Coverage Report

Created: 2025-11-16 07:23

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/opus/silk/A2NLSF.c
Line
Count
Source
1
/***********************************************************************
2
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3
Redistribution and use in source and binary forms, with or without
4
modification, are permitted provided that the following conditions
5
are met:
6
- Redistributions of source code must retain the above copyright notice,
7
this list of conditions and the following disclaimer.
8
- Redistributions in binary form must reproduce the above copyright
9
notice, this list of conditions and the following disclaimer in the
10
documentation and/or other materials provided with the distribution.
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
names of specific contributors, may be used to endorse or promote
13
products derived from this software without specific prior written
14
permission.
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25
POSSIBILITY OF SUCH DAMAGE.
26
***********************************************************************/
27
28
/* Conversion between prediction filter coefficients and NLSFs  */
29
/* Requires the order to be an even number                      */
30
/* A piecewise linear approximation maps LSF <-> cos(LSF)       */
31
/* Therefore the result is not accurate NLSFs, but the two      */
32
/* functions are accurate inverses of each other                */
33
34
#ifdef HAVE_CONFIG_H
35
#include "config.h"
36
#endif
37
38
#include "SigProc_FIX.h"
39
#include "tables.h"
40
41
/* Number of binary divisions, when not in low complexity mode */
42
4.81G
#define BIN_DIV_STEPS_A2NLSF_FIX      3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */
43
110k
#define MAX_ITERATIONS_A2NLSF_FIX    16
44
45
/* Helper function for A2NLSF(..)                    */
46
/* Transforms polynomials from cos(n*f) to cos(f)^n  */
47
static OPUS_INLINE void silk_A2NLSF_trans_poly(
48
    opus_int32          *p,                     /* I/O    Polynomial                                */
49
    const opus_int      dd                      /* I      Polynomial order (= filter order / 2 )    */
50
)
51
215M
{
52
215M
    opus_int k, n;
53
54
1.20G
    for( k = 2; k <= dd; k++ ) {
55
2.90G
        for( n = dd; n > k; n-- ) {
56
1.91G
            p[ n - 2 ] -= p[ n ];
57
1.91G
        }
58
987M
        p[ k - 2 ] -= silk_LSHIFT( p[ k ], 1 );
59
987M
    }
60
215M
}
61
/* Helper function for A2NLSF(..) */
62
/* Polynomial evaluation          */
63
static OPUS_INLINE opus_int32 silk_A2NLSF_eval_poly( /* return the polynomial evaluation, in Q16     */
64
    opus_int32          *p,                     /* I    Polynomial, Q16                         */
65
    const opus_int32    x,                      /* I    Evaluation point, Q12                   */
66
    const opus_int      dd                      /* I    Order                                   */
67
)
68
17.5G
{
69
17.5G
    opus_int   n;
70
17.5G
    opus_int32 x_Q16, y32;
71
72
17.5G
    y32 = p[ dd ];                                  /* Q16 */
73
17.5G
    x_Q16 = silk_LSHIFT( x, 4 );
74
75
17.5G
    if ( opus_likely( 8 == dd ) )
76
3.82G
    {
77
3.82G
        y32 = silk_SMLAWW( p[ 7 ], y32, x_Q16 );
78
3.82G
        y32 = silk_SMLAWW( p[ 6 ], y32, x_Q16 );
79
3.82G
        y32 = silk_SMLAWW( p[ 5 ], y32, x_Q16 );
80
3.82G
        y32 = silk_SMLAWW( p[ 4 ], y32, x_Q16 );
81
3.82G
        y32 = silk_SMLAWW( p[ 3 ], y32, x_Q16 );
82
3.82G
        y32 = silk_SMLAWW( p[ 2 ], y32, x_Q16 );
83
3.82G
        y32 = silk_SMLAWW( p[ 1 ], y32, x_Q16 );
84
3.82G
        y32 = silk_SMLAWW( p[ 0 ], y32, x_Q16 );
85
3.82G
    }
86
13.6G
    else
87
13.6G
    {
88
82.1G
        for( n = dd - 1; n >= 0; n-- ) {
89
68.4G
            y32 = silk_SMLAWW( p[ n ], y32, x_Q16 );    /* Q16 */
90
68.4G
        }
91
13.6G
    }
92
17.5G
    return y32;
93
17.5G
}
94
95
static OPUS_INLINE void silk_A2NLSF_init(
96
     const opus_int32    *a_Q16,
97
     opus_int32          *P,
98
     opus_int32          *Q,
99
     const opus_int      dd
100
)
101
107M
{
102
107M
    opus_int k;
103
104
    /* Convert filter coefs to even and odd polynomials */
105
107M
    P[dd] = silk_LSHIFT( 1, 16 );
106
107M
    Q[dd] = silk_LSHIFT( 1, 16 );
107
709M
    for( k = 0; k < dd; k++ ) {
108
601M
        P[ k ] = -a_Q16[ dd - k - 1 ] - a_Q16[ dd + k ];    /* Q16 */
109
601M
        Q[ k ] = -a_Q16[ dd - k - 1 ] + a_Q16[ dd + k ];    /* Q16 */
110
601M
    }
111
112
    /* Divide out zeros as we have that for even filter orders, */
113
    /* z =  1 is always a root in Q, and                        */
114
    /* z = -1 is always a root in P                             */
115
709M
    for( k = dd; k > 0; k-- ) {
116
601M
        P[ k - 1 ] -= P[ k ];
117
601M
        Q[ k - 1 ] += Q[ k ];
118
601M
    }
119
120
    /* Transform polynomials from cos(n*f) to cos(f)^n */
121
107M
    silk_A2NLSF_trans_poly( P, dd );
122
107M
    silk_A2NLSF_trans_poly( Q, dd );
123
107M
}
124
125
/* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients      */
126
/* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
127
void silk_A2NLSF(
128
    opus_int16                  *NLSF,              /* O    Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
129
    opus_int32                  *a_Q16,             /* I/O  Monic whitening filter coefficients in Q16 [d]              */
130
    const opus_int              d                   /* I    Filter order (must be even)                                 */
131
)
132
107M
{
133
107M
    opus_int   i, k, m, dd, root_ix, ffrac;
134
107M
    opus_int32 xlo, xhi, xmid;
135
107M
    opus_int32 ylo, yhi, ymid, thr;
136
107M
    opus_int32 nom, den;
137
107M
    opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ];
138
107M
    opus_int32 Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
139
107M
    opus_int32 *PQ[ 2 ];
140
107M
    opus_int32 *p;
141
142
    /* Store pointers to array */
143
107M
    PQ[ 0 ] = P;
144
107M
    PQ[ 1 ] = Q;
145
146
107M
    dd = silk_RSHIFT( d, 1 );
147
148
107M
    silk_A2NLSF_init( a_Q16, P, Q, dd );
149
150
    /* Find roots, alternating between P and Q */
151
107M
    p = P;                          /* Pointer to polynomial */
152
153
107M
    xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
154
107M
    ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
155
156
107M
    if( ylo < 0 ) {
157
        /* Set the first NLSF to zero and move on to the next */
158
1.37k
        NLSF[ 0 ] = 0;
159
1.37k
        p = Q;                      /* Pointer to polynomial */
160
1.37k
        ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
161
1.37k
        root_ix = 1;                /* Index of current root */
162
107M
    } else {
163
107M
        root_ix = 0;                /* Index of current root */
164
107M
    }
165
107M
    k = 1;                          /* Loop counter */
166
107M
    i = 0;                          /* Counter for bandwidth expansions applied */
167
107M
    thr = 0;
168
13.8G
    while( 1 ) {
169
        /* Evaluate polynomial */
170
13.8G
        xhi = silk_LSFCosTab_FIX_Q12[ k ]; /* Q12 */
171
13.8G
        yhi = silk_A2NLSF_eval_poly( p, xhi, dd );
172
173
        /* Detect zero crossing */
174
13.8G
        if( ( ylo <= 0 && yhi >= thr ) || ( ylo >= 0 && yhi <= -thr ) ) {
175
1.20G
            if( yhi == 0 ) {
176
                /* If the root lies exactly at the end of the current       */
177
                /* interval, look for the next root in the next interval    */
178
12.8k
                thr = 1;
179
1.20G
            } else {
180
1.20G
                thr = 0;
181
1.20G
            }
182
            /* Binary division */
183
1.20G
            ffrac = -256;
184
4.81G
            for( m = 0; m < BIN_DIV_STEPS_A2NLSF_FIX; m++ ) {
185
                /* Evaluate polynomial */
186
3.60G
                xmid = silk_RSHIFT_ROUND( xlo + xhi, 1 );
187
3.60G
                ymid = silk_A2NLSF_eval_poly( p, xmid, dd );
188
189
                /* Detect zero crossing */
190
3.60G
                if( ( ylo <= 0 && ymid >= 0 ) || ( ylo >= 0 && ymid <= 0 ) ) {
191
                    /* Reduce frequency */
192
1.81G
                    xhi = xmid;
193
1.81G
                    yhi = ymid;
194
1.81G
                } else {
195
                    /* Increase frequency */
196
1.79G
                    xlo = xmid;
197
1.79G
                    ylo = ymid;
198
1.79G
                    ffrac = silk_ADD_RSHIFT( ffrac, 128, m );
199
1.79G
                }
200
3.60G
            }
201
202
            /* Interpolate */
203
1.20G
            if( silk_abs( ylo ) < 65536 ) {
204
                /* Avoid dividing by zero */
205
1.20G
                den = ylo - yhi;
206
1.20G
                nom = silk_LSHIFT( ylo, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) + silk_RSHIFT( den, 1 );
207
1.20G
                if( den != 0 ) {
208
1.20G
                    ffrac += silk_DIV32( nom, den );
209
1.20G
                }
210
1.20G
            } else {
211
                /* No risk of dividing by zero because abs(ylo - yhi) >= abs(ylo) >= 65536 */
212
184
                ffrac += silk_DIV32( ylo, silk_RSHIFT( ylo - yhi, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) );
213
184
            }
214
1.20G
            NLSF[ root_ix ] = (opus_int16)silk_min_32( silk_LSHIFT( (opus_int32)k, 8 ) + ffrac, silk_int16_MAX );
215
216
1.20G
            silk_assert( NLSF[ root_ix ] >= 0 );
217
218
1.20G
            root_ix++;        /* Next root */
219
1.20G
            if( root_ix >= d ) {
220
                /* Found all roots */
221
107M
                break;
222
107M
            }
223
            /* Alternate pointer to polynomial */
224
1.09G
            p = PQ[ root_ix & 1 ];
225
226
            /* Evaluate polynomial */
227
1.09G
            xlo = silk_LSFCosTab_FIX_Q12[ k - 1 ]; /* Q12*/
228
1.09G
            ylo = silk_LSHIFT( 1 - ( root_ix & 2 ), 12 );
229
12.6G
        } else {
230
            /* Increment loop counter */
231
12.6G
            k++;
232
12.6G
            xlo = xhi;
233
12.6G
            ylo = yhi;
234
12.6G
            thr = 0;
235
236
12.6G
            if( k > LSF_COS_TAB_SZ_FIX ) {
237
110k
                i++;
238
110k
                if( i > MAX_ITERATIONS_A2NLSF_FIX ) {
239
                    /* Set NLSFs to white spectrum and exit */
240
0
                    NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 );
241
0
                    for( k = 1; k < d; k++ ) {
242
0
                        NLSF[ k ] = (opus_int16)silk_ADD16( NLSF[ k-1 ], NLSF[ 0 ] );
243
0
                    }
244
0
                    return;
245
0
                }
246
247
                /* Error: Apply progressively more bandwidth expansion and run again */
248
110k
                silk_bwexpander_32( a_Q16, d, 65536 - silk_LSHIFT( 1, i ) );
249
250
110k
                silk_A2NLSF_init( a_Q16, P, Q, dd );
251
110k
                p = P;                            /* Pointer to polynomial */
252
110k
                xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
253
110k
                ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
254
110k
                if( ylo < 0 ) {
255
                    /* Set the first NLSF to zero and move on to the next */
256
0
                    NLSF[ 0 ] = 0;
257
0
                    p = Q;                        /* Pointer to polynomial */
258
0
                    ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
259
0
                    root_ix = 1;                  /* Index of current root */
260
110k
                } else {
261
110k
                    root_ix = 0;                  /* Index of current root */
262
110k
                }
263
110k
                k = 1;                            /* Reset loop counter */
264
110k
            }
265
12.6G
        }
266
13.8G
    }
267
107M
}