |
1459 | 1.26M | { |
1460 | 1.26M | int c; |
1461 | 1.26M | int sign=0; |
1462 | 1.26M | celt_norm *x2, *y2; |
1463 | 1.26M | mbits = b; |
1464 | 1.26M | sbits = 0; |
1465 | | /* Only need one bit for the side. */ |
1466 | 1.26M | if (itheta != 0 && itheta != 16384) |
1467 | 307k | sbits = 1<<BITRES; |
1468 | 1.26M | mbits -= sbits; |
1469 | 1.26M | c = itheta > 8192; |
1470 | 1.26M | ctx->remaining_bits -= qalloc+sbits; |
1471 | | |
1472 | 1.26M | x2 = c ? Y : X; |
1473 | 1.26M | y2 = c ? X : Y; |
1474 | 1.26M | if (sbits) |
1475 | 307k | { |
1476 | 307k | if (encode) |
1477 | 259k | { |
1478 | | /* Here we only need to encode a sign for the side. */ |
1479 | | /* FIXME: Need to increase fixed-point precision? */ |
1480 | 259k | sign = MULT32_32_Q31(x2[0],y2[1]) - MULT32_32_Q31(x2[1],y2[0]) < 0; |
1481 | 259k | ec_enc_bits(ec, sign, 1); |
1482 | 259k | } else { |
1483 | 47.9k | sign = ec_dec_bits(ec, 1); |
1484 | 47.9k | } |
1485 | 307k | } |
1486 | 1.26M | sign = 1-2*sign; |
1487 | | /* We use orig_fill here because we want to fold the side, but if |
1488 | | itheta==16384, we'll have cleared the low bits of fill. */ |
1489 | 1.26M | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, |
1490 | 1.26M | lowband_scratch, orig_fill ARG_QEXT(ext_b)); |
1491 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
1492 | | and there's no need to worry about mixing with the other channel. */ |
1493 | 1.26M | y2[0] = -sign*x2[1]; |
1494 | 1.26M | y2[1] = sign*x2[0]; |
1495 | 1.26M | if (ctx->resynth) |
1496 | 1.09M | { |
1497 | 1.09M | celt_norm tmp; |
1498 | 1.09M | X[0] = MULT32_32_Q31(mid, X[0]); |
1499 | 1.09M | X[1] = MULT32_32_Q31(mid, X[1]); |
1500 | 1.09M | Y[0] = MULT32_32_Q31(side, Y[0]); |
1501 | 1.09M | Y[1] = MULT32_32_Q31(side, Y[1]); |
1502 | 1.09M | tmp = X[0]; |
1503 | 1.09M | X[0] = SUB32(tmp,Y[0]); |
1504 | 1.09M | Y[0] = ADD32(tmp,Y[0]); |
1505 | 1.09M | tmp = X[1]; |
1506 | 1.09M | X[1] = SUB32(tmp,Y[1]); |
1507 | 1.09M | Y[1] = ADD32(tmp,Y[1]); |
1508 | 1.09M | } |
1509 | 3.96M | } else { |
1510 | | /* "Normal" split code */ |
1511 | 3.96M | opus_int32 rebalance; |
1512 | | |
1513 | 3.96M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
1514 | 3.96M | sbits = b-mbits; |
1515 | 3.96M | ctx->remaining_bits -= qalloc; |
1516 | | |
1517 | 3.96M | rebalance = ctx->remaining_bits; |
1518 | 3.96M | if (mbits >= sbits) |
1519 | 3.40M | { |
1520 | | #ifdef ENABLE_QEXT |
1521 | | int qext_extra = 0; |
1522 | | /* Reallocate any mid bits that cannot be used to extra mid bits. */ |
1523 | 1.72M | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, mbits - cap[ctx->i]/2)); |
1524 | | #endif |
1525 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
1526 | | mid for folding later. */ |
1527 | 3.40M | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, |
1528 | 3.40M | lowband_scratch, fill ARG_QEXT(ext_b/2+qext_extra)); |
1529 | 3.40M | rebalance = mbits - (rebalance-ctx->remaining_bits); |
1530 | 3.40M | if (rebalance > 3<<BITRES && itheta!=0) |
1531 | 60.0k | sbits += rebalance - (3<<BITRES); |
1532 | | #ifdef ENABLE_QEXT |
1533 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the mid. */ |
1534 | 1.72M | if (ctx->extra_bands) sbits = IMIN(sbits, ctx->remaining_bits); |
1535 | | #endif |
1536 | | /* For a stereo split, the high bits of fill are always zero, so no |
1537 | | folding will be done to the side. */ |
1538 | 3.40M | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2-qext_extra)); |
1539 | 3.40M | } else { |
1540 | | #ifdef ENABLE_QEXT |
1541 | | int qext_extra = 0; |
1542 | | /* Reallocate any side bits that cannot be used to extra side bits. */ |
1543 | 291k | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, sbits - cap[ctx->i]/2)); |
1544 | | #endif |
1545 | | /* For a stereo split, the high bits of fill are always zero, so no |
1546 | | folding will be done to the side. */ |
1547 | 554k | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2+qext_extra)); |
1548 | 554k | rebalance = sbits - (rebalance-ctx->remaining_bits); |
1549 | 554k | if (rebalance > 3<<BITRES && itheta!=16384) |
1550 | 36.1k | mbits += rebalance - (3<<BITRES); |
1551 | | #ifdef ENABLE_QEXT |
1552 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the side. */ |
1553 | 291k | if (ctx->extra_bands) mbits = IMIN(mbits, ctx->remaining_bits); |
1554 | | #endif |
1555 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
1556 | | mid for folding later. */ |
1557 | 554k | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, |
1558 | 554k | lowband_scratch, fill ARG_QEXT(ext_b/2-qext_extra)); |
1559 | 554k | } |
1560 | 3.96M | } |
1561 | | |
1562 | | |
1563 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
1564 | 5.22M | if (ctx->resynth) |
1565 | 4.32M | { |
1566 | 4.32M | if (N!=2) |
1567 | 3.23M | stereo_merge(X, Y, mid, N, ctx->arch); |
1568 | 4.32M | if (inv) |
1569 | 114k | { |
1570 | 114k | int j; |
1571 | 1.63M | for (j=0;j<N;j++) |
1572 | 1.52M | Y[j] = -Y[j]; |
1573 | 114k | } |
1574 | 4.32M | } |
1575 | 5.22M | return cm; |
1576 | 6.47M | } bands.c:quant_band_stereo Line | Count | Source | 1396 | 1.58M | { | 1397 | 1.58M | int imid=0, iside=0; | 1398 | 1.58M | int inv = 0; | 1399 | 1.58M | opus_val32 mid=0, side=0; | 1400 | 1.58M | unsigned cm=0; | 1401 | 1.58M | int mbits, sbits, delta; | 1402 | 1.58M | int itheta; | 1403 | 1.58M | int qalloc; | 1404 | 1.58M | struct split_ctx sctx; | 1405 | 1.58M | int orig_fill; | 1406 | 1.58M | int encode; | 1407 | 1.58M | ec_ctx *ec; | 1408 | | | 1409 | 1.58M | encode = ctx->encode; | 1410 | 1.58M | ec = ctx->ec; | 1411 | | | 1412 | | /* Special case for one sample */ | 1413 | 1.58M | if (N==1) | 1414 | 288k | { | 1415 | 288k | return quant_band_n1(ctx, X, Y, lowband_out); | 1416 | 288k | } | 1417 | | | 1418 | 1.29M | orig_fill = fill; | 1419 | | | 1420 | 1.29M | if (encode) { | 1421 | 627k | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { | 1422 | 61.4k | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); | 1423 | 54.0k | else OPUS_COPY(X, Y, N); | 1424 | 61.4k | } | 1425 | 627k | } | 1426 | 1.29M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill ARG_QEXT(&ext_b)); | 1427 | 1.29M | inv = sctx.inv; | 1428 | 1.29M | imid = sctx.imid; | 1429 | 1.29M | iside = sctx.iside; | 1430 | 1.29M | delta = sctx.delta; | 1431 | 1.29M | itheta = sctx.itheta; | 1432 | 1.29M | qalloc = sctx.qalloc; | 1433 | 1.29M | #ifdef FIXED_POINT | 1434 | | # ifdef ENABLE_QEXT | 1435 | | (void)imid; | 1436 | | (void)iside; | 1437 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1438 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1439 | | # else | 1440 | 1.29M | mid = SHL32(EXTEND32(imid), 16); | 1441 | 1.29M | side = SHL32(EXTEND32(iside), 16); | 1442 | 1.29M | # endif | 1443 | | #else | 1444 | | # ifdef ENABLE_QEXT | 1445 | | (void)imid; | 1446 | | (void)iside; | 1447 | | mid = cos(.5*M_PI*sctx.itheta_q30*(1.f/(1<<30))); | 1448 | | side = sin(.5*M_PI*sctx.itheta_q30*(1.f/(1<<30))); | 1449 | | # else | 1450 | | mid = (1.f/32768)*imid; | 1451 | | side = (1.f/32768)*iside; | 1452 | | # endif | 1453 | | #endif | 1454 | | | 1455 | | /* This is a special case for N=2 that only works for stereo and takes | 1456 | | advantage of the fact that mid and side are orthogonal to encode | 1457 | | the side with just one bit. */ | 1458 | 1.29M | if (N==2) | 1459 | 325k | { | 1460 | 325k | int c; | 1461 | 325k | int sign=0; | 1462 | 325k | celt_norm *x2, *y2; | 1463 | 325k | mbits = b; | 1464 | 325k | sbits = 0; | 1465 | | /* Only need one bit for the side. */ | 1466 | 325k | if (itheta != 0 && itheta != 16384) | 1467 | 69.4k | sbits = 1<<BITRES; | 1468 | 325k | mbits -= sbits; | 1469 | 325k | c = itheta > 8192; | 1470 | 325k | ctx->remaining_bits -= qalloc+sbits; | 1471 | | | 1472 | 325k | x2 = c ? Y : X; | 1473 | 325k | y2 = c ? X : Y; | 1474 | 325k | if (sbits) | 1475 | 69.4k | { | 1476 | 69.4k | if (encode) | 1477 | 60.2k | { | 1478 | | /* Here we only need to encode a sign for the side. */ | 1479 | | /* FIXME: Need to increase fixed-point precision? */ | 1480 | 60.2k | sign = MULT32_32_Q31(x2[0],y2[1]) - MULT32_32_Q31(x2[1],y2[0]) < 0; | 1481 | 60.2k | ec_enc_bits(ec, sign, 1); | 1482 | 60.2k | } else { | 1483 | 9.20k | sign = ec_dec_bits(ec, 1); | 1484 | 9.20k | } | 1485 | 69.4k | } | 1486 | 325k | sign = 1-2*sign; | 1487 | | /* We use orig_fill here because we want to fold the side, but if | 1488 | | itheta==16384, we'll have cleared the low bits of fill. */ | 1489 | 325k | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1490 | 325k | lowband_scratch, orig_fill ARG_QEXT(ext_b)); | 1491 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), | 1492 | | and there's no need to worry about mixing with the other channel. */ | 1493 | 325k | y2[0] = -sign*x2[1]; | 1494 | 325k | y2[1] = sign*x2[0]; | 1495 | 325k | if (ctx->resynth) | 1496 | 285k | { | 1497 | 285k | celt_norm tmp; | 1498 | 285k | X[0] = MULT32_32_Q31(mid, X[0]); | 1499 | 285k | X[1] = MULT32_32_Q31(mid, X[1]); | 1500 | 285k | Y[0] = MULT32_32_Q31(side, Y[0]); | 1501 | 285k | Y[1] = MULT32_32_Q31(side, Y[1]); | 1502 | 285k | tmp = X[0]; | 1503 | 285k | X[0] = SUB32(tmp,Y[0]); | 1504 | 285k | Y[0] = ADD32(tmp,Y[0]); | 1505 | 285k | tmp = X[1]; | 1506 | 285k | X[1] = SUB32(tmp,Y[1]); | 1507 | 285k | Y[1] = ADD32(tmp,Y[1]); | 1508 | 285k | } | 1509 | 973k | } else { | 1510 | | /* "Normal" split code */ | 1511 | 973k | opus_int32 rebalance; | 1512 | | | 1513 | 973k | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1514 | 973k | sbits = b-mbits; | 1515 | 973k | ctx->remaining_bits -= qalloc; | 1516 | | | 1517 | 973k | rebalance = ctx->remaining_bits; | 1518 | 973k | if (mbits >= sbits) | 1519 | 841k | { | 1520 | | #ifdef ENABLE_QEXT | 1521 | | int qext_extra = 0; | 1522 | | /* Reallocate any mid bits that cannot be used to extra mid bits. */ | 1523 | | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, mbits - cap[ctx->i]/2)); | 1524 | | #endif | 1525 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1526 | | mid for folding later. */ | 1527 | 841k | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1528 | 841k | lowband_scratch, fill ARG_QEXT(ext_b/2+qext_extra)); | 1529 | 841k | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1530 | 841k | if (rebalance > 3<<BITRES && itheta!=0) | 1531 | 12.1k | sbits += rebalance - (3<<BITRES); | 1532 | | #ifdef ENABLE_QEXT | 1533 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the mid. */ | 1534 | | if (ctx->extra_bands) sbits = IMIN(sbits, ctx->remaining_bits); | 1535 | | #endif | 1536 | | /* For a stereo split, the high bits of fill are always zero, so no | 1537 | | folding will be done to the side. */ | 1538 | 841k | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2-qext_extra)); | 1539 | 841k | } else { | 1540 | | #ifdef ENABLE_QEXT | 1541 | | int qext_extra = 0; | 1542 | | /* Reallocate any side bits that cannot be used to extra side bits. */ | 1543 | | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, sbits - cap[ctx->i]/2)); | 1544 | | #endif | 1545 | | /* For a stereo split, the high bits of fill are always zero, so no | 1546 | | folding will be done to the side. */ | 1547 | 131k | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2+qext_extra)); | 1548 | 131k | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1549 | 131k | if (rebalance > 3<<BITRES && itheta!=16384) | 1550 | 8.09k | mbits += rebalance - (3<<BITRES); | 1551 | | #ifdef ENABLE_QEXT | 1552 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the side. */ | 1553 | | if (ctx->extra_bands) mbits = IMIN(mbits, ctx->remaining_bits); | 1554 | | #endif | 1555 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1556 | | mid for folding later. */ | 1557 | 131k | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1558 | 131k | lowband_scratch, fill ARG_QEXT(ext_b/2-qext_extra)); | 1559 | 131k | } | 1560 | 973k | } | 1561 | | | 1562 | | | 1563 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1564 | 1.29M | if (ctx->resynth) | 1565 | 1.08M | { | 1566 | 1.08M | if (N!=2) | 1567 | 803k | stereo_merge(X, Y, mid, N, ctx->arch); | 1568 | 1.08M | if (inv) | 1569 | 28.1k | { | 1570 | 28.1k | int j; | 1571 | 420k | for (j=0;j<N;j++) | 1572 | 392k | Y[j] = -Y[j]; | 1573 | 28.1k | } | 1574 | 1.08M | } | 1575 | 1.29M | return cm; | 1576 | 1.58M | } |
bands.c:quant_band_stereo Line | Count | Source | 1396 | 1.65M | { | 1397 | 1.65M | int imid=0, iside=0; | 1398 | 1.65M | int inv = 0; | 1399 | 1.65M | opus_val32 mid=0, side=0; | 1400 | 1.65M | unsigned cm=0; | 1401 | 1.65M | int mbits, sbits, delta; | 1402 | 1.65M | int itheta; | 1403 | 1.65M | int qalloc; | 1404 | 1.65M | struct split_ctx sctx; | 1405 | 1.65M | int orig_fill; | 1406 | 1.65M | int encode; | 1407 | 1.65M | ec_ctx *ec; | 1408 | | | 1409 | 1.65M | encode = ctx->encode; | 1410 | 1.65M | ec = ctx->ec; | 1411 | | | 1412 | | /* Special case for one sample */ | 1413 | 1.65M | if (N==1) | 1414 | 337k | { | 1415 | 337k | return quant_band_n1(ctx, X, Y, lowband_out); | 1416 | 337k | } | 1417 | | | 1418 | 1.31M | orig_fill = fill; | 1419 | | | 1420 | 1.31M | if (encode) { | 1421 | 687k | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { | 1422 | 65.3k | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); | 1423 | 58.8k | else OPUS_COPY(X, Y, N); | 1424 | 65.3k | } | 1425 | 687k | } | 1426 | 1.31M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill ARG_QEXT(&ext_b)); | 1427 | 1.31M | inv = sctx.inv; | 1428 | 1.31M | imid = sctx.imid; | 1429 | 1.31M | iside = sctx.iside; | 1430 | 1.31M | delta = sctx.delta; | 1431 | 1.31M | itheta = sctx.itheta; | 1432 | 1.31M | qalloc = sctx.qalloc; | 1433 | 1.31M | #ifdef FIXED_POINT | 1434 | 1.31M | # ifdef ENABLE_QEXT | 1435 | 1.31M | (void)imid; | 1436 | 1.31M | (void)iside; | 1437 | 1.31M | mid = celt_cos_norm32(sctx.itheta_q30); | 1438 | 1.31M | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1439 | | # else | 1440 | | mid = SHL32(EXTEND32(imid), 16); | 1441 | | side = SHL32(EXTEND32(iside), 16); | 1442 | | # endif | 1443 | | #else | 1444 | | # ifdef ENABLE_QEXT | 1445 | | (void)imid; | 1446 | | (void)iside; | 1447 | | mid = cos(.5*M_PI*sctx.itheta_q30*(1.f/(1<<30))); | 1448 | | side = sin(.5*M_PI*sctx.itheta_q30*(1.f/(1<<30))); | 1449 | | # else | 1450 | | mid = (1.f/32768)*imid; | 1451 | | side = (1.f/32768)*iside; | 1452 | | # endif | 1453 | | #endif | 1454 | | | 1455 | | /* This is a special case for N=2 that only works for stereo and takes | 1456 | | advantage of the fact that mid and side are orthogonal to encode | 1457 | | the side with just one bit. */ | 1458 | 1.31M | if (N==2) | 1459 | 306k | { | 1460 | 306k | int c; | 1461 | 306k | int sign=0; | 1462 | 306k | celt_norm *x2, *y2; | 1463 | 306k | mbits = b; | 1464 | 306k | sbits = 0; | 1465 | | /* Only need one bit for the side. */ | 1466 | 306k | if (itheta != 0 && itheta != 16384) | 1467 | 84.1k | sbits = 1<<BITRES; | 1468 | 306k | mbits -= sbits; | 1469 | 306k | c = itheta > 8192; | 1470 | 306k | ctx->remaining_bits -= qalloc+sbits; | 1471 | | | 1472 | 306k | x2 = c ? Y : X; | 1473 | 306k | y2 = c ? X : Y; | 1474 | 306k | if (sbits) | 1475 | 84.1k | { | 1476 | 84.1k | if (encode) | 1477 | 69.3k | { | 1478 | | /* Here we only need to encode a sign for the side. */ | 1479 | | /* FIXME: Need to increase fixed-point precision? */ | 1480 | 69.3k | sign = MULT32_32_Q31(x2[0],y2[1]) - MULT32_32_Q31(x2[1],y2[0]) < 0; | 1481 | 69.3k | ec_enc_bits(ec, sign, 1); | 1482 | 69.3k | } else { | 1483 | 14.7k | sign = ec_dec_bits(ec, 1); | 1484 | 14.7k | } | 1485 | 84.1k | } | 1486 | 306k | sign = 1-2*sign; | 1487 | | /* We use orig_fill here because we want to fold the side, but if | 1488 | | itheta==16384, we'll have cleared the low bits of fill. */ | 1489 | 306k | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1490 | 306k | lowband_scratch, orig_fill ARG_QEXT(ext_b)); | 1491 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), | 1492 | | and there's no need to worry about mixing with the other channel. */ | 1493 | 306k | y2[0] = -sign*x2[1]; | 1494 | 306k | y2[1] = sign*x2[0]; | 1495 | 306k | if (ctx->resynth) | 1496 | 260k | { | 1497 | 260k | celt_norm tmp; | 1498 | 260k | X[0] = MULT32_32_Q31(mid, X[0]); | 1499 | 260k | X[1] = MULT32_32_Q31(mid, X[1]); | 1500 | 260k | Y[0] = MULT32_32_Q31(side, Y[0]); | 1501 | 260k | Y[1] = MULT32_32_Q31(side, Y[1]); | 1502 | 260k | tmp = X[0]; | 1503 | 260k | X[0] = SUB32(tmp,Y[0]); | 1504 | 260k | Y[0] = ADD32(tmp,Y[0]); | 1505 | 260k | tmp = X[1]; | 1506 | 260k | X[1] = SUB32(tmp,Y[1]); | 1507 | 260k | Y[1] = ADD32(tmp,Y[1]); | 1508 | 260k | } | 1509 | 1.00M | } else { | 1510 | | /* "Normal" split code */ | 1511 | 1.00M | opus_int32 rebalance; | 1512 | | | 1513 | 1.00M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1514 | 1.00M | sbits = b-mbits; | 1515 | 1.00M | ctx->remaining_bits -= qalloc; | 1516 | | | 1517 | 1.00M | rebalance = ctx->remaining_bits; | 1518 | 1.00M | if (mbits >= sbits) | 1519 | 862k | { | 1520 | 862k | #ifdef ENABLE_QEXT | 1521 | 862k | int qext_extra = 0; | 1522 | | /* Reallocate any mid bits that cannot be used to extra mid bits. */ | 1523 | 862k | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, mbits - cap[ctx->i]/2)); | 1524 | 862k | #endif | 1525 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1526 | | mid for folding later. */ | 1527 | 862k | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1528 | 862k | lowband_scratch, fill ARG_QEXT(ext_b/2+qext_extra)); | 1529 | 862k | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1530 | 862k | if (rebalance > 3<<BITRES && itheta!=0) | 1531 | 17.9k | sbits += rebalance - (3<<BITRES); | 1532 | 862k | #ifdef ENABLE_QEXT | 1533 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the mid. */ | 1534 | 862k | if (ctx->extra_bands) sbits = IMIN(sbits, ctx->remaining_bits); | 1535 | 862k | #endif | 1536 | | /* For a stereo split, the high bits of fill are always zero, so no | 1537 | | folding will be done to the side. */ | 1538 | 862k | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2-qext_extra)); | 1539 | 862k | } else { | 1540 | 145k | #ifdef ENABLE_QEXT | 1541 | 145k | int qext_extra = 0; | 1542 | | /* Reallocate any side bits that cannot be used to extra side bits. */ | 1543 | 145k | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, sbits - cap[ctx->i]/2)); | 1544 | 145k | #endif | 1545 | | /* For a stereo split, the high bits of fill are always zero, so no | 1546 | | folding will be done to the side. */ | 1547 | 145k | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2+qext_extra)); | 1548 | 145k | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1549 | 145k | if (rebalance > 3<<BITRES && itheta!=16384) | 1550 | 9.96k | mbits += rebalance - (3<<BITRES); | 1551 | 145k | #ifdef ENABLE_QEXT | 1552 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the side. */ | 1553 | 145k | if (ctx->extra_bands) mbits = IMIN(mbits, ctx->remaining_bits); | 1554 | 145k | #endif | 1555 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1556 | | mid for folding later. */ | 1557 | 145k | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1558 | 145k | lowband_scratch, fill ARG_QEXT(ext_b/2-qext_extra)); | 1559 | 145k | } | 1560 | 1.00M | } | 1561 | | | 1562 | | | 1563 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1564 | 1.31M | if (ctx->resynth) | 1565 | 1.07M | { | 1566 | 1.07M | if (N!=2) | 1567 | 814k | stereo_merge(X, Y, mid, N, ctx->arch); | 1568 | 1.07M | if (inv) | 1569 | 28.9k | { | 1570 | 28.9k | int j; | 1571 | 398k | for (j=0;j<N;j++) | 1572 | 369k | Y[j] = -Y[j]; | 1573 | 28.9k | } | 1574 | 1.07M | } | 1575 | 1.31M | return cm; | 1576 | 1.65M | } |
bands.c:quant_band_stereo Line | Count | Source | 1396 | 1.65M | { | 1397 | 1.65M | int imid=0, iside=0; | 1398 | 1.65M | int inv = 0; | 1399 | 1.65M | opus_val32 mid=0, side=0; | 1400 | 1.65M | unsigned cm=0; | 1401 | 1.65M | int mbits, sbits, delta; | 1402 | 1.65M | int itheta; | 1403 | 1.65M | int qalloc; | 1404 | 1.65M | struct split_ctx sctx; | 1405 | 1.65M | int orig_fill; | 1406 | 1.65M | int encode; | 1407 | 1.65M | ec_ctx *ec; | 1408 | | | 1409 | 1.65M | encode = ctx->encode; | 1410 | 1.65M | ec = ctx->ec; | 1411 | | | 1412 | | /* Special case for one sample */ | 1413 | 1.65M | if (N==1) | 1414 | 337k | { | 1415 | 337k | return quant_band_n1(ctx, X, Y, lowband_out); | 1416 | 337k | } | 1417 | | | 1418 | 1.31M | orig_fill = fill; | 1419 | | | 1420 | 1.31M | if (encode) { | 1421 | 687k | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { | 1422 | 65.3k | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); | 1423 | 58.8k | else OPUS_COPY(X, Y, N); | 1424 | 65.3k | } | 1425 | 687k | } | 1426 | 1.31M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill ARG_QEXT(&ext_b)); | 1427 | 1.31M | inv = sctx.inv; | 1428 | 1.31M | imid = sctx.imid; | 1429 | 1.31M | iside = sctx.iside; | 1430 | 1.31M | delta = sctx.delta; | 1431 | 1.31M | itheta = sctx.itheta; | 1432 | 1.31M | qalloc = sctx.qalloc; | 1433 | | #ifdef FIXED_POINT | 1434 | | # ifdef ENABLE_QEXT | 1435 | | (void)imid; | 1436 | | (void)iside; | 1437 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1438 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1439 | | # else | 1440 | | mid = SHL32(EXTEND32(imid), 16); | 1441 | | side = SHL32(EXTEND32(iside), 16); | 1442 | | # endif | 1443 | | #else | 1444 | 1.31M | # ifdef ENABLE_QEXT | 1445 | 1.31M | (void)imid; | 1446 | 1.31M | (void)iside; | 1447 | 1.31M | mid = cos(.5*M_PI*sctx.itheta_q30*(1.f/(1<<30))); | 1448 | 1.31M | side = sin(.5*M_PI*sctx.itheta_q30*(1.f/(1<<30))); | 1449 | | # else | 1450 | | mid = (1.f/32768)*imid; | 1451 | | side = (1.f/32768)*iside; | 1452 | | # endif | 1453 | 1.31M | #endif | 1454 | | | 1455 | | /* This is a special case for N=2 that only works for stereo and takes | 1456 | | advantage of the fact that mid and side are orthogonal to encode | 1457 | | the side with just one bit. */ | 1458 | 1.31M | if (N==2) | 1459 | 306k | { | 1460 | 306k | int c; | 1461 | 306k | int sign=0; | 1462 | 306k | celt_norm *x2, *y2; | 1463 | 306k | mbits = b; | 1464 | 306k | sbits = 0; | 1465 | | /* Only need one bit for the side. */ | 1466 | 306k | if (itheta != 0 && itheta != 16384) | 1467 | 84.1k | sbits = 1<<BITRES; | 1468 | 306k | mbits -= sbits; | 1469 | 306k | c = itheta > 8192; | 1470 | 306k | ctx->remaining_bits -= qalloc+sbits; | 1471 | | | 1472 | 306k | x2 = c ? Y : X; | 1473 | 306k | y2 = c ? X : Y; | 1474 | 306k | if (sbits) | 1475 | 84.1k | { | 1476 | 84.1k | if (encode) | 1477 | 69.3k | { | 1478 | | /* Here we only need to encode a sign for the side. */ | 1479 | | /* FIXME: Need to increase fixed-point precision? */ | 1480 | 69.3k | sign = MULT32_32_Q31(x2[0],y2[1]) - MULT32_32_Q31(x2[1],y2[0]) < 0; | 1481 | 69.3k | ec_enc_bits(ec, sign, 1); | 1482 | 69.3k | } else { | 1483 | 14.7k | sign = ec_dec_bits(ec, 1); | 1484 | 14.7k | } | 1485 | 84.1k | } | 1486 | 306k | sign = 1-2*sign; | 1487 | | /* We use orig_fill here because we want to fold the side, but if | 1488 | | itheta==16384, we'll have cleared the low bits of fill. */ | 1489 | 306k | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1490 | 306k | lowband_scratch, orig_fill ARG_QEXT(ext_b)); | 1491 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), | 1492 | | and there's no need to worry about mixing with the other channel. */ | 1493 | 306k | y2[0] = -sign*x2[1]; | 1494 | 306k | y2[1] = sign*x2[0]; | 1495 | 306k | if (ctx->resynth) | 1496 | 260k | { | 1497 | 260k | celt_norm tmp; | 1498 | 260k | X[0] = MULT32_32_Q31(mid, X[0]); | 1499 | 260k | X[1] = MULT32_32_Q31(mid, X[1]); | 1500 | 260k | Y[0] = MULT32_32_Q31(side, Y[0]); | 1501 | 260k | Y[1] = MULT32_32_Q31(side, Y[1]); | 1502 | 260k | tmp = X[0]; | 1503 | 260k | X[0] = SUB32(tmp,Y[0]); | 1504 | 260k | Y[0] = ADD32(tmp,Y[0]); | 1505 | 260k | tmp = X[1]; | 1506 | 260k | X[1] = SUB32(tmp,Y[1]); | 1507 | 260k | Y[1] = ADD32(tmp,Y[1]); | 1508 | 260k | } | 1509 | 1.00M | } else { | 1510 | | /* "Normal" split code */ | 1511 | 1.00M | opus_int32 rebalance; | 1512 | | | 1513 | 1.00M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1514 | 1.00M | sbits = b-mbits; | 1515 | 1.00M | ctx->remaining_bits -= qalloc; | 1516 | | | 1517 | 1.00M | rebalance = ctx->remaining_bits; | 1518 | 1.00M | if (mbits >= sbits) | 1519 | 862k | { | 1520 | 862k | #ifdef ENABLE_QEXT | 1521 | 862k | int qext_extra = 0; | 1522 | | /* Reallocate any mid bits that cannot be used to extra mid bits. */ | 1523 | 862k | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, mbits - cap[ctx->i]/2)); | 1524 | 862k | #endif | 1525 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1526 | | mid for folding later. */ | 1527 | 862k | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1528 | 862k | lowband_scratch, fill ARG_QEXT(ext_b/2+qext_extra)); | 1529 | 862k | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1530 | 862k | if (rebalance > 3<<BITRES && itheta!=0) | 1531 | 17.9k | sbits += rebalance - (3<<BITRES); | 1532 | 862k | #ifdef ENABLE_QEXT | 1533 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the mid. */ | 1534 | 862k | if (ctx->extra_bands) sbits = IMIN(sbits, ctx->remaining_bits); | 1535 | 862k | #endif | 1536 | | /* For a stereo split, the high bits of fill are always zero, so no | 1537 | | folding will be done to the side. */ | 1538 | 862k | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2-qext_extra)); | 1539 | 862k | } else { | 1540 | 145k | #ifdef ENABLE_QEXT | 1541 | 145k | int qext_extra = 0; | 1542 | | /* Reallocate any side bits that cannot be used to extra side bits. */ | 1543 | 145k | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, sbits - cap[ctx->i]/2)); | 1544 | 145k | #endif | 1545 | | /* For a stereo split, the high bits of fill are always zero, so no | 1546 | | folding will be done to the side. */ | 1547 | 145k | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2+qext_extra)); | 1548 | 145k | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1549 | 145k | if (rebalance > 3<<BITRES && itheta!=16384) | 1550 | 9.96k | mbits += rebalance - (3<<BITRES); | 1551 | 145k | #ifdef ENABLE_QEXT | 1552 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the side. */ | 1553 | 145k | if (ctx->extra_bands) mbits = IMIN(mbits, ctx->remaining_bits); | 1554 | 145k | #endif | 1555 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1556 | | mid for folding later. */ | 1557 | 145k | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1558 | 145k | lowband_scratch, fill ARG_QEXT(ext_b/2-qext_extra)); | 1559 | 145k | } | 1560 | 1.00M | } | 1561 | | | 1562 | | | 1563 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1564 | 1.31M | if (ctx->resynth) | 1565 | 1.07M | { | 1566 | 1.07M | if (N!=2) | 1567 | 814k | stereo_merge(X, Y, mid, N, ctx->arch); | 1568 | 1.07M | if (inv) | 1569 | 28.9k | { | 1570 | 28.9k | int j; | 1571 | 398k | for (j=0;j<N;j++) | 1572 | 369k | Y[j] = -Y[j]; | 1573 | 28.9k | } | 1574 | 1.07M | } | 1575 | 1.31M | return cm; | 1576 | 1.65M | } |
bands.c:quant_band_stereo Line | Count | Source | 1396 | 1.58M | { | 1397 | 1.58M | int imid=0, iside=0; | 1398 | 1.58M | int inv = 0; | 1399 | 1.58M | opus_val32 mid=0, side=0; | 1400 | 1.58M | unsigned cm=0; | 1401 | 1.58M | int mbits, sbits, delta; | 1402 | 1.58M | int itheta; | 1403 | 1.58M | int qalloc; | 1404 | 1.58M | struct split_ctx sctx; | 1405 | 1.58M | int orig_fill; | 1406 | 1.58M | int encode; | 1407 | 1.58M | ec_ctx *ec; | 1408 | | | 1409 | 1.58M | encode = ctx->encode; | 1410 | 1.58M | ec = ctx->ec; | 1411 | | | 1412 | | /* Special case for one sample */ | 1413 | 1.58M | if (N==1) | 1414 | 288k | { | 1415 | 288k | return quant_band_n1(ctx, X, Y, lowband_out); | 1416 | 288k | } | 1417 | | | 1418 | 1.29M | orig_fill = fill; | 1419 | | | 1420 | 1.29M | if (encode) { | 1421 | 627k | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { | 1422 | 61.4k | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); | 1423 | 54.0k | else OPUS_COPY(X, Y, N); | 1424 | 61.4k | } | 1425 | 627k | } | 1426 | 1.29M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill ARG_QEXT(&ext_b)); | 1427 | 1.29M | inv = sctx.inv; | 1428 | 1.29M | imid = sctx.imid; | 1429 | 1.29M | iside = sctx.iside; | 1430 | 1.29M | delta = sctx.delta; | 1431 | 1.29M | itheta = sctx.itheta; | 1432 | 1.29M | qalloc = sctx.qalloc; | 1433 | | #ifdef FIXED_POINT | 1434 | | # ifdef ENABLE_QEXT | 1435 | | (void)imid; | 1436 | | (void)iside; | 1437 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1438 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1439 | | # else | 1440 | | mid = SHL32(EXTEND32(imid), 16); | 1441 | | side = SHL32(EXTEND32(iside), 16); | 1442 | | # endif | 1443 | | #else | 1444 | | # ifdef ENABLE_QEXT | 1445 | | (void)imid; | 1446 | | (void)iside; | 1447 | | mid = cos(.5*M_PI*sctx.itheta_q30*(1.f/(1<<30))); | 1448 | | side = sin(.5*M_PI*sctx.itheta_q30*(1.f/(1<<30))); | 1449 | | # else | 1450 | 1.29M | mid = (1.f/32768)*imid; | 1451 | 1.29M | side = (1.f/32768)*iside; | 1452 | 1.29M | # endif | 1453 | 1.29M | #endif | 1454 | | | 1455 | | /* This is a special case for N=2 that only works for stereo and takes | 1456 | | advantage of the fact that mid and side are orthogonal to encode | 1457 | | the side with just one bit. */ | 1458 | 1.29M | if (N==2) | 1459 | 325k | { | 1460 | 325k | int c; | 1461 | 325k | int sign=0; | 1462 | 325k | celt_norm *x2, *y2; | 1463 | 325k | mbits = b; | 1464 | 325k | sbits = 0; | 1465 | | /* Only need one bit for the side. */ | 1466 | 325k | if (itheta != 0 && itheta != 16384) | 1467 | 69.4k | sbits = 1<<BITRES; | 1468 | 325k | mbits -= sbits; | 1469 | 325k | c = itheta > 8192; | 1470 | 325k | ctx->remaining_bits -= qalloc+sbits; | 1471 | | | 1472 | 325k | x2 = c ? Y : X; | 1473 | 325k | y2 = c ? X : Y; | 1474 | 325k | if (sbits) | 1475 | 69.4k | { | 1476 | 69.4k | if (encode) | 1477 | 60.2k | { | 1478 | | /* Here we only need to encode a sign for the side. */ | 1479 | | /* FIXME: Need to increase fixed-point precision? */ | 1480 | 60.2k | sign = MULT32_32_Q31(x2[0],y2[1]) - MULT32_32_Q31(x2[1],y2[0]) < 0; | 1481 | 60.2k | ec_enc_bits(ec, sign, 1); | 1482 | 60.2k | } else { | 1483 | 9.20k | sign = ec_dec_bits(ec, 1); | 1484 | 9.20k | } | 1485 | 69.4k | } | 1486 | 325k | sign = 1-2*sign; | 1487 | | /* We use orig_fill here because we want to fold the side, but if | 1488 | | itheta==16384, we'll have cleared the low bits of fill. */ | 1489 | 325k | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1490 | 325k | lowband_scratch, orig_fill ARG_QEXT(ext_b)); | 1491 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), | 1492 | | and there's no need to worry about mixing with the other channel. */ | 1493 | 325k | y2[0] = -sign*x2[1]; | 1494 | 325k | y2[1] = sign*x2[0]; | 1495 | 325k | if (ctx->resynth) | 1496 | 285k | { | 1497 | 285k | celt_norm tmp; | 1498 | 285k | X[0] = MULT32_32_Q31(mid, X[0]); | 1499 | 285k | X[1] = MULT32_32_Q31(mid, X[1]); | 1500 | 285k | Y[0] = MULT32_32_Q31(side, Y[0]); | 1501 | 285k | Y[1] = MULT32_32_Q31(side, Y[1]); | 1502 | 285k | tmp = X[0]; | 1503 | 285k | X[0] = SUB32(tmp,Y[0]); | 1504 | 285k | Y[0] = ADD32(tmp,Y[0]); | 1505 | 285k | tmp = X[1]; | 1506 | 285k | X[1] = SUB32(tmp,Y[1]); | 1507 | 285k | Y[1] = ADD32(tmp,Y[1]); | 1508 | 285k | } | 1509 | 973k | } else { | 1510 | | /* "Normal" split code */ | 1511 | 973k | opus_int32 rebalance; | 1512 | | | 1513 | 973k | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1514 | 973k | sbits = b-mbits; | 1515 | 973k | ctx->remaining_bits -= qalloc; | 1516 | | | 1517 | 973k | rebalance = ctx->remaining_bits; | 1518 | 973k | if (mbits >= sbits) | 1519 | 841k | { | 1520 | | #ifdef ENABLE_QEXT | 1521 | | int qext_extra = 0; | 1522 | | /* Reallocate any mid bits that cannot be used to extra mid bits. */ | 1523 | | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, mbits - cap[ctx->i]/2)); | 1524 | | #endif | 1525 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1526 | | mid for folding later. */ | 1527 | 841k | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1528 | 841k | lowband_scratch, fill ARG_QEXT(ext_b/2+qext_extra)); | 1529 | 841k | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1530 | 841k | if (rebalance > 3<<BITRES && itheta!=0) | 1531 | 12.1k | sbits += rebalance - (3<<BITRES); | 1532 | | #ifdef ENABLE_QEXT | 1533 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the mid. */ | 1534 | | if (ctx->extra_bands) sbits = IMIN(sbits, ctx->remaining_bits); | 1535 | | #endif | 1536 | | /* For a stereo split, the high bits of fill are always zero, so no | 1537 | | folding will be done to the side. */ | 1538 | 841k | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2-qext_extra)); | 1539 | 841k | } else { | 1540 | | #ifdef ENABLE_QEXT | 1541 | | int qext_extra = 0; | 1542 | | /* Reallocate any side bits that cannot be used to extra side bits. */ | 1543 | | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, sbits - cap[ctx->i]/2)); | 1544 | | #endif | 1545 | | /* For a stereo split, the high bits of fill are always zero, so no | 1546 | | folding will be done to the side. */ | 1547 | 131k | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2+qext_extra)); | 1548 | 131k | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1549 | 131k | if (rebalance > 3<<BITRES && itheta!=16384) | 1550 | 8.09k | mbits += rebalance - (3<<BITRES); | 1551 | | #ifdef ENABLE_QEXT | 1552 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the side. */ | 1553 | | if (ctx->extra_bands) mbits = IMIN(mbits, ctx->remaining_bits); | 1554 | | #endif | 1555 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1556 | | mid for folding later. */ | 1557 | 131k | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1558 | 131k | lowband_scratch, fill ARG_QEXT(ext_b/2-qext_extra)); | 1559 | 131k | } | 1560 | 973k | } | 1561 | | | 1562 | | | 1563 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1564 | 1.29M | if (ctx->resynth) | 1565 | 1.08M | { | 1566 | 1.08M | if (N!=2) | 1567 | 803k | stereo_merge(X, Y, mid, N, ctx->arch); | 1568 | 1.08M | if (inv) | 1569 | 28.1k | { | 1570 | 28.1k | int j; | 1571 | 420k | for (j=0;j<N;j++) | 1572 | 392k | Y[j] = -Y[j]; | 1573 | 28.1k | } | 1574 | 1.08M | } | 1575 | 1.29M | return cm; | 1576 | 1.58M | } |
|
1577 | | |
1578 | | #ifndef DISABLE_UPDATE_DRAFT |
1579 | | static void special_hybrid_folding(const CELTMode *m, celt_norm *norm, celt_norm *norm2, int start, int M, int dual_stereo) |
1580 | 664k | { |
1581 | 664k | int n1, n2; |
1582 | 664k | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
1583 | 664k | n1 = M*(eBands[start+1]-eBands[start]); |
1584 | 664k | n2 = M*(eBands[start+2]-eBands[start+1]); |
1585 | | /* Duplicate enough of the first band folding data to be able to fold the second band. |
1586 | | Copies no data for CELT-only mode. */ |
1587 | 664k | OPUS_COPY(&norm[n1], &norm[2*n1 - n2], n2-n1); |
1588 | 664k | if (dual_stereo) |
1589 | 39.0k | OPUS_COPY(&norm2[n1], &norm2[2*n1 - n2], n2-n1); |
1590 | 664k | } |
1591 | | #endif |
1592 | | |
1593 | | void quant_all_bands(int encode, const CELTMode *m, int start, int end, |
1594 | | celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, |
1595 | | const celt_ener *bandE, int *pulses, int shortBlocks, int spread, |
1596 | | int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits, |
1597 | | opus_int32 balance, ec_ctx *ec, int LM, int codedBands, |
1598 | | opus_uint32 *seed, int complexity, int arch, int disable_inv |
1599 | | ARG_QEXT(ec_ctx *ext_ec) ARG_QEXT(int *extra_pulses) |
1600 | | ARG_QEXT(opus_int32 ext_total_bits) ARG_QEXT(const int *cap)) |
1601 | 1.25M | { |
1602 | 1.25M | int i; |
1603 | 1.25M | opus_int32 remaining_bits; |
1604 | 1.25M | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
1605 | 1.25M | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; |
1606 | 1.25M | VARDECL(celt_norm, _norm); |
1607 | 1.25M | VARDECL(celt_norm, _lowband_scratch); |
1608 | 1.25M | VARDECL(celt_norm, X_save); |
1609 | 1.25M | VARDECL(celt_norm, Y_save); |
1610 | 1.25M | VARDECL(celt_norm, X_save2); |
1611 | 1.25M | VARDECL(celt_norm, Y_save2); |
1612 | 1.25M | VARDECL(celt_norm, norm_save2); |
1613 | 1.25M | int resynth_alloc; |
1614 | 1.25M | celt_norm *lowband_scratch; |
1615 | 1.25M | int B; |
1616 | 1.25M | int M; |
1617 | 1.25M | int lowband_offset; |
1618 | 1.25M | int update_lowband = 1; |
1619 | 1.25M | int C = Y_ != NULL ? 2 : 1; |
1620 | 1.25M | int norm_offset; |
1621 | 1.25M | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; |
1622 | | #ifdef RESYNTH |
1623 | | int resynth = 1; |
1624 | | #else |
1625 | 1.25M | int resynth = !encode || theta_rdo; |
1626 | 1.25M | #endif |
1627 | 1.25M | struct band_ctx ctx; |
1628 | | #ifdef ENABLE_QEXT |
1629 | | int ext_b; |
1630 | | opus_int32 ext_balance=0; |
1631 | | opus_int32 ext_tell=0; |
1632 | | #endif |
1633 | 1.25M | SAVE_STACK; |
1634 | | |
1635 | 1.25M | M = 1<<LM; |
1636 | 1.25M | B = shortBlocks ? M : 1; |
1637 | 1.25M | norm_offset = M*eBands[start]; |
1638 | | /* No need to allocate norm for the last band because we don't need an |
1639 | | output in that band. */ |
1640 | 1.25M | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); |
1641 | 1.25M | norm = _norm; |
1642 | 1.25M | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; |
1643 | | |
1644 | | /* For decoding, we can use the last band as scratch space because we don't need that |
1645 | | scratch space for the last band and we don't care about the data there until we're |
1646 | | decoding the last band. */ |
1647 | 1.25M | if (encode && resynth) |
1648 | 99.8k | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); |
1649 | 1.15M | else |
1650 | 1.15M | resynth_alloc = ALLOC_NONE; |
1651 | 1.25M | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); |
1652 | 1.25M | if (encode && resynth) |
1653 | 99.8k | lowband_scratch = _lowband_scratch; |
1654 | 1.15M | else |
1655 | 1.15M | lowband_scratch = X_+M*eBands[m->effEBands-1]; |
1656 | 1.25M | ALLOC(X_save, resynth_alloc, celt_norm); |
1657 | 1.25M | ALLOC(Y_save, resynth_alloc, celt_norm); |
1658 | 1.25M | ALLOC(X_save2, resynth_alloc, celt_norm); |
1659 | 1.25M | ALLOC(Y_save2, resynth_alloc, celt_norm); |
1660 | 1.25M | ALLOC(norm_save2, resynth_alloc, celt_norm); |
1661 | | |
1662 | 1.25M | lowband_offset = 0; |
1663 | 1.25M | ctx.bandE = bandE; |
1664 | 1.25M | ctx.ec = ec; |
1665 | 1.25M | ctx.encode = encode; |
1666 | 1.25M | ctx.intensity = intensity; |
1667 | 1.25M | ctx.m = m; |
1668 | 1.25M | ctx.seed = *seed; |
1669 | 1.25M | ctx.spread = spread; |
1670 | 1.25M | ctx.arch = arch; |
1671 | 1.25M | ctx.disable_inv = disable_inv; |
1672 | 1.25M | ctx.resynth = resynth; |
1673 | 1.25M | ctx.theta_round = 0; |
1674 | | #ifdef ENABLE_QEXT |
1675 | | ctx.ext_ec = ext_ec; |
1676 | | ctx.ext_total_bits = ext_total_bits; |
1677 | 621k | ctx.extra_bands = end == NB_QEXT_BANDS || end == 2; |
1678 | 621k | if (ctx.extra_bands) theta_rdo = 0; |
1679 | | #endif |
1680 | | /* Avoid injecting noise in the first band on transients. */ |
1681 | 1.25M | ctx.avoid_split_noise = B > 1; |
1682 | 19.6M | for (i=start;i<end;i++) |
1683 | 18.3M | { |
1684 | 18.3M | opus_int32 tell; |
1685 | 18.3M | int b; |
1686 | 18.3M | int N; |
1687 | 18.3M | opus_int32 curr_balance; |
1688 | 18.3M | int effective_lowband=-1; |
1689 | 18.3M | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; |
1690 | 18.3M | int tf_change=0; |
1691 | 18.3M | unsigned x_cm; |
1692 | 18.3M | unsigned y_cm; |
1693 | 18.3M | int last; |
1694 | | |
1695 | 18.3M | ctx.i = i; |
1696 | 18.3M | last = (i==end-1); |
1697 | | |
1698 | 18.3M | X = X_+M*eBands[i]; |
1699 | 18.3M | if (Y_!=NULL) |
1700 | 6.34M | Y = Y_+M*eBands[i]; |
1701 | 12.0M | else |
1702 | 12.0M | Y = NULL; |
1703 | 18.3M | N = M*eBands[i+1]-M*eBands[i]; |
1704 | 18.3M | celt_assert(N > 0); |
1705 | 18.3M | tell = ec_tell_frac(ec); |
1706 | | |
1707 | | /* Compute how many bits we want to allocate to this band */ |
1708 | 18.3M | if (i != start) |
1709 | 17.0M | balance -= tell; |
1710 | 18.3M | remaining_bits = total_bits-tell-1; |
1711 | 18.3M | ctx.remaining_bits = remaining_bits; |
1712 | | #ifdef ENABLE_QEXT |
1713 | 9.00M | if (i != start) { |
1714 | 8.38M | ext_balance += extra_pulses[i-1] + ext_tell; |
1715 | 8.38M | } |
1716 | | ext_tell = ec_tell_frac(ext_ec); |
1717 | | ctx.extra_bits = extra_pulses[i]; |
1718 | 9.00M | if (i != start) |
1719 | 8.38M | ext_balance -= ext_tell; |
1720 | 9.00M | if (i <= codedBands-1) |
1721 | 5.21M | { |
1722 | 5.21M | opus_int32 ext_curr_balance = celt_sudiv(ext_balance, IMIN(3, codedBands-i)); |
1723 | 5.21M | ext_b = IMAX(0, IMIN(16383, IMIN(ext_total_bits-ext_tell,extra_pulses[i]+ext_curr_balance))); |
1724 | 5.21M | } else { |
1725 | 3.79M | ext_b = 0; |
1726 | 3.79M | } |
1727 | | #endif |
1728 | 18.3M | if (i <= codedBands-1) |
1729 | 9.66M | { |
1730 | 9.66M | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); |
1731 | 9.66M | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); |
1732 | 9.66M | } else { |
1733 | 8.67M | b = 0; |
1734 | 8.67M | } |
1735 | | |
1736 | 18.3M | #ifndef DISABLE_UPDATE_DRAFT |
1737 | 18.3M | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) |
1738 | 3.23M | lowband_offset = i; |
1739 | 18.3M | if (i == start+1) |
1740 | 1.25M | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); |
1741 | | #else |
1742 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) |
1743 | | lowband_offset = i; |
1744 | | #endif |
1745 | | |
1746 | 18.3M | tf_change = tf_res[i]; |
1747 | 18.3M | ctx.tf_change = tf_change; |
1748 | 18.3M | if (i>=m->effEBands) |
1749 | 32.7k | { |
1750 | 32.7k | X=norm; |
1751 | 32.7k | if (Y_!=NULL) |
1752 | 26.0k | Y = norm; |
1753 | 32.7k | lowband_scratch = NULL; |
1754 | 32.7k | } |
1755 | 18.3M | if (last && !theta_rdo) |
1756 | 1.15M | lowband_scratch = NULL; |
1757 | | |
1758 | | /* Get a conservative estimate of the collapse_mask's for the bands we're |
1759 | | going to be folding from. */ |
1760 | 18.3M | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) |
1761 | 9.59M | { |
1762 | 9.59M | int fold_start; |
1763 | 9.59M | int fold_end; |
1764 | 9.59M | int fold_i; |
1765 | | /* This ensures we never repeat spectral content within one band */ |
1766 | 9.59M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); |
1767 | 9.59M | fold_start = lowband_offset; |
1768 | 11.0M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); |
1769 | 9.59M | fold_end = lowband_offset-1; |
1770 | 9.59M | #ifndef DISABLE_UPDATE_DRAFT |
1771 | 23.4M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); |
1772 | | #else |
1773 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); |
1774 | | #endif |
1775 | 9.59M | x_cm = y_cm = 0; |
1776 | 24.8M | fold_i = fold_start; do { |
1777 | 24.8M | x_cm |= collapse_masks[fold_i*C+0]; |
1778 | 24.8M | y_cm |= collapse_masks[fold_i*C+C-1]; |
1779 | 24.8M | } while (++fold_i<fold_end); |
1780 | 9.59M | } |
1781 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost |
1782 | | always) be non-zero. */ |
1783 | 8.75M | else |
1784 | 8.75M | x_cm = y_cm = (1<<B)-1; |
1785 | | |
1786 | 18.3M | if (dual_stereo && i==intensity) |
1787 | 66.1k | { |
1788 | 66.1k | int j; |
1789 | | |
1790 | | /* Switch off dual stereo to do intensity. */ |
1791 | 66.1k | dual_stereo = 0; |
1792 | 66.1k | if (resynth) |
1793 | 1.19M | for (j=0;j<M*eBands[i]-norm_offset;j++) |
1794 | 1.16M | norm[j] = HALF32(norm[j]+norm2[j]); |
1795 | 66.1k | } |
1796 | 18.3M | if (dual_stereo) |
1797 | 776k | { |
1798 | 776k | x_cm = quant_band(&ctx, X, N, b/2, B, |
1799 | 776k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1800 | 776k | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm ARG_QEXT(ext_b/2)); |
1801 | 776k | y_cm = quant_band(&ctx, Y, N, b/2, B, |
1802 | 776k | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, |
1803 | 776k | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm ARG_QEXT(ext_b/2)); |
1804 | 17.5M | } else { |
1805 | 17.5M | if (Y!=NULL) |
1806 | 5.56M | { |
1807 | 5.56M | if (theta_rdo && i < intensity) |
1808 | 909k | { |
1809 | 909k | ec_ctx ec_save, ec_save2; |
1810 | 909k | struct band_ctx ctx_save, ctx_save2; |
1811 | 909k | opus_val32 dist0, dist1; |
1812 | 909k | unsigned cm, cm2; |
1813 | 909k | int nstart_bytes, nend_bytes, save_bytes; |
1814 | 909k | unsigned char *bytes_buf; |
1815 | 909k | unsigned char bytes_save[1275]; |
1816 | | #ifdef ENABLE_QEXT |
1817 | | ec_ctx ext_ec_save, ext_ec_save2; |
1818 | | unsigned char *ext_bytes_buf; |
1819 | | int ext_nstart_bytes, ext_nend_bytes, ext_save_bytes; |
1820 | | unsigned char ext_bytes_save[QEXT_PACKET_SIZE_CAP]; |
1821 | | #endif |
1822 | 909k | opus_val16 w[2]; |
1823 | 909k | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); |
1824 | | /* Make a copy. */ |
1825 | 909k | cm = x_cm|y_cm; |
1826 | 909k | ec_save = *ec; |
1827 | | #ifdef ENABLE_QEXT |
1828 | | ext_ec_save = *ext_ec; |
1829 | | #endif |
1830 | 909k | ctx_save = ctx; |
1831 | 909k | OPUS_COPY(X_save, X, N); |
1832 | 909k | OPUS_COPY(Y_save, Y, N); |
1833 | | /* Encode and round down. */ |
1834 | 909k | ctx.theta_round = -1; |
1835 | 909k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1836 | 909k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1837 | 909k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); |
1838 | 909k | dist0 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); |
1839 | | |
1840 | | /* Save first result. */ |
1841 | 909k | cm2 = x_cm; |
1842 | 909k | ec_save2 = *ec; |
1843 | | #ifdef ENABLE_QEXT |
1844 | | ext_ec_save2 = *ext_ec; |
1845 | | #endif |
1846 | 909k | ctx_save2 = ctx; |
1847 | 909k | OPUS_COPY(X_save2, X, N); |
1848 | 909k | OPUS_COPY(Y_save2, Y, N); |
1849 | 909k | if (!last) |
1850 | 897k | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); |
1851 | 909k | nstart_bytes = ec_save.offs; |
1852 | 909k | nend_bytes = ec_save.storage; |
1853 | 909k | bytes_buf = ec_save.buf+nstart_bytes; |
1854 | 909k | save_bytes = nend_bytes-nstart_bytes; |
1855 | 909k | OPUS_COPY(bytes_save, bytes_buf, save_bytes); |
1856 | | #ifdef ENABLE_QEXT |
1857 | | ext_nstart_bytes = ext_ec_save.offs; |
1858 | | ext_nend_bytes = ext_ec_save.storage; |
1859 | 478k | ext_bytes_buf = ext_ec_save.buf!=NULL ? ext_ec_save.buf+ext_nstart_bytes : NULL; |
1860 | | ext_save_bytes = ext_nend_bytes-ext_nstart_bytes; |
1861 | 478k | if (ext_save_bytes) OPUS_COPY(ext_bytes_save, ext_bytes_buf, ext_save_bytes); |
1862 | | #endif |
1863 | | /* Restore */ |
1864 | 909k | *ec = ec_save; |
1865 | | #ifdef ENABLE_QEXT |
1866 | | *ext_ec = ext_ec_save; |
1867 | | #endif |
1868 | 909k | ctx = ctx_save; |
1869 | 909k | OPUS_COPY(X, X_save, N); |
1870 | 909k | OPUS_COPY(Y, Y_save, N); |
1871 | 909k | #ifndef DISABLE_UPDATE_DRAFT |
1872 | 909k | if (i == start+1) |
1873 | 76.7k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); |
1874 | 909k | #endif |
1875 | | /* Encode and round up. */ |
1876 | 909k | ctx.theta_round = 1; |
1877 | 909k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1878 | 909k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1879 | 909k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); |
1880 | 909k | dist1 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); |
1881 | 909k | if (dist0 >= dist1) { |
1882 | 617k | x_cm = cm2; |
1883 | 617k | *ec = ec_save2; |
1884 | | #ifdef ENABLE_QEXT |
1885 | | *ext_ec = ext_ec_save2; |
1886 | | #endif |
1887 | 617k | ctx = ctx_save2; |
1888 | 617k | OPUS_COPY(X, X_save2, N); |
1889 | 617k | OPUS_COPY(Y, Y_save2, N); |
1890 | 617k | if (!last) |
1891 | 611k | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); |
1892 | 617k | OPUS_COPY(bytes_buf, bytes_save, save_bytes); |
1893 | | #ifdef ENABLE_QEXT |
1894 | 323k | if (ext_save_bytes) OPUS_COPY(ext_bytes_buf, ext_bytes_save, ext_save_bytes); |
1895 | | #endif |
1896 | 617k | } |
1897 | 4.65M | } else { |
1898 | 4.65M | ctx.theta_round = 0; |
1899 | 4.65M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1900 | 4.65M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1901 | 4.65M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b) ARG_QEXT(cap)); |
1902 | 4.65M | } |
1903 | 12.0M | } else { |
1904 | 12.0M | x_cm = quant_band(&ctx, X, N, b, B, |
1905 | 12.0M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1906 | 12.0M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b)); |
1907 | 12.0M | } |
1908 | 17.5M | y_cm = x_cm; |
1909 | 17.5M | } |
1910 | 18.3M | collapse_masks[i*C+0] = (unsigned char)x_cm; |
1911 | 18.3M | collapse_masks[i*C+C-1] = (unsigned char)y_cm; |
1912 | 18.3M | balance += pulses[i] + tell; |
1913 | | |
1914 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ |
1915 | 18.3M | update_lowband = b>(N<<BITRES); |
1916 | | /* We only need to avoid noise on a split for the first band. After that, we |
1917 | | have folding. */ |
1918 | 18.3M | ctx.avoid_split_noise = 0; |
1919 | 18.3M | } |
1920 | 1.25M | *seed = ctx.seed; |
1921 | | |
1922 | 1.25M | RESTORE_STACK; |
1923 | 1.25M | } Line | Count | Source | 1601 | 315k | { | 1602 | 315k | int i; | 1603 | 315k | opus_int32 remaining_bits; | 1604 | 315k | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 1605 | 315k | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; | 1606 | 315k | VARDECL(celt_norm, _norm); | 1607 | 315k | VARDECL(celt_norm, _lowband_scratch); | 1608 | 315k | VARDECL(celt_norm, X_save); | 1609 | 315k | VARDECL(celt_norm, Y_save); | 1610 | 315k | VARDECL(celt_norm, X_save2); | 1611 | 315k | VARDECL(celt_norm, Y_save2); | 1612 | 315k | VARDECL(celt_norm, norm_save2); | 1613 | 315k | int resynth_alloc; | 1614 | 315k | celt_norm *lowband_scratch; | 1615 | 315k | int B; | 1616 | 315k | int M; | 1617 | 315k | int lowband_offset; | 1618 | 315k | int update_lowband = 1; | 1619 | 315k | int C = Y_ != NULL ? 2 : 1; | 1620 | 315k | int norm_offset; | 1621 | 315k | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; | 1622 | | #ifdef RESYNTH | 1623 | | int resynth = 1; | 1624 | | #else | 1625 | 315k | int resynth = !encode || theta_rdo; | 1626 | 315k | #endif | 1627 | 315k | struct band_ctx ctx; | 1628 | | #ifdef ENABLE_QEXT | 1629 | | int ext_b; | 1630 | | opus_int32 ext_balance=0; | 1631 | | opus_int32 ext_tell=0; | 1632 | | #endif | 1633 | 315k | SAVE_STACK; | 1634 | | | 1635 | 315k | M = 1<<LM; | 1636 | 315k | B = shortBlocks ? M : 1; | 1637 | 315k | norm_offset = M*eBands[start]; | 1638 | | /* No need to allocate norm for the last band because we don't need an | 1639 | | output in that band. */ | 1640 | 315k | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); | 1641 | 315k | norm = _norm; | 1642 | 315k | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; | 1643 | | | 1644 | | /* For decoding, we can use the last band as scratch space because we don't need that | 1645 | | scratch space for the last band and we don't care about the data there until we're | 1646 | | decoding the last band. */ | 1647 | 315k | if (encode && resynth) | 1648 | 24.3k | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); | 1649 | 290k | else | 1650 | 290k | resynth_alloc = ALLOC_NONE; | 1651 | 315k | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); | 1652 | 315k | if (encode && resynth) | 1653 | 24.3k | lowband_scratch = _lowband_scratch; | 1654 | 290k | else | 1655 | 290k | lowband_scratch = X_+M*eBands[m->effEBands-1]; | 1656 | 315k | ALLOC(X_save, resynth_alloc, celt_norm); | 1657 | 315k | ALLOC(Y_save, resynth_alloc, celt_norm); | 1658 | 315k | ALLOC(X_save2, resynth_alloc, celt_norm); | 1659 | 315k | ALLOC(Y_save2, resynth_alloc, celt_norm); | 1660 | 315k | ALLOC(norm_save2, resynth_alloc, celt_norm); | 1661 | | | 1662 | 315k | lowband_offset = 0; | 1663 | 315k | ctx.bandE = bandE; | 1664 | 315k | ctx.ec = ec; | 1665 | 315k | ctx.encode = encode; | 1666 | 315k | ctx.intensity = intensity; | 1667 | 315k | ctx.m = m; | 1668 | 315k | ctx.seed = *seed; | 1669 | 315k | ctx.spread = spread; | 1670 | 315k | ctx.arch = arch; | 1671 | 315k | ctx.disable_inv = disable_inv; | 1672 | 315k | ctx.resynth = resynth; | 1673 | 315k | ctx.theta_round = 0; | 1674 | | #ifdef ENABLE_QEXT | 1675 | | ctx.ext_ec = ext_ec; | 1676 | | ctx.ext_total_bits = ext_total_bits; | 1677 | | ctx.extra_bands = end == NB_QEXT_BANDS || end == 2; | 1678 | | if (ctx.extra_bands) theta_rdo = 0; | 1679 | | #endif | 1680 | | /* Avoid injecting noise in the first band on transients. */ | 1681 | 315k | ctx.avoid_split_noise = B > 1; | 1682 | 4.98M | for (i=start;i<end;i++) | 1683 | 4.67M | { | 1684 | 4.67M | opus_int32 tell; | 1685 | 4.67M | int b; | 1686 | 4.67M | int N; | 1687 | 4.67M | opus_int32 curr_balance; | 1688 | 4.67M | int effective_lowband=-1; | 1689 | 4.67M | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; | 1690 | 4.67M | int tf_change=0; | 1691 | 4.67M | unsigned x_cm; | 1692 | 4.67M | unsigned y_cm; | 1693 | 4.67M | int last; | 1694 | | | 1695 | 4.67M | ctx.i = i; | 1696 | 4.67M | last = (i==end-1); | 1697 | | | 1698 | 4.67M | X = X_+M*eBands[i]; | 1699 | 4.67M | if (Y_!=NULL) | 1700 | 1.55M | Y = Y_+M*eBands[i]; | 1701 | 3.12M | else | 1702 | 3.12M | Y = NULL; | 1703 | 4.67M | N = M*eBands[i+1]-M*eBands[i]; | 1704 | 4.67M | celt_assert(N > 0); | 1705 | 4.67M | tell = ec_tell_frac(ec); | 1706 | | | 1707 | | /* Compute how many bits we want to allocate to this band */ | 1708 | 4.67M | if (i != start) | 1709 | 4.35M | balance -= tell; | 1710 | 4.67M | remaining_bits = total_bits-tell-1; | 1711 | 4.67M | ctx.remaining_bits = remaining_bits; | 1712 | | #ifdef ENABLE_QEXT | 1713 | | if (i != start) { | 1714 | | ext_balance += extra_pulses[i-1] + ext_tell; | 1715 | | } | 1716 | | ext_tell = ec_tell_frac(ext_ec); | 1717 | | ctx.extra_bits = extra_pulses[i]; | 1718 | | if (i != start) | 1719 | | ext_balance -= ext_tell; | 1720 | | if (i <= codedBands-1) | 1721 | | { | 1722 | | opus_int32 ext_curr_balance = celt_sudiv(ext_balance, IMIN(3, codedBands-i)); | 1723 | | ext_b = IMAX(0, IMIN(16383, IMIN(ext_total_bits-ext_tell,extra_pulses[i]+ext_curr_balance))); | 1724 | | } else { | 1725 | | ext_b = 0; | 1726 | | } | 1727 | | #endif | 1728 | 4.67M | if (i <= codedBands-1) | 1729 | 2.22M | { | 1730 | 2.22M | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); | 1731 | 2.22M | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); | 1732 | 2.44M | } else { | 1733 | 2.44M | b = 0; | 1734 | 2.44M | } | 1735 | | | 1736 | 4.67M | #ifndef DISABLE_UPDATE_DRAFT | 1737 | 4.67M | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) | 1738 | 720k | lowband_offset = i; | 1739 | 4.67M | if (i == start+1) | 1740 | 315k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1741 | | #else | 1742 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) | 1743 | | lowband_offset = i; | 1744 | | #endif | 1745 | | | 1746 | 4.67M | tf_change = tf_res[i]; | 1747 | 4.67M | ctx.tf_change = tf_change; | 1748 | 4.67M | if (i>=m->effEBands) | 1749 | 0 | { | 1750 | 0 | X=norm; | 1751 | 0 | if (Y_!=NULL) | 1752 | 0 | Y = norm; | 1753 | 0 | lowband_scratch = NULL; | 1754 | 0 | } | 1755 | 4.67M | if (last && !theta_rdo) | 1756 | 290k | lowband_scratch = NULL; | 1757 | | | 1758 | | /* Get a conservative estimate of the collapse_mask's for the bands we're | 1759 | | going to be folding from. */ | 1760 | 4.67M | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) | 1761 | 2.53M | { | 1762 | 2.53M | int fold_start; | 1763 | 2.53M | int fold_end; | 1764 | 2.53M | int fold_i; | 1765 | | /* This ensures we never repeat spectral content within one band */ | 1766 | 2.53M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); | 1767 | 2.53M | fold_start = lowband_offset; | 1768 | 2.83M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); | 1769 | 2.53M | fold_end = lowband_offset-1; | 1770 | 2.53M | #ifndef DISABLE_UPDATE_DRAFT | 1771 | 6.50M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); | 1772 | | #else | 1773 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); | 1774 | | #endif | 1775 | 2.53M | x_cm = y_cm = 0; | 1776 | 6.79M | fold_i = fold_start; do { | 1777 | 6.79M | x_cm |= collapse_masks[fold_i*C+0]; | 1778 | 6.79M | y_cm |= collapse_masks[fold_i*C+C-1]; | 1779 | 6.79M | } while (++fold_i<fold_end); | 1780 | 2.53M | } | 1781 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost | 1782 | | always) be non-zero. */ | 1783 | 2.13M | else | 1784 | 2.13M | x_cm = y_cm = (1<<B)-1; | 1785 | | | 1786 | 4.67M | if (dual_stereo && i==intensity) | 1787 | 15.2k | { | 1788 | 15.2k | int j; | 1789 | | | 1790 | | /* Switch off dual stereo to do intensity. */ | 1791 | 15.2k | dual_stereo = 0; | 1792 | 15.2k | if (resynth) | 1793 | 216k | for (j=0;j<M*eBands[i]-norm_offset;j++) | 1794 | 209k | norm[j] = HALF32(norm[j]+norm2[j]); | 1795 | 15.2k | } | 1796 | 4.67M | if (dual_stereo) | 1797 | 179k | { | 1798 | 179k | x_cm = quant_band(&ctx, X, N, b/2, B, | 1799 | 179k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1800 | 179k | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm ARG_QEXT(ext_b/2)); | 1801 | 179k | y_cm = quant_band(&ctx, Y, N, b/2, B, | 1802 | 179k | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, | 1803 | 179k | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm ARG_QEXT(ext_b/2)); | 1804 | 4.49M | } else { | 1805 | 4.49M | if (Y!=NULL) | 1806 | 1.37M | { | 1807 | 1.37M | if (theta_rdo && i < intensity) | 1808 | 215k | { | 1809 | 215k | ec_ctx ec_save, ec_save2; | 1810 | 215k | struct band_ctx ctx_save, ctx_save2; | 1811 | 215k | opus_val32 dist0, dist1; | 1812 | 215k | unsigned cm, cm2; | 1813 | 215k | int nstart_bytes, nend_bytes, save_bytes; | 1814 | 215k | unsigned char *bytes_buf; | 1815 | 215k | unsigned char bytes_save[1275]; | 1816 | | #ifdef ENABLE_QEXT | 1817 | | ec_ctx ext_ec_save, ext_ec_save2; | 1818 | | unsigned char *ext_bytes_buf; | 1819 | | int ext_nstart_bytes, ext_nend_bytes, ext_save_bytes; | 1820 | | unsigned char ext_bytes_save[QEXT_PACKET_SIZE_CAP]; | 1821 | | #endif | 1822 | 215k | opus_val16 w[2]; | 1823 | 215k | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); | 1824 | | /* Make a copy. */ | 1825 | 215k | cm = x_cm|y_cm; | 1826 | 215k | ec_save = *ec; | 1827 | | #ifdef ENABLE_QEXT | 1828 | | ext_ec_save = *ext_ec; | 1829 | | #endif | 1830 | 215k | ctx_save = ctx; | 1831 | 215k | OPUS_COPY(X_save, X, N); | 1832 | 215k | OPUS_COPY(Y_save, Y, N); | 1833 | | /* Encode and round down. */ | 1834 | 215k | ctx.theta_round = -1; | 1835 | 215k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1836 | 215k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1837 | 215k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1838 | 215k | dist0 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1839 | | | 1840 | | /* Save first result. */ | 1841 | 215k | cm2 = x_cm; | 1842 | 215k | ec_save2 = *ec; | 1843 | | #ifdef ENABLE_QEXT | 1844 | | ext_ec_save2 = *ext_ec; | 1845 | | #endif | 1846 | 215k | ctx_save2 = ctx; | 1847 | 215k | OPUS_COPY(X_save2, X, N); | 1848 | 215k | OPUS_COPY(Y_save2, Y, N); | 1849 | 215k | if (!last) | 1850 | 213k | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); | 1851 | 215k | nstart_bytes = ec_save.offs; | 1852 | 215k | nend_bytes = ec_save.storage; | 1853 | 215k | bytes_buf = ec_save.buf+nstart_bytes; | 1854 | 215k | save_bytes = nend_bytes-nstart_bytes; | 1855 | 215k | OPUS_COPY(bytes_save, bytes_buf, save_bytes); | 1856 | | #ifdef ENABLE_QEXT | 1857 | | ext_nstart_bytes = ext_ec_save.offs; | 1858 | | ext_nend_bytes = ext_ec_save.storage; | 1859 | | ext_bytes_buf = ext_ec_save.buf!=NULL ? ext_ec_save.buf+ext_nstart_bytes : NULL; | 1860 | | ext_save_bytes = ext_nend_bytes-ext_nstart_bytes; | 1861 | | if (ext_save_bytes) OPUS_COPY(ext_bytes_save, ext_bytes_buf, ext_save_bytes); | 1862 | | #endif | 1863 | | /* Restore */ | 1864 | 215k | *ec = ec_save; | 1865 | | #ifdef ENABLE_QEXT | 1866 | | *ext_ec = ext_ec_save; | 1867 | | #endif | 1868 | 215k | ctx = ctx_save; | 1869 | 215k | OPUS_COPY(X, X_save, N); | 1870 | 215k | OPUS_COPY(Y, Y_save, N); | 1871 | 215k | #ifndef DISABLE_UPDATE_DRAFT | 1872 | 215k | if (i == start+1) | 1873 | 18.2k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1874 | 215k | #endif | 1875 | | /* Encode and round up. */ | 1876 | 215k | ctx.theta_round = 1; | 1877 | 215k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1878 | 215k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1879 | 215k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1880 | 215k | dist1 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1881 | 215k | if (dist0 >= dist1) { | 1882 | 146k | x_cm = cm2; | 1883 | 146k | *ec = ec_save2; | 1884 | | #ifdef ENABLE_QEXT | 1885 | | *ext_ec = ext_ec_save2; | 1886 | | #endif | 1887 | 146k | ctx = ctx_save2; | 1888 | 146k | OPUS_COPY(X, X_save2, N); | 1889 | 146k | OPUS_COPY(Y, Y_save2, N); | 1890 | 146k | if (!last) | 1891 | 145k | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); | 1892 | 146k | OPUS_COPY(bytes_buf, bytes_save, save_bytes); | 1893 | | #ifdef ENABLE_QEXT | 1894 | | if (ext_save_bytes) OPUS_COPY(ext_bytes_buf, ext_bytes_save, ext_save_bytes); | 1895 | | #endif | 1896 | 146k | } | 1897 | 1.15M | } else { | 1898 | 1.15M | ctx.theta_round = 0; | 1899 | 1.15M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1900 | 1.15M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1901 | 1.15M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1902 | 1.15M | } | 1903 | 3.12M | } else { | 1904 | 3.12M | x_cm = quant_band(&ctx, X, N, b, B, | 1905 | 3.12M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1906 | 3.12M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b)); | 1907 | 3.12M | } | 1908 | 4.49M | y_cm = x_cm; | 1909 | 4.49M | } | 1910 | 4.67M | collapse_masks[i*C+0] = (unsigned char)x_cm; | 1911 | 4.67M | collapse_masks[i*C+C-1] = (unsigned char)y_cm; | 1912 | 4.67M | balance += pulses[i] + tell; | 1913 | | | 1914 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ | 1915 | 4.67M | update_lowband = b>(N<<BITRES); | 1916 | | /* We only need to avoid noise on a split for the first band. After that, we | 1917 | | have folding. */ | 1918 | 4.67M | ctx.avoid_split_noise = 0; | 1919 | 4.67M | } | 1920 | 315k | *seed = ctx.seed; | 1921 | | | 1922 | 315k | RESTORE_STACK; | 1923 | 315k | } |
Line | Count | Source | 1601 | 310k | { | 1602 | 310k | int i; | 1603 | 310k | opus_int32 remaining_bits; | 1604 | 310k | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 1605 | 310k | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; | 1606 | 310k | VARDECL(celt_norm, _norm); | 1607 | 310k | VARDECL(celt_norm, _lowband_scratch); | 1608 | 310k | VARDECL(celt_norm, X_save); | 1609 | 310k | VARDECL(celt_norm, Y_save); | 1610 | 310k | VARDECL(celt_norm, X_save2); | 1611 | 310k | VARDECL(celt_norm, Y_save2); | 1612 | 310k | VARDECL(celt_norm, norm_save2); | 1613 | 310k | int resynth_alloc; | 1614 | 310k | celt_norm *lowband_scratch; | 1615 | 310k | int B; | 1616 | 310k | int M; | 1617 | 310k | int lowband_offset; | 1618 | 310k | int update_lowband = 1; | 1619 | 310k | int C = Y_ != NULL ? 2 : 1; | 1620 | 310k | int norm_offset; | 1621 | 310k | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; | 1622 | | #ifdef RESYNTH | 1623 | | int resynth = 1; | 1624 | | #else | 1625 | 310k | int resynth = !encode || theta_rdo; | 1626 | 310k | #endif | 1627 | 310k | struct band_ctx ctx; | 1628 | 310k | #ifdef ENABLE_QEXT | 1629 | 310k | int ext_b; | 1630 | 310k | opus_int32 ext_balance=0; | 1631 | 310k | opus_int32 ext_tell=0; | 1632 | 310k | #endif | 1633 | 310k | SAVE_STACK; | 1634 | | | 1635 | 310k | M = 1<<LM; | 1636 | 310k | B = shortBlocks ? M : 1; | 1637 | 310k | norm_offset = M*eBands[start]; | 1638 | | /* No need to allocate norm for the last band because we don't need an | 1639 | | output in that band. */ | 1640 | 310k | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); | 1641 | 310k | norm = _norm; | 1642 | 310k | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; | 1643 | | | 1644 | | /* For decoding, we can use the last band as scratch space because we don't need that | 1645 | | scratch space for the last band and we don't care about the data there until we're | 1646 | | decoding the last band. */ | 1647 | 310k | if (encode && resynth) | 1648 | 25.5k | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); | 1649 | 285k | else | 1650 | 285k | resynth_alloc = ALLOC_NONE; | 1651 | 310k | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); | 1652 | 310k | if (encode && resynth) | 1653 | 25.5k | lowband_scratch = _lowband_scratch; | 1654 | 285k | else | 1655 | 285k | lowband_scratch = X_+M*eBands[m->effEBands-1]; | 1656 | 310k | ALLOC(X_save, resynth_alloc, celt_norm); | 1657 | 310k | ALLOC(Y_save, resynth_alloc, celt_norm); | 1658 | 310k | ALLOC(X_save2, resynth_alloc, celt_norm); | 1659 | 310k | ALLOC(Y_save2, resynth_alloc, celt_norm); | 1660 | 310k | ALLOC(norm_save2, resynth_alloc, celt_norm); | 1661 | | | 1662 | 310k | lowband_offset = 0; | 1663 | 310k | ctx.bandE = bandE; | 1664 | 310k | ctx.ec = ec; | 1665 | 310k | ctx.encode = encode; | 1666 | 310k | ctx.intensity = intensity; | 1667 | 310k | ctx.m = m; | 1668 | 310k | ctx.seed = *seed; | 1669 | 310k | ctx.spread = spread; | 1670 | 310k | ctx.arch = arch; | 1671 | 310k | ctx.disable_inv = disable_inv; | 1672 | 310k | ctx.resynth = resynth; | 1673 | 310k | ctx.theta_round = 0; | 1674 | 310k | #ifdef ENABLE_QEXT | 1675 | 310k | ctx.ext_ec = ext_ec; | 1676 | 310k | ctx.ext_total_bits = ext_total_bits; | 1677 | 310k | ctx.extra_bands = end == NB_QEXT_BANDS || end == 2; | 1678 | 310k | if (ctx.extra_bands) theta_rdo = 0; | 1679 | 310k | #endif | 1680 | | /* Avoid injecting noise in the first band on transients. */ | 1681 | 310k | ctx.avoid_split_noise = B > 1; | 1682 | 4.81M | for (i=start;i<end;i++) | 1683 | 4.50M | { | 1684 | 4.50M | opus_int32 tell; | 1685 | 4.50M | int b; | 1686 | 4.50M | int N; | 1687 | 4.50M | opus_int32 curr_balance; | 1688 | 4.50M | int effective_lowband=-1; | 1689 | 4.50M | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; | 1690 | 4.50M | int tf_change=0; | 1691 | 4.50M | unsigned x_cm; | 1692 | 4.50M | unsigned y_cm; | 1693 | 4.50M | int last; | 1694 | | | 1695 | 4.50M | ctx.i = i; | 1696 | 4.50M | last = (i==end-1); | 1697 | | | 1698 | 4.50M | X = X_+M*eBands[i]; | 1699 | 4.50M | if (Y_!=NULL) | 1700 | 1.62M | Y = Y_+M*eBands[i]; | 1701 | 2.88M | else | 1702 | 2.88M | Y = NULL; | 1703 | 4.50M | N = M*eBands[i+1]-M*eBands[i]; | 1704 | 4.50M | celt_assert(N > 0); | 1705 | 4.50M | tell = ec_tell_frac(ec); | 1706 | | | 1707 | | /* Compute how many bits we want to allocate to this band */ | 1708 | 4.50M | if (i != start) | 1709 | 4.19M | balance -= tell; | 1710 | 4.50M | remaining_bits = total_bits-tell-1; | 1711 | 4.50M | ctx.remaining_bits = remaining_bits; | 1712 | 4.50M | #ifdef ENABLE_QEXT | 1713 | 4.50M | if (i != start) { | 1714 | 4.19M | ext_balance += extra_pulses[i-1] + ext_tell; | 1715 | 4.19M | } | 1716 | 4.50M | ext_tell = ec_tell_frac(ext_ec); | 1717 | 4.50M | ctx.extra_bits = extra_pulses[i]; | 1718 | 4.50M | if (i != start) | 1719 | 4.19M | ext_balance -= ext_tell; | 1720 | 4.50M | if (i <= codedBands-1) | 1721 | 2.60M | { | 1722 | 2.60M | opus_int32 ext_curr_balance = celt_sudiv(ext_balance, IMIN(3, codedBands-i)); | 1723 | 2.60M | ext_b = IMAX(0, IMIN(16383, IMIN(ext_total_bits-ext_tell,extra_pulses[i]+ext_curr_balance))); | 1724 | 2.60M | } else { | 1725 | 1.89M | ext_b = 0; | 1726 | 1.89M | } | 1727 | 4.50M | #endif | 1728 | 4.50M | if (i <= codedBands-1) | 1729 | 2.60M | { | 1730 | 2.60M | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); | 1731 | 2.60M | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); | 1732 | 2.60M | } else { | 1733 | 1.89M | b = 0; | 1734 | 1.89M | } | 1735 | | | 1736 | 4.50M | #ifndef DISABLE_UPDATE_DRAFT | 1737 | 4.50M | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) | 1738 | 897k | lowband_offset = i; | 1739 | 4.50M | if (i == start+1) | 1740 | 310k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1741 | | #else | 1742 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) | 1743 | | lowband_offset = i; | 1744 | | #endif | 1745 | | | 1746 | 4.50M | tf_change = tf_res[i]; | 1747 | 4.50M | ctx.tf_change = tf_change; | 1748 | 4.50M | if (i>=m->effEBands) | 1749 | 16.3k | { | 1750 | 16.3k | X=norm; | 1751 | 16.3k | if (Y_!=NULL) | 1752 | 13.0k | Y = norm; | 1753 | 16.3k | lowband_scratch = NULL; | 1754 | 16.3k | } | 1755 | 4.50M | if (last && !theta_rdo) | 1756 | 285k | lowband_scratch = NULL; | 1757 | | | 1758 | | /* Get a conservative estimate of the collapse_mask's for the bands we're | 1759 | | going to be folding from. */ | 1760 | 4.50M | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) | 1761 | 2.26M | { | 1762 | 2.26M | int fold_start; | 1763 | 2.26M | int fold_end; | 1764 | 2.26M | int fold_i; | 1765 | | /* This ensures we never repeat spectral content within one band */ | 1766 | 2.26M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); | 1767 | 2.26M | fold_start = lowband_offset; | 1768 | 2.67M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); | 1769 | 2.26M | fold_end = lowband_offset-1; | 1770 | 2.26M | #ifndef DISABLE_UPDATE_DRAFT | 1771 | 5.20M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); | 1772 | | #else | 1773 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); | 1774 | | #endif | 1775 | 2.26M | x_cm = y_cm = 0; | 1776 | 5.61M | fold_i = fold_start; do { | 1777 | 5.61M | x_cm |= collapse_masks[fold_i*C+0]; | 1778 | 5.61M | y_cm |= collapse_masks[fold_i*C+C-1]; | 1779 | 5.61M | } while (++fold_i<fold_end); | 1780 | 2.26M | } | 1781 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost | 1782 | | always) be non-zero. */ | 1783 | 2.24M | else | 1784 | 2.24M | x_cm = y_cm = (1<<B)-1; | 1785 | | | 1786 | 4.50M | if (dual_stereo && i==intensity) | 1787 | 17.8k | { | 1788 | 17.8k | int j; | 1789 | | | 1790 | | /* Switch off dual stereo to do intensity. */ | 1791 | 17.8k | dual_stereo = 0; | 1792 | 17.8k | if (resynth) | 1793 | 379k | for (j=0;j<M*eBands[i]-norm_offset;j++) | 1794 | 371k | norm[j] = HALF32(norm[j]+norm2[j]); | 1795 | 17.8k | } | 1796 | 4.50M | if (dual_stereo) | 1797 | 208k | { | 1798 | 208k | x_cm = quant_band(&ctx, X, N, b/2, B, | 1799 | 208k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1800 | 208k | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm ARG_QEXT(ext_b/2)); | 1801 | 208k | y_cm = quant_band(&ctx, Y, N, b/2, B, | 1802 | 208k | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, | 1803 | 208k | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm ARG_QEXT(ext_b/2)); | 1804 | 4.29M | } else { | 1805 | 4.29M | if (Y!=NULL) | 1806 | 1.41M | { | 1807 | 1.41M | if (theta_rdo && i < intensity) | 1808 | 239k | { | 1809 | 239k | ec_ctx ec_save, ec_save2; | 1810 | 239k | struct band_ctx ctx_save, ctx_save2; | 1811 | 239k | opus_val32 dist0, dist1; | 1812 | 239k | unsigned cm, cm2; | 1813 | 239k | int nstart_bytes, nend_bytes, save_bytes; | 1814 | 239k | unsigned char *bytes_buf; | 1815 | 239k | unsigned char bytes_save[1275]; | 1816 | 239k | #ifdef ENABLE_QEXT | 1817 | 239k | ec_ctx ext_ec_save, ext_ec_save2; | 1818 | 239k | unsigned char *ext_bytes_buf; | 1819 | 239k | int ext_nstart_bytes, ext_nend_bytes, ext_save_bytes; | 1820 | 239k | unsigned char ext_bytes_save[QEXT_PACKET_SIZE_CAP]; | 1821 | 239k | #endif | 1822 | 239k | opus_val16 w[2]; | 1823 | 239k | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); | 1824 | | /* Make a copy. */ | 1825 | 239k | cm = x_cm|y_cm; | 1826 | 239k | ec_save = *ec; | 1827 | 239k | #ifdef ENABLE_QEXT | 1828 | 239k | ext_ec_save = *ext_ec; | 1829 | 239k | #endif | 1830 | 239k | ctx_save = ctx; | 1831 | 239k | OPUS_COPY(X_save, X, N); | 1832 | 239k | OPUS_COPY(Y_save, Y, N); | 1833 | | /* Encode and round down. */ | 1834 | 239k | ctx.theta_round = -1; | 1835 | 239k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1836 | 239k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1837 | 239k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1838 | 239k | dist0 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1839 | | | 1840 | | /* Save first result. */ | 1841 | 239k | cm2 = x_cm; | 1842 | 239k | ec_save2 = *ec; | 1843 | 239k | #ifdef ENABLE_QEXT | 1844 | 239k | ext_ec_save2 = *ext_ec; | 1845 | 239k | #endif | 1846 | 239k | ctx_save2 = ctx; | 1847 | 239k | OPUS_COPY(X_save2, X, N); | 1848 | 239k | OPUS_COPY(Y_save2, Y, N); | 1849 | 239k | if (!last) | 1850 | 235k | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); | 1851 | 239k | nstart_bytes = ec_save.offs; | 1852 | 239k | nend_bytes = ec_save.storage; | 1853 | 239k | bytes_buf = ec_save.buf+nstart_bytes; | 1854 | 239k | save_bytes = nend_bytes-nstart_bytes; | 1855 | 239k | OPUS_COPY(bytes_save, bytes_buf, save_bytes); | 1856 | 239k | #ifdef ENABLE_QEXT | 1857 | 239k | ext_nstart_bytes = ext_ec_save.offs; | 1858 | 239k | ext_nend_bytes = ext_ec_save.storage; | 1859 | 239k | ext_bytes_buf = ext_ec_save.buf!=NULL ? ext_ec_save.buf+ext_nstart_bytes : NULL; | 1860 | 239k | ext_save_bytes = ext_nend_bytes-ext_nstart_bytes; | 1861 | 239k | if (ext_save_bytes) OPUS_COPY(ext_bytes_save, ext_bytes_buf, ext_save_bytes); | 1862 | 239k | #endif | 1863 | | /* Restore */ | 1864 | 239k | *ec = ec_save; | 1865 | 239k | #ifdef ENABLE_QEXT | 1866 | 239k | *ext_ec = ext_ec_save; | 1867 | 239k | #endif | 1868 | 239k | ctx = ctx_save; | 1869 | 239k | OPUS_COPY(X, X_save, N); | 1870 | 239k | OPUS_COPY(Y, Y_save, N); | 1871 | 239k | #ifndef DISABLE_UPDATE_DRAFT | 1872 | 239k | if (i == start+1) | 1873 | 20.1k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1874 | 239k | #endif | 1875 | | /* Encode and round up. */ | 1876 | 239k | ctx.theta_round = 1; | 1877 | 239k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1878 | 239k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1879 | 239k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1880 | 239k | dist1 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1881 | 239k | if (dist0 >= dist1) { | 1882 | 161k | x_cm = cm2; | 1883 | 161k | *ec = ec_save2; | 1884 | 161k | #ifdef ENABLE_QEXT | 1885 | 161k | *ext_ec = ext_ec_save2; | 1886 | 161k | #endif | 1887 | 161k | ctx = ctx_save2; | 1888 | 161k | OPUS_COPY(X, X_save2, N); | 1889 | 161k | OPUS_COPY(Y, Y_save2, N); | 1890 | 161k | if (!last) | 1891 | 160k | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); | 1892 | 161k | OPUS_COPY(bytes_buf, bytes_save, save_bytes); | 1893 | 161k | #ifdef ENABLE_QEXT | 1894 | 161k | if (ext_save_bytes) OPUS_COPY(ext_bytes_buf, ext_bytes_save, ext_save_bytes); | 1895 | 161k | #endif | 1896 | 161k | } | 1897 | 1.17M | } else { | 1898 | 1.17M | ctx.theta_round = 0; | 1899 | 1.17M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1900 | 1.17M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1901 | 1.17M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1902 | 1.17M | } | 1903 | 2.88M | } else { | 1904 | 2.88M | x_cm = quant_band(&ctx, X, N, b, B, | 1905 | 2.88M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1906 | 2.88M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b)); | 1907 | 2.88M | } | 1908 | 4.29M | y_cm = x_cm; | 1909 | 4.29M | } | 1910 | 4.50M | collapse_masks[i*C+0] = (unsigned char)x_cm; | 1911 | 4.50M | collapse_masks[i*C+C-1] = (unsigned char)y_cm; | 1912 | 4.50M | balance += pulses[i] + tell; | 1913 | | | 1914 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ | 1915 | 4.50M | update_lowband = b>(N<<BITRES); | 1916 | | /* We only need to avoid noise on a split for the first band. After that, we | 1917 | | have folding. */ | 1918 | 4.50M | ctx.avoid_split_noise = 0; | 1919 | 4.50M | } | 1920 | 310k | *seed = ctx.seed; | 1921 | | | 1922 | 310k | RESTORE_STACK; | 1923 | 310k | } |
Line | Count | Source | 1601 | 310k | { | 1602 | 310k | int i; | 1603 | 310k | opus_int32 remaining_bits; | 1604 | 310k | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 1605 | 310k | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; | 1606 | 310k | VARDECL(celt_norm, _norm); | 1607 | 310k | VARDECL(celt_norm, _lowband_scratch); | 1608 | 310k | VARDECL(celt_norm, X_save); | 1609 | 310k | VARDECL(celt_norm, Y_save); | 1610 | 310k | VARDECL(celt_norm, X_save2); | 1611 | 310k | VARDECL(celt_norm, Y_save2); | 1612 | 310k | VARDECL(celt_norm, norm_save2); | 1613 | 310k | int resynth_alloc; | 1614 | 310k | celt_norm *lowband_scratch; | 1615 | 310k | int B; | 1616 | 310k | int M; | 1617 | 310k | int lowband_offset; | 1618 | 310k | int update_lowband = 1; | 1619 | 310k | int C = Y_ != NULL ? 2 : 1; | 1620 | 310k | int norm_offset; | 1621 | 310k | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; | 1622 | | #ifdef RESYNTH | 1623 | | int resynth = 1; | 1624 | | #else | 1625 | 310k | int resynth = !encode || theta_rdo; | 1626 | 310k | #endif | 1627 | 310k | struct band_ctx ctx; | 1628 | 310k | #ifdef ENABLE_QEXT | 1629 | 310k | int ext_b; | 1630 | 310k | opus_int32 ext_balance=0; | 1631 | 310k | opus_int32 ext_tell=0; | 1632 | 310k | #endif | 1633 | 310k | SAVE_STACK; | 1634 | | | 1635 | 310k | M = 1<<LM; | 1636 | 310k | B = shortBlocks ? M : 1; | 1637 | 310k | norm_offset = M*eBands[start]; | 1638 | | /* No need to allocate norm for the last band because we don't need an | 1639 | | output in that band. */ | 1640 | 310k | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); | 1641 | 310k | norm = _norm; | 1642 | 310k | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; | 1643 | | | 1644 | | /* For decoding, we can use the last band as scratch space because we don't need that | 1645 | | scratch space for the last band and we don't care about the data there until we're | 1646 | | decoding the last band. */ | 1647 | 310k | if (encode && resynth) | 1648 | 25.5k | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); | 1649 | 285k | else | 1650 | 285k | resynth_alloc = ALLOC_NONE; | 1651 | 310k | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); | 1652 | 310k | if (encode && resynth) | 1653 | 25.5k | lowband_scratch = _lowband_scratch; | 1654 | 285k | else | 1655 | 285k | lowband_scratch = X_+M*eBands[m->effEBands-1]; | 1656 | 310k | ALLOC(X_save, resynth_alloc, celt_norm); | 1657 | 310k | ALLOC(Y_save, resynth_alloc, celt_norm); | 1658 | 310k | ALLOC(X_save2, resynth_alloc, celt_norm); | 1659 | 310k | ALLOC(Y_save2, resynth_alloc, celt_norm); | 1660 | 310k | ALLOC(norm_save2, resynth_alloc, celt_norm); | 1661 | | | 1662 | 310k | lowband_offset = 0; | 1663 | 310k | ctx.bandE = bandE; | 1664 | 310k | ctx.ec = ec; | 1665 | 310k | ctx.encode = encode; | 1666 | 310k | ctx.intensity = intensity; | 1667 | 310k | ctx.m = m; | 1668 | 310k | ctx.seed = *seed; | 1669 | 310k | ctx.spread = spread; | 1670 | 310k | ctx.arch = arch; | 1671 | 310k | ctx.disable_inv = disable_inv; | 1672 | 310k | ctx.resynth = resynth; | 1673 | 310k | ctx.theta_round = 0; | 1674 | 310k | #ifdef ENABLE_QEXT | 1675 | 310k | ctx.ext_ec = ext_ec; | 1676 | 310k | ctx.ext_total_bits = ext_total_bits; | 1677 | 310k | ctx.extra_bands = end == NB_QEXT_BANDS || end == 2; | 1678 | 310k | if (ctx.extra_bands) theta_rdo = 0; | 1679 | 310k | #endif | 1680 | | /* Avoid injecting noise in the first band on transients. */ | 1681 | 310k | ctx.avoid_split_noise = B > 1; | 1682 | 4.81M | for (i=start;i<end;i++) | 1683 | 4.50M | { | 1684 | 4.50M | opus_int32 tell; | 1685 | 4.50M | int b; | 1686 | 4.50M | int N; | 1687 | 4.50M | opus_int32 curr_balance; | 1688 | 4.50M | int effective_lowband=-1; | 1689 | 4.50M | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; | 1690 | 4.50M | int tf_change=0; | 1691 | 4.50M | unsigned x_cm; | 1692 | 4.50M | unsigned y_cm; | 1693 | 4.50M | int last; | 1694 | | | 1695 | 4.50M | ctx.i = i; | 1696 | 4.50M | last = (i==end-1); | 1697 | | | 1698 | 4.50M | X = X_+M*eBands[i]; | 1699 | 4.50M | if (Y_!=NULL) | 1700 | 1.62M | Y = Y_+M*eBands[i]; | 1701 | 2.88M | else | 1702 | 2.88M | Y = NULL; | 1703 | 4.50M | N = M*eBands[i+1]-M*eBands[i]; | 1704 | 4.50M | celt_assert(N > 0); | 1705 | 4.50M | tell = ec_tell_frac(ec); | 1706 | | | 1707 | | /* Compute how many bits we want to allocate to this band */ | 1708 | 4.50M | if (i != start) | 1709 | 4.19M | balance -= tell; | 1710 | 4.50M | remaining_bits = total_bits-tell-1; | 1711 | 4.50M | ctx.remaining_bits = remaining_bits; | 1712 | 4.50M | #ifdef ENABLE_QEXT | 1713 | 4.50M | if (i != start) { | 1714 | 4.19M | ext_balance += extra_pulses[i-1] + ext_tell; | 1715 | 4.19M | } | 1716 | 4.50M | ext_tell = ec_tell_frac(ext_ec); | 1717 | 4.50M | ctx.extra_bits = extra_pulses[i]; | 1718 | 4.50M | if (i != start) | 1719 | 4.19M | ext_balance -= ext_tell; | 1720 | 4.50M | if (i <= codedBands-1) | 1721 | 2.60M | { | 1722 | 2.60M | opus_int32 ext_curr_balance = celt_sudiv(ext_balance, IMIN(3, codedBands-i)); | 1723 | 2.60M | ext_b = IMAX(0, IMIN(16383, IMIN(ext_total_bits-ext_tell,extra_pulses[i]+ext_curr_balance))); | 1724 | 2.60M | } else { | 1725 | 1.89M | ext_b = 0; | 1726 | 1.89M | } | 1727 | 4.50M | #endif | 1728 | 4.50M | if (i <= codedBands-1) | 1729 | 2.60M | { | 1730 | 2.60M | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); | 1731 | 2.60M | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); | 1732 | 2.60M | } else { | 1733 | 1.89M | b = 0; | 1734 | 1.89M | } | 1735 | | | 1736 | 4.50M | #ifndef DISABLE_UPDATE_DRAFT | 1737 | 4.50M | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) | 1738 | 897k | lowband_offset = i; | 1739 | 4.50M | if (i == start+1) | 1740 | 310k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1741 | | #else | 1742 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) | 1743 | | lowband_offset = i; | 1744 | | #endif | 1745 | | | 1746 | 4.50M | tf_change = tf_res[i]; | 1747 | 4.50M | ctx.tf_change = tf_change; | 1748 | 4.50M | if (i>=m->effEBands) | 1749 | 16.3k | { | 1750 | 16.3k | X=norm; | 1751 | 16.3k | if (Y_!=NULL) | 1752 | 13.0k | Y = norm; | 1753 | 16.3k | lowband_scratch = NULL; | 1754 | 16.3k | } | 1755 | 4.50M | if (last && !theta_rdo) | 1756 | 285k | lowband_scratch = NULL; | 1757 | | | 1758 | | /* Get a conservative estimate of the collapse_mask's for the bands we're | 1759 | | going to be folding from. */ | 1760 | 4.50M | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) | 1761 | 2.26M | { | 1762 | 2.26M | int fold_start; | 1763 | 2.26M | int fold_end; | 1764 | 2.26M | int fold_i; | 1765 | | /* This ensures we never repeat spectral content within one band */ | 1766 | 2.26M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); | 1767 | 2.26M | fold_start = lowband_offset; | 1768 | 2.67M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); | 1769 | 2.26M | fold_end = lowband_offset-1; | 1770 | 2.26M | #ifndef DISABLE_UPDATE_DRAFT | 1771 | 5.20M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); | 1772 | | #else | 1773 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); | 1774 | | #endif | 1775 | 2.26M | x_cm = y_cm = 0; | 1776 | 5.61M | fold_i = fold_start; do { | 1777 | 5.61M | x_cm |= collapse_masks[fold_i*C+0]; | 1778 | 5.61M | y_cm |= collapse_masks[fold_i*C+C-1]; | 1779 | 5.61M | } while (++fold_i<fold_end); | 1780 | 2.26M | } | 1781 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost | 1782 | | always) be non-zero. */ | 1783 | 2.24M | else | 1784 | 2.24M | x_cm = y_cm = (1<<B)-1; | 1785 | | | 1786 | 4.50M | if (dual_stereo && i==intensity) | 1787 | 17.8k | { | 1788 | 17.8k | int j; | 1789 | | | 1790 | | /* Switch off dual stereo to do intensity. */ | 1791 | 17.8k | dual_stereo = 0; | 1792 | 17.8k | if (resynth) | 1793 | 379k | for (j=0;j<M*eBands[i]-norm_offset;j++) | 1794 | 371k | norm[j] = HALF32(norm[j]+norm2[j]); | 1795 | 17.8k | } | 1796 | 4.50M | if (dual_stereo) | 1797 | 208k | { | 1798 | 208k | x_cm = quant_band(&ctx, X, N, b/2, B, | 1799 | 208k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1800 | 208k | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm ARG_QEXT(ext_b/2)); | 1801 | 208k | y_cm = quant_band(&ctx, Y, N, b/2, B, | 1802 | 208k | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, | 1803 | 208k | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm ARG_QEXT(ext_b/2)); | 1804 | 4.29M | } else { | 1805 | 4.29M | if (Y!=NULL) | 1806 | 1.41M | { | 1807 | 1.41M | if (theta_rdo && i < intensity) | 1808 | 239k | { | 1809 | 239k | ec_ctx ec_save, ec_save2; | 1810 | 239k | struct band_ctx ctx_save, ctx_save2; | 1811 | 239k | opus_val32 dist0, dist1; | 1812 | 239k | unsigned cm, cm2; | 1813 | 239k | int nstart_bytes, nend_bytes, save_bytes; | 1814 | 239k | unsigned char *bytes_buf; | 1815 | 239k | unsigned char bytes_save[1275]; | 1816 | 239k | #ifdef ENABLE_QEXT | 1817 | 239k | ec_ctx ext_ec_save, ext_ec_save2; | 1818 | 239k | unsigned char *ext_bytes_buf; | 1819 | 239k | int ext_nstart_bytes, ext_nend_bytes, ext_save_bytes; | 1820 | 239k | unsigned char ext_bytes_save[QEXT_PACKET_SIZE_CAP]; | 1821 | 239k | #endif | 1822 | 239k | opus_val16 w[2]; | 1823 | 239k | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); | 1824 | | /* Make a copy. */ | 1825 | 239k | cm = x_cm|y_cm; | 1826 | 239k | ec_save = *ec; | 1827 | 239k | #ifdef ENABLE_QEXT | 1828 | 239k | ext_ec_save = *ext_ec; | 1829 | 239k | #endif | 1830 | 239k | ctx_save = ctx; | 1831 | 239k | OPUS_COPY(X_save, X, N); | 1832 | 239k | OPUS_COPY(Y_save, Y, N); | 1833 | | /* Encode and round down. */ | 1834 | 239k | ctx.theta_round = -1; | 1835 | 239k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1836 | 239k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1837 | 239k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1838 | 239k | dist0 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1839 | | | 1840 | | /* Save first result. */ | 1841 | 239k | cm2 = x_cm; | 1842 | 239k | ec_save2 = *ec; | 1843 | 239k | #ifdef ENABLE_QEXT | 1844 | 239k | ext_ec_save2 = *ext_ec; | 1845 | 239k | #endif | 1846 | 239k | ctx_save2 = ctx; | 1847 | 239k | OPUS_COPY(X_save2, X, N); | 1848 | 239k | OPUS_COPY(Y_save2, Y, N); | 1849 | 239k | if (!last) | 1850 | 235k | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); | 1851 | 239k | nstart_bytes = ec_save.offs; | 1852 | 239k | nend_bytes = ec_save.storage; | 1853 | 239k | bytes_buf = ec_save.buf+nstart_bytes; | 1854 | 239k | save_bytes = nend_bytes-nstart_bytes; | 1855 | 239k | OPUS_COPY(bytes_save, bytes_buf, save_bytes); | 1856 | 239k | #ifdef ENABLE_QEXT | 1857 | 239k | ext_nstart_bytes = ext_ec_save.offs; | 1858 | 239k | ext_nend_bytes = ext_ec_save.storage; | 1859 | 239k | ext_bytes_buf = ext_ec_save.buf!=NULL ? ext_ec_save.buf+ext_nstart_bytes : NULL; | 1860 | 239k | ext_save_bytes = ext_nend_bytes-ext_nstart_bytes; | 1861 | 239k | if (ext_save_bytes) OPUS_COPY(ext_bytes_save, ext_bytes_buf, ext_save_bytes); | 1862 | 239k | #endif | 1863 | | /* Restore */ | 1864 | 239k | *ec = ec_save; | 1865 | 239k | #ifdef ENABLE_QEXT | 1866 | 239k | *ext_ec = ext_ec_save; | 1867 | 239k | #endif | 1868 | 239k | ctx = ctx_save; | 1869 | 239k | OPUS_COPY(X, X_save, N); | 1870 | 239k | OPUS_COPY(Y, Y_save, N); | 1871 | 239k | #ifndef DISABLE_UPDATE_DRAFT | 1872 | 239k | if (i == start+1) | 1873 | 20.1k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1874 | 239k | #endif | 1875 | | /* Encode and round up. */ | 1876 | 239k | ctx.theta_round = 1; | 1877 | 239k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1878 | 239k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1879 | 239k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1880 | 239k | dist1 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1881 | 239k | if (dist0 >= dist1) { | 1882 | 161k | x_cm = cm2; | 1883 | 161k | *ec = ec_save2; | 1884 | 161k | #ifdef ENABLE_QEXT | 1885 | 161k | *ext_ec = ext_ec_save2; | 1886 | 161k | #endif | 1887 | 161k | ctx = ctx_save2; | 1888 | 161k | OPUS_COPY(X, X_save2, N); | 1889 | 161k | OPUS_COPY(Y, Y_save2, N); | 1890 | 161k | if (!last) | 1891 | 160k | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); | 1892 | 161k | OPUS_COPY(bytes_buf, bytes_save, save_bytes); | 1893 | 161k | #ifdef ENABLE_QEXT | 1894 | 161k | if (ext_save_bytes) OPUS_COPY(ext_bytes_buf, ext_bytes_save, ext_save_bytes); | 1895 | 161k | #endif | 1896 | 161k | } | 1897 | 1.17M | } else { | 1898 | 1.17M | ctx.theta_round = 0; | 1899 | 1.17M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1900 | 1.17M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1901 | 1.17M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1902 | 1.17M | } | 1903 | 2.88M | } else { | 1904 | 2.88M | x_cm = quant_band(&ctx, X, N, b, B, | 1905 | 2.88M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1906 | 2.88M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b)); | 1907 | 2.88M | } | 1908 | 4.29M | y_cm = x_cm; | 1909 | 4.29M | } | 1910 | 4.50M | collapse_masks[i*C+0] = (unsigned char)x_cm; | 1911 | 4.50M | collapse_masks[i*C+C-1] = (unsigned char)y_cm; | 1912 | 4.50M | balance += pulses[i] + tell; | 1913 | | | 1914 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ | 1915 | 4.50M | update_lowband = b>(N<<BITRES); | 1916 | | /* We only need to avoid noise on a split for the first band. After that, we | 1917 | | have folding. */ | 1918 | 4.50M | ctx.avoid_split_noise = 0; | 1919 | 4.50M | } | 1920 | 310k | *seed = ctx.seed; | 1921 | | | 1922 | 310k | RESTORE_STACK; | 1923 | 310k | } |
Line | Count | Source | 1601 | 315k | { | 1602 | 315k | int i; | 1603 | 315k | opus_int32 remaining_bits; | 1604 | 315k | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 1605 | 315k | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; | 1606 | 315k | VARDECL(celt_norm, _norm); | 1607 | 315k | VARDECL(celt_norm, _lowband_scratch); | 1608 | 315k | VARDECL(celt_norm, X_save); | 1609 | 315k | VARDECL(celt_norm, Y_save); | 1610 | 315k | VARDECL(celt_norm, X_save2); | 1611 | 315k | VARDECL(celt_norm, Y_save2); | 1612 | 315k | VARDECL(celt_norm, norm_save2); | 1613 | 315k | int resynth_alloc; | 1614 | 315k | celt_norm *lowband_scratch; | 1615 | 315k | int B; | 1616 | 315k | int M; | 1617 | 315k | int lowband_offset; | 1618 | 315k | int update_lowband = 1; | 1619 | 315k | int C = Y_ != NULL ? 2 : 1; | 1620 | 315k | int norm_offset; | 1621 | 315k | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; | 1622 | | #ifdef RESYNTH | 1623 | | int resynth = 1; | 1624 | | #else | 1625 | 315k | int resynth = !encode || theta_rdo; | 1626 | 315k | #endif | 1627 | 315k | struct band_ctx ctx; | 1628 | | #ifdef ENABLE_QEXT | 1629 | | int ext_b; | 1630 | | opus_int32 ext_balance=0; | 1631 | | opus_int32 ext_tell=0; | 1632 | | #endif | 1633 | 315k | SAVE_STACK; | 1634 | | | 1635 | 315k | M = 1<<LM; | 1636 | 315k | B = shortBlocks ? M : 1; | 1637 | 315k | norm_offset = M*eBands[start]; | 1638 | | /* No need to allocate norm for the last band because we don't need an | 1639 | | output in that band. */ | 1640 | 315k | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); | 1641 | 315k | norm = _norm; | 1642 | 315k | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; | 1643 | | | 1644 | | /* For decoding, we can use the last band as scratch space because we don't need that | 1645 | | scratch space for the last band and we don't care about the data there until we're | 1646 | | decoding the last band. */ | 1647 | 315k | if (encode && resynth) | 1648 | 24.3k | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); | 1649 | 290k | else | 1650 | 290k | resynth_alloc = ALLOC_NONE; | 1651 | 315k | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); | 1652 | 315k | if (encode && resynth) | 1653 | 24.3k | lowband_scratch = _lowband_scratch; | 1654 | 290k | else | 1655 | 290k | lowband_scratch = X_+M*eBands[m->effEBands-1]; | 1656 | 315k | ALLOC(X_save, resynth_alloc, celt_norm); | 1657 | 315k | ALLOC(Y_save, resynth_alloc, celt_norm); | 1658 | 315k | ALLOC(X_save2, resynth_alloc, celt_norm); | 1659 | 315k | ALLOC(Y_save2, resynth_alloc, celt_norm); | 1660 | 315k | ALLOC(norm_save2, resynth_alloc, celt_norm); | 1661 | | | 1662 | 315k | lowband_offset = 0; | 1663 | 315k | ctx.bandE = bandE; | 1664 | 315k | ctx.ec = ec; | 1665 | 315k | ctx.encode = encode; | 1666 | 315k | ctx.intensity = intensity; | 1667 | 315k | ctx.m = m; | 1668 | 315k | ctx.seed = *seed; | 1669 | 315k | ctx.spread = spread; | 1670 | 315k | ctx.arch = arch; | 1671 | 315k | ctx.disable_inv = disable_inv; | 1672 | 315k | ctx.resynth = resynth; | 1673 | 315k | ctx.theta_round = 0; | 1674 | | #ifdef ENABLE_QEXT | 1675 | | ctx.ext_ec = ext_ec; | 1676 | | ctx.ext_total_bits = ext_total_bits; | 1677 | | ctx.extra_bands = end == NB_QEXT_BANDS || end == 2; | 1678 | | if (ctx.extra_bands) theta_rdo = 0; | 1679 | | #endif | 1680 | | /* Avoid injecting noise in the first band on transients. */ | 1681 | 315k | ctx.avoid_split_noise = B > 1; | 1682 | 4.98M | for (i=start;i<end;i++) | 1683 | 4.67M | { | 1684 | 4.67M | opus_int32 tell; | 1685 | 4.67M | int b; | 1686 | 4.67M | int N; | 1687 | 4.67M | opus_int32 curr_balance; | 1688 | 4.67M | int effective_lowband=-1; | 1689 | 4.67M | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; | 1690 | 4.67M | int tf_change=0; | 1691 | 4.67M | unsigned x_cm; | 1692 | 4.67M | unsigned y_cm; | 1693 | 4.67M | int last; | 1694 | | | 1695 | 4.67M | ctx.i = i; | 1696 | 4.67M | last = (i==end-1); | 1697 | | | 1698 | 4.67M | X = X_+M*eBands[i]; | 1699 | 4.67M | if (Y_!=NULL) | 1700 | 1.55M | Y = Y_+M*eBands[i]; | 1701 | 3.12M | else | 1702 | 3.12M | Y = NULL; | 1703 | 4.67M | N = M*eBands[i+1]-M*eBands[i]; | 1704 | 4.67M | celt_assert(N > 0); | 1705 | 4.67M | tell = ec_tell_frac(ec); | 1706 | | | 1707 | | /* Compute how many bits we want to allocate to this band */ | 1708 | 4.67M | if (i != start) | 1709 | 4.35M | balance -= tell; | 1710 | 4.67M | remaining_bits = total_bits-tell-1; | 1711 | 4.67M | ctx.remaining_bits = remaining_bits; | 1712 | | #ifdef ENABLE_QEXT | 1713 | | if (i != start) { | 1714 | | ext_balance += extra_pulses[i-1] + ext_tell; | 1715 | | } | 1716 | | ext_tell = ec_tell_frac(ext_ec); | 1717 | | ctx.extra_bits = extra_pulses[i]; | 1718 | | if (i != start) | 1719 | | ext_balance -= ext_tell; | 1720 | | if (i <= codedBands-1) | 1721 | | { | 1722 | | opus_int32 ext_curr_balance = celt_sudiv(ext_balance, IMIN(3, codedBands-i)); | 1723 | | ext_b = IMAX(0, IMIN(16383, IMIN(ext_total_bits-ext_tell,extra_pulses[i]+ext_curr_balance))); | 1724 | | } else { | 1725 | | ext_b = 0; | 1726 | | } | 1727 | | #endif | 1728 | 4.67M | if (i <= codedBands-1) | 1729 | 2.22M | { | 1730 | 2.22M | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); | 1731 | 2.22M | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); | 1732 | 2.44M | } else { | 1733 | 2.44M | b = 0; | 1734 | 2.44M | } | 1735 | | | 1736 | 4.67M | #ifndef DISABLE_UPDATE_DRAFT | 1737 | 4.67M | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) | 1738 | 720k | lowband_offset = i; | 1739 | 4.67M | if (i == start+1) | 1740 | 315k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1741 | | #else | 1742 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) | 1743 | | lowband_offset = i; | 1744 | | #endif | 1745 | | | 1746 | 4.67M | tf_change = tf_res[i]; | 1747 | 4.67M | ctx.tf_change = tf_change; | 1748 | 4.67M | if (i>=m->effEBands) | 1749 | 0 | { | 1750 | 0 | X=norm; | 1751 | 0 | if (Y_!=NULL) | 1752 | 0 | Y = norm; | 1753 | 0 | lowband_scratch = NULL; | 1754 | 0 | } | 1755 | 4.67M | if (last && !theta_rdo) | 1756 | 290k | lowband_scratch = NULL; | 1757 | | | 1758 | | /* Get a conservative estimate of the collapse_mask's for the bands we're | 1759 | | going to be folding from. */ | 1760 | 4.67M | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) | 1761 | 2.53M | { | 1762 | 2.53M | int fold_start; | 1763 | 2.53M | int fold_end; | 1764 | 2.53M | int fold_i; | 1765 | | /* This ensures we never repeat spectral content within one band */ | 1766 | 2.53M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); | 1767 | 2.53M | fold_start = lowband_offset; | 1768 | 2.83M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); | 1769 | 2.53M | fold_end = lowband_offset-1; | 1770 | 2.53M | #ifndef DISABLE_UPDATE_DRAFT | 1771 | 6.50M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); | 1772 | | #else | 1773 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); | 1774 | | #endif | 1775 | 2.53M | x_cm = y_cm = 0; | 1776 | 6.79M | fold_i = fold_start; do { | 1777 | 6.79M | x_cm |= collapse_masks[fold_i*C+0]; | 1778 | 6.79M | y_cm |= collapse_masks[fold_i*C+C-1]; | 1779 | 6.79M | } while (++fold_i<fold_end); | 1780 | 2.53M | } | 1781 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost | 1782 | | always) be non-zero. */ | 1783 | 2.13M | else | 1784 | 2.13M | x_cm = y_cm = (1<<B)-1; | 1785 | | | 1786 | 4.67M | if (dual_stereo && i==intensity) | 1787 | 15.2k | { | 1788 | 15.2k | int j; | 1789 | | | 1790 | | /* Switch off dual stereo to do intensity. */ | 1791 | 15.2k | dual_stereo = 0; | 1792 | 15.2k | if (resynth) | 1793 | 216k | for (j=0;j<M*eBands[i]-norm_offset;j++) | 1794 | 209k | norm[j] = HALF32(norm[j]+norm2[j]); | 1795 | 15.2k | } | 1796 | 4.67M | if (dual_stereo) | 1797 | 179k | { | 1798 | 179k | x_cm = quant_band(&ctx, X, N, b/2, B, | 1799 | 179k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1800 | 179k | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm ARG_QEXT(ext_b/2)); | 1801 | 179k | y_cm = quant_band(&ctx, Y, N, b/2, B, | 1802 | 179k | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, | 1803 | 179k | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm ARG_QEXT(ext_b/2)); | 1804 | 4.49M | } else { | 1805 | 4.49M | if (Y!=NULL) | 1806 | 1.37M | { | 1807 | 1.37M | if (theta_rdo && i < intensity) | 1808 | 215k | { | 1809 | 215k | ec_ctx ec_save, ec_save2; | 1810 | 215k | struct band_ctx ctx_save, ctx_save2; | 1811 | 215k | opus_val32 dist0, dist1; | 1812 | 215k | unsigned cm, cm2; | 1813 | 215k | int nstart_bytes, nend_bytes, save_bytes; | 1814 | 215k | unsigned char *bytes_buf; | 1815 | 215k | unsigned char bytes_save[1275]; | 1816 | | #ifdef ENABLE_QEXT | 1817 | | ec_ctx ext_ec_save, ext_ec_save2; | 1818 | | unsigned char *ext_bytes_buf; | 1819 | | int ext_nstart_bytes, ext_nend_bytes, ext_save_bytes; | 1820 | | unsigned char ext_bytes_save[QEXT_PACKET_SIZE_CAP]; | 1821 | | #endif | 1822 | 215k | opus_val16 w[2]; | 1823 | 215k | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); | 1824 | | /* Make a copy. */ | 1825 | 215k | cm = x_cm|y_cm; | 1826 | 215k | ec_save = *ec; | 1827 | | #ifdef ENABLE_QEXT | 1828 | | ext_ec_save = *ext_ec; | 1829 | | #endif | 1830 | 215k | ctx_save = ctx; | 1831 | 215k | OPUS_COPY(X_save, X, N); | 1832 | 215k | OPUS_COPY(Y_save, Y, N); | 1833 | | /* Encode and round down. */ | 1834 | 215k | ctx.theta_round = -1; | 1835 | 215k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1836 | 215k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1837 | 215k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1838 | 215k | dist0 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1839 | | | 1840 | | /* Save first result. */ | 1841 | 215k | cm2 = x_cm; | 1842 | 215k | ec_save2 = *ec; | 1843 | | #ifdef ENABLE_QEXT | 1844 | | ext_ec_save2 = *ext_ec; | 1845 | | #endif | 1846 | 215k | ctx_save2 = ctx; | 1847 | 215k | OPUS_COPY(X_save2, X, N); | 1848 | 215k | OPUS_COPY(Y_save2, Y, N); | 1849 | 215k | if (!last) | 1850 | 213k | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); | 1851 | 215k | nstart_bytes = ec_save.offs; | 1852 | 215k | nend_bytes = ec_save.storage; | 1853 | 215k | bytes_buf = ec_save.buf+nstart_bytes; | 1854 | 215k | save_bytes = nend_bytes-nstart_bytes; | 1855 | 215k | OPUS_COPY(bytes_save, bytes_buf, save_bytes); | 1856 | | #ifdef ENABLE_QEXT | 1857 | | ext_nstart_bytes = ext_ec_save.offs; | 1858 | | ext_nend_bytes = ext_ec_save.storage; | 1859 | | ext_bytes_buf = ext_ec_save.buf!=NULL ? ext_ec_save.buf+ext_nstart_bytes : NULL; | 1860 | | ext_save_bytes = ext_nend_bytes-ext_nstart_bytes; | 1861 | | if (ext_save_bytes) OPUS_COPY(ext_bytes_save, ext_bytes_buf, ext_save_bytes); | 1862 | | #endif | 1863 | | /* Restore */ | 1864 | 215k | *ec = ec_save; | 1865 | | #ifdef ENABLE_QEXT | 1866 | | *ext_ec = ext_ec_save; | 1867 | | #endif | 1868 | 215k | ctx = ctx_save; | 1869 | 215k | OPUS_COPY(X, X_save, N); | 1870 | 215k | OPUS_COPY(Y, Y_save, N); | 1871 | 215k | #ifndef DISABLE_UPDATE_DRAFT | 1872 | 215k | if (i == start+1) | 1873 | 18.2k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1874 | 215k | #endif | 1875 | | /* Encode and round up. */ | 1876 | 215k | ctx.theta_round = 1; | 1877 | 215k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1878 | 215k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1879 | 215k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1880 | 215k | dist1 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1881 | 215k | if (dist0 >= dist1) { | 1882 | 146k | x_cm = cm2; | 1883 | 146k | *ec = ec_save2; | 1884 | | #ifdef ENABLE_QEXT | 1885 | | *ext_ec = ext_ec_save2; | 1886 | | #endif | 1887 | 146k | ctx = ctx_save2; | 1888 | 146k | OPUS_COPY(X, X_save2, N); | 1889 | 146k | OPUS_COPY(Y, Y_save2, N); | 1890 | 146k | if (!last) | 1891 | 145k | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); | 1892 | 146k | OPUS_COPY(bytes_buf, bytes_save, save_bytes); | 1893 | | #ifdef ENABLE_QEXT | 1894 | | if (ext_save_bytes) OPUS_COPY(ext_bytes_buf, ext_bytes_save, ext_save_bytes); | 1895 | | #endif | 1896 | 146k | } | 1897 | 1.15M | } else { | 1898 | 1.15M | ctx.theta_round = 0; | 1899 | 1.15M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1900 | 1.15M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1901 | 1.15M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1902 | 1.15M | } | 1903 | 3.12M | } else { | 1904 | 3.12M | x_cm = quant_band(&ctx, X, N, b, B, | 1905 | 3.12M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1906 | 3.12M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b)); | 1907 | 3.12M | } | 1908 | 4.49M | y_cm = x_cm; | 1909 | 4.49M | } | 1910 | 4.67M | collapse_masks[i*C+0] = (unsigned char)x_cm; | 1911 | 4.67M | collapse_masks[i*C+C-1] = (unsigned char)y_cm; | 1912 | 4.67M | balance += pulses[i] + tell; | 1913 | | | 1914 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ | 1915 | 4.67M | update_lowband = b>(N<<BITRES); | 1916 | | /* We only need to avoid noise on a split for the first band. After that, we | 1917 | | have folding. */ | 1918 | 4.67M | ctx.avoid_split_noise = 0; | 1919 | 4.67M | } | 1920 | 315k | *seed = ctx.seed; | 1921 | | | 1922 | 315k | RESTORE_STACK; | 1923 | 315k | } |
|