/src/opus/silk/fixed/noise_shape_analysis_FIX.c
Line | Count | Source |
1 | | /*********************************************************************** |
2 | | Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
3 | | Redistribution and use in source and binary forms, with or without |
4 | | modification, are permitted provided that the following conditions |
5 | | are met: |
6 | | - Redistributions of source code must retain the above copyright notice, |
7 | | this list of conditions and the following disclaimer. |
8 | | - Redistributions in binary form must reproduce the above copyright |
9 | | notice, this list of conditions and the following disclaimer in the |
10 | | documentation and/or other materials provided with the distribution. |
11 | | - Neither the name of Internet Society, IETF or IETF Trust, nor the |
12 | | names of specific contributors, may be used to endorse or promote |
13 | | products derived from this software without specific prior written |
14 | | permission. |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
16 | | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
17 | | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
18 | | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
19 | | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
20 | | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
21 | | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
22 | | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
23 | | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
24 | | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
25 | | POSSIBILITY OF SUCH DAMAGE. |
26 | | ***********************************************************************/ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | #include "main_FIX.h" |
33 | | #include "stack_alloc.h" |
34 | | #include "tuning_parameters.h" |
35 | | |
36 | | /* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */ |
37 | | /* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */ |
38 | | /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */ |
39 | | /* coefficient in an array of coefficients, for monic filters. */ |
40 | | static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/ |
41 | | const opus_int32 *coefs_Q24, |
42 | | opus_int lambda_Q16, |
43 | | opus_int order |
44 | 565k | ) { |
45 | 565k | opus_int i; |
46 | 565k | opus_int32 gain_Q24; |
47 | | |
48 | 565k | lambda_Q16 = -lambda_Q16; |
49 | 565k | gain_Q24 = coefs_Q24[ order - 1 ]; |
50 | 12.5M | for( i = order - 2; i >= 0; i-- ) { |
51 | 11.9M | gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 ); |
52 | 11.9M | } |
53 | 565k | gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 ); |
54 | 565k | return silk_INVERSE32_varQ( gain_Q24, 40 ); |
55 | 565k | } |
56 | | |
57 | | /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ |
58 | | /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ |
59 | | static OPUS_INLINE void limit_warped_coefs( |
60 | | opus_int32 *coefs_Q24, |
61 | | opus_int lambda_Q16, |
62 | | opus_int32 limit_Q24, |
63 | | opus_int order |
64 | 565k | ) { |
65 | 565k | opus_int i, iter, ind = 0; |
66 | 565k | opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_Q16; |
67 | 565k | opus_int32 nom_Q16, den_Q24; |
68 | 565k | opus_int32 limit_Q20, maxabs_Q20; |
69 | | |
70 | | /* Convert to monic coefficients */ |
71 | 565k | lambda_Q16 = -lambda_Q16; |
72 | 12.5M | for( i = order - 1; i > 0; i-- ) { |
73 | 11.9M | coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); |
74 | 11.9M | } |
75 | 565k | lambda_Q16 = -lambda_Q16; |
76 | 565k | nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); |
77 | 565k | den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 ); |
78 | 565k | gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
79 | 13.1M | for( i = 0; i < order; i++ ) { |
80 | 12.5M | coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); |
81 | 12.5M | } |
82 | 565k | limit_Q20 = silk_RSHIFT(limit_Q24, 4); |
83 | 568k | for( iter = 0; iter < 10; iter++ ) { |
84 | | /* Find maximum absolute value */ |
85 | 568k | maxabs_Q24 = -1; |
86 | 13.1M | for( i = 0; i < order; i++ ) { |
87 | 12.6M | tmp = silk_abs_int32( coefs_Q24[ i ] ); |
88 | 12.6M | if( tmp > maxabs_Q24 ) { |
89 | 878k | maxabs_Q24 = tmp; |
90 | 878k | ind = i; |
91 | 878k | } |
92 | 12.6M | } |
93 | | /* Use Q20 to avoid any overflow when multiplying by (ind + 1) later. */ |
94 | 568k | maxabs_Q20 = silk_RSHIFT(maxabs_Q24, 4); |
95 | 568k | if( maxabs_Q20 <= limit_Q20 ) { |
96 | | /* Coefficients are within range - done */ |
97 | 565k | return; |
98 | 565k | } |
99 | | |
100 | | /* Convert back to true warped coefficients */ |
101 | 73.3k | for( i = 1; i < order; i++ ) { |
102 | 70.2k | coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); |
103 | 70.2k | } |
104 | 3.15k | gain_Q16 = silk_INVERSE32_varQ( gain_Q16, 32 ); |
105 | 76.5k | for( i = 0; i < order; i++ ) { |
106 | 73.3k | coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); |
107 | 73.3k | } |
108 | | |
109 | | /* Apply bandwidth expansion */ |
110 | 3.15k | chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ( |
111 | 3.15k | silk_SMULWB( maxabs_Q20 - limit_Q20, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ), |
112 | 3.15k | silk_MUL( maxabs_Q20, ind + 1 ), 22 ); |
113 | 3.15k | silk_bwexpander_32( coefs_Q24, order, chirp_Q16 ); |
114 | | |
115 | | /* Convert to monic warped coefficients */ |
116 | 3.15k | lambda_Q16 = -lambda_Q16; |
117 | 73.3k | for( i = order - 1; i > 0; i-- ) { |
118 | 70.2k | coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); |
119 | 70.2k | } |
120 | 3.15k | lambda_Q16 = -lambda_Q16; |
121 | 3.15k | nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); |
122 | 3.15k | den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 ); |
123 | 3.15k | gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
124 | 76.5k | for( i = 0; i < order; i++ ) { |
125 | 73.3k | coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); |
126 | 73.3k | } |
127 | 3.15k | } |
128 | 0 | silk_assert( 0 ); |
129 | 0 | } |
130 | | |
131 | | /**************************************************************/ |
132 | | /* Compute noise shaping coefficients and initial gain values */ |
133 | | /**************************************************************/ |
134 | | void silk_noise_shape_analysis_FIX( |
135 | | silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */ |
136 | | silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */ |
137 | | const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */ |
138 | | const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */ |
139 | | int arch /* I Run-time architecture */ |
140 | | ) |
141 | 237k | { |
142 | 237k | silk_shape_state_FIX *psShapeSt = &psEnc->sShape; |
143 | 237k | opus_int k, i, nSamples, nSegs, Qnrg, b_Q14, warping_Q16, scale = 0; |
144 | 237k | opus_int32 SNR_adj_dB_Q7, HarmShapeGain_Q16, Tilt_Q16, tmp32; |
145 | 237k | opus_int32 nrg, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7; |
146 | 237k | opus_int32 BWExp_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8; |
147 | 237k | opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; |
148 | 237k | opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ]; |
149 | 237k | opus_int32 AR_Q24[ MAX_SHAPE_LPC_ORDER ]; |
150 | 237k | VARDECL( opus_int16, x_windowed ); |
151 | 237k | const opus_int16 *x_ptr, *pitch_res_ptr; |
152 | 237k | SAVE_STACK; |
153 | | |
154 | | /* Point to start of first LPC analysis block */ |
155 | 237k | x_ptr = x - psEnc->sCmn.la_shape; |
156 | | |
157 | | /****************/ |
158 | | /* GAIN CONTROL */ |
159 | | /****************/ |
160 | 237k | SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7; |
161 | | |
162 | | /* Input quality is the average of the quality in the lowest two VAD bands */ |
163 | 237k | psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ] |
164 | 237k | + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 ); |
165 | | |
166 | | /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */ |
167 | 237k | psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 - |
168 | 237k | SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 ); |
169 | | |
170 | | /* Reduce coding SNR during low speech activity */ |
171 | 237k | if( psEnc->sCmn.useCBR == 0 ) { |
172 | 112k | b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8; |
173 | 112k | b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 ); |
174 | 112k | SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, |
175 | 112k | silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/ |
176 | 112k | silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/ |
177 | 112k | } |
178 | | |
179 | 237k | if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
180 | | /* Reduce gains for periodic signals */ |
181 | 29.0k | SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 ); |
182 | 208k | } else { |
183 | | /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ |
184 | 208k | SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, |
185 | 208k | silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ), |
186 | 208k | SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 ); |
187 | 208k | } |
188 | | |
189 | | /*************************/ |
190 | | /* SPARSENESS PROCESSING */ |
191 | | /*************************/ |
192 | | /* Set quantizer offset */ |
193 | 237k | if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
194 | | /* Initially set to 0; may be overruled in process_gains(..) */ |
195 | 29.0k | psEnc->sCmn.indices.quantOffsetType = 0; |
196 | 208k | } else { |
197 | | /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ |
198 | 208k | nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 ); |
199 | 208k | energy_variation_Q7 = 0; |
200 | 208k | log_energy_prev_Q7 = 0; |
201 | 208k | pitch_res_ptr = pitch_res; |
202 | 208k | nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; |
203 | 1.98M | for( k = 0; k < nSegs; k++ ) { |
204 | 1.77M | silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples ); |
205 | 1.77M | nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/ |
206 | | |
207 | 1.77M | log_energy_Q7 = silk_lin2log( nrg ); |
208 | 1.77M | if( k > 0 ) { |
209 | 1.56M | energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 ); |
210 | 1.56M | } |
211 | 1.77M | log_energy_prev_Q7 = log_energy_Q7; |
212 | 1.77M | pitch_res_ptr += nSamples; |
213 | 1.77M | } |
214 | | |
215 | | /* Set quantization offset depending on sparseness measure */ |
216 | 208k | if( energy_variation_Q7 > SILK_FIX_CONST( ENERGY_VARIATION_THRESHOLD_QNT_OFFSET, 7 ) * (nSegs-1) ) { |
217 | 150k | psEnc->sCmn.indices.quantOffsetType = 0; |
218 | 150k | } else { |
219 | 57.4k | psEnc->sCmn.indices.quantOffsetType = 1; |
220 | 57.4k | } |
221 | 208k | } |
222 | | |
223 | | /*******************************/ |
224 | | /* Control bandwidth expansion */ |
225 | | /*******************************/ |
226 | | /* More BWE for signals with high prediction gain */ |
227 | 237k | strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) ); |
228 | 237k | BWExp_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), |
229 | 237k | silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 ); |
230 | | |
231 | 237k | if( psEnc->sCmn.warping_Q16 > 0 ) { |
232 | | /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ |
233 | 157k | warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) ); |
234 | 157k | } else { |
235 | 79.5k | warping_Q16 = 0; |
236 | 79.5k | } |
237 | | |
238 | | /********************************************/ |
239 | | /* Compute noise shaping AR coefs and gains */ |
240 | | /********************************************/ |
241 | 237k | ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 ); |
242 | 1.06M | for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
243 | | /* Apply window: sine slope followed by flat part followed by cosine slope */ |
244 | 827k | opus_int shift, slope_part, flat_part; |
245 | 827k | flat_part = psEnc->sCmn.fs_kHz * 3; |
246 | 827k | slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 ); |
247 | | |
248 | 827k | silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part ); |
249 | 827k | shift = slope_part; |
250 | 827k | silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) ); |
251 | 827k | shift += flat_part; |
252 | 827k | silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part ); |
253 | | |
254 | | /* Update pointer: next LPC analysis block */ |
255 | 827k | x_ptr += psEnc->sCmn.subfr_length; |
256 | | |
257 | 827k | if( psEnc->sCmn.warping_Q16 > 0 ) { |
258 | | /* Calculate warped auto correlation */ |
259 | 565k | silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch ); |
260 | 565k | } else { |
261 | | /* Calculate regular auto correlation */ |
262 | 261k | silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch ); |
263 | 261k | } |
264 | | |
265 | | /* Add white noise, as a fraction of energy */ |
266 | 827k | auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ), |
267 | 827k | SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) ); |
268 | | |
269 | | /* Calculate the reflection coefficients using schur */ |
270 | 827k | nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder ); |
271 | 827k | silk_assert( nrg >= 0 ); |
272 | | |
273 | | /* Convert reflection coefficients to prediction coefficients */ |
274 | 827k | silk_k2a_Q16( AR_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); |
275 | | |
276 | 827k | Qnrg = -scale; /* range: -12...30*/ |
277 | 827k | silk_assert( Qnrg >= -12 ); |
278 | 827k | silk_assert( Qnrg <= 30 ); |
279 | | |
280 | | /* Make sure that Qnrg is an even number */ |
281 | 827k | if( Qnrg & 1 ) { |
282 | 359k | Qnrg -= 1; |
283 | 359k | nrg >>= 1; |
284 | 359k | } |
285 | | |
286 | 827k | tmp32 = silk_SQRT_APPROX( nrg ); |
287 | 827k | Qnrg >>= 1; /* range: -6...15*/ |
288 | | |
289 | 827k | psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg ); |
290 | | |
291 | 827k | if( psEnc->sCmn.warping_Q16 > 0 ) { |
292 | | /* Adjust gain for warping */ |
293 | 565k | gain_mult_Q16 = warped_gain( AR_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder ); |
294 | 565k | silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 ); |
295 | 565k | if( psEncCtrl->Gains_Q16[ k ] < SILK_FIX_CONST( 0.25, 16 ) ) { |
296 | 66.2k | psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); |
297 | 499k | } else { |
298 | 499k | psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ); |
299 | 499k | if ( psEncCtrl->Gains_Q16[ k ] >= ( silk_int32_MAX >> 1 ) ) { |
300 | 89.6k | psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX; |
301 | 409k | } else { |
302 | 409k | psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT32( psEncCtrl->Gains_Q16[ k ], 1 ); |
303 | 409k | } |
304 | 499k | } |
305 | 565k | silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 ); |
306 | 565k | } |
307 | | |
308 | | /* Bandwidth expansion */ |
309 | 827k | silk_bwexpander_32( AR_Q24, psEnc->sCmn.shapingLPCOrder, BWExp_Q16 ); |
310 | | |
311 | 827k | if( psEnc->sCmn.warping_Q16 > 0 ) { |
312 | | /* Convert to monic warped prediction coefficients and limit absolute values */ |
313 | 565k | limit_warped_coefs( AR_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder ); |
314 | | |
315 | | /* Convert from Q24 to Q13 and store in int16 */ |
316 | 13.1M | for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) { |
317 | 12.5M | psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR_Q24[ i ], 11 ) ); |
318 | 12.5M | } |
319 | 565k | } else { |
320 | 261k | silk_LPC_fit( &psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER ], AR_Q24, 13, 24, psEnc->sCmn.shapingLPCOrder ); |
321 | 261k | } |
322 | 827k | } |
323 | | |
324 | | /*****************/ |
325 | | /* Gain tweaking */ |
326 | | /*****************/ |
327 | | /* Increase gains during low speech activity and put lower limit on gains */ |
328 | 237k | gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) ); |
329 | 237k | gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) ); |
330 | 237k | silk_assert( gain_mult_Q16 > 0 ); |
331 | 1.06M | for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
332 | 827k | psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); |
333 | 827k | silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); |
334 | 827k | psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 ); |
335 | 827k | } |
336 | | |
337 | | |
338 | | /************************************************/ |
339 | | /* Control low-frequency shaping and noise tilt */ |
340 | | /************************************************/ |
341 | | /* Less low frequency shaping for noisy inputs */ |
342 | 237k | strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ), |
343 | 237k | SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) ); |
344 | 237k | strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 ); |
345 | 237k | if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
346 | | /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */ |
347 | | /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/ |
348 | 29.0k | opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz ); |
349 | 145k | for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
350 | 116k | b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] ); |
351 | | /* Pack two coefficients in one int32 */ |
352 | 116k | psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 ); |
353 | 116k | psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); |
354 | 116k | } |
355 | 29.0k | silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/ |
356 | 29.0k | Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) - |
357 | 29.0k | silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ), |
358 | 29.0k | silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) ); |
359 | 208k | } else { |
360 | 208k | b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/ |
361 | | /* Pack two coefficients in one int32 */ |
362 | 208k | psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - |
363 | 208k | silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 ); |
364 | 208k | psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); |
365 | 711k | for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { |
366 | 502k | psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ]; |
367 | 502k | } |
368 | 208k | Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 ); |
369 | 208k | } |
370 | | |
371 | | /****************************/ |
372 | | /* HARMONIC SHAPING CONTROL */ |
373 | | /****************************/ |
374 | 237k | if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
375 | | /* More harmonic noise shaping for high bitrates or noisy input */ |
376 | 29.0k | HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ), |
377 | 29.0k | SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ), |
378 | 29.0k | psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) ); |
379 | | |
380 | | /* Less harmonic noise shaping for less periodic signals */ |
381 | 29.0k | HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ), |
382 | 29.0k | silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) ); |
383 | 208k | } else { |
384 | 208k | HarmShapeGain_Q16 = 0; |
385 | 208k | } |
386 | | |
387 | | /*************************/ |
388 | | /* Smooth over subframes */ |
389 | | /*************************/ |
390 | 1.18M | for( k = 0; k < MAX_NB_SUBFR; k++ ) { |
391 | 949k | psShapeSt->HarmShapeGain_smth_Q16 = |
392 | 949k | silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
393 | 949k | psShapeSt->Tilt_smth_Q16 = |
394 | 949k | silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
395 | | |
396 | 949k | psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 ); |
397 | 949k | psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 ); |
398 | 949k | } |
399 | 237k | RESTORE_STACK; |
400 | 237k | } |